|  | #define _FP_DECL(wc, X)			\ | 
|  | _FP_I_TYPE X##_c, X##_s, X##_e;	\ | 
|  | _FP_FRAC_DECL_##wc(X) | 
|  |  | 
|  | /* | 
|  | * Finish truely unpacking a native fp value by classifying the kind | 
|  | * of fp value and normalizing both the exponent and the fraction. | 
|  | */ | 
|  |  | 
|  | #define _FP_UNPACK_CANONICAL(fs, wc, X)					\ | 
|  | do {									\ | 
|  | switch (X##_e)							\ | 
|  | {									\ | 
|  | default:								\ | 
|  | _FP_FRAC_HIGH_##wc(X) |= _FP_IMPLBIT_##fs;				\ | 
|  | _FP_FRAC_SLL_##wc(X, _FP_WORKBITS);					\ | 
|  | X##_e -= _FP_EXPBIAS_##fs;						\ | 
|  | X##_c = FP_CLS_NORMAL;						\ | 
|  | break;								\ | 
|  | \ | 
|  | case 0:								\ | 
|  | if (_FP_FRAC_ZEROP_##wc(X))						\ | 
|  | X##_c = FP_CLS_ZERO;						\ | 
|  | else								\ | 
|  | {									\ | 
|  | /* a denormalized number */					\ | 
|  | _FP_I_TYPE _shift;						\ | 
|  | _FP_FRAC_CLZ_##wc(_shift, X);					\ | 
|  | _shift -= _FP_FRACXBITS_##fs;					\ | 
|  | _FP_FRAC_SLL_##wc(X, (_shift+_FP_WORKBITS));			\ | 
|  | X##_e -= _FP_EXPBIAS_##fs - 1 + _shift;				\ | 
|  | X##_c = FP_CLS_NORMAL;						\ | 
|  | }									\ | 
|  | break;								\ | 
|  | \ | 
|  | case _FP_EXPMAX_##fs:							\ | 
|  | if (_FP_FRAC_ZEROP_##wc(X))						\ | 
|  | X##_c = FP_CLS_INF;						\ | 
|  | else								\ | 
|  | /* we don't differentiate between signaling and quiet nans */	\ | 
|  | X##_c = FP_CLS_NAN;						\ | 
|  | break;								\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Before packing the bits back into the native fp result, take care | 
|  | * of such mundane things as rounding and overflow.  Also, for some | 
|  | * kinds of fp values, the original parts may not have been fully | 
|  | * extracted -- but that is ok, we can regenerate them now. | 
|  | */ | 
|  |  | 
|  | #define _FP_PACK_CANONICAL(fs, wc, X)				\ | 
|  | ({int __ret = 0;						\ | 
|  | switch (X##_c)						\ | 
|  | {								\ | 
|  | case FP_CLS_NORMAL:						\ | 
|  | X##_e += _FP_EXPBIAS_##fs;					\ | 
|  | if (X##_e > 0)						\ | 
|  | {								\ | 
|  | __ret |= _FP_ROUND(wc, X);				\ | 
|  | if (_FP_FRAC_OVERP_##wc(fs, X))				\ | 
|  | {							\ | 
|  | _FP_FRAC_SRL_##wc(X, (_FP_WORKBITS+1));		\ | 
|  | X##_e++;						\ | 
|  | }							\ | 
|  | else							\ | 
|  | _FP_FRAC_SRL_##wc(X, _FP_WORKBITS);			\ | 
|  | if (X##_e >= _FP_EXPMAX_##fs)				\ | 
|  | {							\ | 
|  | /* overflow to infinity */				\ | 
|  | X##_e = _FP_EXPMAX_##fs;				\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\ | 
|  | __ret |= EFLAG_OVERFLOW;				\ | 
|  | }							\ | 
|  | }								\ | 
|  | else							\ | 
|  | {								\ | 
|  | /* we've got a denormalized number */			\ | 
|  | X##_e = -X##_e + 1;					\ | 
|  | if (X##_e <= _FP_WFRACBITS_##fs)			\ | 
|  | {							\ | 
|  | _FP_FRAC_SRS_##wc(X, X##_e, _FP_WFRACBITS_##fs);	\ | 
|  | _FP_FRAC_SLL_##wc(X, 1);				\ | 
|  | if (_FP_FRAC_OVERP_##wc(fs, X))			\ | 
|  | {							\ | 
|  | X##_e = 1;					\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);	\ | 
|  | }							\ | 
|  | else						\ | 
|  | {							\ | 
|  | X##_e = 0;					\ | 
|  | _FP_FRAC_SRL_##wc(X, _FP_WORKBITS+1);		\ | 
|  | __ret |= EFLAG_UNDERFLOW;			\ | 
|  | }							\ | 
|  | }							\ | 
|  | else							\ | 
|  | {							\ | 
|  | /* underflow to zero */				\ | 
|  | X##_e = 0;						\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);		\ | 
|  | __ret |= EFLAG_UNDERFLOW;				\ | 
|  | }							\ | 
|  | }								\ | 
|  | break;							\ | 
|  | \ | 
|  | case FP_CLS_ZERO:						\ | 
|  | X##_e = 0;							\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\ | 
|  | break;							\ | 
|  | \ | 
|  | case FP_CLS_INF:						\ | 
|  | X##_e = _FP_EXPMAX_##fs;					\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\ | 
|  | break;							\ | 
|  | \ | 
|  | case FP_CLS_NAN:						\ | 
|  | X##_e = _FP_EXPMAX_##fs;					\ | 
|  | if (!_FP_KEEPNANFRACP)					\ | 
|  | {								\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_NANFRAC_##fs);			\ | 
|  | X##_s = 0;						\ | 
|  | }								\ | 
|  | else							\ | 
|  | _FP_FRAC_HIGH_##wc(X) |= _FP_QNANBIT_##fs;		\ | 
|  | break;							\ | 
|  | }								\ | 
|  | __ret;							\ | 
|  | }) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main addition routine.  The input values should be cooked. | 
|  | */ | 
|  |  | 
|  | #define _FP_ADD(fs, wc, R, X, Y)					     \ | 
|  | do {									     \ | 
|  | switch (_FP_CLS_COMBINE(X##_c, Y##_c))				     \ | 
|  | {									     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):			     \ | 
|  | {									     \ | 
|  | /* shift the smaller number so that its exponent matches the larger */ \ | 
|  | _FP_I_TYPE diff = X##_e - Y##_e;					     \ | 
|  | \ | 
|  | if (diff < 0)							     \ | 
|  | {								     \ | 
|  | diff = -diff;							     \ | 
|  | if (diff <= _FP_WFRACBITS_##fs)				     \ | 
|  | _FP_FRAC_SRS_##wc(X, diff, _FP_WFRACBITS_##fs);		     \ | 
|  | else if (!_FP_FRAC_ZEROP_##wc(X))				     \ | 
|  | _FP_FRAC_SET_##wc(X, _FP_MINFRAC_##wc);			     \ | 
|  | else								     \ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			     \ | 
|  | R##_e = Y##_e;						     \ | 
|  | }								     \ | 
|  | else								     \ | 
|  | {								     \ | 
|  | if (diff > 0)							     \ | 
|  | {								     \ | 
|  | if (diff <= _FP_WFRACBITS_##fs)				     \ | 
|  | _FP_FRAC_SRS_##wc(Y, diff, _FP_WFRACBITS_##fs);		     \ | 
|  | else if (!_FP_FRAC_ZEROP_##wc(Y))				     \ | 
|  | _FP_FRAC_SET_##wc(Y, _FP_MINFRAC_##wc);			     \ | 
|  | else							     \ | 
|  | _FP_FRAC_SET_##wc(Y, _FP_ZEROFRAC_##wc);		     \ | 
|  | }								     \ | 
|  | R##_e = X##_e;						     \ | 
|  | }								     \ | 
|  | \ | 
|  | R##_c = FP_CLS_NORMAL;						     \ | 
|  | \ | 
|  | if (X##_s == Y##_s)						     \ | 
|  | {								     \ | 
|  | R##_s = X##_s;						     \ | 
|  | _FP_FRAC_ADD_##wc(R, X, Y);					     \ | 
|  | if (_FP_FRAC_OVERP_##wc(fs, R))				     \ | 
|  | {								     \ | 
|  | _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);		     \ | 
|  | R##_e++;							     \ | 
|  | }								     \ | 
|  | }								     \ | 
|  | else								     \ | 
|  | {								     \ | 
|  | R##_s = X##_s;						     \ | 
|  | _FP_FRAC_SUB_##wc(R, X, Y);					     \ | 
|  | if (_FP_FRAC_ZEROP_##wc(R))					     \ | 
|  | {								     \ | 
|  | /* return an exact zero */				     \ | 
|  | if (FP_ROUNDMODE == FP_RND_MINF)				     \ | 
|  | R##_s |= Y##_s;						     \ | 
|  | else							     \ | 
|  | R##_s &= Y##_s;						     \ | 
|  | R##_c = FP_CLS_ZERO;					     \ | 
|  | }								     \ | 
|  | else								     \ | 
|  | {								     \ | 
|  | if (_FP_FRAC_NEGP_##wc(R))				     \ | 
|  | {							     \ | 
|  | _FP_FRAC_SUB_##wc(R, Y, X);				     \ | 
|  | R##_s = Y##_s;					     \ | 
|  | }							     \ | 
|  | \ | 
|  | /* renormalize after subtraction */			     \ | 
|  | _FP_FRAC_CLZ_##wc(diff, R);				     \ | 
|  | diff -= _FP_WFRACXBITS_##fs;				     \ | 
|  | if (diff)							     \ | 
|  | {							     \ | 
|  | R##_e -= diff;					     \ | 
|  | _FP_FRAC_SLL_##wc(R, diff);				     \ | 
|  | }							     \ | 
|  | }								     \ | 
|  | }								     \ | 
|  | break;								     \ | 
|  | }									     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):				     \ | 
|  | _FP_CHOOSENAN(fs, wc, R, X, Y);					     \ | 
|  | break;								     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):			     \ | 
|  | R##_e = X##_e;							     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):			     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):				     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):				     \ | 
|  | _FP_FRAC_COPY_##wc(R, X);						     \ | 
|  | R##_s = X##_s;							     \ | 
|  | R##_c = X##_c;							     \ | 
|  | break;								     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):			     \ | 
|  | R##_e = Y##_e;							     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):			     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):				     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):				     \ | 
|  | _FP_FRAC_COPY_##wc(R, Y);						     \ | 
|  | R##_s = Y##_s;							     \ | 
|  | R##_c = Y##_c;							     \ | 
|  | break;								     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):				     \ | 
|  | if (X##_s != Y##_s)							     \ | 
|  | {									     \ | 
|  | /* +INF + -INF => NAN */					     \ | 
|  | _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);				     \ | 
|  | R##_s = X##_s ^ Y##_s;						     \ | 
|  | R##_c = FP_CLS_NAN;						     \ | 
|  | break;								     \ | 
|  | }									     \ | 
|  | /* FALLTHRU */							     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):			     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):				     \ | 
|  | R##_s = X##_s;							     \ | 
|  | R##_c = FP_CLS_INF;							     \ | 
|  | break;								     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):			     \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):				     \ | 
|  | R##_s = Y##_s;							     \ | 
|  | R##_c = FP_CLS_INF;							     \ | 
|  | break;								     \ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):			     \ | 
|  | /* make sure the sign is correct */					     \ | 
|  | if (FP_ROUNDMODE == FP_RND_MINF)					     \ | 
|  | R##_s = X##_s | Y##_s;						     \ | 
|  | else								     \ | 
|  | R##_s = X##_s & Y##_s;						     \ | 
|  | R##_c = FP_CLS_ZERO;						     \ | 
|  | break;								     \ | 
|  | \ | 
|  | default:								     \ | 
|  | abort();								     \ | 
|  | }									     \ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main negation routine.  FIXME -- when we care about setting exception | 
|  | * bits reliably, this will not do.  We should examine all of the fp classes. | 
|  | */ | 
|  |  | 
|  | #define _FP_NEG(fs, wc, R, X)		\ | 
|  | do {					\ | 
|  | _FP_FRAC_COPY_##wc(R, X);		\ | 
|  | R##_c = X##_c;			\ | 
|  | R##_e = X##_e;			\ | 
|  | R##_s = 1 ^ X##_s;			\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main multiplication routine.  The input values should be cooked. | 
|  | */ | 
|  |  | 
|  | #define _FP_MUL(fs, wc, R, X, Y)			\ | 
|  | do {							\ | 
|  | R##_s = X##_s ^ Y##_s;				\ | 
|  | switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\ | 
|  | {							\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\ | 
|  | R##_c = FP_CLS_NORMAL;				\ | 
|  | R##_e = X##_e + Y##_e + 1;				\ | 
|  | \ | 
|  | _FP_MUL_MEAT_##fs(R,X,Y);				\ | 
|  | \ | 
|  | if (_FP_FRAC_OVERP_##wc(fs, R))			\ | 
|  | _FP_FRAC_SRS_##wc(R, 1, _FP_WFRACBITS_##fs);	\ | 
|  | else						\ | 
|  | R##_e--;						\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\ | 
|  | _FP_CHOOSENAN(fs, wc, R, X, Y);			\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\ | 
|  | R##_s = X##_s;					\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\ | 
|  | _FP_FRAC_COPY_##wc(R, X);				\ | 
|  | R##_c = X##_c;					\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\ | 
|  | R##_s = Y##_s;					\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\ | 
|  | _FP_FRAC_COPY_##wc(R, Y);				\ | 
|  | R##_c = Y##_c;					\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\ | 
|  | R##_c = FP_CLS_NAN;					\ | 
|  | _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\ | 
|  | break;						\ | 
|  | \ | 
|  | default:						\ | 
|  | abort();						\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main division routine.  The input values should be cooked. | 
|  | */ | 
|  |  | 
|  | #define _FP_DIV(fs, wc, R, X, Y)			\ | 
|  | do {							\ | 
|  | R##_s = X##_s ^ Y##_s;				\ | 
|  | switch (_FP_CLS_COMBINE(X##_c, Y##_c))		\ | 
|  | {							\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NORMAL):	\ | 
|  | R##_c = FP_CLS_NORMAL;				\ | 
|  | R##_e = X##_e - Y##_e;				\ | 
|  | \ | 
|  | _FP_DIV_MEAT_##fs(R,X,Y);				\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NAN):		\ | 
|  | _FP_CHOOSENAN(fs, wc, R, X, Y);			\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_NORMAL):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_INF):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NAN,FP_CLS_ZERO):		\ | 
|  | R##_s = X##_s;					\ | 
|  | _FP_FRAC_COPY_##wc(R, X);				\ | 
|  | R##_c = X##_c;					\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_NAN):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NAN):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NAN):		\ | 
|  | R##_s = Y##_s;					\ | 
|  | _FP_FRAC_COPY_##wc(R, Y);				\ | 
|  | R##_c = Y##_c;					\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_INF):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_INF):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_NORMAL):	\ | 
|  | R##_c = FP_CLS_ZERO;				\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_NORMAL,FP_CLS_ZERO):	\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_ZERO):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_NORMAL):	\ | 
|  | R##_c = FP_CLS_INF;					\ | 
|  | break;						\ | 
|  | \ | 
|  | case _FP_CLS_COMBINE(FP_CLS_INF,FP_CLS_INF):		\ | 
|  | case _FP_CLS_COMBINE(FP_CLS_ZERO,FP_CLS_ZERO):	\ | 
|  | R##_c = FP_CLS_NAN;					\ | 
|  | _FP_FRAC_SET_##wc(R, _FP_NANFRAC_##fs);		\ | 
|  | break;						\ | 
|  | \ | 
|  | default:						\ | 
|  | abort();						\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Main differential comparison routine.  The inputs should be raw not | 
|  | * cooked.  The return is -1,0,1 for normal values, 2 otherwise. | 
|  | */ | 
|  |  | 
|  | #define _FP_CMP(fs, wc, ret, X, Y, un)					\ | 
|  | do {									\ | 
|  | /* NANs are unordered */						\ | 
|  | if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		\ | 
|  | || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	\ | 
|  | {									\ | 
|  | ret = un;							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | int __x_zero = (!X##_e && _FP_FRAC_ZEROP_##wc(X)) ? 1 : 0;	\ | 
|  | int __y_zero = (!Y##_e && _FP_FRAC_ZEROP_##wc(Y)) ? 1 : 0;	\ | 
|  | \ | 
|  | if (__x_zero && __y_zero)					\ | 
|  | ret = 0;							\ | 
|  | else if (__x_zero)						\ | 
|  | ret = Y##_s ? 1 : -1;						\ | 
|  | else if (__y_zero)						\ | 
|  | ret = X##_s ? -1 : 1;						\ | 
|  | else if (X##_s != Y##_s)					\ | 
|  | ret = X##_s ? -1 : 1;						\ | 
|  | else if (X##_e > Y##_e)						\ | 
|  | ret = X##_s ? -1 : 1;						\ | 
|  | else if (X##_e < Y##_e)						\ | 
|  | ret = X##_s ? 1 : -1;						\ | 
|  | else if (_FP_FRAC_GT_##wc(X, Y))				\ | 
|  | ret = X##_s ? -1 : 1;						\ | 
|  | else if (_FP_FRAC_GT_##wc(Y, X))				\ | 
|  | ret = X##_s ? 1 : -1;						\ | 
|  | else								\ | 
|  | ret = 0;							\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* Simplification for strict equality.  */ | 
|  |  | 
|  | #define _FP_CMP_EQ(fs, wc, ret, X, Y)					  \ | 
|  | do {									  \ | 
|  | /* NANs are unordered */						  \ | 
|  | if ((X##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(X))		  \ | 
|  | || (Y##_e == _FP_EXPMAX_##fs && !_FP_FRAC_ZEROP_##wc(Y)))	  \ | 
|  | {									  \ | 
|  | ret = 1;							  \ | 
|  | }									  \ | 
|  | else								  \ | 
|  | {									  \ | 
|  | ret = !(X##_e == Y##_e						  \ | 
|  | && _FP_FRAC_EQ_##wc(X, Y)				  \ | 
|  | && (X##_s == Y##_s || !X##_e && _FP_FRAC_ZEROP_##wc(X))); \ | 
|  | }									  \ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Main square root routine.  The input value should be cooked. | 
|  | */ | 
|  |  | 
|  | #define _FP_SQRT(fs, wc, R, X)						\ | 
|  | do {									\ | 
|  | _FP_FRAC_DECL_##wc(T); _FP_FRAC_DECL_##wc(S);			\ | 
|  | _FP_W_TYPE q;							\ | 
|  | switch (X##_c)							\ | 
|  | {									\ | 
|  | case FP_CLS_NAN:							\ | 
|  | R##_s = 0;							\ | 
|  | R##_c = FP_CLS_NAN;						\ | 
|  | _FP_FRAC_SET_##wc(X, _FP_ZEROFRAC_##wc);			\ | 
|  | break;								\ | 
|  | case FP_CLS_INF:							\ | 
|  | if (X##_s)							\ | 
|  | {								\ | 
|  | R##_s = 0;							\ | 
|  | R##_c = FP_CLS_NAN; /* sNAN */				\ | 
|  | }								\ | 
|  | else								\ | 
|  | {								\ | 
|  | R##_s = 0;							\ | 
|  | R##_c = FP_CLS_INF; /* sqrt(+inf) = +inf */			\ | 
|  | }								\ | 
|  | break;								\ | 
|  | case FP_CLS_ZERO:							\ | 
|  | R##_s = X##_s;							\ | 
|  | R##_c = FP_CLS_ZERO; /* sqrt(+-0) = +-0 */			\ | 
|  | break;								\ | 
|  | case FP_CLS_NORMAL:							\ | 
|  | R##_s = 0;							\ | 
|  | if (X##_s)							\ | 
|  | {								\ | 
|  | R##_c = FP_CLS_NAN; /* sNAN */				\ | 
|  | break;							\ | 
|  | }								\ | 
|  | R##_c = FP_CLS_NORMAL;						\ | 
|  | if (X##_e & 1)							\ | 
|  | _FP_FRAC_SLL_##wc(X, 1);					\ | 
|  | R##_e = X##_e >> 1;						\ | 
|  | _FP_FRAC_SET_##wc(S, _FP_ZEROFRAC_##wc);			\ | 
|  | _FP_FRAC_SET_##wc(R, _FP_ZEROFRAC_##wc);			\ | 
|  | q = _FP_OVERFLOW_##fs;						\ | 
|  | _FP_FRAC_SLL_##wc(X, 1);					\ | 
|  | _FP_SQRT_MEAT_##wc(R, S, T, X, q);				\ | 
|  | _FP_FRAC_SRL_##wc(R, 1);					\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Convert from FP to integer | 
|  | */ | 
|  |  | 
|  | /* "When a NaN, infinity, large positive argument >= 2147483648.0, or | 
|  | * large negative argument <= -2147483649.0 is converted to an integer, | 
|  | * the invalid_current bit...should be set and fp_exception_IEEE_754 should | 
|  | * be raised. If the floating point invalid trap is disabled, no trap occurs | 
|  | * and a numerical result is generated: if the sign bit of the operand | 
|  | * is 0, the result is 2147483647; if the sign bit of the operand is 1, | 
|  | * the result is -2147483648." | 
|  | * Similarly for conversion to extended ints, except that the boundaries | 
|  | * are >= 2^63, <= -(2^63 + 1), and the results are 2^63 + 1 for s=0 and | 
|  | * -2^63 for s=1. | 
|  | * -- SPARC Architecture Manual V9, Appendix B, which specifies how | 
|  | * SPARCs resolve implementation dependencies in the IEEE-754 spec. | 
|  | * I don't believe that the code below follows this. I'm not even sure | 
|  | * it's right! | 
|  | * It doesn't cope with needing to convert to an n bit integer when there | 
|  | * is no n bit integer type. Fortunately gcc provides long long so this | 
|  | * isn't a problem for sparc32. | 
|  | * I have, however, fixed its NaN handling to conform as above. | 
|  | *         -- PMM 02/1998 | 
|  | * NB: rsigned is not 'is r declared signed?' but 'should the value stored | 
|  | * in r be signed or unsigned?'. r is always(?) declared unsigned. | 
|  | * Comments below are mine, BTW -- PMM | 
|  | */ | 
|  | #define _FP_TO_INT(fs, wc, r, X, rsize, rsigned)			\ | 
|  | do {									\ | 
|  | switch (X##_c)							\ | 
|  | {									\ | 
|  | case FP_CLS_NORMAL:						\ | 
|  | if (X##_e < 0)							\ | 
|  | {								\ | 
|  | /* case FP_CLS_NAN: see above! */				\ | 
|  | case FP_CLS_ZERO:						\ | 
|  | r = 0;							\ | 
|  | }								\ | 
|  | else if (X##_e >= rsize - (rsigned != 0))			\ | 
|  | {	/* overflow */						\ | 
|  | case FP_CLS_NAN:                                              \ | 
|  | case FP_CLS_INF:						\ | 
|  | if (rsigned)						\ | 
|  | {								\ | 
|  | r = 1;							\ | 
|  | r <<= rsize - 1;					\ | 
|  | r -= 1 - X##_s;						\ | 
|  | }								\ | 
|  | else							\ | 
|  | {								\ | 
|  | r = 0;							\ | 
|  | if (!X##_s)						\ | 
|  | r = ~r;						\ | 
|  | }								\ | 
|  | }								\ | 
|  | else								\ | 
|  | {								\ | 
|  | if (_FP_W_TYPE_SIZE*wc < rsize)				\ | 
|  | {								\ | 
|  | _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\ | 
|  | r <<= X##_e - _FP_WFRACBITS_##fs;			\ | 
|  | }								\ | 
|  | else							\ | 
|  | {								\ | 
|  | if (X##_e >= _FP_WFRACBITS_##fs)			\ | 
|  | _FP_FRAC_SLL_##wc(X, (X##_e - _FP_WFRACBITS_##fs + 1));\ | 
|  | else							\ | 
|  | _FP_FRAC_SRL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));\ | 
|  | _FP_FRAC_ASSEMBLE_##wc(r, X, rsize);			\ | 
|  | }								\ | 
|  | if (rsigned && X##_s)					\ | 
|  | r = -r;							\ | 
|  | }								\ | 
|  | break;								\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_FROM_INT(fs, wc, X, r, rsize, rtype)			\ | 
|  | do {									\ | 
|  | if (r)								\ | 
|  | {									\ | 
|  | X##_c = FP_CLS_NORMAL;						\ | 
|  | \ | 
|  | if ((X##_s = (r < 0)))						\ | 
|  | r = -r;							\ | 
|  | /* Note that `r' is now considered unsigned, so we don't have	\ | 
|  | to worry about the single signed overflow case.  */		\ | 
|  | \ | 
|  | if (rsize <= _FP_W_TYPE_SIZE)					\ | 
|  | __FP_CLZ(X##_e, r);						\ | 
|  | else								\ | 
|  | __FP_CLZ_2(X##_e, (_FP_W_TYPE)(r >> _FP_W_TYPE_SIZE), 	\ | 
|  | (_FP_W_TYPE)r);					\ | 
|  | if (rsize < _FP_W_TYPE_SIZE)					\ | 
|  | X##_e -= (_FP_W_TYPE_SIZE - rsize);			\ | 
|  | X##_e = rsize - X##_e - 1;					\ | 
|  | \ | 
|  | if (_FP_FRACBITS_##fs < rsize && _FP_WFRACBITS_##fs < X##_e)	\ | 
|  | __FP_FRAC_SRS_1(r, (X##_e - _FP_WFRACBITS_##fs), rsize);	\ | 
|  | r &= ~((_FP_W_TYPE)1 << X##_e);					\ | 
|  | _FP_FRAC_DISASSEMBLE_##wc(X, ((unsigned rtype)r), rsize);	\ | 
|  | _FP_FRAC_SLL_##wc(X, (_FP_WFRACBITS_##fs - X##_e - 1));		\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | X##_c = FP_CLS_ZERO, X##_s = 0;					\ | 
|  | }									\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | #define FP_CONV(dfs,sfs,dwc,swc,D,S)			\ | 
|  | do {							\ | 
|  | _FP_FRAC_CONV_##dwc##_##swc(dfs, sfs, D, S);	\ | 
|  | D##_e = S##_e;					\ | 
|  | D##_c = S##_c;					\ | 
|  | D##_s = S##_s;					\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Helper primitives. | 
|  | */ | 
|  |  | 
|  | /* Count leading zeros in a word.  */ | 
|  |  | 
|  | #ifndef __FP_CLZ | 
|  | #if _FP_W_TYPE_SIZE < 64 | 
|  | /* this is just to shut the compiler up about shifts > word length -- PMM 02/1998 */ | 
|  | #define __FP_CLZ(r, x)				\ | 
|  | do {						\ | 
|  | _FP_W_TYPE _t = (x);			\ | 
|  | r = _FP_W_TYPE_SIZE - 1;			\ | 
|  | if (_t > 0xffff) r -= 16;			\ | 
|  | if (_t > 0xffff) _t >>= 16;			\ | 
|  | if (_t > 0xff) r -= 8;			\ | 
|  | if (_t > 0xff) _t >>= 8;			\ | 
|  | if (_t & 0xf0) r -= 4;			\ | 
|  | if (_t & 0xf0) _t >>= 4;			\ | 
|  | if (_t & 0xc) r -= 2;			\ | 
|  | if (_t & 0xc) _t >>= 2;			\ | 
|  | if (_t & 0x2) r -= 1;			\ | 
|  | } while (0) | 
|  | #else /* not _FP_W_TYPE_SIZE < 64 */ | 
|  | #define __FP_CLZ(r, x)				\ | 
|  | do {						\ | 
|  | _FP_W_TYPE _t = (x);			\ | 
|  | r = _FP_W_TYPE_SIZE - 1;			\ | 
|  | if (_t > 0xffffffff) r -= 32;		\ | 
|  | if (_t > 0xffffffff) _t >>= 32;		\ | 
|  | if (_t > 0xffff) r -= 16;			\ | 
|  | if (_t > 0xffff) _t >>= 16;			\ | 
|  | if (_t > 0xff) r -= 8;			\ | 
|  | if (_t > 0xff) _t >>= 8;			\ | 
|  | if (_t & 0xf0) r -= 4;			\ | 
|  | if (_t & 0xf0) _t >>= 4;			\ | 
|  | if (_t & 0xc) r -= 2;			\ | 
|  | if (_t & 0xc) _t >>= 2;			\ | 
|  | if (_t & 0x2) r -= 1;			\ | 
|  | } while (0) | 
|  | #endif /* not _FP_W_TYPE_SIZE < 64 */ | 
|  | #endif /* ndef __FP_CLZ */ | 
|  |  | 
|  | #define _FP_DIV_HELP_imm(q, r, n, d)		\ | 
|  | do {						\ | 
|  | q = n / d, r = n % d;			\ | 
|  | } while (0) | 
|  |  |