|  | /* | 
|  | * INET		An implementation of the TCP/IP protocol suite for the LINUX | 
|  | *		operating system.  INET is implemented using the  BSD Socket | 
|  | *		interface as the means of communication with the user level. | 
|  | * | 
|  | *		Implementation of the Transmission Control Protocol(TCP). | 
|  | * | 
|  | * Version:	$Id: tcp_output.c,v 1.146 2002/02/01 22:01:04 davem Exp $ | 
|  | * | 
|  | * Authors:	Ross Biro | 
|  | *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG> | 
|  | *		Mark Evans, <evansmp@uhura.aston.ac.uk> | 
|  | *		Corey Minyard <wf-rch!minyard@relay.EU.net> | 
|  | *		Florian La Roche, <flla@stud.uni-sb.de> | 
|  | *		Charles Hedrick, <hedrick@klinzhai.rutgers.edu> | 
|  | *		Linus Torvalds, <torvalds@cs.helsinki.fi> | 
|  | *		Alan Cox, <gw4pts@gw4pts.ampr.org> | 
|  | *		Matthew Dillon, <dillon@apollo.west.oic.com> | 
|  | *		Arnt Gulbrandsen, <agulbra@nvg.unit.no> | 
|  | *		Jorge Cwik, <jorge@laser.satlink.net> | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Changes:	Pedro Roque	:	Retransmit queue handled by TCP. | 
|  | *				:	Fragmentation on mtu decrease | 
|  | *				:	Segment collapse on retransmit | 
|  | *				:	AF independence | 
|  | * | 
|  | *		Linus Torvalds	:	send_delayed_ack | 
|  | *		David S. Miller	:	Charge memory using the right skb | 
|  | *					during syn/ack processing. | 
|  | *		David S. Miller :	Output engine completely rewritten. | 
|  | *		Andrea Arcangeli:	SYNACK carry ts_recent in tsecr. | 
|  | *		Cacophonix Gaul :	draft-minshall-nagle-01 | 
|  | *		J Hadi Salim	:	ECN support | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include <net/tcp.h> | 
|  |  | 
|  | #include <linux/compiler.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/smp_lock.h> | 
|  |  | 
|  | /* People can turn this off for buggy TCP's found in printers etc. */ | 
|  | int sysctl_tcp_retrans_collapse __read_mostly = 1; | 
|  |  | 
|  | /* People can turn this on to  work with those rare, broken TCPs that | 
|  | * interpret the window field as a signed quantity. | 
|  | */ | 
|  | int sysctl_tcp_workaround_signed_windows __read_mostly = 0; | 
|  |  | 
|  | /* This limits the percentage of the congestion window which we | 
|  | * will allow a single TSO frame to consume.  Building TSO frames | 
|  | * which are too large can cause TCP streams to be bursty. | 
|  | */ | 
|  | int sysctl_tcp_tso_win_divisor __read_mostly = 3; | 
|  |  | 
|  | int sysctl_tcp_mtu_probing __read_mostly = 0; | 
|  | int sysctl_tcp_base_mss __read_mostly = 512; | 
|  |  | 
|  | /* By default, RFC2861 behavior.  */ | 
|  | int sysctl_tcp_slow_start_after_idle __read_mostly = 1; | 
|  |  | 
|  | static void update_send_head(struct sock *sk, struct tcp_sock *tp, | 
|  | struct sk_buff *skb) | 
|  | { | 
|  | sk->sk_send_head = skb->next; | 
|  | if (sk->sk_send_head == (struct sk_buff *)&sk->sk_write_queue) | 
|  | sk->sk_send_head = NULL; | 
|  | tp->snd_nxt = TCP_SKB_CB(skb)->end_seq; | 
|  | tcp_packets_out_inc(sk, tp, skb); | 
|  | } | 
|  |  | 
|  | /* SND.NXT, if window was not shrunk. | 
|  | * If window has been shrunk, what should we make? It is not clear at all. | 
|  | * Using SND.UNA we will fail to open window, SND.NXT is out of window. :-( | 
|  | * Anything in between SND.UNA...SND.UNA+SND.WND also can be already | 
|  | * invalid. OK, let's make this for now: | 
|  | */ | 
|  | static inline __u32 tcp_acceptable_seq(struct sock *sk, struct tcp_sock *tp) | 
|  | { | 
|  | if (!before(tp->snd_una+tp->snd_wnd, tp->snd_nxt)) | 
|  | return tp->snd_nxt; | 
|  | else | 
|  | return tp->snd_una+tp->snd_wnd; | 
|  | } | 
|  |  | 
|  | /* Calculate mss to advertise in SYN segment. | 
|  | * RFC1122, RFC1063, draft-ietf-tcpimpl-pmtud-01 state that: | 
|  | * | 
|  | * 1. It is independent of path mtu. | 
|  | * 2. Ideally, it is maximal possible segment size i.e. 65535-40. | 
|  | * 3. For IPv4 it is reasonable to calculate it from maximal MTU of | 
|  | *    attached devices, because some buggy hosts are confused by | 
|  | *    large MSS. | 
|  | * 4. We do not make 3, we advertise MSS, calculated from first | 
|  | *    hop device mtu, but allow to raise it to ip_rt_min_advmss. | 
|  | *    This may be overridden via information stored in routing table. | 
|  | * 5. Value 65535 for MSS is valid in IPv6 and means "as large as possible, | 
|  | *    probably even Jumbo". | 
|  | */ | 
|  | static __u16 tcp_advertise_mss(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | int mss = tp->advmss; | 
|  |  | 
|  | if (dst && dst_metric(dst, RTAX_ADVMSS) < mss) { | 
|  | mss = dst_metric(dst, RTAX_ADVMSS); | 
|  | tp->advmss = mss; | 
|  | } | 
|  |  | 
|  | return (__u16)mss; | 
|  | } | 
|  |  | 
|  | /* RFC2861. Reset CWND after idle period longer RTO to "restart window". | 
|  | * This is the first part of cwnd validation mechanism. */ | 
|  | static void tcp_cwnd_restart(struct sock *sk, struct dst_entry *dst) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | s32 delta = tcp_time_stamp - tp->lsndtime; | 
|  | u32 restart_cwnd = tcp_init_cwnd(tp, dst); | 
|  | u32 cwnd = tp->snd_cwnd; | 
|  |  | 
|  | tcp_ca_event(sk, CA_EVENT_CWND_RESTART); | 
|  |  | 
|  | tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
|  | restart_cwnd = min(restart_cwnd, cwnd); | 
|  |  | 
|  | while ((delta -= inet_csk(sk)->icsk_rto) > 0 && cwnd > restart_cwnd) | 
|  | cwnd >>= 1; | 
|  | tp->snd_cwnd = max(cwnd, restart_cwnd); | 
|  | tp->snd_cwnd_stamp = tcp_time_stamp; | 
|  | tp->snd_cwnd_used = 0; | 
|  | } | 
|  |  | 
|  | static void tcp_event_data_sent(struct tcp_sock *tp, | 
|  | struct sk_buff *skb, struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | const u32 now = tcp_time_stamp; | 
|  |  | 
|  | if (sysctl_tcp_slow_start_after_idle && | 
|  | (!tp->packets_out && (s32)(now - tp->lsndtime) > icsk->icsk_rto)) | 
|  | tcp_cwnd_restart(sk, __sk_dst_get(sk)); | 
|  |  | 
|  | tp->lsndtime = now; | 
|  |  | 
|  | /* If it is a reply for ato after last received | 
|  | * packet, enter pingpong mode. | 
|  | */ | 
|  | if ((u32)(now - icsk->icsk_ack.lrcvtime) < icsk->icsk_ack.ato) | 
|  | icsk->icsk_ack.pingpong = 1; | 
|  | } | 
|  |  | 
|  | static inline void tcp_event_ack_sent(struct sock *sk, unsigned int pkts) | 
|  | { | 
|  | tcp_dec_quickack_mode(sk, pkts); | 
|  | inet_csk_clear_xmit_timer(sk, ICSK_TIME_DACK); | 
|  | } | 
|  |  | 
|  | /* Determine a window scaling and initial window to offer. | 
|  | * Based on the assumption that the given amount of space | 
|  | * will be offered. Store the results in the tp structure. | 
|  | * NOTE: for smooth operation initial space offering should | 
|  | * be a multiple of mss if possible. We assume here that mss >= 1. | 
|  | * This MUST be enforced by all callers. | 
|  | */ | 
|  | void tcp_select_initial_window(int __space, __u32 mss, | 
|  | __u32 *rcv_wnd, __u32 *window_clamp, | 
|  | int wscale_ok, __u8 *rcv_wscale) | 
|  | { | 
|  | unsigned int space = (__space < 0 ? 0 : __space); | 
|  |  | 
|  | /* If no clamp set the clamp to the max possible scaled window */ | 
|  | if (*window_clamp == 0) | 
|  | (*window_clamp) = (65535 << 14); | 
|  | space = min(*window_clamp, space); | 
|  |  | 
|  | /* Quantize space offering to a multiple of mss if possible. */ | 
|  | if (space > mss) | 
|  | space = (space / mss) * mss; | 
|  |  | 
|  | /* NOTE: offering an initial window larger than 32767 | 
|  | * will break some buggy TCP stacks. If the admin tells us | 
|  | * it is likely we could be speaking with such a buggy stack | 
|  | * we will truncate our initial window offering to 32K-1 | 
|  | * unless the remote has sent us a window scaling option, | 
|  | * which we interpret as a sign the remote TCP is not | 
|  | * misinterpreting the window field as a signed quantity. | 
|  | */ | 
|  | if (sysctl_tcp_workaround_signed_windows) | 
|  | (*rcv_wnd) = min(space, MAX_TCP_WINDOW); | 
|  | else | 
|  | (*rcv_wnd) = space; | 
|  |  | 
|  | (*rcv_wscale) = 0; | 
|  | if (wscale_ok) { | 
|  | /* Set window scaling on max possible window | 
|  | * See RFC1323 for an explanation of the limit to 14 | 
|  | */ | 
|  | space = max_t(u32, sysctl_tcp_rmem[2], sysctl_rmem_max); | 
|  | space = min_t(u32, space, *window_clamp); | 
|  | while (space > 65535 && (*rcv_wscale) < 14) { | 
|  | space >>= 1; | 
|  | (*rcv_wscale)++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set initial window to value enough for senders, | 
|  | * following RFC2414. Senders, not following this RFC, | 
|  | * will be satisfied with 2. | 
|  | */ | 
|  | if (mss > (1<<*rcv_wscale)) { | 
|  | int init_cwnd = 4; | 
|  | if (mss > 1460*3) | 
|  | init_cwnd = 2; | 
|  | else if (mss > 1460) | 
|  | init_cwnd = 3; | 
|  | if (*rcv_wnd > init_cwnd*mss) | 
|  | *rcv_wnd = init_cwnd*mss; | 
|  | } | 
|  |  | 
|  | /* Set the clamp no higher than max representable value */ | 
|  | (*window_clamp) = min(65535U << (*rcv_wscale), *window_clamp); | 
|  | } | 
|  |  | 
|  | /* Chose a new window to advertise, update state in tcp_sock for the | 
|  | * socket, and return result with RFC1323 scaling applied.  The return | 
|  | * value can be stuffed directly into th->window for an outgoing | 
|  | * frame. | 
|  | */ | 
|  | static u16 tcp_select_window(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | u32 cur_win = tcp_receive_window(tp); | 
|  | u32 new_win = __tcp_select_window(sk); | 
|  |  | 
|  | /* Never shrink the offered window */ | 
|  | if(new_win < cur_win) { | 
|  | /* Danger Will Robinson! | 
|  | * Don't update rcv_wup/rcv_wnd here or else | 
|  | * we will not be able to advertise a zero | 
|  | * window in time.  --DaveM | 
|  | * | 
|  | * Relax Will Robinson. | 
|  | */ | 
|  | new_win = cur_win; | 
|  | } | 
|  | tp->rcv_wnd = new_win; | 
|  | tp->rcv_wup = tp->rcv_nxt; | 
|  |  | 
|  | /* Make sure we do not exceed the maximum possible | 
|  | * scaled window. | 
|  | */ | 
|  | if (!tp->rx_opt.rcv_wscale && sysctl_tcp_workaround_signed_windows) | 
|  | new_win = min(new_win, MAX_TCP_WINDOW); | 
|  | else | 
|  | new_win = min(new_win, (65535U << tp->rx_opt.rcv_wscale)); | 
|  |  | 
|  | /* RFC1323 scaling applied */ | 
|  | new_win >>= tp->rx_opt.rcv_wscale; | 
|  |  | 
|  | /* If we advertise zero window, disable fast path. */ | 
|  | if (new_win == 0) | 
|  | tp->pred_flags = 0; | 
|  |  | 
|  | return new_win; | 
|  | } | 
|  |  | 
|  | static void tcp_build_and_update_options(__be32 *ptr, struct tcp_sock *tp, | 
|  | __u32 tstamp, __u8 **md5_hash) | 
|  | { | 
|  | if (tp->rx_opt.tstamp_ok) { | 
|  | *ptr++ = htonl((TCPOPT_NOP << 24) | | 
|  | (TCPOPT_NOP << 16) | | 
|  | (TCPOPT_TIMESTAMP << 8) | | 
|  | TCPOLEN_TIMESTAMP); | 
|  | *ptr++ = htonl(tstamp); | 
|  | *ptr++ = htonl(tp->rx_opt.ts_recent); | 
|  | } | 
|  | if (tp->rx_opt.eff_sacks) { | 
|  | struct tcp_sack_block *sp = tp->rx_opt.dsack ? tp->duplicate_sack : tp->selective_acks; | 
|  | int this_sack; | 
|  |  | 
|  | *ptr++ = htonl((TCPOPT_NOP  << 24) | | 
|  | (TCPOPT_NOP  << 16) | | 
|  | (TCPOPT_SACK <<  8) | | 
|  | (TCPOLEN_SACK_BASE + (tp->rx_opt.eff_sacks * | 
|  | TCPOLEN_SACK_PERBLOCK))); | 
|  | for(this_sack = 0; this_sack < tp->rx_opt.eff_sacks; this_sack++) { | 
|  | *ptr++ = htonl(sp[this_sack].start_seq); | 
|  | *ptr++ = htonl(sp[this_sack].end_seq); | 
|  | } | 
|  | if (tp->rx_opt.dsack) { | 
|  | tp->rx_opt.dsack = 0; | 
|  | tp->rx_opt.eff_sacks--; | 
|  | } | 
|  | } | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | if (md5_hash) { | 
|  | *ptr++ = htonl((TCPOPT_NOP << 24) | | 
|  | (TCPOPT_NOP << 16) | | 
|  | (TCPOPT_MD5SIG << 8) | | 
|  | TCPOLEN_MD5SIG); | 
|  | *md5_hash = (__u8 *)ptr; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* Construct a tcp options header for a SYN or SYN_ACK packet. | 
|  | * If this is every changed make sure to change the definition of | 
|  | * MAX_SYN_SIZE to match the new maximum number of options that you | 
|  | * can generate. | 
|  | * | 
|  | * Note - that with the RFC2385 TCP option, we make room for the | 
|  | * 16 byte MD5 hash. This will be filled in later, so the pointer for the | 
|  | * location to be filled is passed back up. | 
|  | */ | 
|  | static void tcp_syn_build_options(__be32 *ptr, int mss, int ts, int sack, | 
|  | int offer_wscale, int wscale, __u32 tstamp, | 
|  | __u32 ts_recent, __u8 **md5_hash) | 
|  | { | 
|  | /* We always get an MSS option. | 
|  | * The option bytes which will be seen in normal data | 
|  | * packets should timestamps be used, must be in the MSS | 
|  | * advertised.  But we subtract them from tp->mss_cache so | 
|  | * that calculations in tcp_sendmsg are simpler etc. | 
|  | * So account for this fact here if necessary.  If we | 
|  | * don't do this correctly, as a receiver we won't | 
|  | * recognize data packets as being full sized when we | 
|  | * should, and thus we won't abide by the delayed ACK | 
|  | * rules correctly. | 
|  | * SACKs don't matter, we never delay an ACK when we | 
|  | * have any of those going out. | 
|  | */ | 
|  | *ptr++ = htonl((TCPOPT_MSS << 24) | (TCPOLEN_MSS << 16) | mss); | 
|  | if (ts) { | 
|  | if(sack) | 
|  | *ptr++ = htonl((TCPOPT_SACK_PERM << 24) | | 
|  | (TCPOLEN_SACK_PERM << 16) | | 
|  | (TCPOPT_TIMESTAMP << 8) | | 
|  | TCPOLEN_TIMESTAMP); | 
|  | else | 
|  | *ptr++ = htonl((TCPOPT_NOP << 24) | | 
|  | (TCPOPT_NOP << 16) | | 
|  | (TCPOPT_TIMESTAMP << 8) | | 
|  | TCPOLEN_TIMESTAMP); | 
|  | *ptr++ = htonl(tstamp);		/* TSVAL */ | 
|  | *ptr++ = htonl(ts_recent);	/* TSECR */ | 
|  | } else if(sack) | 
|  | *ptr++ = htonl((TCPOPT_NOP << 24) | | 
|  | (TCPOPT_NOP << 16) | | 
|  | (TCPOPT_SACK_PERM << 8) | | 
|  | TCPOLEN_SACK_PERM); | 
|  | if (offer_wscale) | 
|  | *ptr++ = htonl((TCPOPT_NOP << 24) | | 
|  | (TCPOPT_WINDOW << 16) | | 
|  | (TCPOLEN_WINDOW << 8) | | 
|  | (wscale)); | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | /* | 
|  | * If MD5 is enabled, then we set the option, and include the size | 
|  | * (always 18). The actual MD5 hash is added just before the | 
|  | * packet is sent. | 
|  | */ | 
|  | if (md5_hash) { | 
|  | *ptr++ = htonl((TCPOPT_NOP << 24) | | 
|  | (TCPOPT_NOP << 16) | | 
|  | (TCPOPT_MD5SIG << 8) | | 
|  | TCPOLEN_MD5SIG); | 
|  | *md5_hash = (__u8 *) ptr; | 
|  | } | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* This routine actually transmits TCP packets queued in by | 
|  | * tcp_do_sendmsg().  This is used by both the initial | 
|  | * transmission and possible later retransmissions. | 
|  | * All SKB's seen here are completely headerless.  It is our | 
|  | * job to build the TCP header, and pass the packet down to | 
|  | * IP so it can do the same plus pass the packet off to the | 
|  | * device. | 
|  | * | 
|  | * We are working here with either a clone of the original | 
|  | * SKB, or a fresh unique copy made by the retransmit engine. | 
|  | */ | 
|  | static int tcp_transmit_skb(struct sock *sk, struct sk_buff *skb, int clone_it, gfp_t gfp_mask) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct inet_sock *inet; | 
|  | struct tcp_sock *tp; | 
|  | struct tcp_skb_cb *tcb; | 
|  | int tcp_header_size; | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | struct tcp_md5sig_key *md5; | 
|  | __u8 *md5_hash_location; | 
|  | #endif | 
|  | struct tcphdr *th; | 
|  | int sysctl_flags; | 
|  | int err; | 
|  |  | 
|  | BUG_ON(!skb || !tcp_skb_pcount(skb)); | 
|  |  | 
|  | /* If congestion control is doing timestamping, we must | 
|  | * take such a timestamp before we potentially clone/copy. | 
|  | */ | 
|  | if (icsk->icsk_ca_ops->rtt_sample) | 
|  | __net_timestamp(skb); | 
|  |  | 
|  | if (likely(clone_it)) { | 
|  | if (unlikely(skb_cloned(skb))) | 
|  | skb = pskb_copy(skb, gfp_mask); | 
|  | else | 
|  | skb = skb_clone(skb, gfp_mask); | 
|  | if (unlikely(!skb)) | 
|  | return -ENOBUFS; | 
|  | } | 
|  |  | 
|  | inet = inet_sk(sk); | 
|  | tp = tcp_sk(sk); | 
|  | tcb = TCP_SKB_CB(skb); | 
|  | tcp_header_size = tp->tcp_header_len; | 
|  |  | 
|  | #define SYSCTL_FLAG_TSTAMPS	0x1 | 
|  | #define SYSCTL_FLAG_WSCALE	0x2 | 
|  | #define SYSCTL_FLAG_SACK	0x4 | 
|  |  | 
|  | sysctl_flags = 0; | 
|  | if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { | 
|  | tcp_header_size = sizeof(struct tcphdr) + TCPOLEN_MSS; | 
|  | if(sysctl_tcp_timestamps) { | 
|  | tcp_header_size += TCPOLEN_TSTAMP_ALIGNED; | 
|  | sysctl_flags |= SYSCTL_FLAG_TSTAMPS; | 
|  | } | 
|  | if (sysctl_tcp_window_scaling) { | 
|  | tcp_header_size += TCPOLEN_WSCALE_ALIGNED; | 
|  | sysctl_flags |= SYSCTL_FLAG_WSCALE; | 
|  | } | 
|  | if (sysctl_tcp_sack) { | 
|  | sysctl_flags |= SYSCTL_FLAG_SACK; | 
|  | if (!(sysctl_flags & SYSCTL_FLAG_TSTAMPS)) | 
|  | tcp_header_size += TCPOLEN_SACKPERM_ALIGNED; | 
|  | } | 
|  | } else if (unlikely(tp->rx_opt.eff_sacks)) { | 
|  | /* A SACK is 2 pad bytes, a 2 byte header, plus | 
|  | * 2 32-bit sequence numbers for each SACK block. | 
|  | */ | 
|  | tcp_header_size += (TCPOLEN_SACK_BASE_ALIGNED + | 
|  | (tp->rx_opt.eff_sacks * | 
|  | TCPOLEN_SACK_PERBLOCK)); | 
|  | } | 
|  |  | 
|  | if (tcp_packets_in_flight(tp) == 0) | 
|  | tcp_ca_event(sk, CA_EVENT_TX_START); | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | /* | 
|  | * Are we doing MD5 on this segment? If so - make | 
|  | * room for it. | 
|  | */ | 
|  | md5 = tp->af_specific->md5_lookup(sk, sk); | 
|  | if (md5) | 
|  | tcp_header_size += TCPOLEN_MD5SIG_ALIGNED; | 
|  | #endif | 
|  |  | 
|  | th = (struct tcphdr *) skb_push(skb, tcp_header_size); | 
|  | skb->h.th = th; | 
|  |  | 
|  | /* Build TCP header and checksum it. */ | 
|  | th->source		= inet->sport; | 
|  | th->dest		= inet->dport; | 
|  | th->seq			= htonl(tcb->seq); | 
|  | th->ack_seq		= htonl(tp->rcv_nxt); | 
|  | *(((__be16 *)th) + 6)	= htons(((tcp_header_size >> 2) << 12) | | 
|  | tcb->flags); | 
|  |  | 
|  | if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments | 
|  | * is never scaled. | 
|  | */ | 
|  | th->window	= htons(tp->rcv_wnd); | 
|  | } else { | 
|  | th->window	= htons(tcp_select_window(sk)); | 
|  | } | 
|  | th->check		= 0; | 
|  | th->urg_ptr		= 0; | 
|  |  | 
|  | if (unlikely(tp->urg_mode && | 
|  | between(tp->snd_up, tcb->seq+1, tcb->seq+0xFFFF))) { | 
|  | th->urg_ptr		= htons(tp->snd_up-tcb->seq); | 
|  | th->urg			= 1; | 
|  | } | 
|  |  | 
|  | if (unlikely(tcb->flags & TCPCB_FLAG_SYN)) { | 
|  | tcp_syn_build_options((__be32 *)(th + 1), | 
|  | tcp_advertise_mss(sk), | 
|  | (sysctl_flags & SYSCTL_FLAG_TSTAMPS), | 
|  | (sysctl_flags & SYSCTL_FLAG_SACK), | 
|  | (sysctl_flags & SYSCTL_FLAG_WSCALE), | 
|  | tp->rx_opt.rcv_wscale, | 
|  | tcb->when, | 
|  | tp->rx_opt.ts_recent, | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | md5 ? &md5_hash_location : | 
|  | #endif | 
|  | NULL); | 
|  | } else { | 
|  | tcp_build_and_update_options((__be32 *)(th + 1), | 
|  | tp, tcb->when, | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | md5 ? &md5_hash_location : | 
|  | #endif | 
|  | NULL); | 
|  | TCP_ECN_send(sk, tp, skb, tcp_header_size); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | /* Calculate the MD5 hash, as we have all we need now */ | 
|  | if (md5) { | 
|  | tp->af_specific->calc_md5_hash(md5_hash_location, | 
|  | md5, | 
|  | sk, NULL, NULL, | 
|  | skb->h.th, | 
|  | sk->sk_protocol, | 
|  | skb->len); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | icsk->icsk_af_ops->send_check(sk, skb->len, skb); | 
|  |  | 
|  | if (likely(tcb->flags & TCPCB_FLAG_ACK)) | 
|  | tcp_event_ack_sent(sk, tcp_skb_pcount(skb)); | 
|  |  | 
|  | if (skb->len != tcp_header_size) | 
|  | tcp_event_data_sent(tp, skb, sk); | 
|  |  | 
|  | if (after(tcb->end_seq, tp->snd_nxt) || tcb->seq == tcb->end_seq) | 
|  | TCP_INC_STATS(TCP_MIB_OUTSEGS); | 
|  |  | 
|  | err = icsk->icsk_af_ops->queue_xmit(skb, sk, 0); | 
|  | if (likely(err <= 0)) | 
|  | return err; | 
|  |  | 
|  | tcp_enter_cwr(sk); | 
|  |  | 
|  | return net_xmit_eval(err); | 
|  |  | 
|  | #undef SYSCTL_FLAG_TSTAMPS | 
|  | #undef SYSCTL_FLAG_WSCALE | 
|  | #undef SYSCTL_FLAG_SACK | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This routine just queue's the buffer | 
|  | * | 
|  | * NOTE: probe0 timer is not checked, do not forget tcp_push_pending_frames, | 
|  | * otherwise socket can stall. | 
|  | */ | 
|  | static void tcp_queue_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  |  | 
|  | /* Advance write_seq and place onto the write_queue. */ | 
|  | tp->write_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | skb_header_release(skb); | 
|  | __skb_queue_tail(&sk->sk_write_queue, skb); | 
|  | sk_charge_skb(sk, skb); | 
|  |  | 
|  | /* Queue it, remembering where we must start sending. */ | 
|  | if (sk->sk_send_head == NULL) | 
|  | sk->sk_send_head = skb; | 
|  | } | 
|  |  | 
|  | static void tcp_set_skb_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) | 
|  | { | 
|  | if (skb->len <= mss_now || !sk_can_gso(sk)) { | 
|  | /* Avoid the costly divide in the normal | 
|  | * non-TSO case. | 
|  | */ | 
|  | skb_shinfo(skb)->gso_segs = 1; | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  | } else { | 
|  | unsigned int factor; | 
|  |  | 
|  | factor = skb->len + (mss_now - 1); | 
|  | factor /= mss_now; | 
|  | skb_shinfo(skb)->gso_segs = factor; | 
|  | skb_shinfo(skb)->gso_size = mss_now; | 
|  | skb_shinfo(skb)->gso_type = sk->sk_gso_type; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Function to create two new TCP segments.  Shrinks the given segment | 
|  | * to the specified size and appends a new segment with the rest of the | 
|  | * packet to the list.  This won't be called frequently, I hope. | 
|  | * Remember, these are still headerless SKBs at this point. | 
|  | */ | 
|  | int tcp_fragment(struct sock *sk, struct sk_buff *skb, u32 len, unsigned int mss_now) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *buff; | 
|  | int nsize, old_factor; | 
|  | int nlen; | 
|  | u16 flags; | 
|  |  | 
|  | BUG_ON(len > skb->len); | 
|  |  | 
|  | clear_all_retrans_hints(tp); | 
|  | nsize = skb_headlen(skb) - len; | 
|  | if (nsize < 0) | 
|  | nsize = 0; | 
|  |  | 
|  | if (skb_cloned(skb) && | 
|  | skb_is_nonlinear(skb) && | 
|  | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Get a new skb... force flag on. */ | 
|  | buff = sk_stream_alloc_skb(sk, nsize, GFP_ATOMIC); | 
|  | if (buff == NULL) | 
|  | return -ENOMEM; /* We'll just try again later. */ | 
|  |  | 
|  | sk_charge_skb(sk, buff); | 
|  | nlen = skb->len - len - nsize; | 
|  | buff->truesize += nlen; | 
|  | skb->truesize -= nlen; | 
|  |  | 
|  | /* Correct the sequence numbers. */ | 
|  | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | 
|  | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | 
|  |  | 
|  | /* PSH and FIN should only be set in the second packet. */ | 
|  | flags = TCP_SKB_CB(skb)->flags; | 
|  | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | 
|  | TCP_SKB_CB(buff)->flags = flags; | 
|  | TCP_SKB_CB(buff)->sacked = TCP_SKB_CB(skb)->sacked; | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_AT_TAIL; | 
|  |  | 
|  | if (!skb_shinfo(skb)->nr_frags && skb->ip_summed != CHECKSUM_PARTIAL) { | 
|  | /* Copy and checksum data tail into the new buffer. */ | 
|  | buff->csum = csum_partial_copy_nocheck(skb->data + len, skb_put(buff, nsize), | 
|  | nsize, 0); | 
|  |  | 
|  | skb_trim(skb, len); | 
|  |  | 
|  | skb->csum = csum_block_sub(skb->csum, buff->csum, len); | 
|  | } else { | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb_split(skb, buff, len); | 
|  | } | 
|  |  | 
|  | buff->ip_summed = skb->ip_summed; | 
|  |  | 
|  | /* Looks stupid, but our code really uses when of | 
|  | * skbs, which it never sent before. --ANK | 
|  | */ | 
|  | TCP_SKB_CB(buff)->when = TCP_SKB_CB(skb)->when; | 
|  | buff->tstamp = skb->tstamp; | 
|  |  | 
|  | old_factor = tcp_skb_pcount(skb); | 
|  |  | 
|  | /* Fix up tso_factor for both original and new SKB.  */ | 
|  | tcp_set_skb_tso_segs(sk, skb, mss_now); | 
|  | tcp_set_skb_tso_segs(sk, buff, mss_now); | 
|  |  | 
|  | /* If this packet has been sent out already, we must | 
|  | * adjust the various packet counters. | 
|  | */ | 
|  | if (!before(tp->snd_nxt, TCP_SKB_CB(buff)->end_seq)) { | 
|  | int diff = old_factor - tcp_skb_pcount(skb) - | 
|  | tcp_skb_pcount(buff); | 
|  |  | 
|  | tp->packets_out -= diff; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | tp->sacked_out -= diff; | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_SACKED_RETRANS) | 
|  | tp->retrans_out -= diff; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_LOST) { | 
|  | tp->lost_out -= diff; | 
|  | tp->left_out -= diff; | 
|  | } | 
|  |  | 
|  | if (diff > 0) { | 
|  | /* Adjust Reno SACK estimate. */ | 
|  | if (!tp->rx_opt.sack_ok) { | 
|  | tp->sacked_out -= diff; | 
|  | if ((int)tp->sacked_out < 0) | 
|  | tp->sacked_out = 0; | 
|  | tcp_sync_left_out(tp); | 
|  | } | 
|  |  | 
|  | tp->fackets_out -= diff; | 
|  | if ((int)tp->fackets_out < 0) | 
|  | tp->fackets_out = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Link BUFF into the send queue. */ | 
|  | skb_header_release(buff); | 
|  | __skb_append(skb, buff, &sk->sk_write_queue); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This is similar to __pskb_pull_head() (it will go to core/skbuff.c | 
|  | * eventually). The difference is that pulled data not copied, but | 
|  | * immediately discarded. | 
|  | */ | 
|  | static void __pskb_trim_head(struct sk_buff *skb, int len) | 
|  | { | 
|  | int i, k, eat; | 
|  |  | 
|  | eat = len; | 
|  | k = 0; | 
|  | for (i=0; i<skb_shinfo(skb)->nr_frags; i++) { | 
|  | if (skb_shinfo(skb)->frags[i].size <= eat) { | 
|  | put_page(skb_shinfo(skb)->frags[i].page); | 
|  | eat -= skb_shinfo(skb)->frags[i].size; | 
|  | } else { | 
|  | skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i]; | 
|  | if (eat) { | 
|  | skb_shinfo(skb)->frags[k].page_offset += eat; | 
|  | skb_shinfo(skb)->frags[k].size -= eat; | 
|  | eat = 0; | 
|  | } | 
|  | k++; | 
|  | } | 
|  | } | 
|  | skb_shinfo(skb)->nr_frags = k; | 
|  |  | 
|  | skb->tail = skb->data; | 
|  | skb->data_len -= len; | 
|  | skb->len = skb->data_len; | 
|  | } | 
|  |  | 
|  | int tcp_trim_head(struct sock *sk, struct sk_buff *skb, u32 len) | 
|  | { | 
|  | if (skb_cloned(skb) && | 
|  | pskb_expand_head(skb, 0, 0, GFP_ATOMIC)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* If len == headlen, we avoid __skb_pull to preserve alignment. */ | 
|  | if (unlikely(len < skb_headlen(skb))) | 
|  | __skb_pull(skb, len); | 
|  | else | 
|  | __pskb_trim_head(skb, len - skb_headlen(skb)); | 
|  |  | 
|  | TCP_SKB_CB(skb)->seq += len; | 
|  | skb->ip_summed = CHECKSUM_PARTIAL; | 
|  |  | 
|  | skb->truesize	     -= len; | 
|  | sk->sk_wmem_queued   -= len; | 
|  | sk->sk_forward_alloc += len; | 
|  | sock_set_flag(sk, SOCK_QUEUE_SHRUNK); | 
|  |  | 
|  | /* Any change of skb->len requires recalculation of tso | 
|  | * factor and mss. | 
|  | */ | 
|  | if (tcp_skb_pcount(skb) > 1) | 
|  | tcp_set_skb_tso_segs(sk, skb, tcp_current_mss(sk, 1)); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Not accounting for SACKs here. */ | 
|  | int tcp_mtu_to_mss(struct sock *sk, int pmtu) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | int mss_now; | 
|  |  | 
|  | /* Calculate base mss without TCP options: | 
|  | It is MMS_S - sizeof(tcphdr) of rfc1122 | 
|  | */ | 
|  | mss_now = pmtu - icsk->icsk_af_ops->net_header_len - sizeof(struct tcphdr); | 
|  |  | 
|  | /* Clamp it (mss_clamp does not include tcp options) */ | 
|  | if (mss_now > tp->rx_opt.mss_clamp) | 
|  | mss_now = tp->rx_opt.mss_clamp; | 
|  |  | 
|  | /* Now subtract optional transport overhead */ | 
|  | mss_now -= icsk->icsk_ext_hdr_len; | 
|  |  | 
|  | /* Then reserve room for full set of TCP options and 8 bytes of data */ | 
|  | if (mss_now < 48) | 
|  | mss_now = 48; | 
|  |  | 
|  | /* Now subtract TCP options size, not including SACKs */ | 
|  | mss_now -= tp->tcp_header_len - sizeof(struct tcphdr); | 
|  |  | 
|  | return mss_now; | 
|  | } | 
|  |  | 
|  | /* Inverse of above */ | 
|  | int tcp_mss_to_mtu(struct sock *sk, int mss) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | int mtu; | 
|  |  | 
|  | mtu = mss + | 
|  | tp->tcp_header_len + | 
|  | icsk->icsk_ext_hdr_len + | 
|  | icsk->icsk_af_ops->net_header_len; | 
|  |  | 
|  | return mtu; | 
|  | } | 
|  |  | 
|  | void tcp_mtup_init(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  |  | 
|  | icsk->icsk_mtup.enabled = sysctl_tcp_mtu_probing > 1; | 
|  | icsk->icsk_mtup.search_high = tp->rx_opt.mss_clamp + sizeof(struct tcphdr) + | 
|  | icsk->icsk_af_ops->net_header_len; | 
|  | icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, sysctl_tcp_base_mss); | 
|  | icsk->icsk_mtup.probe_size = 0; | 
|  | } | 
|  |  | 
|  | /* This function synchronize snd mss to current pmtu/exthdr set. | 
|  |  | 
|  | tp->rx_opt.user_mss is mss set by user by TCP_MAXSEG. It does NOT counts | 
|  | for TCP options, but includes only bare TCP header. | 
|  |  | 
|  | tp->rx_opt.mss_clamp is mss negotiated at connection setup. | 
|  | It is minimum of user_mss and mss received with SYN. | 
|  | It also does not include TCP options. | 
|  |  | 
|  | inet_csk(sk)->icsk_pmtu_cookie is last pmtu, seen by this function. | 
|  |  | 
|  | tp->mss_cache is current effective sending mss, including | 
|  | all tcp options except for SACKs. It is evaluated, | 
|  | taking into account current pmtu, but never exceeds | 
|  | tp->rx_opt.mss_clamp. | 
|  |  | 
|  | NOTE1. rfc1122 clearly states that advertised MSS | 
|  | DOES NOT include either tcp or ip options. | 
|  |  | 
|  | NOTE2. inet_csk(sk)->icsk_pmtu_cookie and tp->mss_cache | 
|  | are READ ONLY outside this function.		--ANK (980731) | 
|  | */ | 
|  |  | 
|  | unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | int mss_now; | 
|  |  | 
|  | if (icsk->icsk_mtup.search_high > pmtu) | 
|  | icsk->icsk_mtup.search_high = pmtu; | 
|  |  | 
|  | mss_now = tcp_mtu_to_mss(sk, pmtu); | 
|  |  | 
|  | /* Bound mss with half of window */ | 
|  | if (tp->max_window && mss_now > (tp->max_window>>1)) | 
|  | mss_now = max((tp->max_window>>1), 68U - tp->tcp_header_len); | 
|  |  | 
|  | /* And store cached results */ | 
|  | icsk->icsk_pmtu_cookie = pmtu; | 
|  | if (icsk->icsk_mtup.enabled) | 
|  | mss_now = min(mss_now, tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low)); | 
|  | tp->mss_cache = mss_now; | 
|  |  | 
|  | return mss_now; | 
|  | } | 
|  |  | 
|  | /* Compute the current effective MSS, taking SACKs and IP options, | 
|  | * and even PMTU discovery events into account. | 
|  | * | 
|  | * LARGESEND note: !urg_mode is overkill, only frames up to snd_up | 
|  | * cannot be large. However, taking into account rare use of URG, this | 
|  | * is not a big flaw. | 
|  | */ | 
|  | unsigned int tcp_current_mss(struct sock *sk, int large_allowed) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | u32 mss_now; | 
|  | u16 xmit_size_goal; | 
|  | int doing_tso = 0; | 
|  |  | 
|  | mss_now = tp->mss_cache; | 
|  |  | 
|  | if (large_allowed && sk_can_gso(sk) && !tp->urg_mode) | 
|  | doing_tso = 1; | 
|  |  | 
|  | if (dst) { | 
|  | u32 mtu = dst_mtu(dst); | 
|  | if (mtu != inet_csk(sk)->icsk_pmtu_cookie) | 
|  | mss_now = tcp_sync_mss(sk, mtu); | 
|  | } | 
|  |  | 
|  | if (tp->rx_opt.eff_sacks) | 
|  | mss_now -= (TCPOLEN_SACK_BASE_ALIGNED + | 
|  | (tp->rx_opt.eff_sacks * TCPOLEN_SACK_PERBLOCK)); | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | if (tp->af_specific->md5_lookup(sk, sk)) | 
|  | mss_now -= TCPOLEN_MD5SIG_ALIGNED; | 
|  | #endif | 
|  |  | 
|  | xmit_size_goal = mss_now; | 
|  |  | 
|  | if (doing_tso) { | 
|  | xmit_size_goal = (65535 - | 
|  | inet_csk(sk)->icsk_af_ops->net_header_len - | 
|  | inet_csk(sk)->icsk_ext_hdr_len - | 
|  | tp->tcp_header_len); | 
|  |  | 
|  | if (tp->max_window && | 
|  | (xmit_size_goal > (tp->max_window >> 1))) | 
|  | xmit_size_goal = max((tp->max_window >> 1), | 
|  | 68U - tp->tcp_header_len); | 
|  |  | 
|  | xmit_size_goal -= (xmit_size_goal % mss_now); | 
|  | } | 
|  | tp->xmit_size_goal = xmit_size_goal; | 
|  |  | 
|  | return mss_now; | 
|  | } | 
|  |  | 
|  | /* Congestion window validation. (RFC2861) */ | 
|  |  | 
|  | static void tcp_cwnd_validate(struct sock *sk, struct tcp_sock *tp) | 
|  | { | 
|  | __u32 packets_out = tp->packets_out; | 
|  |  | 
|  | if (packets_out >= tp->snd_cwnd) { | 
|  | /* Network is feed fully. */ | 
|  | tp->snd_cwnd_used = 0; | 
|  | tp->snd_cwnd_stamp = tcp_time_stamp; | 
|  | } else { | 
|  | /* Network starves. */ | 
|  | if (tp->packets_out > tp->snd_cwnd_used) | 
|  | tp->snd_cwnd_used = tp->packets_out; | 
|  |  | 
|  | if ((s32)(tcp_time_stamp - tp->snd_cwnd_stamp) >= inet_csk(sk)->icsk_rto) | 
|  | tcp_cwnd_application_limited(sk); | 
|  | } | 
|  | } | 
|  |  | 
|  | static unsigned int tcp_window_allows(struct tcp_sock *tp, struct sk_buff *skb, unsigned int mss_now, unsigned int cwnd) | 
|  | { | 
|  | u32 window, cwnd_len; | 
|  |  | 
|  | window = (tp->snd_una + tp->snd_wnd - TCP_SKB_CB(skb)->seq); | 
|  | cwnd_len = mss_now * cwnd; | 
|  | return min(window, cwnd_len); | 
|  | } | 
|  |  | 
|  | /* Can at least one segment of SKB be sent right now, according to the | 
|  | * congestion window rules?  If so, return how many segments are allowed. | 
|  | */ | 
|  | static inline unsigned int tcp_cwnd_test(struct tcp_sock *tp, struct sk_buff *skb) | 
|  | { | 
|  | u32 in_flight, cwnd; | 
|  |  | 
|  | /* Don't be strict about the congestion window for the final FIN.  */ | 
|  | if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) | 
|  | return 1; | 
|  |  | 
|  | in_flight = tcp_packets_in_flight(tp); | 
|  | cwnd = tp->snd_cwnd; | 
|  | if (in_flight < cwnd) | 
|  | return (cwnd - in_flight); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This must be invoked the first time we consider transmitting | 
|  | * SKB onto the wire. | 
|  | */ | 
|  | static int tcp_init_tso_segs(struct sock *sk, struct sk_buff *skb, unsigned int mss_now) | 
|  | { | 
|  | int tso_segs = tcp_skb_pcount(skb); | 
|  |  | 
|  | if (!tso_segs || | 
|  | (tso_segs > 1 && | 
|  | tcp_skb_mss(skb) != mss_now)) { | 
|  | tcp_set_skb_tso_segs(sk, skb, mss_now); | 
|  | tso_segs = tcp_skb_pcount(skb); | 
|  | } | 
|  | return tso_segs; | 
|  | } | 
|  |  | 
|  | static inline int tcp_minshall_check(const struct tcp_sock *tp) | 
|  | { | 
|  | return after(tp->snd_sml,tp->snd_una) && | 
|  | !after(tp->snd_sml, tp->snd_nxt); | 
|  | } | 
|  |  | 
|  | /* Return 0, if packet can be sent now without violation Nagle's rules: | 
|  | * 1. It is full sized. | 
|  | * 2. Or it contains FIN. (already checked by caller) | 
|  | * 3. Or TCP_NODELAY was set. | 
|  | * 4. Or TCP_CORK is not set, and all sent packets are ACKed. | 
|  | *    With Minshall's modification: all sent small packets are ACKed. | 
|  | */ | 
|  |  | 
|  | static inline int tcp_nagle_check(const struct tcp_sock *tp, | 
|  | const struct sk_buff *skb, | 
|  | unsigned mss_now, int nonagle) | 
|  | { | 
|  | return (skb->len < mss_now && | 
|  | ((nonagle&TCP_NAGLE_CORK) || | 
|  | (!nonagle && | 
|  | tp->packets_out && | 
|  | tcp_minshall_check(tp)))); | 
|  | } | 
|  |  | 
|  | /* Return non-zero if the Nagle test allows this packet to be | 
|  | * sent now. | 
|  | */ | 
|  | static inline int tcp_nagle_test(struct tcp_sock *tp, struct sk_buff *skb, | 
|  | unsigned int cur_mss, int nonagle) | 
|  | { | 
|  | /* Nagle rule does not apply to frames, which sit in the middle of the | 
|  | * write_queue (they have no chances to get new data). | 
|  | * | 
|  | * This is implemented in the callers, where they modify the 'nonagle' | 
|  | * argument based upon the location of SKB in the send queue. | 
|  | */ | 
|  | if (nonagle & TCP_NAGLE_PUSH) | 
|  | return 1; | 
|  |  | 
|  | /* Don't use the nagle rule for urgent data (or for the final FIN).  */ | 
|  | if (tp->urg_mode || | 
|  | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN)) | 
|  | return 1; | 
|  |  | 
|  | if (!tcp_nagle_check(tp, skb, cur_mss, nonagle)) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Does at least the first segment of SKB fit into the send window? */ | 
|  | static inline int tcp_snd_wnd_test(struct tcp_sock *tp, struct sk_buff *skb, unsigned int cur_mss) | 
|  | { | 
|  | u32 end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  |  | 
|  | if (skb->len > cur_mss) | 
|  | end_seq = TCP_SKB_CB(skb)->seq + cur_mss; | 
|  |  | 
|  | return !after(end_seq, tp->snd_una + tp->snd_wnd); | 
|  | } | 
|  |  | 
|  | /* This checks if the data bearing packet SKB (usually sk->sk_send_head) | 
|  | * should be put on the wire right now.  If so, it returns the number of | 
|  | * packets allowed by the congestion window. | 
|  | */ | 
|  | static unsigned int tcp_snd_test(struct sock *sk, struct sk_buff *skb, | 
|  | unsigned int cur_mss, int nonagle) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | unsigned int cwnd_quota; | 
|  |  | 
|  | tcp_init_tso_segs(sk, skb, cur_mss); | 
|  |  | 
|  | if (!tcp_nagle_test(tp, skb, cur_mss, nonagle)) | 
|  | return 0; | 
|  |  | 
|  | cwnd_quota = tcp_cwnd_test(tp, skb); | 
|  | if (cwnd_quota && | 
|  | !tcp_snd_wnd_test(tp, skb, cur_mss)) | 
|  | cwnd_quota = 0; | 
|  |  | 
|  | return cwnd_quota; | 
|  | } | 
|  |  | 
|  | static inline int tcp_skb_is_last(const struct sock *sk, | 
|  | const struct sk_buff *skb) | 
|  | { | 
|  | return skb->next == (struct sk_buff *)&sk->sk_write_queue; | 
|  | } | 
|  |  | 
|  | int tcp_may_send_now(struct sock *sk, struct tcp_sock *tp) | 
|  | { | 
|  | struct sk_buff *skb = sk->sk_send_head; | 
|  |  | 
|  | return (skb && | 
|  | tcp_snd_test(sk, skb, tcp_current_mss(sk, 1), | 
|  | (tcp_skb_is_last(sk, skb) ? | 
|  | TCP_NAGLE_PUSH : | 
|  | tp->nonagle))); | 
|  | } | 
|  |  | 
|  | /* Trim TSO SKB to LEN bytes, put the remaining data into a new packet | 
|  | * which is put after SKB on the list.  It is very much like | 
|  | * tcp_fragment() except that it may make several kinds of assumptions | 
|  | * in order to speed up the splitting operation.  In particular, we | 
|  | * know that all the data is in scatter-gather pages, and that the | 
|  | * packet has never been sent out before (and thus is not cloned). | 
|  | */ | 
|  | static int tso_fragment(struct sock *sk, struct sk_buff *skb, unsigned int len, unsigned int mss_now) | 
|  | { | 
|  | struct sk_buff *buff; | 
|  | int nlen = skb->len - len; | 
|  | u16 flags; | 
|  |  | 
|  | /* All of a TSO frame must be composed of paged data.  */ | 
|  | if (skb->len != skb->data_len) | 
|  | return tcp_fragment(sk, skb, len, mss_now); | 
|  |  | 
|  | buff = sk_stream_alloc_pskb(sk, 0, 0, GFP_ATOMIC); | 
|  | if (unlikely(buff == NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sk_charge_skb(sk, buff); | 
|  | buff->truesize += nlen; | 
|  | skb->truesize -= nlen; | 
|  |  | 
|  | /* Correct the sequence numbers. */ | 
|  | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(skb)->seq + len; | 
|  | TCP_SKB_CB(buff)->end_seq = TCP_SKB_CB(skb)->end_seq; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(buff)->seq; | 
|  |  | 
|  | /* PSH and FIN should only be set in the second packet. */ | 
|  | flags = TCP_SKB_CB(skb)->flags; | 
|  | TCP_SKB_CB(skb)->flags = flags & ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | 
|  | TCP_SKB_CB(buff)->flags = flags; | 
|  |  | 
|  | /* This packet was never sent out yet, so no SACK bits. */ | 
|  | TCP_SKB_CB(buff)->sacked = 0; | 
|  |  | 
|  | buff->ip_summed = skb->ip_summed = CHECKSUM_PARTIAL; | 
|  | skb_split(skb, buff, len); | 
|  |  | 
|  | /* Fix up tso_factor for both original and new SKB.  */ | 
|  | tcp_set_skb_tso_segs(sk, skb, mss_now); | 
|  | tcp_set_skb_tso_segs(sk, buff, mss_now); | 
|  |  | 
|  | /* Link BUFF into the send queue. */ | 
|  | skb_header_release(buff); | 
|  | __skb_append(skb, buff, &sk->sk_write_queue); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Try to defer sending, if possible, in order to minimize the amount | 
|  | * of TSO splitting we do.  View it as a kind of TSO Nagle test. | 
|  | * | 
|  | * This algorithm is from John Heffner. | 
|  | */ | 
|  | static int tcp_tso_should_defer(struct sock *sk, struct tcp_sock *tp, struct sk_buff *skb) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | u32 send_win, cong_win, limit, in_flight; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) | 
|  | goto send_now; | 
|  |  | 
|  | if (icsk->icsk_ca_state != TCP_CA_Open) | 
|  | goto send_now; | 
|  |  | 
|  | /* Defer for less than two clock ticks. */ | 
|  | if (!tp->tso_deferred && ((jiffies<<1)>>1) - (tp->tso_deferred>>1) > 1) | 
|  | goto send_now; | 
|  |  | 
|  | in_flight = tcp_packets_in_flight(tp); | 
|  |  | 
|  | BUG_ON(tcp_skb_pcount(skb) <= 1 || | 
|  | (tp->snd_cwnd <= in_flight)); | 
|  |  | 
|  | send_win = (tp->snd_una + tp->snd_wnd) - TCP_SKB_CB(skb)->seq; | 
|  |  | 
|  | /* From in_flight test above, we know that cwnd > in_flight.  */ | 
|  | cong_win = (tp->snd_cwnd - in_flight) * tp->mss_cache; | 
|  |  | 
|  | limit = min(send_win, cong_win); | 
|  |  | 
|  | /* If a full-sized TSO skb can be sent, do it. */ | 
|  | if (limit >= 65536) | 
|  | goto send_now; | 
|  |  | 
|  | if (sysctl_tcp_tso_win_divisor) { | 
|  | u32 chunk = min(tp->snd_wnd, tp->snd_cwnd * tp->mss_cache); | 
|  |  | 
|  | /* If at least some fraction of a window is available, | 
|  | * just use it. | 
|  | */ | 
|  | chunk /= sysctl_tcp_tso_win_divisor; | 
|  | if (limit >= chunk) | 
|  | goto send_now; | 
|  | } else { | 
|  | /* Different approach, try not to defer past a single | 
|  | * ACK.  Receiver should ACK every other full sized | 
|  | * frame, so if we have space for more than 3 frames | 
|  | * then send now. | 
|  | */ | 
|  | if (limit > tcp_max_burst(tp) * tp->mss_cache) | 
|  | goto send_now; | 
|  | } | 
|  |  | 
|  | /* Ok, it looks like it is advisable to defer.  */ | 
|  | tp->tso_deferred = 1 | (jiffies<<1); | 
|  |  | 
|  | return 1; | 
|  |  | 
|  | send_now: | 
|  | tp->tso_deferred = 0; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Create a new MTU probe if we are ready. | 
|  | * Returns 0 if we should wait to probe (no cwnd available), | 
|  | *         1 if a probe was sent, | 
|  | *         -1 otherwise */ | 
|  | static int tcp_mtu_probe(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct sk_buff *skb, *nskb, *next; | 
|  | int len; | 
|  | int probe_size; | 
|  | unsigned int pif; | 
|  | int copy; | 
|  | int mss_now; | 
|  |  | 
|  | /* Not currently probing/verifying, | 
|  | * not in recovery, | 
|  | * have enough cwnd, and | 
|  | * not SACKing (the variable headers throw things off) */ | 
|  | if (!icsk->icsk_mtup.enabled || | 
|  | icsk->icsk_mtup.probe_size || | 
|  | inet_csk(sk)->icsk_ca_state != TCP_CA_Open || | 
|  | tp->snd_cwnd < 11 || | 
|  | tp->rx_opt.eff_sacks) | 
|  | return -1; | 
|  |  | 
|  | /* Very simple search strategy: just double the MSS. */ | 
|  | mss_now = tcp_current_mss(sk, 0); | 
|  | probe_size = 2*tp->mss_cache; | 
|  | if (probe_size > tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_high)) { | 
|  | /* TODO: set timer for probe_converge_event */ | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* Have enough data in the send queue to probe? */ | 
|  | len = 0; | 
|  | if ((skb = sk->sk_send_head) == NULL) | 
|  | return -1; | 
|  | while ((len += skb->len) < probe_size && !tcp_skb_is_last(sk, skb)) | 
|  | skb = skb->next; | 
|  | if (len < probe_size) | 
|  | return -1; | 
|  |  | 
|  | /* Receive window check. */ | 
|  | if (after(TCP_SKB_CB(skb)->seq + probe_size, tp->snd_una + tp->snd_wnd)) { | 
|  | if (tp->snd_wnd < probe_size) | 
|  | return -1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Do we need to wait to drain cwnd? */ | 
|  | pif = tcp_packets_in_flight(tp); | 
|  | if (pif + 2 > tp->snd_cwnd) { | 
|  | /* With no packets in flight, don't stall. */ | 
|  | if (pif == 0) | 
|  | return -1; | 
|  | else | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* We're allowed to probe.  Build it now. */ | 
|  | if ((nskb = sk_stream_alloc_skb(sk, probe_size, GFP_ATOMIC)) == NULL) | 
|  | return -1; | 
|  | sk_charge_skb(sk, nskb); | 
|  |  | 
|  | skb = sk->sk_send_head; | 
|  | __skb_insert(nskb, skb->prev, skb, &sk->sk_write_queue); | 
|  | sk->sk_send_head = nskb; | 
|  |  | 
|  | TCP_SKB_CB(nskb)->seq = TCP_SKB_CB(skb)->seq; | 
|  | TCP_SKB_CB(nskb)->end_seq = TCP_SKB_CB(skb)->seq + probe_size; | 
|  | TCP_SKB_CB(nskb)->flags = TCPCB_FLAG_ACK; | 
|  | TCP_SKB_CB(nskb)->sacked = 0; | 
|  | nskb->csum = 0; | 
|  | nskb->ip_summed = skb->ip_summed; | 
|  |  | 
|  | len = 0; | 
|  | while (len < probe_size) { | 
|  | next = skb->next; | 
|  |  | 
|  | copy = min_t(int, skb->len, probe_size - len); | 
|  | if (nskb->ip_summed) | 
|  | skb_copy_bits(skb, 0, skb_put(nskb, copy), copy); | 
|  | else | 
|  | nskb->csum = skb_copy_and_csum_bits(skb, 0, | 
|  | skb_put(nskb, copy), copy, nskb->csum); | 
|  |  | 
|  | if (skb->len <= copy) { | 
|  | /* We've eaten all the data from this skb. | 
|  | * Throw it away. */ | 
|  | TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags; | 
|  | __skb_unlink(skb, &sk->sk_write_queue); | 
|  | sk_stream_free_skb(sk, skb); | 
|  | } else { | 
|  | TCP_SKB_CB(nskb)->flags |= TCP_SKB_CB(skb)->flags & | 
|  | ~(TCPCB_FLAG_FIN|TCPCB_FLAG_PSH); | 
|  | if (!skb_shinfo(skb)->nr_frags) { | 
|  | skb_pull(skb, copy); | 
|  | if (skb->ip_summed != CHECKSUM_PARTIAL) | 
|  | skb->csum = csum_partial(skb->data, skb->len, 0); | 
|  | } else { | 
|  | __pskb_trim_head(skb, copy); | 
|  | tcp_set_skb_tso_segs(sk, skb, mss_now); | 
|  | } | 
|  | TCP_SKB_CB(skb)->seq += copy; | 
|  | } | 
|  |  | 
|  | len += copy; | 
|  | skb = next; | 
|  | } | 
|  | tcp_init_tso_segs(sk, nskb, nskb->len); | 
|  |  | 
|  | /* We're ready to send.  If this fails, the probe will | 
|  | * be resegmented into mss-sized pieces by tcp_write_xmit(). */ | 
|  | TCP_SKB_CB(nskb)->when = tcp_time_stamp; | 
|  | if (!tcp_transmit_skb(sk, nskb, 1, GFP_ATOMIC)) { | 
|  | /* Decrement cwnd here because we are sending | 
|  | * effectively two packets. */ | 
|  | tp->snd_cwnd--; | 
|  | update_send_head(sk, tp, nskb); | 
|  |  | 
|  | icsk->icsk_mtup.probe_size = tcp_mss_to_mtu(sk, nskb->len); | 
|  | tp->mtu_probe.probe_seq_start = TCP_SKB_CB(nskb)->seq; | 
|  | tp->mtu_probe.probe_seq_end = TCP_SKB_CB(nskb)->end_seq; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* This routine writes packets to the network.  It advances the | 
|  | * send_head.  This happens as incoming acks open up the remote | 
|  | * window for us. | 
|  | * | 
|  | * Returns 1, if no segments are in flight and we have queued segments, but | 
|  | * cannot send anything now because of SWS or another problem. | 
|  | */ | 
|  | static int tcp_write_xmit(struct sock *sk, unsigned int mss_now, int nonagle) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | unsigned int tso_segs, sent_pkts; | 
|  | int cwnd_quota; | 
|  | int result; | 
|  |  | 
|  | /* If we are closed, the bytes will have to remain here. | 
|  | * In time closedown will finish, we empty the write queue and all | 
|  | * will be happy. | 
|  | */ | 
|  | if (unlikely(sk->sk_state == TCP_CLOSE)) | 
|  | return 0; | 
|  |  | 
|  | sent_pkts = 0; | 
|  |  | 
|  | /* Do MTU probing. */ | 
|  | if ((result = tcp_mtu_probe(sk)) == 0) { | 
|  | return 0; | 
|  | } else if (result > 0) { | 
|  | sent_pkts = 1; | 
|  | } | 
|  |  | 
|  | while ((skb = sk->sk_send_head)) { | 
|  | unsigned int limit; | 
|  |  | 
|  | tso_segs = tcp_init_tso_segs(sk, skb, mss_now); | 
|  | BUG_ON(!tso_segs); | 
|  |  | 
|  | cwnd_quota = tcp_cwnd_test(tp, skb); | 
|  | if (!cwnd_quota) | 
|  | break; | 
|  |  | 
|  | if (unlikely(!tcp_snd_wnd_test(tp, skb, mss_now))) | 
|  | break; | 
|  |  | 
|  | if (tso_segs == 1) { | 
|  | if (unlikely(!tcp_nagle_test(tp, skb, mss_now, | 
|  | (tcp_skb_is_last(sk, skb) ? | 
|  | nonagle : TCP_NAGLE_PUSH)))) | 
|  | break; | 
|  | } else { | 
|  | if (tcp_tso_should_defer(sk, tp, skb)) | 
|  | break; | 
|  | } | 
|  |  | 
|  | limit = mss_now; | 
|  | if (tso_segs > 1) { | 
|  | limit = tcp_window_allows(tp, skb, | 
|  | mss_now, cwnd_quota); | 
|  |  | 
|  | if (skb->len < limit) { | 
|  | unsigned int trim = skb->len % mss_now; | 
|  |  | 
|  | if (trim) | 
|  | limit = skb->len - trim; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skb->len > limit && | 
|  | unlikely(tso_fragment(sk, skb, limit, mss_now))) | 
|  | break; | 
|  |  | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  |  | 
|  | if (unlikely(tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC))) | 
|  | break; | 
|  |  | 
|  | /* Advance the send_head.  This one is sent out. | 
|  | * This call will increment packets_out. | 
|  | */ | 
|  | update_send_head(sk, tp, skb); | 
|  |  | 
|  | tcp_minshall_update(tp, mss_now, skb); | 
|  | sent_pkts++; | 
|  | } | 
|  |  | 
|  | if (likely(sent_pkts)) { | 
|  | tcp_cwnd_validate(sk, tp); | 
|  | return 0; | 
|  | } | 
|  | return !tp->packets_out && sk->sk_send_head; | 
|  | } | 
|  |  | 
|  | /* Push out any pending frames which were held back due to | 
|  | * TCP_CORK or attempt at coalescing tiny packets. | 
|  | * The socket must be locked by the caller. | 
|  | */ | 
|  | void __tcp_push_pending_frames(struct sock *sk, struct tcp_sock *tp, | 
|  | unsigned int cur_mss, int nonagle) | 
|  | { | 
|  | struct sk_buff *skb = sk->sk_send_head; | 
|  |  | 
|  | if (skb) { | 
|  | if (tcp_write_xmit(sk, cur_mss, nonagle)) | 
|  | tcp_check_probe_timer(sk, tp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Send _single_ skb sitting at the send head. This function requires | 
|  | * true push pending frames to setup probe timer etc. | 
|  | */ | 
|  | void tcp_push_one(struct sock *sk, unsigned int mss_now) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb = sk->sk_send_head; | 
|  | unsigned int tso_segs, cwnd_quota; | 
|  |  | 
|  | BUG_ON(!skb || skb->len < mss_now); | 
|  |  | 
|  | tso_segs = tcp_init_tso_segs(sk, skb, mss_now); | 
|  | cwnd_quota = tcp_snd_test(sk, skb, mss_now, TCP_NAGLE_PUSH); | 
|  |  | 
|  | if (likely(cwnd_quota)) { | 
|  | unsigned int limit; | 
|  |  | 
|  | BUG_ON(!tso_segs); | 
|  |  | 
|  | limit = mss_now; | 
|  | if (tso_segs > 1) { | 
|  | limit = tcp_window_allows(tp, skb, | 
|  | mss_now, cwnd_quota); | 
|  |  | 
|  | if (skb->len < limit) { | 
|  | unsigned int trim = skb->len % mss_now; | 
|  |  | 
|  | if (trim) | 
|  | limit = skb->len - trim; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (skb->len > limit && | 
|  | unlikely(tso_fragment(sk, skb, limit, mss_now))) | 
|  | return; | 
|  |  | 
|  | /* Send it out now. */ | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  |  | 
|  | if (likely(!tcp_transmit_skb(sk, skb, 1, sk->sk_allocation))) { | 
|  | update_send_head(sk, tp, skb); | 
|  | tcp_cwnd_validate(sk, tp); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This function returns the amount that we can raise the | 
|  | * usable window based on the following constraints | 
|  | * | 
|  | * 1. The window can never be shrunk once it is offered (RFC 793) | 
|  | * 2. We limit memory per socket | 
|  | * | 
|  | * RFC 1122: | 
|  | * "the suggested [SWS] avoidance algorithm for the receiver is to keep | 
|  | *  RECV.NEXT + RCV.WIN fixed until: | 
|  | *  RCV.BUFF - RCV.USER - RCV.WINDOW >= min(1/2 RCV.BUFF, MSS)" | 
|  | * | 
|  | * i.e. don't raise the right edge of the window until you can raise | 
|  | * it at least MSS bytes. | 
|  | * | 
|  | * Unfortunately, the recommended algorithm breaks header prediction, | 
|  | * since header prediction assumes th->window stays fixed. | 
|  | * | 
|  | * Strictly speaking, keeping th->window fixed violates the receiver | 
|  | * side SWS prevention criteria. The problem is that under this rule | 
|  | * a stream of single byte packets will cause the right side of the | 
|  | * window to always advance by a single byte. | 
|  | * | 
|  | * Of course, if the sender implements sender side SWS prevention | 
|  | * then this will not be a problem. | 
|  | * | 
|  | * BSD seems to make the following compromise: | 
|  | * | 
|  | *	If the free space is less than the 1/4 of the maximum | 
|  | *	space available and the free space is less than 1/2 mss, | 
|  | *	then set the window to 0. | 
|  | *	[ Actually, bsd uses MSS and 1/4 of maximal _window_ ] | 
|  | *	Otherwise, just prevent the window from shrinking | 
|  | *	and from being larger than the largest representable value. | 
|  | * | 
|  | * This prevents incremental opening of the window in the regime | 
|  | * where TCP is limited by the speed of the reader side taking | 
|  | * data out of the TCP receive queue. It does nothing about | 
|  | * those cases where the window is constrained on the sender side | 
|  | * because the pipeline is full. | 
|  | * | 
|  | * BSD also seems to "accidentally" limit itself to windows that are a | 
|  | * multiple of MSS, at least until the free space gets quite small. | 
|  | * This would appear to be a side effect of the mbuf implementation. | 
|  | * Combining these two algorithms results in the observed behavior | 
|  | * of having a fixed window size at almost all times. | 
|  | * | 
|  | * Below we obtain similar behavior by forcing the offered window to | 
|  | * a multiple of the mss when it is feasible to do so. | 
|  | * | 
|  | * Note, we don't "adjust" for TIMESTAMP or SACK option bytes. | 
|  | * Regular options like TIMESTAMP are taken into account. | 
|  | */ | 
|  | u32 __tcp_select_window(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | /* MSS for the peer's data.  Previous versions used mss_clamp | 
|  | * here.  I don't know if the value based on our guesses | 
|  | * of peer's MSS is better for the performance.  It's more correct | 
|  | * but may be worse for the performance because of rcv_mss | 
|  | * fluctuations.  --SAW  1998/11/1 | 
|  | */ | 
|  | int mss = icsk->icsk_ack.rcv_mss; | 
|  | int free_space = tcp_space(sk); | 
|  | int full_space = min_t(int, tp->window_clamp, tcp_full_space(sk)); | 
|  | int window; | 
|  |  | 
|  | if (mss > full_space) | 
|  | mss = full_space; | 
|  |  | 
|  | if (free_space < full_space/2) { | 
|  | icsk->icsk_ack.quick = 0; | 
|  |  | 
|  | if (tcp_memory_pressure) | 
|  | tp->rcv_ssthresh = min(tp->rcv_ssthresh, 4U*tp->advmss); | 
|  |  | 
|  | if (free_space < mss) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (free_space > tp->rcv_ssthresh) | 
|  | free_space = tp->rcv_ssthresh; | 
|  |  | 
|  | /* Don't do rounding if we are using window scaling, since the | 
|  | * scaled window will not line up with the MSS boundary anyway. | 
|  | */ | 
|  | window = tp->rcv_wnd; | 
|  | if (tp->rx_opt.rcv_wscale) { | 
|  | window = free_space; | 
|  |  | 
|  | /* Advertise enough space so that it won't get scaled away. | 
|  | * Import case: prevent zero window announcement if | 
|  | * 1<<rcv_wscale > mss. | 
|  | */ | 
|  | if (((window >> tp->rx_opt.rcv_wscale) << tp->rx_opt.rcv_wscale) != window) | 
|  | window = (((window >> tp->rx_opt.rcv_wscale) + 1) | 
|  | << tp->rx_opt.rcv_wscale); | 
|  | } else { | 
|  | /* Get the largest window that is a nice multiple of mss. | 
|  | * Window clamp already applied above. | 
|  | * If our current window offering is within 1 mss of the | 
|  | * free space we just keep it. This prevents the divide | 
|  | * and multiply from happening most of the time. | 
|  | * We also don't do any window rounding when the free space | 
|  | * is too small. | 
|  | */ | 
|  | if (window <= free_space - mss || window > free_space) | 
|  | window = (free_space/mss)*mss; | 
|  | } | 
|  |  | 
|  | return window; | 
|  | } | 
|  |  | 
|  | /* Attempt to collapse two adjacent SKB's during retransmission. */ | 
|  | static void tcp_retrans_try_collapse(struct sock *sk, struct sk_buff *skb, int mss_now) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *next_skb = skb->next; | 
|  |  | 
|  | /* The first test we must make is that neither of these two | 
|  | * SKB's are still referenced by someone else. | 
|  | */ | 
|  | if (!skb_cloned(skb) && !skb_cloned(next_skb)) { | 
|  | int skb_size = skb->len, next_skb_size = next_skb->len; | 
|  | u16 flags = TCP_SKB_CB(skb)->flags; | 
|  |  | 
|  | /* Also punt if next skb has been SACK'd. */ | 
|  | if(TCP_SKB_CB(next_skb)->sacked & TCPCB_SACKED_ACKED) | 
|  | return; | 
|  |  | 
|  | /* Next skb is out of window. */ | 
|  | if (after(TCP_SKB_CB(next_skb)->end_seq, tp->snd_una+tp->snd_wnd)) | 
|  | return; | 
|  |  | 
|  | /* Punt if not enough space exists in the first SKB for | 
|  | * the data in the second, or the total combined payload | 
|  | * would exceed the MSS. | 
|  | */ | 
|  | if ((next_skb_size > skb_tailroom(skb)) || | 
|  | ((skb_size + next_skb_size) > mss_now)) | 
|  | return; | 
|  |  | 
|  | BUG_ON(tcp_skb_pcount(skb) != 1 || | 
|  | tcp_skb_pcount(next_skb) != 1); | 
|  |  | 
|  | /* changing transmit queue under us so clear hints */ | 
|  | clear_all_retrans_hints(tp); | 
|  |  | 
|  | /* Ok.	We will be able to collapse the packet. */ | 
|  | __skb_unlink(next_skb, &sk->sk_write_queue); | 
|  |  | 
|  | memcpy(skb_put(skb, next_skb_size), next_skb->data, next_skb_size); | 
|  |  | 
|  | skb->ip_summed = next_skb->ip_summed; | 
|  |  | 
|  | if (skb->ip_summed != CHECKSUM_PARTIAL) | 
|  | skb->csum = csum_block_add(skb->csum, next_skb->csum, skb_size); | 
|  |  | 
|  | /* Update sequence range on original skb. */ | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(next_skb)->end_seq; | 
|  |  | 
|  | /* Merge over control information. */ | 
|  | flags |= TCP_SKB_CB(next_skb)->flags; /* This moves PSH/FIN etc. over */ | 
|  | TCP_SKB_CB(skb)->flags = flags; | 
|  |  | 
|  | /* All done, get rid of second SKB and account for it so | 
|  | * packet counting does not break. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->sacked |= TCP_SKB_CB(next_skb)->sacked&(TCPCB_EVER_RETRANS|TCPCB_AT_TAIL); | 
|  | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_SACKED_RETRANS) | 
|  | tp->retrans_out -= tcp_skb_pcount(next_skb); | 
|  | if (TCP_SKB_CB(next_skb)->sacked&TCPCB_LOST) { | 
|  | tp->lost_out -= tcp_skb_pcount(next_skb); | 
|  | tp->left_out -= tcp_skb_pcount(next_skb); | 
|  | } | 
|  | /* Reno case is special. Sigh... */ | 
|  | if (!tp->rx_opt.sack_ok && tp->sacked_out) { | 
|  | tcp_dec_pcount_approx(&tp->sacked_out, next_skb); | 
|  | tp->left_out -= tcp_skb_pcount(next_skb); | 
|  | } | 
|  |  | 
|  | /* Not quite right: it can be > snd.fack, but | 
|  | * it is better to underestimate fackets. | 
|  | */ | 
|  | tcp_dec_pcount_approx(&tp->fackets_out, next_skb); | 
|  | tcp_packets_out_dec(tp, next_skb); | 
|  | sk_stream_free_skb(sk, next_skb); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Do a simple retransmit without using the backoff mechanisms in | 
|  | * tcp_timer. This is used for path mtu discovery. | 
|  | * The socket is already locked here. | 
|  | */ | 
|  | void tcp_simple_retransmit(struct sock *sk) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | unsigned int mss = tcp_current_mss(sk, 0); | 
|  | int lost = 0; | 
|  |  | 
|  | sk_stream_for_retrans_queue(skb, sk) { | 
|  | if (skb->len > mss && | 
|  | !(TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_ACKED)) { | 
|  | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | 
|  | TCP_SKB_CB(skb)->sacked &= ~TCPCB_SACKED_RETRANS; | 
|  | tp->retrans_out -= tcp_skb_pcount(skb); | 
|  | } | 
|  | if (!(TCP_SKB_CB(skb)->sacked&TCPCB_LOST)) { | 
|  | TCP_SKB_CB(skb)->sacked |= TCPCB_LOST; | 
|  | tp->lost_out += tcp_skb_pcount(skb); | 
|  | lost = 1; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | clear_all_retrans_hints(tp); | 
|  |  | 
|  | if (!lost) | 
|  | return; | 
|  |  | 
|  | tcp_sync_left_out(tp); | 
|  |  | 
|  | /* Don't muck with the congestion window here. | 
|  | * Reason is that we do not increase amount of _data_ | 
|  | * in network, but units changed and effective | 
|  | * cwnd/ssthresh really reduced now. | 
|  | */ | 
|  | if (icsk->icsk_ca_state != TCP_CA_Loss) { | 
|  | tp->high_seq = tp->snd_nxt; | 
|  | tp->snd_ssthresh = tcp_current_ssthresh(sk); | 
|  | tp->prior_ssthresh = 0; | 
|  | tp->undo_marker = 0; | 
|  | tcp_set_ca_state(sk, TCP_CA_Loss); | 
|  | } | 
|  | tcp_xmit_retransmit_queue(sk); | 
|  | } | 
|  |  | 
|  | /* This retransmits one SKB.  Policy decisions and retransmit queue | 
|  | * state updates are done by the caller.  Returns non-zero if an | 
|  | * error occurred which prevented the send. | 
|  | */ | 
|  | int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | unsigned int cur_mss = tcp_current_mss(sk, 0); | 
|  | int err; | 
|  |  | 
|  | /* Inconslusive MTU probe */ | 
|  | if (icsk->icsk_mtup.probe_size) { | 
|  | icsk->icsk_mtup.probe_size = 0; | 
|  | } | 
|  |  | 
|  | /* Do not sent more than we queued. 1/4 is reserved for possible | 
|  | * copying overhead: fragmentation, tunneling, mangling etc. | 
|  | */ | 
|  | if (atomic_read(&sk->sk_wmem_alloc) > | 
|  | min(sk->sk_wmem_queued + (sk->sk_wmem_queued >> 2), sk->sk_sndbuf)) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (before(TCP_SKB_CB(skb)->seq, tp->snd_una)) { | 
|  | if (before(TCP_SKB_CB(skb)->end_seq, tp->snd_una)) | 
|  | BUG(); | 
|  | if (tcp_trim_head(sk, skb, tp->snd_una - TCP_SKB_CB(skb)->seq)) | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* If receiver has shrunk his window, and skb is out of | 
|  | * new window, do not retransmit it. The exception is the | 
|  | * case, when window is shrunk to zero. In this case | 
|  | * our retransmit serves as a zero window probe. | 
|  | */ | 
|  | if (!before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd) | 
|  | && TCP_SKB_CB(skb)->seq != tp->snd_una) | 
|  | return -EAGAIN; | 
|  |  | 
|  | if (skb->len > cur_mss) { | 
|  | if (tcp_fragment(sk, skb, cur_mss, cur_mss)) | 
|  | return -ENOMEM; /* We'll try again later. */ | 
|  | } | 
|  |  | 
|  | /* Collapse two adjacent packets if worthwhile and we can. */ | 
|  | if(!(TCP_SKB_CB(skb)->flags & TCPCB_FLAG_SYN) && | 
|  | (skb->len < (cur_mss >> 1)) && | 
|  | (skb->next != sk->sk_send_head) && | 
|  | (skb->next != (struct sk_buff *)&sk->sk_write_queue) && | 
|  | (skb_shinfo(skb)->nr_frags == 0 && skb_shinfo(skb->next)->nr_frags == 0) && | 
|  | (tcp_skb_pcount(skb) == 1 && tcp_skb_pcount(skb->next) == 1) && | 
|  | (sysctl_tcp_retrans_collapse != 0)) | 
|  | tcp_retrans_try_collapse(sk, skb, cur_mss); | 
|  |  | 
|  | if (inet_csk(sk)->icsk_af_ops->rebuild_header(sk)) | 
|  | return -EHOSTUNREACH; /* Routing failure or similar. */ | 
|  |  | 
|  | /* Some Solaris stacks overoptimize and ignore the FIN on a | 
|  | * retransmit when old data is attached.  So strip it off | 
|  | * since it is cheap to do so and saves bytes on the network. | 
|  | */ | 
|  | if(skb->len > 0 && | 
|  | (TCP_SKB_CB(skb)->flags & TCPCB_FLAG_FIN) && | 
|  | tp->snd_una == (TCP_SKB_CB(skb)->end_seq - 1)) { | 
|  | if (!pskb_trim(skb, 0)) { | 
|  | TCP_SKB_CB(skb)->seq = TCP_SKB_CB(skb)->end_seq - 1; | 
|  | skb_shinfo(skb)->gso_segs = 1; | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  | skb->ip_summed = CHECKSUM_NONE; | 
|  | skb->csum = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make a copy, if the first transmission SKB clone we made | 
|  | * is still in somebody's hands, else make a clone. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  |  | 
|  | err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | 
|  |  | 
|  | if (err == 0) { | 
|  | /* Update global TCP statistics. */ | 
|  | TCP_INC_STATS(TCP_MIB_RETRANSSEGS); | 
|  |  | 
|  | tp->total_retrans++; | 
|  |  | 
|  | #if FASTRETRANS_DEBUG > 0 | 
|  | if (TCP_SKB_CB(skb)->sacked&TCPCB_SACKED_RETRANS) { | 
|  | if (net_ratelimit()) | 
|  | printk(KERN_DEBUG "retrans_out leaked.\n"); | 
|  | } | 
|  | #endif | 
|  | TCP_SKB_CB(skb)->sacked |= TCPCB_RETRANS; | 
|  | tp->retrans_out += tcp_skb_pcount(skb); | 
|  |  | 
|  | /* Save stamp of the first retransmit. */ | 
|  | if (!tp->retrans_stamp) | 
|  | tp->retrans_stamp = TCP_SKB_CB(skb)->when; | 
|  |  | 
|  | tp->undo_retrans++; | 
|  |  | 
|  | /* snd_nxt is stored to detect loss of retransmitted segment, | 
|  | * see tcp_input.c tcp_sacktag_write_queue(). | 
|  | */ | 
|  | TCP_SKB_CB(skb)->ack_seq = tp->snd_nxt; | 
|  | } | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* This gets called after a retransmit timeout, and the initially | 
|  | * retransmitted data is acknowledged.  It tries to continue | 
|  | * resending the rest of the retransmit queue, until either | 
|  | * we've sent it all or the congestion window limit is reached. | 
|  | * If doing SACK, the first ACK which comes back for a timeout | 
|  | * based retransmit packet might feed us FACK information again. | 
|  | * If so, we use it to avoid unnecessarily retransmissions. | 
|  | */ | 
|  | void tcp_xmit_retransmit_queue(struct sock *sk) | 
|  | { | 
|  | const struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  | int packet_cnt; | 
|  |  | 
|  | if (tp->retransmit_skb_hint) { | 
|  | skb = tp->retransmit_skb_hint; | 
|  | packet_cnt = tp->retransmit_cnt_hint; | 
|  | }else{ | 
|  | skb = sk->sk_write_queue.next; | 
|  | packet_cnt = 0; | 
|  | } | 
|  |  | 
|  | /* First pass: retransmit lost packets. */ | 
|  | if (tp->lost_out) { | 
|  | sk_stream_for_retrans_queue_from(skb, sk) { | 
|  | __u8 sacked = TCP_SKB_CB(skb)->sacked; | 
|  |  | 
|  | /* we could do better than to assign each time */ | 
|  | tp->retransmit_skb_hint = skb; | 
|  | tp->retransmit_cnt_hint = packet_cnt; | 
|  |  | 
|  | /* Assume this retransmit will generate | 
|  | * only one packet for congestion window | 
|  | * calculation purposes.  This works because | 
|  | * tcp_retransmit_skb() will chop up the | 
|  | * packet to be MSS sized and all the | 
|  | * packet counting works out. | 
|  | */ | 
|  | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | 
|  | return; | 
|  |  | 
|  | if (sacked & TCPCB_LOST) { | 
|  | if (!(sacked&(TCPCB_SACKED_ACKED|TCPCB_SACKED_RETRANS))) { | 
|  | if (tcp_retransmit_skb(sk, skb)) { | 
|  | tp->retransmit_skb_hint = NULL; | 
|  | return; | 
|  | } | 
|  | if (icsk->icsk_ca_state != TCP_CA_Loss) | 
|  | NET_INC_STATS_BH(LINUX_MIB_TCPFASTRETRANS); | 
|  | else | 
|  | NET_INC_STATS_BH(LINUX_MIB_TCPSLOWSTARTRETRANS); | 
|  |  | 
|  | if (skb == | 
|  | skb_peek(&sk->sk_write_queue)) | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
|  | inet_csk(sk)->icsk_rto, | 
|  | TCP_RTO_MAX); | 
|  | } | 
|  |  | 
|  | packet_cnt += tcp_skb_pcount(skb); | 
|  | if (packet_cnt >= tp->lost_out) | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* OK, demanded retransmission is finished. */ | 
|  |  | 
|  | /* Forward retransmissions are possible only during Recovery. */ | 
|  | if (icsk->icsk_ca_state != TCP_CA_Recovery) | 
|  | return; | 
|  |  | 
|  | /* No forward retransmissions in Reno are possible. */ | 
|  | if (!tp->rx_opt.sack_ok) | 
|  | return; | 
|  |  | 
|  | /* Yeah, we have to make difficult choice between forward transmission | 
|  | * and retransmission... Both ways have their merits... | 
|  | * | 
|  | * For now we do not retransmit anything, while we have some new | 
|  | * segments to send. | 
|  | */ | 
|  |  | 
|  | if (tcp_may_send_now(sk, tp)) | 
|  | return; | 
|  |  | 
|  | if (tp->forward_skb_hint) { | 
|  | skb = tp->forward_skb_hint; | 
|  | packet_cnt = tp->forward_cnt_hint; | 
|  | } else{ | 
|  | skb = sk->sk_write_queue.next; | 
|  | packet_cnt = 0; | 
|  | } | 
|  |  | 
|  | sk_stream_for_retrans_queue_from(skb, sk) { | 
|  | tp->forward_cnt_hint = packet_cnt; | 
|  | tp->forward_skb_hint = skb; | 
|  |  | 
|  | /* Similar to the retransmit loop above we | 
|  | * can pretend that the retransmitted SKB | 
|  | * we send out here will be composed of one | 
|  | * real MSS sized packet because tcp_retransmit_skb() | 
|  | * will fragment it if necessary. | 
|  | */ | 
|  | if (++packet_cnt > tp->fackets_out) | 
|  | break; | 
|  |  | 
|  | if (tcp_packets_in_flight(tp) >= tp->snd_cwnd) | 
|  | break; | 
|  |  | 
|  | if (TCP_SKB_CB(skb)->sacked & TCPCB_TAGBITS) | 
|  | continue; | 
|  |  | 
|  | /* Ok, retransmit it. */ | 
|  | if (tcp_retransmit_skb(sk, skb)) { | 
|  | tp->forward_skb_hint = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (skb == skb_peek(&sk->sk_write_queue)) | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
|  | inet_csk(sk)->icsk_rto, | 
|  | TCP_RTO_MAX); | 
|  |  | 
|  | NET_INC_STATS_BH(LINUX_MIB_TCPFORWARDRETRANS); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Send a fin.  The caller locks the socket for us.  This cannot be | 
|  | * allowed to fail queueing a FIN frame under any circumstances. | 
|  | */ | 
|  | void tcp_send_fin(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb = skb_peek_tail(&sk->sk_write_queue); | 
|  | int mss_now; | 
|  |  | 
|  | /* Optimization, tack on the FIN if we have a queue of | 
|  | * unsent frames.  But be careful about outgoing SACKS | 
|  | * and IP options. | 
|  | */ | 
|  | mss_now = tcp_current_mss(sk, 1); | 
|  |  | 
|  | if (sk->sk_send_head != NULL) { | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_FIN; | 
|  | TCP_SKB_CB(skb)->end_seq++; | 
|  | tp->write_seq++; | 
|  | } else { | 
|  | /* Socket is locked, keep trying until memory is available. */ | 
|  | for (;;) { | 
|  | skb = alloc_skb_fclone(MAX_TCP_HEADER, GFP_KERNEL); | 
|  | if (skb) | 
|  | break; | 
|  | yield(); | 
|  | } | 
|  |  | 
|  | /* Reserve space for headers and prepare control bits. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | skb->csum = 0; | 
|  | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_FIN); | 
|  | TCP_SKB_CB(skb)->sacked = 0; | 
|  | skb_shinfo(skb)->gso_segs = 1; | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  |  | 
|  | /* FIN eats a sequence byte, write_seq advanced by tcp_queue_skb(). */ | 
|  | TCP_SKB_CB(skb)->seq = tp->write_seq; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | 
|  | tcp_queue_skb(sk, skb); | 
|  | } | 
|  | __tcp_push_pending_frames(sk, tp, mss_now, TCP_NAGLE_OFF); | 
|  | } | 
|  |  | 
|  | /* We get here when a process closes a file descriptor (either due to | 
|  | * an explicit close() or as a byproduct of exit()'ing) and there | 
|  | * was unread data in the receive queue.  This behavior is recommended | 
|  | * by draft-ietf-tcpimpl-prob-03.txt section 3.10.  -DaveM | 
|  | */ | 
|  | void tcp_send_active_reset(struct sock *sk, gfp_t priority) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* NOTE: No TCP options attached and we never retransmit this. */ | 
|  | skb = alloc_skb(MAX_TCP_HEADER, priority); | 
|  | if (!skb) { | 
|  | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Reserve space for headers and prepare control bits. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | skb->csum = 0; | 
|  | TCP_SKB_CB(skb)->flags = (TCPCB_FLAG_ACK | TCPCB_FLAG_RST); | 
|  | TCP_SKB_CB(skb)->sacked = 0; | 
|  | skb_shinfo(skb)->gso_segs = 1; | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  |  | 
|  | /* Send it off. */ | 
|  | TCP_SKB_CB(skb)->seq = tcp_acceptable_seq(sk, tp); | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | if (tcp_transmit_skb(sk, skb, 0, priority)) | 
|  | NET_INC_STATS(LINUX_MIB_TCPABORTFAILED); | 
|  | } | 
|  |  | 
|  | /* WARNING: This routine must only be called when we have already sent | 
|  | * a SYN packet that crossed the incoming SYN that caused this routine | 
|  | * to get called. If this assumption fails then the initial rcv_wnd | 
|  | * and rcv_wscale values will not be correct. | 
|  | */ | 
|  | int tcp_send_synack(struct sock *sk) | 
|  | { | 
|  | struct sk_buff* skb; | 
|  |  | 
|  | skb = skb_peek(&sk->sk_write_queue); | 
|  | if (skb == NULL || !(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_SYN)) { | 
|  | printk(KERN_DEBUG "tcp_send_synack: wrong queue state\n"); | 
|  | return -EFAULT; | 
|  | } | 
|  | if (!(TCP_SKB_CB(skb)->flags&TCPCB_FLAG_ACK)) { | 
|  | if (skb_cloned(skb)) { | 
|  | struct sk_buff *nskb = skb_copy(skb, GFP_ATOMIC); | 
|  | if (nskb == NULL) | 
|  | return -ENOMEM; | 
|  | __skb_unlink(skb, &sk->sk_write_queue); | 
|  | skb_header_release(nskb); | 
|  | __skb_queue_head(&sk->sk_write_queue, nskb); | 
|  | sk_stream_free_skb(sk, skb); | 
|  | sk_charge_skb(sk, nskb); | 
|  | skb = nskb; | 
|  | } | 
|  |  | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_ACK; | 
|  | TCP_ECN_send_synack(tcp_sk(sk), skb); | 
|  | } | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | return tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare a SYN-ACK. | 
|  | */ | 
|  | struct sk_buff * tcp_make_synack(struct sock *sk, struct dst_entry *dst, | 
|  | struct request_sock *req) | 
|  | { | 
|  | struct inet_request_sock *ireq = inet_rsk(req); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct tcphdr *th; | 
|  | int tcp_header_size; | 
|  | struct sk_buff *skb; | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | struct tcp_md5sig_key *md5; | 
|  | __u8 *md5_hash_location; | 
|  | #endif | 
|  |  | 
|  | skb = sock_wmalloc(sk, MAX_TCP_HEADER + 15, 1, GFP_ATOMIC); | 
|  | if (skb == NULL) | 
|  | return NULL; | 
|  |  | 
|  | /* Reserve space for headers. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  |  | 
|  | skb->dst = dst_clone(dst); | 
|  |  | 
|  | tcp_header_size = (sizeof(struct tcphdr) + TCPOLEN_MSS + | 
|  | (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0) + | 
|  | (ireq->wscale_ok ? TCPOLEN_WSCALE_ALIGNED : 0) + | 
|  | /* SACK_PERM is in the place of NOP NOP of TS */ | 
|  | ((ireq->sack_ok && !ireq->tstamp_ok) ? TCPOLEN_SACKPERM_ALIGNED : 0)); | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | /* Are we doing MD5 on this segment? If so - make room for it */ | 
|  | md5 = tcp_rsk(req)->af_specific->md5_lookup(sk, req); | 
|  | if (md5) | 
|  | tcp_header_size += TCPOLEN_MD5SIG_ALIGNED; | 
|  | #endif | 
|  | skb->h.th = th = (struct tcphdr *) skb_push(skb, tcp_header_size); | 
|  |  | 
|  | memset(th, 0, sizeof(struct tcphdr)); | 
|  | th->syn = 1; | 
|  | th->ack = 1; | 
|  | TCP_ECN_make_synack(req, th); | 
|  | th->source = inet_sk(sk)->sport; | 
|  | th->dest = ireq->rmt_port; | 
|  | TCP_SKB_CB(skb)->seq = tcp_rsk(req)->snt_isn; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq + 1; | 
|  | TCP_SKB_CB(skb)->sacked = 0; | 
|  | skb_shinfo(skb)->gso_segs = 1; | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  | th->seq = htonl(TCP_SKB_CB(skb)->seq); | 
|  | th->ack_seq = htonl(tcp_rsk(req)->rcv_isn + 1); | 
|  | if (req->rcv_wnd == 0) { /* ignored for retransmitted syns */ | 
|  | __u8 rcv_wscale; | 
|  | /* Set this up on the first call only */ | 
|  | req->window_clamp = tp->window_clamp ? : dst_metric(dst, RTAX_WINDOW); | 
|  | /* tcp_full_space because it is guaranteed to be the first packet */ | 
|  | tcp_select_initial_window(tcp_full_space(sk), | 
|  | dst_metric(dst, RTAX_ADVMSS) - (ireq->tstamp_ok ? TCPOLEN_TSTAMP_ALIGNED : 0), | 
|  | &req->rcv_wnd, | 
|  | &req->window_clamp, | 
|  | ireq->wscale_ok, | 
|  | &rcv_wscale); | 
|  | ireq->rcv_wscale = rcv_wscale; | 
|  | } | 
|  |  | 
|  | /* RFC1323: The window in SYN & SYN/ACK segments is never scaled. */ | 
|  | th->window = htons(req->rcv_wnd); | 
|  |  | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | tcp_syn_build_options((__be32 *)(th + 1), dst_metric(dst, RTAX_ADVMSS), ireq->tstamp_ok, | 
|  | ireq->sack_ok, ireq->wscale_ok, ireq->rcv_wscale, | 
|  | TCP_SKB_CB(skb)->when, | 
|  | req->ts_recent, | 
|  | ( | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | md5 ? &md5_hash_location : | 
|  | #endif | 
|  | NULL) | 
|  | ); | 
|  |  | 
|  | skb->csum = 0; | 
|  | th->doff = (tcp_header_size >> 2); | 
|  | TCP_INC_STATS(TCP_MIB_OUTSEGS); | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | /* Okay, we have all we need - do the md5 hash if needed */ | 
|  | if (md5) { | 
|  | tp->af_specific->calc_md5_hash(md5_hash_location, | 
|  | md5, | 
|  | NULL, dst, req, | 
|  | skb->h.th, sk->sk_protocol, | 
|  | skb->len); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return skb; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Do all connect socket setups that can be done AF independent. | 
|  | */ | 
|  | static void tcp_connect_init(struct sock *sk) | 
|  | { | 
|  | struct dst_entry *dst = __sk_dst_get(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | __u8 rcv_wscale; | 
|  |  | 
|  | /* We'll fix this up when we get a response from the other end. | 
|  | * See tcp_input.c:tcp_rcv_state_process case TCP_SYN_SENT. | 
|  | */ | 
|  | tp->tcp_header_len = sizeof(struct tcphdr) + | 
|  | (sysctl_tcp_timestamps ? TCPOLEN_TSTAMP_ALIGNED : 0); | 
|  |  | 
|  | #ifdef CONFIG_TCP_MD5SIG | 
|  | if (tp->af_specific->md5_lookup(sk, sk) != NULL) | 
|  | tp->tcp_header_len += TCPOLEN_MD5SIG_ALIGNED; | 
|  | #endif | 
|  |  | 
|  | /* If user gave his TCP_MAXSEG, record it to clamp */ | 
|  | if (tp->rx_opt.user_mss) | 
|  | tp->rx_opt.mss_clamp = tp->rx_opt.user_mss; | 
|  | tp->max_window = 0; | 
|  | tcp_mtup_init(sk); | 
|  | tcp_sync_mss(sk, dst_mtu(dst)); | 
|  |  | 
|  | if (!tp->window_clamp) | 
|  | tp->window_clamp = dst_metric(dst, RTAX_WINDOW); | 
|  | tp->advmss = dst_metric(dst, RTAX_ADVMSS); | 
|  | tcp_initialize_rcv_mss(sk); | 
|  |  | 
|  | tcp_select_initial_window(tcp_full_space(sk), | 
|  | tp->advmss - (tp->rx_opt.ts_recent_stamp ? tp->tcp_header_len - sizeof(struct tcphdr) : 0), | 
|  | &tp->rcv_wnd, | 
|  | &tp->window_clamp, | 
|  | sysctl_tcp_window_scaling, | 
|  | &rcv_wscale); | 
|  |  | 
|  | tp->rx_opt.rcv_wscale = rcv_wscale; | 
|  | tp->rcv_ssthresh = tp->rcv_wnd; | 
|  |  | 
|  | sk->sk_err = 0; | 
|  | sock_reset_flag(sk, SOCK_DONE); | 
|  | tp->snd_wnd = 0; | 
|  | tcp_init_wl(tp, tp->write_seq, 0); | 
|  | tp->snd_una = tp->write_seq; | 
|  | tp->snd_sml = tp->write_seq; | 
|  | tp->rcv_nxt = 0; | 
|  | tp->rcv_wup = 0; | 
|  | tp->copied_seq = 0; | 
|  |  | 
|  | inet_csk(sk)->icsk_rto = TCP_TIMEOUT_INIT; | 
|  | inet_csk(sk)->icsk_retransmits = 0; | 
|  | tcp_clear_retrans(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Build a SYN and send it off. | 
|  | */ | 
|  | int tcp_connect(struct sock *sk) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *buff; | 
|  |  | 
|  | tcp_connect_init(sk); | 
|  |  | 
|  | buff = alloc_skb_fclone(MAX_TCP_HEADER + 15, sk->sk_allocation); | 
|  | if (unlikely(buff == NULL)) | 
|  | return -ENOBUFS; | 
|  |  | 
|  | /* Reserve space for headers. */ | 
|  | skb_reserve(buff, MAX_TCP_HEADER); | 
|  |  | 
|  | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_SYN; | 
|  | TCP_ECN_send_syn(sk, tp, buff); | 
|  | TCP_SKB_CB(buff)->sacked = 0; | 
|  | skb_shinfo(buff)->gso_segs = 1; | 
|  | skb_shinfo(buff)->gso_size = 0; | 
|  | skb_shinfo(buff)->gso_type = 0; | 
|  | buff->csum = 0; | 
|  | tp->snd_nxt = tp->write_seq; | 
|  | TCP_SKB_CB(buff)->seq = tp->write_seq++; | 
|  | TCP_SKB_CB(buff)->end_seq = tp->write_seq; | 
|  |  | 
|  | /* Send it off. */ | 
|  | TCP_SKB_CB(buff)->when = tcp_time_stamp; | 
|  | tp->retrans_stamp = TCP_SKB_CB(buff)->when; | 
|  | skb_header_release(buff); | 
|  | __skb_queue_tail(&sk->sk_write_queue, buff); | 
|  | sk_charge_skb(sk, buff); | 
|  | tp->packets_out += tcp_skb_pcount(buff); | 
|  | tcp_transmit_skb(sk, buff, 1, GFP_KERNEL); | 
|  |  | 
|  | /* We change tp->snd_nxt after the tcp_transmit_skb() call | 
|  | * in order to make this packet get counted in tcpOutSegs. | 
|  | */ | 
|  | tp->snd_nxt = tp->write_seq; | 
|  | tp->pushed_seq = tp->write_seq; | 
|  | TCP_INC_STATS(TCP_MIB_ACTIVEOPENS); | 
|  |  | 
|  | /* Timer for repeating the SYN until an answer. */ | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, | 
|  | inet_csk(sk)->icsk_rto, TCP_RTO_MAX); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* Send out a delayed ack, the caller does the policy checking | 
|  | * to see if we should even be here.  See tcp_input.c:tcp_ack_snd_check() | 
|  | * for details. | 
|  | */ | 
|  | void tcp_send_delayed_ack(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | int ato = icsk->icsk_ack.ato; | 
|  | unsigned long timeout; | 
|  |  | 
|  | if (ato > TCP_DELACK_MIN) { | 
|  | const struct tcp_sock *tp = tcp_sk(sk); | 
|  | int max_ato = HZ/2; | 
|  |  | 
|  | if (icsk->icsk_ack.pingpong || (icsk->icsk_ack.pending & ICSK_ACK_PUSHED)) | 
|  | max_ato = TCP_DELACK_MAX; | 
|  |  | 
|  | /* Slow path, intersegment interval is "high". */ | 
|  |  | 
|  | /* If some rtt estimate is known, use it to bound delayed ack. | 
|  | * Do not use inet_csk(sk)->icsk_rto here, use results of rtt measurements | 
|  | * directly. | 
|  | */ | 
|  | if (tp->srtt) { | 
|  | int rtt = max(tp->srtt>>3, TCP_DELACK_MIN); | 
|  |  | 
|  | if (rtt < max_ato) | 
|  | max_ato = rtt; | 
|  | } | 
|  |  | 
|  | ato = min(ato, max_ato); | 
|  | } | 
|  |  | 
|  | /* Stay within the limit we were given */ | 
|  | timeout = jiffies + ato; | 
|  |  | 
|  | /* Use new timeout only if there wasn't a older one earlier. */ | 
|  | if (icsk->icsk_ack.pending & ICSK_ACK_TIMER) { | 
|  | /* If delack timer was blocked or is about to expire, | 
|  | * send ACK now. | 
|  | */ | 
|  | if (icsk->icsk_ack.blocked || | 
|  | time_before_eq(icsk->icsk_ack.timeout, jiffies + (ato >> 2))) { | 
|  | tcp_send_ack(sk); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!time_before(timeout, icsk->icsk_ack.timeout)) | 
|  | timeout = icsk->icsk_ack.timeout; | 
|  | } | 
|  | icsk->icsk_ack.pending |= ICSK_ACK_SCHED | ICSK_ACK_TIMER; | 
|  | icsk->icsk_ack.timeout = timeout; | 
|  | sk_reset_timer(sk, &icsk->icsk_delack_timer, timeout); | 
|  | } | 
|  |  | 
|  | /* This routine sends an ack and also updates the window. */ | 
|  | void tcp_send_ack(struct sock *sk) | 
|  | { | 
|  | /* If we have been reset, we may not send again. */ | 
|  | if (sk->sk_state != TCP_CLOSE) { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *buff; | 
|  |  | 
|  | /* We are not putting this on the write queue, so | 
|  | * tcp_transmit_skb() will set the ownership to this | 
|  | * sock. | 
|  | */ | 
|  | buff = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
|  | if (buff == NULL) { | 
|  | inet_csk_schedule_ack(sk); | 
|  | inet_csk(sk)->icsk_ack.ato = TCP_ATO_MIN; | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_DACK, | 
|  | TCP_DELACK_MAX, TCP_RTO_MAX); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Reserve space for headers and prepare control bits. */ | 
|  | skb_reserve(buff, MAX_TCP_HEADER); | 
|  | buff->csum = 0; | 
|  | TCP_SKB_CB(buff)->flags = TCPCB_FLAG_ACK; | 
|  | TCP_SKB_CB(buff)->sacked = 0; | 
|  | skb_shinfo(buff)->gso_segs = 1; | 
|  | skb_shinfo(buff)->gso_size = 0; | 
|  | skb_shinfo(buff)->gso_type = 0; | 
|  |  | 
|  | /* Send it off, this clears delayed acks for us. */ | 
|  | TCP_SKB_CB(buff)->seq = TCP_SKB_CB(buff)->end_seq = tcp_acceptable_seq(sk, tp); | 
|  | TCP_SKB_CB(buff)->when = tcp_time_stamp; | 
|  | tcp_transmit_skb(sk, buff, 0, GFP_ATOMIC); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* This routine sends a packet with an out of date sequence | 
|  | * number. It assumes the other end will try to ack it. | 
|  | * | 
|  | * Question: what should we make while urgent mode? | 
|  | * 4.4BSD forces sending single byte of data. We cannot send | 
|  | * out of window data, because we have SND.NXT==SND.MAX... | 
|  | * | 
|  | * Current solution: to send TWO zero-length segments in urgent mode: | 
|  | * one is with SEG.SEQ=SND.UNA to deliver urgent pointer, another is | 
|  | * out-of-date with SND.UNA-1 to probe window. | 
|  | */ | 
|  | static int tcp_xmit_probe_skb(struct sock *sk, int urgent) | 
|  | { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | /* We don't queue it, tcp_transmit_skb() sets ownership. */ | 
|  | skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC); | 
|  | if (skb == NULL) | 
|  | return -1; | 
|  |  | 
|  | /* Reserve space for headers and set control bits. */ | 
|  | skb_reserve(skb, MAX_TCP_HEADER); | 
|  | skb->csum = 0; | 
|  | TCP_SKB_CB(skb)->flags = TCPCB_FLAG_ACK; | 
|  | TCP_SKB_CB(skb)->sacked = urgent; | 
|  | skb_shinfo(skb)->gso_segs = 1; | 
|  | skb_shinfo(skb)->gso_size = 0; | 
|  | skb_shinfo(skb)->gso_type = 0; | 
|  |  | 
|  | /* Use a previous sequence.  This should cause the other | 
|  | * end to send an ack.  Don't queue or clone SKB, just | 
|  | * send it. | 
|  | */ | 
|  | TCP_SKB_CB(skb)->seq = urgent ? tp->snd_una : tp->snd_una - 1; | 
|  | TCP_SKB_CB(skb)->end_seq = TCP_SKB_CB(skb)->seq; | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | return tcp_transmit_skb(sk, skb, 0, GFP_ATOMIC); | 
|  | } | 
|  |  | 
|  | int tcp_write_wakeup(struct sock *sk) | 
|  | { | 
|  | if (sk->sk_state != TCP_CLOSE) { | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | struct sk_buff *skb; | 
|  |  | 
|  | if ((skb = sk->sk_send_head) != NULL && | 
|  | before(TCP_SKB_CB(skb)->seq, tp->snd_una+tp->snd_wnd)) { | 
|  | int err; | 
|  | unsigned int mss = tcp_current_mss(sk, 0); | 
|  | unsigned int seg_size = tp->snd_una+tp->snd_wnd-TCP_SKB_CB(skb)->seq; | 
|  |  | 
|  | if (before(tp->pushed_seq, TCP_SKB_CB(skb)->end_seq)) | 
|  | tp->pushed_seq = TCP_SKB_CB(skb)->end_seq; | 
|  |  | 
|  | /* We are probing the opening of a window | 
|  | * but the window size is != 0 | 
|  | * must have been a result SWS avoidance ( sender ) | 
|  | */ | 
|  | if (seg_size < TCP_SKB_CB(skb)->end_seq - TCP_SKB_CB(skb)->seq || | 
|  | skb->len > mss) { | 
|  | seg_size = min(seg_size, mss); | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | if (tcp_fragment(sk, skb, seg_size, mss)) | 
|  | return -1; | 
|  | } else if (!tcp_skb_pcount(skb)) | 
|  | tcp_set_skb_tso_segs(sk, skb, mss); | 
|  |  | 
|  | TCP_SKB_CB(skb)->flags |= TCPCB_FLAG_PSH; | 
|  | TCP_SKB_CB(skb)->when = tcp_time_stamp; | 
|  | err = tcp_transmit_skb(sk, skb, 1, GFP_ATOMIC); | 
|  | if (!err) { | 
|  | update_send_head(sk, tp, skb); | 
|  | } | 
|  | return err; | 
|  | } else { | 
|  | if (tp->urg_mode && | 
|  | between(tp->snd_up, tp->snd_una+1, tp->snd_una+0xFFFF)) | 
|  | tcp_xmit_probe_skb(sk, TCPCB_URG); | 
|  | return tcp_xmit_probe_skb(sk, 0); | 
|  | } | 
|  | } | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* A window probe timeout has occurred.  If window is not closed send | 
|  | * a partial packet else a zero probe. | 
|  | */ | 
|  | void tcp_send_probe0(struct sock *sk) | 
|  | { | 
|  | struct inet_connection_sock *icsk = inet_csk(sk); | 
|  | struct tcp_sock *tp = tcp_sk(sk); | 
|  | int err; | 
|  |  | 
|  | err = tcp_write_wakeup(sk); | 
|  |  | 
|  | if (tp->packets_out || !sk->sk_send_head) { | 
|  | /* Cancel probe timer, if it is not required. */ | 
|  | icsk->icsk_probes_out = 0; | 
|  | icsk->icsk_backoff = 0; | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (err <= 0) { | 
|  | if (icsk->icsk_backoff < sysctl_tcp_retries2) | 
|  | icsk->icsk_backoff++; | 
|  | icsk->icsk_probes_out++; | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, | 
|  | min(icsk->icsk_rto << icsk->icsk_backoff, TCP_RTO_MAX), | 
|  | TCP_RTO_MAX); | 
|  | } else { | 
|  | /* If packet was not sent due to local congestion, | 
|  | * do not backoff and do not remember icsk_probes_out. | 
|  | * Let local senders to fight for local resources. | 
|  | * | 
|  | * Use accumulated backoff yet. | 
|  | */ | 
|  | if (!icsk->icsk_probes_out) | 
|  | icsk->icsk_probes_out = 1; | 
|  | inet_csk_reset_xmit_timer(sk, ICSK_TIME_PROBE0, | 
|  | min(icsk->icsk_rto << icsk->icsk_backoff, | 
|  | TCP_RESOURCE_PROBE_INTERVAL), | 
|  | TCP_RTO_MAX); | 
|  | } | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(tcp_connect); | 
|  | EXPORT_SYMBOL(tcp_make_synack); | 
|  | EXPORT_SYMBOL(tcp_simple_retransmit); | 
|  | EXPORT_SYMBOL(tcp_sync_mss); | 
|  | EXPORT_SYMBOL(sysctl_tcp_tso_win_divisor); | 
|  | EXPORT_SYMBOL(tcp_mtup_init); |