|  | /* calibrate.c: default delay calibration | 
|  | * | 
|  | * Excised from init/main.c | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | #include <linux/sched.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/init.h> | 
|  |  | 
|  | #include <asm/timex.h> | 
|  |  | 
|  | static unsigned long preset_lpj; | 
|  | static int __init lpj_setup(char *str) | 
|  | { | 
|  | preset_lpj = simple_strtoul(str,NULL,0); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("lpj=", lpj_setup); | 
|  |  | 
|  | #ifdef ARCH_HAS_READ_CURRENT_TIMER | 
|  |  | 
|  | /* This routine uses the read_current_timer() routine and gets the | 
|  | * loops per jiffy directly, instead of guessing it using delay(). | 
|  | * Also, this code tries to handle non-maskable asynchronous events | 
|  | * (like SMIs) | 
|  | */ | 
|  | #define DELAY_CALIBRATION_TICKS			((HZ < 100) ? 1 : (HZ/100)) | 
|  | #define MAX_DIRECT_CALIBRATION_RETRIES		5 | 
|  |  | 
|  | static unsigned long __devinit calibrate_delay_direct(void) | 
|  | { | 
|  | unsigned long pre_start, start, post_start; | 
|  | unsigned long pre_end, end, post_end; | 
|  | unsigned long start_jiffies; | 
|  | unsigned long tsc_rate_min, tsc_rate_max; | 
|  | unsigned long good_tsc_sum = 0; | 
|  | unsigned long good_tsc_count = 0; | 
|  | int i; | 
|  |  | 
|  | if (read_current_timer(&pre_start) < 0 ) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * A simple loop like | 
|  | *	while ( jiffies < start_jiffies+1) | 
|  | *		start = read_current_timer(); | 
|  | * will not do. As we don't really know whether jiffy switch | 
|  | * happened first or timer_value was read first. And some asynchronous | 
|  | * event can happen between these two events introducing errors in lpj. | 
|  | * | 
|  | * So, we do | 
|  | * 1. pre_start <- When we are sure that jiffy switch hasn't happened | 
|  | * 2. check jiffy switch | 
|  | * 3. start <- timer value before or after jiffy switch | 
|  | * 4. post_start <- When we are sure that jiffy switch has happened | 
|  | * | 
|  | * Note, we don't know anything about order of 2 and 3. | 
|  | * Now, by looking at post_start and pre_start difference, we can | 
|  | * check whether any asynchronous event happened or not | 
|  | */ | 
|  |  | 
|  | for (i = 0; i < MAX_DIRECT_CALIBRATION_RETRIES; i++) { | 
|  | pre_start = 0; | 
|  | read_current_timer(&start); | 
|  | start_jiffies = jiffies; | 
|  | while (jiffies <= (start_jiffies + 1)) { | 
|  | pre_start = start; | 
|  | read_current_timer(&start); | 
|  | } | 
|  | read_current_timer(&post_start); | 
|  |  | 
|  | pre_end = 0; | 
|  | end = post_start; | 
|  | while (jiffies <= | 
|  | (start_jiffies + 1 + DELAY_CALIBRATION_TICKS)) { | 
|  | pre_end = end; | 
|  | read_current_timer(&end); | 
|  | } | 
|  | read_current_timer(&post_end); | 
|  |  | 
|  | tsc_rate_max = (post_end - pre_start) / DELAY_CALIBRATION_TICKS; | 
|  | tsc_rate_min = (pre_end - post_start) / DELAY_CALIBRATION_TICKS; | 
|  |  | 
|  | /* | 
|  | * If the upper limit and lower limit of the tsc_rate is | 
|  | * >= 12.5% apart, redo calibration. | 
|  | */ | 
|  | if (pre_start != 0 && pre_end != 0 && | 
|  | (tsc_rate_max - tsc_rate_min) < (tsc_rate_max >> 3)) { | 
|  | good_tsc_count++; | 
|  | good_tsc_sum += tsc_rate_max; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (good_tsc_count) | 
|  | return (good_tsc_sum/good_tsc_count); | 
|  |  | 
|  | printk(KERN_WARNING "calibrate_delay_direct() failed to get a good " | 
|  | "estimate for loops_per_jiffy.\nProbably due to long platform interrupts. Consider using \"lpj=\" boot option.\n"); | 
|  | return 0; | 
|  | } | 
|  | #else | 
|  | static unsigned long __devinit calibrate_delay_direct(void) {return 0;} | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * This is the number of bits of precision for the loops_per_jiffy.  Each | 
|  | * bit takes on average 1.5/HZ seconds.  This (like the original) is a little | 
|  | * better than 1% | 
|  | */ | 
|  | #define LPS_PREC 8 | 
|  |  | 
|  | void __devinit calibrate_delay(void) | 
|  | { | 
|  | unsigned long ticks, loopbit; | 
|  | int lps_precision = LPS_PREC; | 
|  |  | 
|  | if (preset_lpj) { | 
|  | loops_per_jiffy = preset_lpj; | 
|  | printk("Calibrating delay loop (skipped)... " | 
|  | "%lu.%02lu BogoMIPS preset\n", | 
|  | loops_per_jiffy/(500000/HZ), | 
|  | (loops_per_jiffy/(5000/HZ)) % 100); | 
|  | } else if ((loops_per_jiffy = calibrate_delay_direct()) != 0) { | 
|  | printk("Calibrating delay using timer specific routine.. "); | 
|  | printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", | 
|  | loops_per_jiffy/(500000/HZ), | 
|  | (loops_per_jiffy/(5000/HZ)) % 100, | 
|  | loops_per_jiffy); | 
|  | } else { | 
|  | loops_per_jiffy = (1<<12); | 
|  |  | 
|  | printk(KERN_DEBUG "Calibrating delay loop... "); | 
|  | while ((loops_per_jiffy <<= 1) != 0) { | 
|  | /* wait for "start of" clock tick */ | 
|  | ticks = jiffies; | 
|  | while (ticks == jiffies) | 
|  | /* nothing */; | 
|  | /* Go .. */ | 
|  | ticks = jiffies; | 
|  | __delay(loops_per_jiffy); | 
|  | ticks = jiffies - ticks; | 
|  | if (ticks) | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do a binary approximation to get loops_per_jiffy set to | 
|  | * equal one clock (up to lps_precision bits) | 
|  | */ | 
|  | loops_per_jiffy >>= 1; | 
|  | loopbit = loops_per_jiffy; | 
|  | while (lps_precision-- && (loopbit >>= 1)) { | 
|  | loops_per_jiffy |= loopbit; | 
|  | ticks = jiffies; | 
|  | while (ticks == jiffies) | 
|  | /* nothing */; | 
|  | ticks = jiffies; | 
|  | __delay(loops_per_jiffy); | 
|  | if (jiffies != ticks)	/* longer than 1 tick */ | 
|  | loops_per_jiffy &= ~loopbit; | 
|  | } | 
|  |  | 
|  | /* Round the value and print it */ | 
|  | printk("%lu.%02lu BogoMIPS (lpj=%lu)\n", | 
|  | loops_per_jiffy/(500000/HZ), | 
|  | (loops_per_jiffy/(5000/HZ)) % 100, | 
|  | loops_per_jiffy); | 
|  | } | 
|  |  | 
|  | } |