|  | /* | 
|  | *  PowerPC version | 
|  | *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org) | 
|  | * | 
|  | *  Derived from "arch/i386/mm/fault.c" | 
|  | *    Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
|  | * | 
|  | *  Modified by Cort Dougan and Paul Mackerras. | 
|  | * | 
|  | *  Modified for PPC64 by Dave Engebretsen (engebret@ibm.com) | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or | 
|  | *  modify it under the terms of the GNU General Public License | 
|  | *  as published by the Free Software Foundation; either version | 
|  | *  2 of the License, or (at your option) any later version. | 
|  | */ | 
|  |  | 
|  | #include <linux/signal.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/mman.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/interrupt.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/kprobes.h> | 
|  |  | 
|  | #include <asm/page.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/mmu.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/tlbflush.h> | 
|  | #include <asm/kdebug.h> | 
|  | #include <asm/siginfo.h> | 
|  |  | 
|  | #ifdef CONFIG_KPROBES | 
|  | ATOMIC_NOTIFIER_HEAD(notify_page_fault_chain); | 
|  |  | 
|  | /* Hook to register for page fault notifications */ | 
|  | int register_page_fault_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return atomic_notifier_chain_register(¬ify_page_fault_chain, nb); | 
|  | } | 
|  |  | 
|  | int unregister_page_fault_notifier(struct notifier_block *nb) | 
|  | { | 
|  | return atomic_notifier_chain_unregister(¬ify_page_fault_chain, nb); | 
|  | } | 
|  |  | 
|  | static inline int notify_page_fault(enum die_val val, const char *str, | 
|  | struct pt_regs *regs, long err, int trap, int sig) | 
|  | { | 
|  | struct die_args args = { | 
|  | .regs = regs, | 
|  | .str = str, | 
|  | .err = err, | 
|  | .trapnr = trap, | 
|  | .signr = sig | 
|  | }; | 
|  | return atomic_notifier_call_chain(¬ify_page_fault_chain, val, &args); | 
|  | } | 
|  | #else | 
|  | static inline int notify_page_fault(enum die_val val, const char *str, | 
|  | struct pt_regs *regs, long err, int trap, int sig) | 
|  | { | 
|  | return NOTIFY_DONE; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | * Check whether the instruction at regs->nip is a store using | 
|  | * an update addressing form which will update r1. | 
|  | */ | 
|  | static int store_updates_sp(struct pt_regs *regs) | 
|  | { | 
|  | unsigned int inst; | 
|  |  | 
|  | if (get_user(inst, (unsigned int __user *)regs->nip)) | 
|  | return 0; | 
|  | /* check for 1 in the rA field */ | 
|  | if (((inst >> 16) & 0x1f) != 1) | 
|  | return 0; | 
|  | /* check major opcode */ | 
|  | switch (inst >> 26) { | 
|  | case 37:	/* stwu */ | 
|  | case 39:	/* stbu */ | 
|  | case 45:	/* sthu */ | 
|  | case 53:	/* stfsu */ | 
|  | case 55:	/* stfdu */ | 
|  | return 1; | 
|  | case 62:	/* std or stdu */ | 
|  | return (inst & 3) == 1; | 
|  | case 31: | 
|  | /* check minor opcode */ | 
|  | switch ((inst >> 1) & 0x3ff) { | 
|  | case 181:	/* stdux */ | 
|  | case 183:	/* stwux */ | 
|  | case 247:	/* stbux */ | 
|  | case 439:	/* sthux */ | 
|  | case 695:	/* stfsux */ | 
|  | case 759:	/* stfdux */ | 
|  | return 1; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
|  | static void do_dabr(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | siginfo_t info; | 
|  |  | 
|  | if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code, | 
|  | 11, SIGSEGV) == NOTIFY_STOP) | 
|  | return; | 
|  |  | 
|  | if (debugger_dabr_match(regs)) | 
|  | return; | 
|  |  | 
|  | /* Clear the DABR */ | 
|  | set_dabr(0); | 
|  |  | 
|  | /* Deliver the signal to userspace */ | 
|  | info.si_signo = SIGTRAP; | 
|  | info.si_errno = 0; | 
|  | info.si_code = TRAP_HWBKPT; | 
|  | info.si_addr = (void __user *)address; | 
|  | force_sig_info(SIGTRAP, &info, current); | 
|  | } | 
|  | #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/ | 
|  |  | 
|  | /* | 
|  | * For 600- and 800-family processors, the error_code parameter is DSISR | 
|  | * for a data fault, SRR1 for an instruction fault. For 400-family processors | 
|  | * the error_code parameter is ESR for a data fault, 0 for an instruction | 
|  | * fault. | 
|  | * For 64-bit processors, the error_code parameter is | 
|  | *  - DSISR for a non-SLB data access fault, | 
|  | *  - SRR1 & 0x08000000 for a non-SLB instruction access fault | 
|  | *  - 0 any SLB fault. | 
|  | * | 
|  | * The return value is 0 if the fault was handled, or the signal | 
|  | * number if this is a kernel fault that can't be handled here. | 
|  | */ | 
|  | int __kprobes do_page_fault(struct pt_regs *regs, unsigned long address, | 
|  | unsigned long error_code) | 
|  | { | 
|  | struct vm_area_struct * vma; | 
|  | struct mm_struct *mm = current->mm; | 
|  | siginfo_t info; | 
|  | int code = SEGV_MAPERR; | 
|  | int is_write = 0; | 
|  | int trap = TRAP(regs); | 
|  | int is_exec = trap == 0x400; | 
|  |  | 
|  | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
|  | /* | 
|  | * Fortunately the bit assignments in SRR1 for an instruction | 
|  | * fault and DSISR for a data fault are mostly the same for the | 
|  | * bits we are interested in.  But there are some bits which | 
|  | * indicate errors in DSISR but can validly be set in SRR1. | 
|  | */ | 
|  | if (trap == 0x400) | 
|  | error_code &= 0x48200000; | 
|  | else | 
|  | is_write = error_code & DSISR_ISSTORE; | 
|  | #else | 
|  | is_write = error_code & ESR_DST; | 
|  | #endif /* CONFIG_4xx || CONFIG_BOOKE */ | 
|  |  | 
|  | if (notify_page_fault(DIE_PAGE_FAULT, "page_fault", regs, error_code, | 
|  | 11, SIGSEGV) == NOTIFY_STOP) | 
|  | return 0; | 
|  |  | 
|  | if (trap == 0x300) { | 
|  | if (debugger_fault_handler(regs)) | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* On a kernel SLB miss we can only check for a valid exception entry */ | 
|  | if (!user_mode(regs) && (address >= TASK_SIZE)) | 
|  | return SIGSEGV; | 
|  |  | 
|  | #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE)) | 
|  | if (error_code & DSISR_DABRMATCH) { | 
|  | /* DABR match */ | 
|  | do_dabr(regs, address, error_code); | 
|  | return 0; | 
|  | } | 
|  | #endif /* !(CONFIG_4xx || CONFIG_BOOKE)*/ | 
|  |  | 
|  | if (in_atomic() || mm == NULL) { | 
|  | if (!user_mode(regs)) | 
|  | return SIGSEGV; | 
|  | /* in_atomic() in user mode is really bad, | 
|  | as is current->mm == NULL. */ | 
|  | printk(KERN_EMERG "Page fault in user mode with" | 
|  | "in_atomic() = %d mm = %p\n", in_atomic(), mm); | 
|  | printk(KERN_EMERG "NIP = %lx  MSR = %lx\n", | 
|  | regs->nip, regs->msr); | 
|  | die("Weird page fault", regs, SIGSEGV); | 
|  | } | 
|  |  | 
|  | /* When running in the kernel we expect faults to occur only to | 
|  | * addresses in user space.  All other faults represent errors in the | 
|  | * kernel and should generate an OOPS.  Unfortunately, in the case of an | 
|  | * erroneous fault occurring in a code path which already holds mmap_sem | 
|  | * we will deadlock attempting to validate the fault against the | 
|  | * address space.  Luckily the kernel only validly references user | 
|  | * space from well defined areas of code, which are listed in the | 
|  | * exceptions table. | 
|  | * | 
|  | * As the vast majority of faults will be valid we will only perform | 
|  | * the source reference check when there is a possibility of a deadlock. | 
|  | * Attempt to lock the address space, if we cannot we then validate the | 
|  | * source.  If this is invalid we can skip the address space check, | 
|  | * thus avoiding the deadlock. | 
|  | */ | 
|  | if (!down_read_trylock(&mm->mmap_sem)) { | 
|  | if (!user_mode(regs) && !search_exception_tables(regs->nip)) | 
|  | goto bad_area_nosemaphore; | 
|  |  | 
|  | down_read(&mm->mmap_sem); | 
|  | } | 
|  |  | 
|  | vma = find_vma(mm, address); | 
|  | if (!vma) | 
|  | goto bad_area; | 
|  | if (vma->vm_start <= address) | 
|  | goto good_area; | 
|  | if (!(vma->vm_flags & VM_GROWSDOWN)) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * N.B. The POWER/Open ABI allows programs to access up to | 
|  | * 288 bytes below the stack pointer. | 
|  | * The kernel signal delivery code writes up to about 1.5kB | 
|  | * below the stack pointer (r1) before decrementing it. | 
|  | * The exec code can write slightly over 640kB to the stack | 
|  | * before setting the user r1.  Thus we allow the stack to | 
|  | * expand to 1MB without further checks. | 
|  | */ | 
|  | if (address + 0x100000 < vma->vm_end) { | 
|  | /* get user regs even if this fault is in kernel mode */ | 
|  | struct pt_regs *uregs = current->thread.regs; | 
|  | if (uregs == NULL) | 
|  | goto bad_area; | 
|  |  | 
|  | /* | 
|  | * A user-mode access to an address a long way below | 
|  | * the stack pointer is only valid if the instruction | 
|  | * is one which would update the stack pointer to the | 
|  | * address accessed if the instruction completed, | 
|  | * i.e. either stwu rs,n(r1) or stwux rs,r1,rb | 
|  | * (or the byte, halfword, float or double forms). | 
|  | * | 
|  | * If we don't check this then any write to the area | 
|  | * between the last mapped region and the stack will | 
|  | * expand the stack rather than segfaulting. | 
|  | */ | 
|  | if (address + 2048 < uregs->gpr[1] | 
|  | && (!user_mode(regs) || !store_updates_sp(regs))) | 
|  | goto bad_area; | 
|  | } | 
|  | if (expand_stack(vma, address)) | 
|  | goto bad_area; | 
|  |  | 
|  | good_area: | 
|  | code = SEGV_ACCERR; | 
|  | #if defined(CONFIG_6xx) | 
|  | if (error_code & 0x95700000) | 
|  | /* an error such as lwarx to I/O controller space, | 
|  | address matching DABR, eciwx, etc. */ | 
|  | goto bad_area; | 
|  | #endif /* CONFIG_6xx */ | 
|  | #if defined(CONFIG_8xx) | 
|  | /* The MPC8xx seems to always set 0x80000000, which is | 
|  | * "undefined".  Of those that can be set, this is the only | 
|  | * one which seems bad. | 
|  | */ | 
|  | if (error_code & 0x10000000) | 
|  | /* Guarded storage error. */ | 
|  | goto bad_area; | 
|  | #endif /* CONFIG_8xx */ | 
|  |  | 
|  | if (is_exec) { | 
|  | #ifdef CONFIG_PPC64 | 
|  | /* protection fault */ | 
|  | if (error_code & DSISR_PROTFAULT) | 
|  | goto bad_area; | 
|  | if (!(vma->vm_flags & VM_EXEC)) | 
|  | goto bad_area; | 
|  | #endif | 
|  | #if defined(CONFIG_4xx) || defined(CONFIG_BOOKE) | 
|  | pte_t *ptep; | 
|  | pmd_t *pmdp; | 
|  |  | 
|  | /* Since 4xx/Book-E supports per-page execute permission, | 
|  | * we lazily flush dcache to icache. */ | 
|  | ptep = NULL; | 
|  | if (get_pteptr(mm, address, &ptep, &pmdp)) { | 
|  | spinlock_t *ptl = pte_lockptr(mm, pmdp); | 
|  | spin_lock(ptl); | 
|  | if (pte_present(*ptep)) { | 
|  | struct page *page = pte_page(*ptep); | 
|  |  | 
|  | if (!test_bit(PG_arch_1, &page->flags)) { | 
|  | flush_dcache_icache_page(page); | 
|  | set_bit(PG_arch_1, &page->flags); | 
|  | } | 
|  | pte_update(ptep, 0, _PAGE_HWEXEC); | 
|  | _tlbie(address); | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | up_read(&mm->mmap_sem); | 
|  | return 0; | 
|  | } | 
|  | pte_unmap_unlock(ptep, ptl); | 
|  | } | 
|  | #endif | 
|  | /* a write */ | 
|  | } else if (is_write) { | 
|  | if (!(vma->vm_flags & VM_WRITE)) | 
|  | goto bad_area; | 
|  | /* a read */ | 
|  | } else { | 
|  | /* protection fault */ | 
|  | if (error_code & 0x08000000) | 
|  | goto bad_area; | 
|  | if (!(vma->vm_flags & (VM_READ | VM_EXEC))) | 
|  | goto bad_area; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If for any reason at all we couldn't handle the fault, | 
|  | * make sure we exit gracefully rather than endlessly redo | 
|  | * the fault. | 
|  | */ | 
|  | survive: | 
|  | switch (handle_mm_fault(mm, vma, address, is_write)) { | 
|  |  | 
|  | case VM_FAULT_MINOR: | 
|  | current->min_flt++; | 
|  | break; | 
|  | case VM_FAULT_MAJOR: | 
|  | current->maj_flt++; | 
|  | break; | 
|  | case VM_FAULT_SIGBUS: | 
|  | goto do_sigbus; | 
|  | case VM_FAULT_OOM: | 
|  | goto out_of_memory; | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | up_read(&mm->mmap_sem); | 
|  | return 0; | 
|  |  | 
|  | bad_area: | 
|  | up_read(&mm->mmap_sem); | 
|  |  | 
|  | bad_area_nosemaphore: | 
|  | /* User mode accesses cause a SIGSEGV */ | 
|  | if (user_mode(regs)) { | 
|  | _exception(SIGSEGV, regs, code, address); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (is_exec && (error_code & DSISR_PROTFAULT) | 
|  | && printk_ratelimit()) | 
|  | printk(KERN_CRIT "kernel tried to execute NX-protected" | 
|  | " page (%lx) - exploit attempt? (uid: %d)\n", | 
|  | address, current->uid); | 
|  |  | 
|  | return SIGSEGV; | 
|  |  | 
|  | /* | 
|  | * We ran out of memory, or some other thing happened to us that made | 
|  | * us unable to handle the page fault gracefully. | 
|  | */ | 
|  | out_of_memory: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (current->pid == 1) { | 
|  | yield(); | 
|  | down_read(&mm->mmap_sem); | 
|  | goto survive; | 
|  | } | 
|  | printk("VM: killing process %s\n", current->comm); | 
|  | if (user_mode(regs)) | 
|  | do_exit(SIGKILL); | 
|  | return SIGKILL; | 
|  |  | 
|  | do_sigbus: | 
|  | up_read(&mm->mmap_sem); | 
|  | if (user_mode(regs)) { | 
|  | info.si_signo = SIGBUS; | 
|  | info.si_errno = 0; | 
|  | info.si_code = BUS_ADRERR; | 
|  | info.si_addr = (void __user *)address; | 
|  | force_sig_info(SIGBUS, &info, current); | 
|  | return 0; | 
|  | } | 
|  | return SIGBUS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * bad_page_fault is called when we have a bad access from the kernel. | 
|  | * It is called from the DSI and ISI handlers in head.S and from some | 
|  | * of the procedures in traps.c. | 
|  | */ | 
|  | void bad_page_fault(struct pt_regs *regs, unsigned long address, int sig) | 
|  | { | 
|  | const struct exception_table_entry *entry; | 
|  |  | 
|  | /* Are we prepared to handle this fault?  */ | 
|  | if ((entry = search_exception_tables(regs->nip)) != NULL) { | 
|  | regs->nip = entry->fixup; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* kernel has accessed a bad area */ | 
|  |  | 
|  | printk(KERN_ALERT "Unable to handle kernel paging request for "); | 
|  | switch (regs->trap) { | 
|  | case 0x300: | 
|  | case 0x380: | 
|  | printk("data at address 0x%08lx\n", regs->dar); | 
|  | break; | 
|  | case 0x400: | 
|  | case 0x480: | 
|  | printk("instruction fetch\n"); | 
|  | break; | 
|  | default: | 
|  | printk("unknown fault\n"); | 
|  | } | 
|  | printk(KERN_ALERT "Faulting instruction address: 0x%08lx\n", | 
|  | regs->nip); | 
|  |  | 
|  | die("Kernel access of bad area", regs, sig); | 
|  | } |