|  | /* | 
|  | * Basic two-word fraction declaration and manipulation. | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_DECL_2(X)	_FP_W_TYPE X##_f0, X##_f1 | 
|  | #define _FP_FRAC_COPY_2(D,S)	(D##_f0 = S##_f0, D##_f1 = S##_f1) | 
|  | #define _FP_FRAC_SET_2(X,I)	__FP_FRAC_SET_2(X, I) | 
|  | #define _FP_FRAC_HIGH_2(X)	(X##_f1) | 
|  | #define _FP_FRAC_LOW_2(X)	(X##_f0) | 
|  | #define _FP_FRAC_WORD_2(X,w)	(X##_f##w) | 
|  |  | 
|  | #define _FP_FRAC_SLL_2(X,N)						\ | 
|  | do {									\ | 
|  | if ((N) < _FP_W_TYPE_SIZE)						\ | 
|  | {									\ | 
|  | if (__builtin_constant_p(N) && (N) == 1) 			\ | 
|  | {								\ | 
|  | X##_f1 = X##_f1 + X##_f1 + (((_FP_WS_TYPE)(X##_f0)) < 0);	\ | 
|  | X##_f0 += X##_f0;						\ | 
|  | }								\ | 
|  | else								\ | 
|  | {								\ | 
|  | X##_f1 = X##_f1 << (N) | X##_f0 >> (_FP_W_TYPE_SIZE - (N));	\ | 
|  | X##_f0 <<= (N);						\ | 
|  | }								\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_f1 = X##_f0 << ((N) - _FP_W_TYPE_SIZE);			\ | 
|  | X##_f0 = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_SRL_2(X,N)						\ | 
|  | do {									\ | 
|  | if ((N) < _FP_W_TYPE_SIZE)						\ | 
|  | {									\ | 
|  | X##_f0 = X##_f0 >> (N) | X##_f1 << (_FP_W_TYPE_SIZE - (N));	\ | 
|  | X##_f1 >>= (N);							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_f0 = X##_f1 >> ((N) - _FP_W_TYPE_SIZE);			\ | 
|  | X##_f1 = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | /* Right shift with sticky-lsb.  */ | 
|  | #define _FP_FRAC_SRS_2(X,N,sz)						\ | 
|  | do {									\ | 
|  | if ((N) < _FP_W_TYPE_SIZE)						\ | 
|  | {									\ | 
|  | X##_f0 = (X##_f1 << (_FP_W_TYPE_SIZE - (N)) | X##_f0 >> (N) |	\ | 
|  | (__builtin_constant_p(N) && (N) == 1			\ | 
|  | ? X##_f0 & 1						\ | 
|  | : (X##_f0 << (_FP_W_TYPE_SIZE - (N))) != 0));	\ | 
|  | X##_f1 >>= (N);							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_f0 = (X##_f1 >> ((N) - _FP_W_TYPE_SIZE) |			\ | 
|  | (((X##_f1 << (sz - (N))) | X##_f0) != 0));		\ | 
|  | X##_f1 = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_ADDI_2(X,I) \ | 
|  | __FP_FRAC_ADDI_2(X##_f1, X##_f0, I) | 
|  |  | 
|  | #define _FP_FRAC_ADD_2(R,X,Y) \ | 
|  | __FP_FRAC_ADD_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  |  | 
|  | #define _FP_FRAC_SUB_2(R,X,Y) \ | 
|  | __FP_FRAC_SUB_2(R##_f1, R##_f0, X##_f1, X##_f0, Y##_f1, Y##_f0) | 
|  |  | 
|  | #define _FP_FRAC_CLZ_2(R,X)	\ | 
|  | do {				\ | 
|  | if (X##_f1)			\ | 
|  | __FP_CLZ(R,X##_f1);	\ | 
|  | else 			\ | 
|  | {				\ | 
|  | __FP_CLZ(R,X##_f0);	\ | 
|  | R += _FP_W_TYPE_SIZE;	\ | 
|  | }				\ | 
|  | } while(0) | 
|  |  | 
|  | /* Predicates */ | 
|  | #define _FP_FRAC_NEGP_2(X)	((_FP_WS_TYPE)X##_f1 < 0) | 
|  | #define _FP_FRAC_ZEROP_2(X)	((X##_f1 | X##_f0) == 0) | 
|  | #define _FP_FRAC_OVERP_2(fs,X)	(X##_f1 & _FP_OVERFLOW_##fs) | 
|  | #define _FP_FRAC_EQ_2(X, Y)	(X##_f1 == Y##_f1 && X##_f0 == Y##_f0) | 
|  | #define _FP_FRAC_GT_2(X, Y)	\ | 
|  | ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 > Y##_f0)) | 
|  | #define _FP_FRAC_GE_2(X, Y)	\ | 
|  | ((X##_f1 > Y##_f1) || (X##_f1 == Y##_f1 && X##_f0 >= Y##_f0)) | 
|  |  | 
|  | #define _FP_ZEROFRAC_2		0, 0 | 
|  | #define _FP_MINFRAC_2		0, 1 | 
|  |  | 
|  | /* | 
|  | * Internals | 
|  | */ | 
|  |  | 
|  | #define __FP_FRAC_SET_2(X,I1,I0)	(X##_f0 = I0, X##_f1 = I1) | 
|  |  | 
|  | #define __FP_CLZ_2(R, xh, xl)	\ | 
|  | do {				\ | 
|  | if (xh)			\ | 
|  | __FP_CLZ(R,xl);		\ | 
|  | else 			\ | 
|  | {				\ | 
|  | __FP_CLZ(R,xl);		\ | 
|  | R += _FP_W_TYPE_SIZE;	\ | 
|  | }				\ | 
|  | } while(0) | 
|  |  | 
|  | #if 0 | 
|  |  | 
|  | #ifndef __FP_FRAC_ADDI_2 | 
|  | #define __FP_FRAC_ADDI_2(xh, xl, i) \ | 
|  | (xh += ((xl += i) < i)) | 
|  | #endif | 
|  | #ifndef __FP_FRAC_ADD_2 | 
|  | #define __FP_FRAC_ADD_2(rh, rl, xh, xl, yh, yl) \ | 
|  | (rh = xh + yh + ((rl = xl + yl) < xl)) | 
|  | #endif | 
|  | #ifndef __FP_FRAC_SUB_2 | 
|  | #define __FP_FRAC_SUB_2(rh, rl, xh, xl, yh, yl) \ | 
|  | (rh = xh - yh - ((rl = xl - yl) > xl)) | 
|  | #endif | 
|  |  | 
|  | #else | 
|  |  | 
|  | #undef __FP_FRAC_ADDI_2 | 
|  | #define __FP_FRAC_ADDI_2(xh, xl, i)	add_ssaaaa(xh, xl, xh, xl, 0, i) | 
|  | #undef __FP_FRAC_ADD_2 | 
|  | #define __FP_FRAC_ADD_2			add_ssaaaa | 
|  | #undef __FP_FRAC_SUB_2 | 
|  | #define __FP_FRAC_SUB_2			sub_ddmmss | 
|  |  | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Unpack the raw bits of a native fp value.  Do not classify or | 
|  | * normalize the data. | 
|  | */ | 
|  |  | 
|  | #define _FP_UNPACK_RAW_2(fs, X, val)			\ | 
|  | do {							\ | 
|  | union _FP_UNION_##fs _flo; _flo.flt = (val);	\ | 
|  | \ | 
|  | X##_f0 = _flo.bits.frac0;				\ | 
|  | X##_f1 = _flo.bits.frac1;				\ | 
|  | X##_e  = _flo.bits.exp;				\ | 
|  | X##_s  = _flo.bits.sign;				\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Repack the raw bits of a native fp value. | 
|  | */ | 
|  |  | 
|  | #define _FP_PACK_RAW_2(fs, val, X)			\ | 
|  | do {							\ | 
|  | union _FP_UNION_##fs _flo;				\ | 
|  | \ | 
|  | _flo.bits.frac0 = X##_f0;				\ | 
|  | _flo.bits.frac1 = X##_f1;				\ | 
|  | _flo.bits.exp   = X##_e;				\ | 
|  | _flo.bits.sign  = X##_s;				\ | 
|  | \ | 
|  | (val) = _flo.flt;					\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Multiplication algorithms: | 
|  | */ | 
|  |  | 
|  | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_2_wide(fs, R, X, Y, doit)				\ | 
|  | do {									\ | 
|  | _FP_FRAC_DECL_4(_z); _FP_FRAC_DECL_2(_b); _FP_FRAC_DECL_2(_c);	\ | 
|  | \ | 
|  | doit(_FP_FRAC_WORD_4(_z,1), _FP_FRAC_WORD_4(_z,0), X##_f0, Y##_f0); \ | 
|  | doit(_b_f1, _b_f0, X##_f0, Y##_f1);					\ | 
|  | doit(_c_f1, _c_f0, X##_f1, Y##_f0);					\ | 
|  | doit(_FP_FRAC_WORD_4(_z,3), _FP_FRAC_WORD_4(_z,2), X##_f1, Y##_f1); \ | 
|  | \ | 
|  | __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),	\ | 
|  | 0, _b_f1, _b_f0, 0,					\ | 
|  | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));	\ | 
|  | __FP_FRAC_ADD_4(_FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0),	\ | 
|  | 0, _c_f1, _c_f0, 0,					\ | 
|  | _FP_FRAC_WORD_4(_z,3),_FP_FRAC_WORD_4(_z,2),	\ | 
|  | _FP_FRAC_WORD_4(_z,1),_FP_FRAC_WORD_4(_z,0));	\ | 
|  | \ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_4(_z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
|  | R##_f0 = _FP_FRAC_WORD_4(_z,0);					\ | 
|  | R##_f1 = _FP_FRAC_WORD_4(_z,1);					\ | 
|  | } while (0) | 
|  |  | 
|  | /* This next macro appears to be totally broken. Fortunately nowhere | 
|  | * seems to use it :-> The problem is that we define _z[4] but | 
|  | * then use it in _FP_FRAC_SRS_4, which will attempt to access | 
|  | * _z_f[n] which will cause an error. The fix probably involves | 
|  | * declaring it with _FP_FRAC_DECL_4, see previous macro. -- PMM 02/1998 | 
|  | */ | 
|  | #define _FP_MUL_MEAT_2_gmp(fs, R, X, Y)					\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _x[2], _y[2], _z[4];					\ | 
|  | _x[0] = X##_f0; _x[1] = X##_f1;					\ | 
|  | _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
|  | \ | 
|  | mpn_mul_n(_z, _x, _y, 2);						\ | 
|  | \ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_4(_z, _FP_WFRACBITS##_fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
|  | R##_f0 = _z[0];							\ | 
|  | R##_f1 = _z[1];							\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Division algorithms: | 
|  | * This seems to be giving me difficulties -- PMM | 
|  | * Look, NetBSD seems to be able to comment algorithms. Can't you? | 
|  | * I've thrown printks at the problem. | 
|  | * This now appears to work, but I still don't really know why. | 
|  | * Also, I don't think the result is properly normalised... | 
|  | */ | 
|  |  | 
|  | #define _FP_DIV_MEAT_2_udiv_64(fs, R, X, Y)				\ | 
|  | do {									\ | 
|  | extern void _fp_udivmodti4(_FP_W_TYPE q[2], _FP_W_TYPE r[2],	\ | 
|  | _FP_W_TYPE n1, _FP_W_TYPE n0,		\ | 
|  | _FP_W_TYPE d1, _FP_W_TYPE d0);		\ | 
|  | _FP_W_TYPE _n_f3, _n_f2, _n_f1, _n_f0, _r_f1, _r_f0;		\ | 
|  | _FP_W_TYPE _q_f1, _q_f0, _m_f1, _m_f0;				\ | 
|  | _FP_W_TYPE _rmem[2], _qmem[2];					\ | 
|  | /* I think this check is to ensure that the result is normalised.   \ | 
|  | * Assuming X,Y normalised (ie in [1.0,2.0)) X/Y will be in         \ | 
|  | * [0.5,2.0). Furthermore, it will be less than 1.0 iff X < Y.      \ | 
|  | * In this case we tweak things. (this is based on comments in      \ | 
|  | * the NetBSD FPU emulation code. )                                 \ | 
|  | * We know X,Y are normalised because we ensure this as part of     \ | 
|  | * the unpacking process. -- PMM                                    \ | 
|  | */									\ | 
|  | if (_FP_FRAC_GT_2(X, Y))						\ | 
|  | {									\ | 
|  | /*	R##_e++; */							\ | 
|  | _n_f3 = X##_f1 >> 1;						\ | 
|  | _n_f2 = X##_f1 << (_FP_W_TYPE_SIZE - 1) | X##_f0 >> 1;		\ | 
|  | _n_f1 = X##_f0 << (_FP_W_TYPE_SIZE - 1);			\ | 
|  | _n_f0 = 0;							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | R##_e--;							\ | 
|  | _n_f3 = X##_f1;							\ | 
|  | _n_f2 = X##_f0;							\ | 
|  | _n_f1 = _n_f0 = 0;						\ | 
|  | }									\ | 
|  | \ | 
|  | /* Normalize, i.e. make the most significant bit of the 		\ | 
|  | denominator set.  CHANGED: - 1 to nothing -- PMM */		\ | 
|  | _FP_FRAC_SLL_2(Y, _FP_WFRACXBITS_##fs /* -1 */);			\ | 
|  | \ | 
|  | /* Do the 256/128 bit division given the 128-bit _fp_udivmodtf4 	\ | 
|  | primitive snagged from libgcc2.c.  */				\ | 
|  | \ | 
|  | _fp_udivmodti4(_qmem, _rmem, _n_f3, _n_f2, 0, Y##_f1);		\ | 
|  | _q_f1 = _qmem[0];							\ | 
|  | umul_ppmm(_m_f1, _m_f0, _q_f1, Y##_f0);				\ | 
|  | _r_f1 = _rmem[0];							\ | 
|  | _r_f0 = _n_f1;							\ | 
|  | if (_FP_FRAC_GT_2(_m, _r))						\ | 
|  | {									\ | 
|  | _q_f1--;							\ | 
|  | _FP_FRAC_ADD_2(_r, _r, Y);					\ | 
|  | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
|  | {								\ | 
|  | _q_f1--;							\ | 
|  | _FP_FRAC_ADD_2(_r, _r, Y);					\ | 
|  | }								\ | 
|  | }									\ | 
|  | _FP_FRAC_SUB_2(_r, _r, _m);						\ | 
|  | \ | 
|  | _fp_udivmodti4(_qmem, _rmem, _r_f1, _r_f0, 0, Y##_f1);		\ | 
|  | _q_f0 = _qmem[0];							\ | 
|  | umul_ppmm(_m_f1, _m_f0, _q_f0, Y##_f0);				\ | 
|  | _r_f1 = _rmem[0];							\ | 
|  | _r_f0 = _n_f0;							\ | 
|  | if (_FP_FRAC_GT_2(_m, _r))						\ | 
|  | {									\ | 
|  | _q_f0--;							\ | 
|  | _FP_FRAC_ADD_2(_r, _r, Y);					\ | 
|  | if (_FP_FRAC_GE_2(_r, Y) && _FP_FRAC_GT_2(_m, _r))		\ | 
|  | {								\ | 
|  | _q_f0--;							\ | 
|  | _FP_FRAC_ADD_2(_r, _r, Y);					\ | 
|  | }								\ | 
|  | }									\ | 
|  | _FP_FRAC_SUB_2(_r, _r, _m);						\ | 
|  | \ | 
|  | R##_f1 = _q_f1;							\ | 
|  | R##_f0 = _q_f0 | ((_r_f1 | _r_f0) != 0);				\ | 
|  | /* adjust so answer is normalized again. I'm not sure what the 	\ | 
|  | * final sz param should be. In practice it's never used since      \ | 
|  | * N is 1 which is always going to be < _FP_W_TYPE_SIZE...		\ | 
|  | */									\ | 
|  | /* _FP_FRAC_SRS_2(R,1,_FP_WFRACBITS_##fs);	*/			\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | #define _FP_DIV_MEAT_2_gmp(fs, R, X, Y)					\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _x[4], _y[2], _z[4];					\ | 
|  | _y[0] = Y##_f0; _y[1] = Y##_f1;					\ | 
|  | _x[0] = _x[3] = 0;							\ | 
|  | if (_FP_FRAC_GT_2(X, Y))						\ | 
|  | {									\ | 
|  | R##_e++;							\ | 
|  | _x[1] = (X##_f0 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE) |	\ | 
|  | X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
|  | (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE)));	\ | 
|  | _x[2] = X##_f1 << (_FP_WFRACBITS-1 - _FP_W_TYPE_SIZE);		\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | _x[1] = (X##_f0 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE) |		\ | 
|  | X##_f1 >> (_FP_W_TYPE_SIZE -				\ | 
|  | (_FP_WFRACBITS - _FP_W_TYPE_SIZE)));	\ | 
|  | _x[2] = X##_f1 << (_FP_WFRACBITS - _FP_W_TYPE_SIZE);		\ | 
|  | }									\ | 
|  | \ | 
|  | (void) mpn_divrem (_z, 0, _x, 4, _y, 2);				\ | 
|  | R##_f1 = _z[1];							\ | 
|  | R##_f0 = _z[0] | ((_x[0] | _x[1]) != 0);				\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Square root algorithms: | 
|  | * We have just one right now, maybe Newton approximation | 
|  | * should be added for those machines where division is fast. | 
|  | */ | 
|  |  | 
|  | #define _FP_SQRT_MEAT_2(R, S, T, X, q)			\ | 
|  | do {							\ | 
|  | while (q)						\ | 
|  | {							\ | 
|  | T##_f1 = S##_f1 + q;				\ | 
|  | if (T##_f1 <= X##_f1)				\ | 
|  | {						\ | 
|  | S##_f1 = T##_f1 + q;			\ | 
|  | X##_f1 -= T##_f1;				\ | 
|  | R##_f1 += q;				\ | 
|  | }						\ | 
|  | _FP_FRAC_SLL_2(X, 1);				\ | 
|  | q >>= 1;					\ | 
|  | }							\ | 
|  | q = (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE - 1);		\ | 
|  | while (q)						\ | 
|  | {							\ | 
|  | T##_f0 = S##_f0 + q;				\ | 
|  | T##_f1 = S##_f1;				\ | 
|  | if (T##_f1 < X##_f1 || 				\ | 
|  | (T##_f1 == X##_f1 && T##_f0 < X##_f0))	\ | 
|  | {						\ | 
|  | S##_f0 = T##_f0 + q;			\ | 
|  | if (((_FP_WS_TYPE)T##_f0) < 0 &&		\ | 
|  | ((_FP_WS_TYPE)S##_f0) >= 0)		\ | 
|  | S##_f1++;					\ | 
|  | _FP_FRAC_SUB_2(X, X, T);			\ | 
|  | R##_f0 += q;				\ | 
|  | }						\ | 
|  | _FP_FRAC_SLL_2(X, 1);				\ | 
|  | q >>= 1;					\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Assembly/disassembly for converting to/from integral types. | 
|  | * No shifting or overflow handled here. | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_ASSEMBLE_2(r, X, rsize)	\ | 
|  | do {						\ | 
|  | if (rsize <= _FP_W_TYPE_SIZE)		\ | 
|  | r = X##_f0;				\ | 
|  | else					\ | 
|  | {						\ | 
|  | r = X##_f1;				\ | 
|  | r <<= _FP_W_TYPE_SIZE;			\ | 
|  | r += X##_f0;				\ | 
|  | }						\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_DISASSEMBLE_2(X, r, rsize)				\ | 
|  | do {									\ | 
|  | X##_f0 = r;								\ | 
|  | X##_f1 = (rsize <= _FP_W_TYPE_SIZE ? 0 : r >> _FP_W_TYPE_SIZE);	\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Convert FP values between word sizes | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_CONV_1_2(dfs, sfs, D, S)				\ | 
|  | do {									\ | 
|  | _FP_FRAC_SRS_2(S, (_FP_WFRACBITS_##sfs - _FP_WFRACBITS_##dfs),	\ | 
|  | _FP_WFRACBITS_##sfs);				\ | 
|  | D##_f = S##_f0;							\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FRAC_CONV_2_1(dfs, sfs, D, S)				\ | 
|  | do {									\ | 
|  | D##_f0 = S##_f;							\ | 
|  | D##_f1 = 0;								\ | 
|  | _FP_FRAC_SLL_2(D, (_FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs));	\ | 
|  | } while (0) | 
|  |  |