|  | /* | 
|  | * pSeries NUMA support | 
|  | * | 
|  | * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version | 
|  | * 2 of the License, or (at your option) any later version. | 
|  | */ | 
|  | #include <linux/threads.h> | 
|  | #include <linux/bootmem.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/mmzone.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/nodemask.h> | 
|  | #include <linux/cpu.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <asm/sparsemem.h> | 
|  | #include <asm/lmb.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/smp.h> | 
|  |  | 
|  | static int numa_enabled = 1; | 
|  |  | 
|  | static int numa_debug; | 
|  | #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); } | 
|  |  | 
|  | int numa_cpu_lookup_table[NR_CPUS]; | 
|  | cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES]; | 
|  | struct pglist_data *node_data[MAX_NUMNODES]; | 
|  |  | 
|  | EXPORT_SYMBOL(numa_cpu_lookup_table); | 
|  | EXPORT_SYMBOL(numa_cpumask_lookup_table); | 
|  | EXPORT_SYMBOL(node_data); | 
|  |  | 
|  | static bootmem_data_t __initdata plat_node_bdata[MAX_NUMNODES]; | 
|  | static int min_common_depth; | 
|  | static int n_mem_addr_cells, n_mem_size_cells; | 
|  |  | 
|  | /* | 
|  | * We need somewhere to store start/end/node for each region until we have | 
|  | * allocated the real node_data structures. | 
|  | */ | 
|  | #define MAX_REGIONS	(MAX_LMB_REGIONS*2) | 
|  | static struct { | 
|  | unsigned long start_pfn; | 
|  | unsigned long end_pfn; | 
|  | int nid; | 
|  | } init_node_data[MAX_REGIONS] __initdata; | 
|  |  | 
|  | int __init early_pfn_to_nid(unsigned long pfn) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | for (i = 0; init_node_data[i].end_pfn; i++) { | 
|  | unsigned long start_pfn = init_node_data[i].start_pfn; | 
|  | unsigned long end_pfn = init_node_data[i].end_pfn; | 
|  |  | 
|  | if ((start_pfn <= pfn) && (pfn < end_pfn)) | 
|  | return init_node_data[i].nid; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | void __init add_region(unsigned int nid, unsigned long start_pfn, | 
|  | unsigned long pages) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | dbg("add_region nid %d start_pfn 0x%lx pages 0x%lx\n", | 
|  | nid, start_pfn, pages); | 
|  |  | 
|  | for (i = 0; init_node_data[i].end_pfn; i++) { | 
|  | if (init_node_data[i].nid != nid) | 
|  | continue; | 
|  | if (init_node_data[i].end_pfn == start_pfn) { | 
|  | init_node_data[i].end_pfn += pages; | 
|  | return; | 
|  | } | 
|  | if (init_node_data[i].start_pfn == (start_pfn + pages)) { | 
|  | init_node_data[i].start_pfn -= pages; | 
|  | return; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Leave last entry NULL so we dont iterate off the end (we use | 
|  | * entry.end_pfn to terminate the walk). | 
|  | */ | 
|  | if (i >= (MAX_REGIONS - 1)) { | 
|  | printk(KERN_ERR "WARNING: too many memory regions in " | 
|  | "numa code, truncating\n"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | init_node_data[i].start_pfn = start_pfn; | 
|  | init_node_data[i].end_pfn = start_pfn + pages; | 
|  | init_node_data[i].nid = nid; | 
|  | } | 
|  |  | 
|  | /* We assume init_node_data has no overlapping regions */ | 
|  | void __init get_region(unsigned int nid, unsigned long *start_pfn, | 
|  | unsigned long *end_pfn, unsigned long *pages_present) | 
|  | { | 
|  | unsigned int i; | 
|  |  | 
|  | *start_pfn = -1UL; | 
|  | *end_pfn = *pages_present = 0; | 
|  |  | 
|  | for (i = 0; init_node_data[i].end_pfn; i++) { | 
|  | if (init_node_data[i].nid != nid) | 
|  | continue; | 
|  |  | 
|  | *pages_present += init_node_data[i].end_pfn - | 
|  | init_node_data[i].start_pfn; | 
|  |  | 
|  | if (init_node_data[i].start_pfn < *start_pfn) | 
|  | *start_pfn = init_node_data[i].start_pfn; | 
|  |  | 
|  | if (init_node_data[i].end_pfn > *end_pfn) | 
|  | *end_pfn = init_node_data[i].end_pfn; | 
|  | } | 
|  |  | 
|  | /* We didnt find a matching region, return start/end as 0 */ | 
|  | if (*start_pfn == -1UL) | 
|  | *start_pfn = 0; | 
|  | } | 
|  |  | 
|  | static void __cpuinit map_cpu_to_node(int cpu, int node) | 
|  | { | 
|  | numa_cpu_lookup_table[cpu] = node; | 
|  |  | 
|  | dbg("adding cpu %d to node %d\n", cpu, node); | 
|  |  | 
|  | if (!(cpu_isset(cpu, numa_cpumask_lookup_table[node]))) | 
|  | cpu_set(cpu, numa_cpumask_lookup_table[node]); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | static void unmap_cpu_from_node(unsigned long cpu) | 
|  | { | 
|  | int node = numa_cpu_lookup_table[cpu]; | 
|  |  | 
|  | dbg("removing cpu %lu from node %d\n", cpu, node); | 
|  |  | 
|  | if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
|  | cpu_clear(cpu, numa_cpumask_lookup_table[node]); | 
|  | } else { | 
|  | printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n", | 
|  | cpu, node); | 
|  | } | 
|  | } | 
|  | #endif /* CONFIG_HOTPLUG_CPU */ | 
|  |  | 
|  | static struct device_node * __cpuinit find_cpu_node(unsigned int cpu) | 
|  | { | 
|  | unsigned int hw_cpuid = get_hard_smp_processor_id(cpu); | 
|  | struct device_node *cpu_node = NULL; | 
|  | const unsigned int *interrupt_server, *reg; | 
|  | int len; | 
|  |  | 
|  | while ((cpu_node = of_find_node_by_type(cpu_node, "cpu")) != NULL) { | 
|  | /* Try interrupt server first */ | 
|  | interrupt_server = get_property(cpu_node, | 
|  | "ibm,ppc-interrupt-server#s", &len); | 
|  |  | 
|  | len = len / sizeof(u32); | 
|  |  | 
|  | if (interrupt_server && (len > 0)) { | 
|  | while (len--) { | 
|  | if (interrupt_server[len] == hw_cpuid) | 
|  | return cpu_node; | 
|  | } | 
|  | } else { | 
|  | reg = get_property(cpu_node, "reg", &len); | 
|  | if (reg && (len > 0) && (reg[0] == hw_cpuid)) | 
|  | return cpu_node; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* must hold reference to node during call */ | 
|  | static const int *of_get_associativity(struct device_node *dev) | 
|  | { | 
|  | return get_property(dev, "ibm,associativity", NULL); | 
|  | } | 
|  |  | 
|  | /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa | 
|  | * info is found. | 
|  | */ | 
|  | static int of_node_to_nid_single(struct device_node *device) | 
|  | { | 
|  | int nid = -1; | 
|  | const unsigned int *tmp; | 
|  |  | 
|  | if (min_common_depth == -1) | 
|  | goto out; | 
|  |  | 
|  | tmp = of_get_associativity(device); | 
|  | if (!tmp) | 
|  | goto out; | 
|  |  | 
|  | if (tmp[0] >= min_common_depth) | 
|  | nid = tmp[min_common_depth]; | 
|  |  | 
|  | /* POWER4 LPAR uses 0xffff as invalid node */ | 
|  | if (nid == 0xffff || nid >= MAX_NUMNODES) | 
|  | nid = -1; | 
|  | out: | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | /* Walk the device tree upwards, looking for an associativity id */ | 
|  | int of_node_to_nid(struct device_node *device) | 
|  | { | 
|  | struct device_node *tmp; | 
|  | int nid = -1; | 
|  |  | 
|  | of_node_get(device); | 
|  | while (device) { | 
|  | nid = of_node_to_nid_single(device); | 
|  | if (nid != -1) | 
|  | break; | 
|  |  | 
|  | tmp = device; | 
|  | device = of_get_parent(tmp); | 
|  | of_node_put(tmp); | 
|  | } | 
|  | of_node_put(device); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(of_node_to_nid); | 
|  |  | 
|  | /* | 
|  | * In theory, the "ibm,associativity" property may contain multiple | 
|  | * associativity lists because a resource may be multiply connected | 
|  | * into the machine.  This resource then has different associativity | 
|  | * characteristics relative to its multiple connections.  We ignore | 
|  | * this for now.  We also assume that all cpu and memory sets have | 
|  | * their distances represented at a common level.  This won't be | 
|  | * true for heirarchical NUMA. | 
|  | * | 
|  | * In any case the ibm,associativity-reference-points should give | 
|  | * the correct depth for a normal NUMA system. | 
|  | * | 
|  | * - Dave Hansen <haveblue@us.ibm.com> | 
|  | */ | 
|  | static int __init find_min_common_depth(void) | 
|  | { | 
|  | int depth; | 
|  | const unsigned int *ref_points; | 
|  | struct device_node *rtas_root; | 
|  | unsigned int len; | 
|  |  | 
|  | rtas_root = of_find_node_by_path("/rtas"); | 
|  |  | 
|  | if (!rtas_root) | 
|  | return -1; | 
|  |  | 
|  | /* | 
|  | * this property is 2 32-bit integers, each representing a level of | 
|  | * depth in the associativity nodes.  The first is for an SMP | 
|  | * configuration (should be all 0's) and the second is for a normal | 
|  | * NUMA configuration. | 
|  | */ | 
|  | ref_points = get_property(rtas_root, | 
|  | "ibm,associativity-reference-points", &len); | 
|  |  | 
|  | if ((len >= 1) && ref_points) { | 
|  | depth = ref_points[1]; | 
|  | } else { | 
|  | dbg("NUMA: ibm,associativity-reference-points not found.\n"); | 
|  | depth = -1; | 
|  | } | 
|  | of_node_put(rtas_root); | 
|  |  | 
|  | return depth; | 
|  | } | 
|  |  | 
|  | static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  |  | 
|  | memory = of_find_node_by_type(memory, "memory"); | 
|  | if (!memory) | 
|  | panic("numa.c: No memory nodes found!"); | 
|  |  | 
|  | *n_addr_cells = prom_n_addr_cells(memory); | 
|  | *n_size_cells = prom_n_size_cells(memory); | 
|  | of_node_put(memory); | 
|  | } | 
|  |  | 
|  | static unsigned long __devinit read_n_cells(int n, const unsigned int **buf) | 
|  | { | 
|  | unsigned long result = 0; | 
|  |  | 
|  | while (n--) { | 
|  | result = (result << 32) | **buf; | 
|  | (*buf)++; | 
|  | } | 
|  | return result; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out to which domain a cpu belongs and stick it there. | 
|  | * Return the id of the domain used. | 
|  | */ | 
|  | static int __cpuinit numa_setup_cpu(unsigned long lcpu) | 
|  | { | 
|  | int nid = 0; | 
|  | struct device_node *cpu = find_cpu_node(lcpu); | 
|  |  | 
|  | if (!cpu) { | 
|  | WARN_ON(1); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | nid = of_node_to_nid_single(cpu); | 
|  |  | 
|  | if (nid < 0 || !node_online(nid)) | 
|  | nid = any_online_node(NODE_MASK_ALL); | 
|  | out: | 
|  | map_cpu_to_node(lcpu, nid); | 
|  |  | 
|  | of_node_put(cpu); | 
|  |  | 
|  | return nid; | 
|  | } | 
|  |  | 
|  | static int __cpuinit cpu_numa_callback(struct notifier_block *nfb, | 
|  | unsigned long action, | 
|  | void *hcpu) | 
|  | { | 
|  | unsigned long lcpu = (unsigned long)hcpu; | 
|  | int ret = NOTIFY_DONE; | 
|  |  | 
|  | switch (action) { | 
|  | case CPU_UP_PREPARE: | 
|  | numa_setup_cpu(lcpu); | 
|  | ret = NOTIFY_OK; | 
|  | break; | 
|  | #ifdef CONFIG_HOTPLUG_CPU | 
|  | case CPU_DEAD: | 
|  | case CPU_UP_CANCELED: | 
|  | unmap_cpu_from_node(lcpu); | 
|  | break; | 
|  | ret = NOTIFY_OK; | 
|  | #endif | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check and possibly modify a memory region to enforce the memory limit. | 
|  | * | 
|  | * Returns the size the region should have to enforce the memory limit. | 
|  | * This will either be the original value of size, a truncated value, | 
|  | * or zero. If the returned value of size is 0 the region should be | 
|  | * discarded as it lies wholy above the memory limit. | 
|  | */ | 
|  | static unsigned long __init numa_enforce_memory_limit(unsigned long start, | 
|  | unsigned long size) | 
|  | { | 
|  | /* | 
|  | * We use lmb_end_of_DRAM() in here instead of memory_limit because | 
|  | * we've already adjusted it for the limit and it takes care of | 
|  | * having memory holes below the limit. | 
|  | */ | 
|  |  | 
|  | if (! memory_limit) | 
|  | return size; | 
|  |  | 
|  | if (start + size <= lmb_end_of_DRAM()) | 
|  | return size; | 
|  |  | 
|  | if (start >= lmb_end_of_DRAM()) | 
|  | return 0; | 
|  |  | 
|  | return lmb_end_of_DRAM() - start; | 
|  | } | 
|  |  | 
|  | static int __init parse_numa_properties(void) | 
|  | { | 
|  | struct device_node *cpu = NULL; | 
|  | struct device_node *memory = NULL; | 
|  | int default_nid = 0; | 
|  | unsigned long i; | 
|  |  | 
|  | if (numa_enabled == 0) { | 
|  | printk(KERN_WARNING "NUMA disabled by user\n"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | min_common_depth = find_min_common_depth(); | 
|  |  | 
|  | if (min_common_depth < 0) | 
|  | return min_common_depth; | 
|  |  | 
|  | dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth); | 
|  |  | 
|  | /* | 
|  | * Even though we connect cpus to numa domains later in SMP | 
|  | * init, we need to know the node ids now. This is because | 
|  | * each node to be onlined must have NODE_DATA etc backing it. | 
|  | */ | 
|  | for_each_present_cpu(i) { | 
|  | int nid; | 
|  |  | 
|  | cpu = find_cpu_node(i); | 
|  | BUG_ON(!cpu); | 
|  | nid = of_node_to_nid_single(cpu); | 
|  | of_node_put(cpu); | 
|  |  | 
|  | /* | 
|  | * Don't fall back to default_nid yet -- we will plug | 
|  | * cpus into nodes once the memory scan has discovered | 
|  | * the topology. | 
|  | */ | 
|  | if (nid < 0) | 
|  | continue; | 
|  | node_set_online(nid); | 
|  | } | 
|  |  | 
|  | get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells); | 
|  | memory = NULL; | 
|  | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
|  | unsigned long start; | 
|  | unsigned long size; | 
|  | int nid; | 
|  | int ranges; | 
|  | const unsigned int *memcell_buf; | 
|  | unsigned int len; | 
|  |  | 
|  | memcell_buf = get_property(memory, | 
|  | "linux,usable-memory", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | memcell_buf = get_property(memory, "reg", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | continue; | 
|  |  | 
|  | /* ranges in cell */ | 
|  | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  | new_range: | 
|  | /* these are order-sensitive, and modify the buffer pointer */ | 
|  | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  |  | 
|  | /* | 
|  | * Assumption: either all memory nodes or none will | 
|  | * have associativity properties.  If none, then | 
|  | * everything goes to default_nid. | 
|  | */ | 
|  | nid = of_node_to_nid_single(memory); | 
|  | if (nid < 0) | 
|  | nid = default_nid; | 
|  | node_set_online(nid); | 
|  |  | 
|  | if (!(size = numa_enforce_memory_limit(start, size))) { | 
|  | if (--ranges) | 
|  | goto new_range; | 
|  | else | 
|  | continue; | 
|  | } | 
|  |  | 
|  | add_region(nid, start >> PAGE_SHIFT, | 
|  | size >> PAGE_SHIFT); | 
|  |  | 
|  | if (--ranges) | 
|  | goto new_range; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void __init setup_nonnuma(void) | 
|  | { | 
|  | unsigned long top_of_ram = lmb_end_of_DRAM(); | 
|  | unsigned long total_ram = lmb_phys_mem_size(); | 
|  | unsigned int i; | 
|  |  | 
|  | printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n", | 
|  | top_of_ram, total_ram); | 
|  | printk(KERN_DEBUG "Memory hole size: %ldMB\n", | 
|  | (top_of_ram - total_ram) >> 20); | 
|  |  | 
|  | for (i = 0; i < lmb.memory.cnt; ++i) | 
|  | add_region(0, lmb.memory.region[i].base >> PAGE_SHIFT, | 
|  | lmb_size_pages(&lmb.memory, i)); | 
|  | node_set_online(0); | 
|  | } | 
|  |  | 
|  | void __init dump_numa_cpu_topology(void) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int cpu, count; | 
|  |  | 
|  | if (min_common_depth == -1 || !numa_enabled) | 
|  | return; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | printk(KERN_DEBUG "Node %d CPUs:", node); | 
|  |  | 
|  | count = 0; | 
|  | /* | 
|  | * If we used a CPU iterator here we would miss printing | 
|  | * the holes in the cpumap. | 
|  | */ | 
|  | for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
|  | if (cpu_isset(cpu, numa_cpumask_lookup_table[node])) { | 
|  | if (count == 0) | 
|  | printk(" %u", cpu); | 
|  | ++count; | 
|  | } else { | 
|  | if (count > 1) | 
|  | printk("-%u", cpu - 1); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (count > 1) | 
|  | printk("-%u", NR_CPUS - 1); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void __init dump_numa_memory_topology(void) | 
|  | { | 
|  | unsigned int node; | 
|  | unsigned int count; | 
|  |  | 
|  | if (min_common_depth == -1 || !numa_enabled) | 
|  | return; | 
|  |  | 
|  | for_each_online_node(node) { | 
|  | unsigned long i; | 
|  |  | 
|  | printk(KERN_DEBUG "Node %d Memory:", node); | 
|  |  | 
|  | count = 0; | 
|  |  | 
|  | for (i = 0; i < lmb_end_of_DRAM(); | 
|  | i += (1 << SECTION_SIZE_BITS)) { | 
|  | if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) { | 
|  | if (count == 0) | 
|  | printk(" 0x%lx", i); | 
|  | ++count; | 
|  | } else { | 
|  | if (count > 0) | 
|  | printk("-0x%lx", i); | 
|  | count = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (count > 0) | 
|  | printk("-0x%lx", i); | 
|  | printk("\n"); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate some memory, satisfying the lmb or bootmem allocator where | 
|  | * required. nid is the preferred node and end is the physical address of | 
|  | * the highest address in the node. | 
|  | * | 
|  | * Returns the physical address of the memory. | 
|  | */ | 
|  | static void __init *careful_allocation(int nid, unsigned long size, | 
|  | unsigned long align, | 
|  | unsigned long end_pfn) | 
|  | { | 
|  | int new_nid; | 
|  | unsigned long ret = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT); | 
|  |  | 
|  | /* retry over all memory */ | 
|  | if (!ret) | 
|  | ret = __lmb_alloc_base(size, align, lmb_end_of_DRAM()); | 
|  |  | 
|  | if (!ret) | 
|  | panic("numa.c: cannot allocate %lu bytes on node %d", | 
|  | size, nid); | 
|  |  | 
|  | /* | 
|  | * If the memory came from a previously allocated node, we must | 
|  | * retry with the bootmem allocator. | 
|  | */ | 
|  | new_nid = early_pfn_to_nid(ret >> PAGE_SHIFT); | 
|  | if (new_nid < nid) { | 
|  | ret = (unsigned long)__alloc_bootmem_node(NODE_DATA(new_nid), | 
|  | size, align, 0); | 
|  |  | 
|  | if (!ret) | 
|  | panic("numa.c: cannot allocate %lu bytes on node %d", | 
|  | size, new_nid); | 
|  |  | 
|  | ret = __pa(ret); | 
|  |  | 
|  | dbg("alloc_bootmem %lx %lx\n", ret, size); | 
|  | } | 
|  |  | 
|  | return (void *)ret; | 
|  | } | 
|  |  | 
|  | static struct notifier_block __cpuinitdata ppc64_numa_nb = { | 
|  | .notifier_call = cpu_numa_callback, | 
|  | .priority = 1 /* Must run before sched domains notifier. */ | 
|  | }; | 
|  |  | 
|  | void __init do_init_bootmem(void) | 
|  | { | 
|  | int nid; | 
|  | unsigned int i; | 
|  |  | 
|  | min_low_pfn = 0; | 
|  | max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT; | 
|  | max_pfn = max_low_pfn; | 
|  |  | 
|  | if (parse_numa_properties()) | 
|  | setup_nonnuma(); | 
|  | else | 
|  | dump_numa_memory_topology(); | 
|  |  | 
|  | register_cpu_notifier(&ppc64_numa_nb); | 
|  | cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE, | 
|  | (void *)(unsigned long)boot_cpuid); | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | unsigned long start_pfn, end_pfn, pages_present; | 
|  | unsigned long bootmem_paddr; | 
|  | unsigned long bootmap_pages; | 
|  |  | 
|  | get_region(nid, &start_pfn, &end_pfn, &pages_present); | 
|  |  | 
|  | /* Allocate the node structure node local if possible */ | 
|  | NODE_DATA(nid) = careful_allocation(nid, | 
|  | sizeof(struct pglist_data), | 
|  | SMP_CACHE_BYTES, end_pfn); | 
|  | NODE_DATA(nid) = __va(NODE_DATA(nid)); | 
|  | memset(NODE_DATA(nid), 0, sizeof(struct pglist_data)); | 
|  |  | 
|  | dbg("node %d\n", nid); | 
|  | dbg("NODE_DATA() = %p\n", NODE_DATA(nid)); | 
|  |  | 
|  | NODE_DATA(nid)->bdata = &plat_node_bdata[nid]; | 
|  | NODE_DATA(nid)->node_start_pfn = start_pfn; | 
|  | NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn; | 
|  |  | 
|  | if (NODE_DATA(nid)->node_spanned_pages == 0) | 
|  | continue; | 
|  |  | 
|  | dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT); | 
|  | dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT); | 
|  |  | 
|  | bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn); | 
|  | bootmem_paddr = (unsigned long)careful_allocation(nid, | 
|  | bootmap_pages << PAGE_SHIFT, | 
|  | PAGE_SIZE, end_pfn); | 
|  | memset(__va(bootmem_paddr), 0, bootmap_pages << PAGE_SHIFT); | 
|  |  | 
|  | dbg("bootmap_paddr = %lx\n", bootmem_paddr); | 
|  |  | 
|  | init_bootmem_node(NODE_DATA(nid), bootmem_paddr >> PAGE_SHIFT, | 
|  | start_pfn, end_pfn); | 
|  |  | 
|  | /* Add free regions on this node */ | 
|  | for (i = 0; init_node_data[i].end_pfn; i++) { | 
|  | unsigned long start, end; | 
|  |  | 
|  | if (init_node_data[i].nid != nid) | 
|  | continue; | 
|  |  | 
|  | start = init_node_data[i].start_pfn << PAGE_SHIFT; | 
|  | end = init_node_data[i].end_pfn << PAGE_SHIFT; | 
|  |  | 
|  | dbg("free_bootmem %lx %lx\n", start, end - start); | 
|  | free_bootmem_node(NODE_DATA(nid), start, end - start); | 
|  | } | 
|  |  | 
|  | /* Mark reserved regions on this node */ | 
|  | for (i = 0; i < lmb.reserved.cnt; i++) { | 
|  | unsigned long physbase = lmb.reserved.region[i].base; | 
|  | unsigned long size = lmb.reserved.region[i].size; | 
|  | unsigned long start_paddr = start_pfn << PAGE_SHIFT; | 
|  | unsigned long end_paddr = end_pfn << PAGE_SHIFT; | 
|  |  | 
|  | if (early_pfn_to_nid(physbase >> PAGE_SHIFT) != nid && | 
|  | early_pfn_to_nid((physbase+size-1) >> PAGE_SHIFT) != nid) | 
|  | continue; | 
|  |  | 
|  | if (physbase < end_paddr && | 
|  | (physbase+size) > start_paddr) { | 
|  | /* overlaps */ | 
|  | if (physbase < start_paddr) { | 
|  | size -= start_paddr - physbase; | 
|  | physbase = start_paddr; | 
|  | } | 
|  |  | 
|  | if (size > end_paddr - physbase) | 
|  | size = end_paddr - physbase; | 
|  |  | 
|  | dbg("reserve_bootmem %lx %lx\n", physbase, | 
|  | size); | 
|  | reserve_bootmem_node(NODE_DATA(nid), physbase, | 
|  | size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Add regions into sparsemem */ | 
|  | for (i = 0; init_node_data[i].end_pfn; i++) { | 
|  | unsigned long start, end; | 
|  |  | 
|  | if (init_node_data[i].nid != nid) | 
|  | continue; | 
|  |  | 
|  | start = init_node_data[i].start_pfn; | 
|  | end = init_node_data[i].end_pfn; | 
|  |  | 
|  | memory_present(nid, start, end); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void __init paging_init(void) | 
|  | { | 
|  | unsigned long zones_size[MAX_NR_ZONES]; | 
|  | unsigned long zholes_size[MAX_NR_ZONES]; | 
|  | int nid; | 
|  |  | 
|  | memset(zones_size, 0, sizeof(zones_size)); | 
|  | memset(zholes_size, 0, sizeof(zholes_size)); | 
|  |  | 
|  | for_each_online_node(nid) { | 
|  | unsigned long start_pfn, end_pfn, pages_present; | 
|  |  | 
|  | get_region(nid, &start_pfn, &end_pfn, &pages_present); | 
|  |  | 
|  | zones_size[ZONE_DMA] = end_pfn - start_pfn; | 
|  | zholes_size[ZONE_DMA] = zones_size[ZONE_DMA] - pages_present; | 
|  |  | 
|  | dbg("free_area_init node %d %lx %lx (hole: %lx)\n", nid, | 
|  | zones_size[ZONE_DMA], start_pfn, zholes_size[ZONE_DMA]); | 
|  |  | 
|  | free_area_init_node(nid, NODE_DATA(nid), zones_size, start_pfn, | 
|  | zholes_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __init early_numa(char *p) | 
|  | { | 
|  | if (!p) | 
|  | return 0; | 
|  |  | 
|  | if (strstr(p, "off")) | 
|  | numa_enabled = 0; | 
|  |  | 
|  | if (strstr(p, "debug")) | 
|  | numa_debug = 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  | early_param("numa", early_numa); | 
|  |  | 
|  | #ifdef CONFIG_MEMORY_HOTPLUG | 
|  | /* | 
|  | * Find the node associated with a hot added memory section.  Section | 
|  | * corresponds to a SPARSEMEM section, not an LMB.  It is assumed that | 
|  | * sections are fully contained within a single LMB. | 
|  | */ | 
|  | int hot_add_scn_to_nid(unsigned long scn_addr) | 
|  | { | 
|  | struct device_node *memory = NULL; | 
|  | nodemask_t nodes; | 
|  | int default_nid = any_online_node(NODE_MASK_ALL); | 
|  | int nid; | 
|  |  | 
|  | if (!numa_enabled || (min_common_depth < 0)) | 
|  | return default_nid; | 
|  |  | 
|  | while ((memory = of_find_node_by_type(memory, "memory")) != NULL) { | 
|  | unsigned long start, size; | 
|  | int ranges; | 
|  | const unsigned int *memcell_buf; | 
|  | unsigned int len; | 
|  |  | 
|  | memcell_buf = get_property(memory, "reg", &len); | 
|  | if (!memcell_buf || len <= 0) | 
|  | continue; | 
|  |  | 
|  | /* ranges in cell */ | 
|  | ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells); | 
|  | ha_new_range: | 
|  | start = read_n_cells(n_mem_addr_cells, &memcell_buf); | 
|  | size = read_n_cells(n_mem_size_cells, &memcell_buf); | 
|  | nid = of_node_to_nid_single(memory); | 
|  |  | 
|  | /* Domains not present at boot default to 0 */ | 
|  | if (nid < 0 || !node_online(nid)) | 
|  | nid = default_nid; | 
|  |  | 
|  | if ((scn_addr >= start) && (scn_addr < (start + size))) { | 
|  | of_node_put(memory); | 
|  | goto got_nid; | 
|  | } | 
|  |  | 
|  | if (--ranges)		/* process all ranges in cell */ | 
|  | goto ha_new_range; | 
|  | } | 
|  | BUG();	/* section address should be found above */ | 
|  | return 0; | 
|  |  | 
|  | /* Temporary code to ensure that returned node is not empty */ | 
|  | got_nid: | 
|  | nodes_setall(nodes); | 
|  | while (NODE_DATA(nid)->node_spanned_pages == 0) { | 
|  | node_clear(nid, nodes); | 
|  | nid = any_online_node(nodes); | 
|  | } | 
|  | return nid; | 
|  | } | 
|  | #endif /* CONFIG_MEMORY_HOTPLUG */ |