|  | /* | 
|  | *  linux/arch/arm/mm/mm-armv.c | 
|  | * | 
|  | *  Copyright (C) 1998-2005 Russell King | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify | 
|  | * it under the terms of the GNU General Public License version 2 as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | *  Page table sludge for ARM v3 and v4 processor architectures. | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/nodemask.h> | 
|  |  | 
|  | #include <asm/pgalloc.h> | 
|  | #include <asm/page.h> | 
|  | #include <asm/setup.h> | 
|  | #include <asm/tlbflush.h> | 
|  |  | 
|  | #include <asm/mach/map.h> | 
|  |  | 
|  | #define CPOLICY_UNCACHED	0 | 
|  | #define CPOLICY_BUFFERED	1 | 
|  | #define CPOLICY_WRITETHROUGH	2 | 
|  | #define CPOLICY_WRITEBACK	3 | 
|  | #define CPOLICY_WRITEALLOC	4 | 
|  |  | 
|  | static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK; | 
|  | static unsigned int ecc_mask __initdata = 0; | 
|  | pgprot_t pgprot_kernel; | 
|  |  | 
|  | EXPORT_SYMBOL(pgprot_kernel); | 
|  |  | 
|  | pmd_t *top_pmd; | 
|  |  | 
|  | struct cachepolicy { | 
|  | const char	policy[16]; | 
|  | unsigned int	cr_mask; | 
|  | unsigned int	pmd; | 
|  | unsigned int	pte; | 
|  | }; | 
|  |  | 
|  | static struct cachepolicy cache_policies[] __initdata = { | 
|  | { | 
|  | .policy		= "uncached", | 
|  | .cr_mask	= CR_W|CR_C, | 
|  | .pmd		= PMD_SECT_UNCACHED, | 
|  | .pte		= 0, | 
|  | }, { | 
|  | .policy		= "buffered", | 
|  | .cr_mask	= CR_C, | 
|  | .pmd		= PMD_SECT_BUFFERED, | 
|  | .pte		= PTE_BUFFERABLE, | 
|  | }, { | 
|  | .policy		= "writethrough", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WT, | 
|  | .pte		= PTE_CACHEABLE, | 
|  | }, { | 
|  | .policy		= "writeback", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WB, | 
|  | .pte		= PTE_BUFFERABLE|PTE_CACHEABLE, | 
|  | }, { | 
|  | .policy		= "writealloc", | 
|  | .cr_mask	= 0, | 
|  | .pmd		= PMD_SECT_WBWA, | 
|  | .pte		= PTE_BUFFERABLE|PTE_CACHEABLE, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * These are useful for identifing cache coherency | 
|  | * problems by allowing the cache or the cache and | 
|  | * writebuffer to be turned off.  (Note: the write | 
|  | * buffer should not be on and the cache off). | 
|  | */ | 
|  | static void __init early_cachepolicy(char **p) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(cache_policies); i++) { | 
|  | int len = strlen(cache_policies[i].policy); | 
|  |  | 
|  | if (memcmp(*p, cache_policies[i].policy, len) == 0) { | 
|  | cachepolicy = i; | 
|  | cr_alignment &= ~cache_policies[i].cr_mask; | 
|  | cr_no_alignment &= ~cache_policies[i].cr_mask; | 
|  | *p += len; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == ARRAY_SIZE(cache_policies)) | 
|  | printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n"); | 
|  | flush_cache_all(); | 
|  | set_cr(cr_alignment); | 
|  | } | 
|  |  | 
|  | static void __init early_nocache(char **__unused) | 
|  | { | 
|  | char *p = "buffered"; | 
|  | printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(&p); | 
|  | } | 
|  |  | 
|  | static void __init early_nowrite(char **__unused) | 
|  | { | 
|  | char *p = "uncached"; | 
|  | printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p); | 
|  | early_cachepolicy(&p); | 
|  | } | 
|  |  | 
|  | static void __init early_ecc(char **p) | 
|  | { | 
|  | if (memcmp(*p, "on", 2) == 0) { | 
|  | ecc_mask = PMD_PROTECTION; | 
|  | *p += 2; | 
|  | } else if (memcmp(*p, "off", 3) == 0) { | 
|  | ecc_mask = 0; | 
|  | *p += 3; | 
|  | } | 
|  | } | 
|  |  | 
|  | __early_param("nocache", early_nocache); | 
|  | __early_param("nowb", early_nowrite); | 
|  | __early_param("cachepolicy=", early_cachepolicy); | 
|  | __early_param("ecc=", early_ecc); | 
|  |  | 
|  | static int __init noalign_setup(char *__unused) | 
|  | { | 
|  | cr_alignment &= ~CR_A; | 
|  | cr_no_alignment &= ~CR_A; | 
|  | set_cr(cr_alignment); | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | __setup("noalign", noalign_setup); | 
|  |  | 
|  | #define FIRST_KERNEL_PGD_NR	(FIRST_USER_PGD_NR + USER_PTRS_PER_PGD) | 
|  |  | 
|  | static inline pmd_t *pmd_off(pgd_t *pgd, unsigned long virt) | 
|  | { | 
|  | return pmd_offset(pgd, virt); | 
|  | } | 
|  |  | 
|  | static inline pmd_t *pmd_off_k(unsigned long virt) | 
|  | { | 
|  | return pmd_off(pgd_offset_k(virt), virt); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * need to get a 16k page for level 1 | 
|  | */ | 
|  | pgd_t *get_pgd_slow(struct mm_struct *mm) | 
|  | { | 
|  | pgd_t *new_pgd, *init_pgd; | 
|  | pmd_t *new_pmd, *init_pmd; | 
|  | pte_t *new_pte, *init_pte; | 
|  |  | 
|  | new_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL, 2); | 
|  | if (!new_pgd) | 
|  | goto no_pgd; | 
|  |  | 
|  | memzero(new_pgd, FIRST_KERNEL_PGD_NR * sizeof(pgd_t)); | 
|  |  | 
|  | /* | 
|  | * Copy over the kernel and IO PGD entries | 
|  | */ | 
|  | init_pgd = pgd_offset_k(0); | 
|  | memcpy(new_pgd + FIRST_KERNEL_PGD_NR, init_pgd + FIRST_KERNEL_PGD_NR, | 
|  | (PTRS_PER_PGD - FIRST_KERNEL_PGD_NR) * sizeof(pgd_t)); | 
|  |  | 
|  | clean_dcache_area(new_pgd, PTRS_PER_PGD * sizeof(pgd_t)); | 
|  |  | 
|  | if (!vectors_high()) { | 
|  | /* | 
|  | * On ARM, first page must always be allocated since it | 
|  | * contains the machine vectors. | 
|  | */ | 
|  | new_pmd = pmd_alloc(mm, new_pgd, 0); | 
|  | if (!new_pmd) | 
|  | goto no_pmd; | 
|  |  | 
|  | new_pte = pte_alloc_map(mm, new_pmd, 0); | 
|  | if (!new_pte) | 
|  | goto no_pte; | 
|  |  | 
|  | init_pmd = pmd_offset(init_pgd, 0); | 
|  | init_pte = pte_offset_map_nested(init_pmd, 0); | 
|  | set_pte(new_pte, *init_pte); | 
|  | pte_unmap_nested(init_pte); | 
|  | pte_unmap(new_pte); | 
|  | } | 
|  |  | 
|  | return new_pgd; | 
|  |  | 
|  | no_pte: | 
|  | pmd_free(new_pmd); | 
|  | no_pmd: | 
|  | free_pages((unsigned long)new_pgd, 2); | 
|  | no_pgd: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | void free_pgd_slow(pgd_t *pgd) | 
|  | { | 
|  | pmd_t *pmd; | 
|  | struct page *pte; | 
|  |  | 
|  | if (!pgd) | 
|  | return; | 
|  |  | 
|  | /* pgd is always present and good */ | 
|  | pmd = pmd_off(pgd, 0); | 
|  | if (pmd_none(*pmd)) | 
|  | goto free; | 
|  | if (pmd_bad(*pmd)) { | 
|  | pmd_ERROR(*pmd); | 
|  | pmd_clear(pmd); | 
|  | goto free; | 
|  | } | 
|  |  | 
|  | pte = pmd_page(*pmd); | 
|  | pmd_clear(pmd); | 
|  | dec_zone_page_state(virt_to_page((unsigned long *)pgd), NR_PAGETABLE); | 
|  | pte_lock_deinit(pte); | 
|  | pte_free(pte); | 
|  | pmd_free(pmd); | 
|  | free: | 
|  | free_pages((unsigned long) pgd, 2); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a SECTION PGD between VIRT and PHYS in domain | 
|  | * DOMAIN with protection PROT.  This operates on half- | 
|  | * pgdir entry increments. | 
|  | */ | 
|  | static inline void | 
|  | alloc_init_section(unsigned long virt, unsigned long phys, int prot) | 
|  | { | 
|  | pmd_t *pmdp = pmd_off_k(virt); | 
|  |  | 
|  | if (virt & (1 << 20)) | 
|  | pmdp++; | 
|  |  | 
|  | *pmdp = __pmd(phys | prot); | 
|  | flush_pmd_entry(pmdp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create a SUPER SECTION PGD between VIRT and PHYS with protection PROT | 
|  | */ | 
|  | static inline void | 
|  | alloc_init_supersection(unsigned long virt, unsigned long phys, int prot) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < 16; i += 1) { | 
|  | alloc_init_section(virt, phys, prot | PMD_SECT_SUPER); | 
|  |  | 
|  | virt += (PGDIR_SIZE / 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a PAGE mapping between VIRT and PHYS in domain | 
|  | * DOMAIN with protection PROT.  Note that due to the | 
|  | * way we map the PTEs, we must allocate two PTE_SIZE'd | 
|  | * blocks - one for the Linux pte table, and one for | 
|  | * the hardware pte table. | 
|  | */ | 
|  | static inline void | 
|  | alloc_init_page(unsigned long virt, unsigned long phys, unsigned int prot_l1, pgprot_t prot) | 
|  | { | 
|  | pmd_t *pmdp = pmd_off_k(virt); | 
|  | pte_t *ptep; | 
|  |  | 
|  | if (pmd_none(*pmdp)) { | 
|  | ptep = alloc_bootmem_low_pages(2 * PTRS_PER_PTE * | 
|  | sizeof(pte_t)); | 
|  |  | 
|  | __pmd_populate(pmdp, __pa(ptep) | prot_l1); | 
|  | } | 
|  | ptep = pte_offset_kernel(pmdp, virt); | 
|  |  | 
|  | set_pte(ptep, pfn_pte(phys >> PAGE_SHIFT, prot)); | 
|  | } | 
|  |  | 
|  | struct mem_types { | 
|  | unsigned int	prot_pte; | 
|  | unsigned int	prot_l1; | 
|  | unsigned int	prot_sect; | 
|  | unsigned int	domain; | 
|  | }; | 
|  |  | 
|  | static struct mem_types mem_types[] __initdata = { | 
|  | [MT_DEVICE] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_WRITE, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_UNCACHED | | 
|  | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_IO, | 
|  | }, | 
|  | [MT_CACHECLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_MINICLEAN] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_MINICACHE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_LOW_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_HIGH_VECTORS] = { | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_USER | L_PTE_EXEC, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .domain    = DOMAIN_USER, | 
|  | }, | 
|  | [MT_MEMORY] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_ROM] = { | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4, | 
|  | .domain    = DOMAIN_KERNEL, | 
|  | }, | 
|  | [MT_IXP2000_DEVICE] = { /* IXP2400 requires XCB=101 for on-chip I/O */ | 
|  | .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY | | 
|  | L_PTE_WRITE, | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_UNCACHED | | 
|  | PMD_SECT_AP_WRITE | PMD_SECT_BUFFERABLE | | 
|  | PMD_SECT_TEX(1), | 
|  | .domain    = DOMAIN_IO, | 
|  | }, | 
|  | [MT_NONSHARED_DEVICE] = { | 
|  | .prot_l1   = PMD_TYPE_TABLE, | 
|  | .prot_sect = PMD_TYPE_SECT | PMD_BIT4 | PMD_SECT_NONSHARED_DEV | | 
|  | PMD_SECT_AP_WRITE, | 
|  | .domain    = DOMAIN_IO, | 
|  | } | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * Adjust the PMD section entries according to the CPU in use. | 
|  | */ | 
|  | void __init build_mem_type_table(void) | 
|  | { | 
|  | struct cachepolicy *cp; | 
|  | unsigned int cr = get_cr(); | 
|  | unsigned int user_pgprot, kern_pgprot; | 
|  | int cpu_arch = cpu_architecture(); | 
|  | int i; | 
|  |  | 
|  | #if defined(CONFIG_CPU_DCACHE_DISABLE) | 
|  | if (cachepolicy > CPOLICY_BUFFERED) | 
|  | cachepolicy = CPOLICY_BUFFERED; | 
|  | #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH) | 
|  | if (cachepolicy > CPOLICY_WRITETHROUGH) | 
|  | cachepolicy = CPOLICY_WRITETHROUGH; | 
|  | #endif | 
|  | if (cpu_arch < CPU_ARCH_ARMv5) { | 
|  | if (cachepolicy >= CPOLICY_WRITEALLOC) | 
|  | cachepolicy = CPOLICY_WRITEBACK; | 
|  | ecc_mask = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Xscale must not have PMD bit 4 set for section mappings. | 
|  | */ | 
|  | if (cpu_is_xscale()) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | mem_types[i].prot_sect &= ~PMD_BIT4; | 
|  |  | 
|  | /* | 
|  | * ARMv5 and lower, excluding Xscale, bit 4 must be set for | 
|  | * page tables. | 
|  | */ | 
|  | if (cpu_arch < CPU_ARCH_ARMv6 && !cpu_is_xscale()) | 
|  | for (i = 0; i < ARRAY_SIZE(mem_types); i++) | 
|  | if (mem_types[i].prot_l1) | 
|  | mem_types[i].prot_l1 |= PMD_BIT4; | 
|  |  | 
|  | cp = &cache_policies[cachepolicy]; | 
|  | kern_pgprot = user_pgprot = cp->pte; | 
|  |  | 
|  | /* | 
|  | * Enable CPU-specific coherency if supported. | 
|  | * (Only available on XSC3 at the moment.) | 
|  | */ | 
|  | if (arch_is_coherent()) { | 
|  | if (cpu_is_xsc3()) { | 
|  | mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; | 
|  | mem_types[MT_MEMORY].prot_pte |= L_PTE_COHERENT; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ARMv6 and above have extended page tables. | 
|  | */ | 
|  | if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) { | 
|  | /* | 
|  | * bit 4 becomes XN which we must clear for the | 
|  | * kernel memory mapping. | 
|  | */ | 
|  | mem_types[MT_MEMORY].prot_sect &= ~PMD_SECT_XN; | 
|  | mem_types[MT_ROM].prot_sect &= ~PMD_SECT_XN; | 
|  |  | 
|  | /* | 
|  | * Mark cache clean areas and XIP ROM read only | 
|  | * from SVC mode and no access from userspace. | 
|  | */ | 
|  | mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE; | 
|  |  | 
|  | /* | 
|  | * Mark the device area as "shared device" | 
|  | */ | 
|  | mem_types[MT_DEVICE].prot_pte |= L_PTE_BUFFERABLE; | 
|  | mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED; | 
|  |  | 
|  | /* | 
|  | * User pages need to be mapped with the ASID | 
|  | * (iow, non-global) | 
|  | */ | 
|  | user_pgprot |= L_PTE_ASID; | 
|  |  | 
|  | #ifdef CONFIG_SMP | 
|  | /* | 
|  | * Mark memory with the "shared" attribute for SMP systems | 
|  | */ | 
|  | user_pgprot |= L_PTE_SHARED; | 
|  | kern_pgprot |= L_PTE_SHARED; | 
|  | mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long v = pgprot_val(protection_map[i]); | 
|  | v = (v & ~(L_PTE_BUFFERABLE|L_PTE_CACHEABLE)) | user_pgprot; | 
|  | protection_map[i] = __pgprot(v); | 
|  | } | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_pte |= kern_pgprot; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte |= kern_pgprot; | 
|  |  | 
|  | if (cpu_arch >= CPU_ARCH_ARMv5) { | 
|  | #ifndef CONFIG_SMP | 
|  | /* | 
|  | * Only use write-through for non-SMP systems | 
|  | */ | 
|  | mem_types[MT_LOW_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE; | 
|  | mem_types[MT_HIGH_VECTORS].prot_pte &= ~L_PTE_BUFFERABLE; | 
|  | #endif | 
|  | } else { | 
|  | mem_types[MT_MINICLEAN].prot_sect &= ~PMD_SECT_TEX(1); | 
|  | } | 
|  |  | 
|  | pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | | 
|  | L_PTE_DIRTY | L_PTE_WRITE | | 
|  | L_PTE_EXEC | kern_pgprot); | 
|  |  | 
|  | mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask; | 
|  | mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd; | 
|  | mem_types[MT_ROM].prot_sect |= cp->pmd; | 
|  |  | 
|  | switch (cp->pmd) { | 
|  | case PMD_SECT_WT: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT; | 
|  | break; | 
|  | case PMD_SECT_WB: | 
|  | case PMD_SECT_WBWA: | 
|  | mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB; | 
|  | break; | 
|  | } | 
|  | printk("Memory policy: ECC %sabled, Data cache %s\n", | 
|  | ecc_mask ? "en" : "dis", cp->policy); | 
|  | } | 
|  |  | 
|  | #define vectors_base()	(vectors_high() ? 0xffff0000 : 0) | 
|  |  | 
|  | /* | 
|  | * Create the page directory entries and any necessary | 
|  | * page tables for the mapping specified by `md'.  We | 
|  | * are able to cope here with varying sizes and address | 
|  | * offsets, and we take full advantage of sections and | 
|  | * supersections. | 
|  | */ | 
|  | void __init create_mapping(struct map_desc *md) | 
|  | { | 
|  | unsigned long virt, length; | 
|  | int prot_sect, prot_l1, domain; | 
|  | pgprot_t prot_pte; | 
|  | unsigned long off = (u32)__pfn_to_phys(md->pfn); | 
|  |  | 
|  | if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) { | 
|  | printk(KERN_WARNING "BUG: not creating mapping for " | 
|  | "0x%08llx at 0x%08lx in user region\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if ((md->type == MT_DEVICE || md->type == MT_ROM) && | 
|  | md->virtual >= PAGE_OFFSET && md->virtual < VMALLOC_END) { | 
|  | printk(KERN_WARNING "BUG: mapping for 0x%08llx at 0x%08lx " | 
|  | "overlaps vmalloc space\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | } | 
|  |  | 
|  | domain	  = mem_types[md->type].domain; | 
|  | prot_pte  = __pgprot(mem_types[md->type].prot_pte); | 
|  | prot_l1   = mem_types[md->type].prot_l1 | PMD_DOMAIN(domain); | 
|  | prot_sect = mem_types[md->type].prot_sect | PMD_DOMAIN(domain); | 
|  |  | 
|  | /* | 
|  | * Catch 36-bit addresses | 
|  | */ | 
|  | if(md->pfn >= 0x100000) { | 
|  | if(domain) { | 
|  | printk(KERN_ERR "MM: invalid domain in supersection " | 
|  | "mapping for 0x%08llx at 0x%08lx\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  | if((md->virtual | md->length | __pfn_to_phys(md->pfn)) | 
|  | & ~SUPERSECTION_MASK) { | 
|  | printk(KERN_ERR "MM: cannot create mapping for " | 
|  | "0x%08llx at 0x%08lx invalid alignment\n", | 
|  | __pfn_to_phys((u64)md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Shift bits [35:32] of address into bits [23:20] of PMD | 
|  | * (See ARMv6 spec). | 
|  | */ | 
|  | off |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20); | 
|  | } | 
|  |  | 
|  | virt   = md->virtual; | 
|  | off   -= virt; | 
|  | length = md->length; | 
|  |  | 
|  | if (mem_types[md->type].prot_l1 == 0 && | 
|  | (virt & 0xfffff || (virt + off) & 0xfffff || (virt + length) & 0xfffff)) { | 
|  | printk(KERN_WARNING "BUG: map for 0x%08lx at 0x%08lx can not " | 
|  | "be mapped using pages, ignoring.\n", | 
|  | __pfn_to_phys(md->pfn), md->virtual); | 
|  | return; | 
|  | } | 
|  |  | 
|  | while ((virt & 0xfffff || (virt + off) & 0xfffff) && length >= PAGE_SIZE) { | 
|  | alloc_init_page(virt, virt + off, prot_l1, prot_pte); | 
|  |  | 
|  | virt   += PAGE_SIZE; | 
|  | length -= PAGE_SIZE; | 
|  | } | 
|  |  | 
|  | /* N.B.	ARMv6 supersections are only defined to work with domain 0. | 
|  | *	Since domain assignments can in fact be arbitrary, the | 
|  | *	'domain == 0' check below is required to insure that ARMv6 | 
|  | *	supersections are only allocated for domain 0 regardless | 
|  | *	of the actual domain assignments in use. | 
|  | */ | 
|  | if ((cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3()) | 
|  | && domain == 0) { | 
|  | /* | 
|  | * Align to supersection boundary if !high pages. | 
|  | * High pages have already been checked for proper | 
|  | * alignment above and they will fail the SUPSERSECTION_MASK | 
|  | * check because of the way the address is encoded into | 
|  | * offset. | 
|  | */ | 
|  | if (md->pfn <= 0x100000) { | 
|  | while ((virt & ~SUPERSECTION_MASK || | 
|  | (virt + off) & ~SUPERSECTION_MASK) && | 
|  | length >= (PGDIR_SIZE / 2)) { | 
|  | alloc_init_section(virt, virt + off, prot_sect); | 
|  |  | 
|  | virt   += (PGDIR_SIZE / 2); | 
|  | length -= (PGDIR_SIZE / 2); | 
|  | } | 
|  | } | 
|  |  | 
|  | while (length >= SUPERSECTION_SIZE) { | 
|  | alloc_init_supersection(virt, virt + off, prot_sect); | 
|  |  | 
|  | virt   += SUPERSECTION_SIZE; | 
|  | length -= SUPERSECTION_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A section mapping covers half a "pgdir" entry. | 
|  | */ | 
|  | while (length >= (PGDIR_SIZE / 2)) { | 
|  | alloc_init_section(virt, virt + off, prot_sect); | 
|  |  | 
|  | virt   += (PGDIR_SIZE / 2); | 
|  | length -= (PGDIR_SIZE / 2); | 
|  | } | 
|  |  | 
|  | while (length >= PAGE_SIZE) { | 
|  | alloc_init_page(virt, virt + off, prot_l1, prot_pte); | 
|  |  | 
|  | virt   += PAGE_SIZE; | 
|  | length -= PAGE_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In order to soft-boot, we need to insert a 1:1 mapping in place of | 
|  | * the user-mode pages.  This will then ensure that we have predictable | 
|  | * results when turning the mmu off | 
|  | */ | 
|  | void setup_mm_for_reboot(char mode) | 
|  | { | 
|  | unsigned long base_pmdval; | 
|  | pgd_t *pgd; | 
|  | int i; | 
|  |  | 
|  | if (current->mm && current->mm->pgd) | 
|  | pgd = current->mm->pgd; | 
|  | else | 
|  | pgd = init_mm.pgd; | 
|  |  | 
|  | base_pmdval = PMD_SECT_AP_WRITE | PMD_SECT_AP_READ | PMD_TYPE_SECT; | 
|  | if (cpu_architecture() <= CPU_ARCH_ARMv5TEJ && !cpu_is_xscale()) | 
|  | base_pmdval |= PMD_BIT4; | 
|  |  | 
|  | for (i = 0; i < FIRST_USER_PGD_NR + USER_PTRS_PER_PGD; i++, pgd++) { | 
|  | unsigned long pmdval = (i << PGDIR_SHIFT) | base_pmdval; | 
|  | pmd_t *pmd; | 
|  |  | 
|  | pmd = pmd_off(pgd, i << PGDIR_SHIFT); | 
|  | pmd[0] = __pmd(pmdval); | 
|  | pmd[1] = __pmd(pmdval + (1 << (PGDIR_SHIFT - 1))); | 
|  | flush_pmd_entry(pmd); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the architecture specific mappings | 
|  | */ | 
|  | void __init iotable_init(struct map_desc *io_desc, int nr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < nr; i++) | 
|  | create_mapping(io_desc + i); | 
|  | } |