|  | /* $Id: pci_sabre.c,v 1.42 2002/01/23 11:27:32 davem Exp $ | 
|  | * pci_sabre.c: Sabre specific PCI controller support. | 
|  | * | 
|  | * Copyright (C) 1997, 1998, 1999 David S. Miller (davem@caipfs.rutgers.edu) | 
|  | * Copyright (C) 1998, 1999 Eddie C. Dost   (ecd@skynet.be) | 
|  | * Copyright (C) 1999 Jakub Jelinek   (jakub@redhat.com) | 
|  | */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/types.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/interrupt.h> | 
|  |  | 
|  | #include <asm/apb.h> | 
|  | #include <asm/pbm.h> | 
|  | #include <asm/iommu.h> | 
|  | #include <asm/irq.h> | 
|  | #include <asm/smp.h> | 
|  | #include <asm/oplib.h> | 
|  | #include <asm/prom.h> | 
|  |  | 
|  | #include "pci_impl.h" | 
|  | #include "iommu_common.h" | 
|  |  | 
|  | /* All SABRE registers are 64-bits.  The following accessor | 
|  | * routines are how they are accessed.  The REG parameter | 
|  | * is a physical address. | 
|  | */ | 
|  | #define sabre_read(__reg) \ | 
|  | ({	u64 __ret; \ | 
|  | __asm__ __volatile__("ldxa [%1] %2, %0" \ | 
|  | : "=r" (__ret) \ | 
|  | : "r" (__reg), "i" (ASI_PHYS_BYPASS_EC_E) \ | 
|  | : "memory"); \ | 
|  | __ret; \ | 
|  | }) | 
|  | #define sabre_write(__reg, __val) \ | 
|  | __asm__ __volatile__("stxa %0, [%1] %2" \ | 
|  | : /* no outputs */ \ | 
|  | : "r" (__val), "r" (__reg), \ | 
|  | "i" (ASI_PHYS_BYPASS_EC_E) \ | 
|  | : "memory") | 
|  |  | 
|  | /* SABRE PCI controller register offsets and definitions. */ | 
|  | #define SABRE_UE_AFSR		0x0030UL | 
|  | #define  SABRE_UEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */ | 
|  | #define  SABRE_UEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */ | 
|  | #define  SABRE_UEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */ | 
|  | #define  SABRE_UEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */ | 
|  | #define  SABRE_UEAFSR_SDTE	 0x0200000000000000UL	/* Secondary DMA Translation Error */ | 
|  | #define  SABRE_UEAFSR_PDTE	 0x0100000000000000UL	/* Primary DMA Translation Error */ | 
|  | #define  SABRE_UEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */ | 
|  | #define  SABRE_UEAFSR_OFF	 0x00000000e0000000UL	/* Offset (AFAR bits [5:3] */ | 
|  | #define  SABRE_UEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */ | 
|  | #define SABRE_UECE_AFAR		0x0038UL | 
|  | #define SABRE_CE_AFSR		0x0040UL | 
|  | #define  SABRE_CEAFSR_PDRD	 0x4000000000000000UL	/* Primary PCI DMA Read */ | 
|  | #define  SABRE_CEAFSR_PDWR	 0x2000000000000000UL	/* Primary PCI DMA Write */ | 
|  | #define  SABRE_CEAFSR_SDRD	 0x0800000000000000UL	/* Secondary PCI DMA Read */ | 
|  | #define  SABRE_CEAFSR_SDWR	 0x0400000000000000UL	/* Secondary PCI DMA Write */ | 
|  | #define  SABRE_CEAFSR_ESYND	 0x00ff000000000000UL	/* ECC Syndrome */ | 
|  | #define  SABRE_CEAFSR_BMSK	 0x0000ffff00000000UL	/* Bytemask */ | 
|  | #define  SABRE_CEAFSR_OFF	 0x00000000e0000000UL	/* Offset */ | 
|  | #define  SABRE_CEAFSR_BLK	 0x0000000000800000UL	/* Was block operation */ | 
|  | #define SABRE_UECE_AFAR_ALIAS	0x0048UL	/* Aliases to 0x0038 */ | 
|  | #define SABRE_IOMMU_CONTROL	0x0200UL | 
|  | #define  SABRE_IOMMUCTRL_ERRSTS	 0x0000000006000000UL	/* Error status bits */ | 
|  | #define  SABRE_IOMMUCTRL_ERR	 0x0000000001000000UL	/* Error present in IOTLB */ | 
|  | #define  SABRE_IOMMUCTRL_LCKEN	 0x0000000000800000UL	/* IOTLB lock enable */ | 
|  | #define  SABRE_IOMMUCTRL_LCKPTR	 0x0000000000780000UL	/* IOTLB lock pointer */ | 
|  | #define  SABRE_IOMMUCTRL_TSBSZ	 0x0000000000070000UL	/* TSB Size */ | 
|  | #define  SABRE_IOMMU_TSBSZ_1K   0x0000000000000000 | 
|  | #define  SABRE_IOMMU_TSBSZ_2K   0x0000000000010000 | 
|  | #define  SABRE_IOMMU_TSBSZ_4K   0x0000000000020000 | 
|  | #define  SABRE_IOMMU_TSBSZ_8K   0x0000000000030000 | 
|  | #define  SABRE_IOMMU_TSBSZ_16K  0x0000000000040000 | 
|  | #define  SABRE_IOMMU_TSBSZ_32K  0x0000000000050000 | 
|  | #define  SABRE_IOMMU_TSBSZ_64K  0x0000000000060000 | 
|  | #define  SABRE_IOMMU_TSBSZ_128K 0x0000000000070000 | 
|  | #define  SABRE_IOMMUCTRL_TBWSZ	 0x0000000000000004UL	/* TSB assumed page size */ | 
|  | #define  SABRE_IOMMUCTRL_DENAB	 0x0000000000000002UL	/* Diagnostic Mode Enable */ | 
|  | #define  SABRE_IOMMUCTRL_ENAB	 0x0000000000000001UL	/* IOMMU Enable */ | 
|  | #define SABRE_IOMMU_TSBBASE	0x0208UL | 
|  | #define SABRE_IOMMU_FLUSH	0x0210UL | 
|  | #define SABRE_IMAP_A_SLOT0	0x0c00UL | 
|  | #define SABRE_IMAP_B_SLOT0	0x0c20UL | 
|  | #define SABRE_IMAP_SCSI		0x1000UL | 
|  | #define SABRE_IMAP_ETH		0x1008UL | 
|  | #define SABRE_IMAP_BPP		0x1010UL | 
|  | #define SABRE_IMAP_AU_REC	0x1018UL | 
|  | #define SABRE_IMAP_AU_PLAY	0x1020UL | 
|  | #define SABRE_IMAP_PFAIL	0x1028UL | 
|  | #define SABRE_IMAP_KMS		0x1030UL | 
|  | #define SABRE_IMAP_FLPY		0x1038UL | 
|  | #define SABRE_IMAP_SHW		0x1040UL | 
|  | #define SABRE_IMAP_KBD		0x1048UL | 
|  | #define SABRE_IMAP_MS		0x1050UL | 
|  | #define SABRE_IMAP_SER		0x1058UL | 
|  | #define SABRE_IMAP_UE		0x1070UL | 
|  | #define SABRE_IMAP_CE		0x1078UL | 
|  | #define SABRE_IMAP_PCIERR	0x1080UL | 
|  | #define SABRE_IMAP_GFX		0x1098UL | 
|  | #define SABRE_IMAP_EUPA		0x10a0UL | 
|  | #define SABRE_ICLR_A_SLOT0	0x1400UL | 
|  | #define SABRE_ICLR_B_SLOT0	0x1480UL | 
|  | #define SABRE_ICLR_SCSI		0x1800UL | 
|  | #define SABRE_ICLR_ETH		0x1808UL | 
|  | #define SABRE_ICLR_BPP		0x1810UL | 
|  | #define SABRE_ICLR_AU_REC	0x1818UL | 
|  | #define SABRE_ICLR_AU_PLAY	0x1820UL | 
|  | #define SABRE_ICLR_PFAIL	0x1828UL | 
|  | #define SABRE_ICLR_KMS		0x1830UL | 
|  | #define SABRE_ICLR_FLPY		0x1838UL | 
|  | #define SABRE_ICLR_SHW		0x1840UL | 
|  | #define SABRE_ICLR_KBD		0x1848UL | 
|  | #define SABRE_ICLR_MS		0x1850UL | 
|  | #define SABRE_ICLR_SER		0x1858UL | 
|  | #define SABRE_ICLR_UE		0x1870UL | 
|  | #define SABRE_ICLR_CE		0x1878UL | 
|  | #define SABRE_ICLR_PCIERR	0x1880UL | 
|  | #define SABRE_WRSYNC		0x1c20UL | 
|  | #define SABRE_PCICTRL		0x2000UL | 
|  | #define  SABRE_PCICTRL_MRLEN	 0x0000001000000000UL	/* Use MemoryReadLine for block loads/stores */ | 
|  | #define  SABRE_PCICTRL_SERR	 0x0000000400000000UL	/* Set when SERR asserted on PCI bus */ | 
|  | #define  SABRE_PCICTRL_ARBPARK	 0x0000000000200000UL	/* Bus Parking 0=Ultra-IIi 1=prev-bus-owner */ | 
|  | #define  SABRE_PCICTRL_CPUPRIO	 0x0000000000100000UL	/* Ultra-IIi granted every other bus cycle */ | 
|  | #define  SABRE_PCICTRL_ARBPRIO	 0x00000000000f0000UL	/* Slot which is granted every other bus cycle */ | 
|  | #define  SABRE_PCICTRL_ERREN	 0x0000000000000100UL	/* PCI Error Interrupt Enable */ | 
|  | #define  SABRE_PCICTRL_RTRYWE	 0x0000000000000080UL	/* DMA Flow Control 0=wait-if-possible 1=retry */ | 
|  | #define  SABRE_PCICTRL_AEN	 0x000000000000000fUL	/* Slot PCI arbitration enables */ | 
|  | #define SABRE_PIOAFSR		0x2010UL | 
|  | #define  SABRE_PIOAFSR_PMA	 0x8000000000000000UL	/* Primary Master Abort */ | 
|  | #define  SABRE_PIOAFSR_PTA	 0x4000000000000000UL	/* Primary Target Abort */ | 
|  | #define  SABRE_PIOAFSR_PRTRY	 0x2000000000000000UL	/* Primary Excessive Retries */ | 
|  | #define  SABRE_PIOAFSR_PPERR	 0x1000000000000000UL	/* Primary Parity Error */ | 
|  | #define  SABRE_PIOAFSR_SMA	 0x0800000000000000UL	/* Secondary Master Abort */ | 
|  | #define  SABRE_PIOAFSR_STA	 0x0400000000000000UL	/* Secondary Target Abort */ | 
|  | #define  SABRE_PIOAFSR_SRTRY	 0x0200000000000000UL	/* Secondary Excessive Retries */ | 
|  | #define  SABRE_PIOAFSR_SPERR	 0x0100000000000000UL	/* Secondary Parity Error */ | 
|  | #define  SABRE_PIOAFSR_BMSK	 0x0000ffff00000000UL	/* Byte Mask */ | 
|  | #define  SABRE_PIOAFSR_BLK	 0x0000000080000000UL	/* Was Block Operation */ | 
|  | #define SABRE_PIOAFAR		0x2018UL | 
|  | #define SABRE_PCIDIAG		0x2020UL | 
|  | #define  SABRE_PCIDIAG_DRTRY	 0x0000000000000040UL	/* Disable PIO Retry Limit */ | 
|  | #define  SABRE_PCIDIAG_IPAPAR	 0x0000000000000008UL	/* Invert PIO Address Parity */ | 
|  | #define  SABRE_PCIDIAG_IPDPAR	 0x0000000000000004UL	/* Invert PIO Data Parity */ | 
|  | #define  SABRE_PCIDIAG_IDDPAR	 0x0000000000000002UL	/* Invert DMA Data Parity */ | 
|  | #define  SABRE_PCIDIAG_ELPBK	 0x0000000000000001UL	/* Loopback Enable - not supported */ | 
|  | #define SABRE_PCITASR		0x2028UL | 
|  | #define  SABRE_PCITASR_EF	 0x0000000000000080UL	/* Respond to 0xe0000000-0xffffffff */ | 
|  | #define  SABRE_PCITASR_CD	 0x0000000000000040UL	/* Respond to 0xc0000000-0xdfffffff */ | 
|  | #define  SABRE_PCITASR_AB	 0x0000000000000020UL	/* Respond to 0xa0000000-0xbfffffff */ | 
|  | #define  SABRE_PCITASR_89	 0x0000000000000010UL	/* Respond to 0x80000000-0x9fffffff */ | 
|  | #define  SABRE_PCITASR_67	 0x0000000000000008UL	/* Respond to 0x60000000-0x7fffffff */ | 
|  | #define  SABRE_PCITASR_45	 0x0000000000000004UL	/* Respond to 0x40000000-0x5fffffff */ | 
|  | #define  SABRE_PCITASR_23	 0x0000000000000002UL	/* Respond to 0x20000000-0x3fffffff */ | 
|  | #define  SABRE_PCITASR_01	 0x0000000000000001UL	/* Respond to 0x00000000-0x1fffffff */ | 
|  | #define SABRE_PIOBUF_DIAG	0x5000UL | 
|  | #define SABRE_DMABUF_DIAGLO	0x5100UL | 
|  | #define SABRE_DMABUF_DIAGHI	0x51c0UL | 
|  | #define SABRE_IMAP_GFX_ALIAS	0x6000UL	/* Aliases to 0x1098 */ | 
|  | #define SABRE_IMAP_EUPA_ALIAS	0x8000UL	/* Aliases to 0x10a0 */ | 
|  | #define SABRE_IOMMU_VADIAG	0xa400UL | 
|  | #define SABRE_IOMMU_TCDIAG	0xa408UL | 
|  | #define SABRE_IOMMU_TAG		0xa580UL | 
|  | #define  SABRE_IOMMUTAG_ERRSTS	 0x0000000001800000UL	/* Error status bits */ | 
|  | #define  SABRE_IOMMUTAG_ERR	 0x0000000000400000UL	/* Error present */ | 
|  | #define  SABRE_IOMMUTAG_WRITE	 0x0000000000200000UL	/* Page is writable */ | 
|  | #define  SABRE_IOMMUTAG_STREAM	 0x0000000000100000UL	/* Streamable bit - unused */ | 
|  | #define  SABRE_IOMMUTAG_SIZE	 0x0000000000080000UL	/* 0=8k 1=16k */ | 
|  | #define  SABRE_IOMMUTAG_VPN	 0x000000000007ffffUL	/* Virtual Page Number [31:13] */ | 
|  | #define SABRE_IOMMU_DATA	0xa600UL | 
|  | #define SABRE_IOMMUDATA_VALID	 0x0000000040000000UL	/* Valid */ | 
|  | #define SABRE_IOMMUDATA_USED	 0x0000000020000000UL	/* Used (for LRU algorithm) */ | 
|  | #define SABRE_IOMMUDATA_CACHE	 0x0000000010000000UL	/* Cacheable */ | 
|  | #define SABRE_IOMMUDATA_PPN	 0x00000000001fffffUL	/* Physical Page Number [33:13] */ | 
|  | #define SABRE_PCI_IRQSTATE	0xa800UL | 
|  | #define SABRE_OBIO_IRQSTATE	0xa808UL | 
|  | #define SABRE_FFBCFG		0xf000UL | 
|  | #define  SABRE_FFBCFG_SPRQS	 0x000000000f000000	/* Slave P_RQST queue size */ | 
|  | #define  SABRE_FFBCFG_ONEREAD	 0x0000000000004000	/* Slave supports one outstanding read */ | 
|  | #define SABRE_MCCTRL0		0xf010UL | 
|  | #define  SABRE_MCCTRL0_RENAB	 0x0000000080000000	/* Refresh Enable */ | 
|  | #define  SABRE_MCCTRL0_EENAB	 0x0000000010000000	/* Enable all ECC functions */ | 
|  | #define  SABRE_MCCTRL0_11BIT	 0x0000000000001000	/* Enable 11-bit column addressing */ | 
|  | #define  SABRE_MCCTRL0_DPP	 0x0000000000000f00	/* DIMM Pair Present Bits */ | 
|  | #define  SABRE_MCCTRL0_RINTVL	 0x00000000000000ff	/* Refresh Interval */ | 
|  | #define SABRE_MCCTRL1		0xf018UL | 
|  | #define  SABRE_MCCTRL1_AMDC	 0x0000000038000000	/* Advance Memdata Clock */ | 
|  | #define  SABRE_MCCTRL1_ARDC	 0x0000000007000000	/* Advance DRAM Read Data Clock */ | 
|  | #define  SABRE_MCCTRL1_CSR	 0x0000000000e00000	/* CAS to RAS delay for CBR refresh */ | 
|  | #define  SABRE_MCCTRL1_CASRW	 0x00000000001c0000	/* CAS length for read/write */ | 
|  | #define  SABRE_MCCTRL1_RCD	 0x0000000000038000	/* RAS to CAS delay */ | 
|  | #define  SABRE_MCCTRL1_CP	 0x0000000000007000	/* CAS Precharge */ | 
|  | #define  SABRE_MCCTRL1_RP	 0x0000000000000e00	/* RAS Precharge */ | 
|  | #define  SABRE_MCCTRL1_RAS	 0x00000000000001c0	/* Length of RAS for refresh */ | 
|  | #define  SABRE_MCCTRL1_CASRW2	 0x0000000000000038	/* Must be same as CASRW */ | 
|  | #define  SABRE_MCCTRL1_RSC	 0x0000000000000007	/* RAS after CAS hold time */ | 
|  | #define SABRE_RESETCTRL		0xf020UL | 
|  |  | 
|  | #define SABRE_CONFIGSPACE	0x001000000UL | 
|  | #define SABRE_IOSPACE		0x002000000UL | 
|  | #define SABRE_IOSPACE_SIZE	0x000ffffffUL | 
|  | #define SABRE_MEMSPACE		0x100000000UL | 
|  | #define SABRE_MEMSPACE_SIZE	0x07fffffffUL | 
|  |  | 
|  | /* UltraSparc-IIi Programmer's Manual, page 325, PCI | 
|  | * configuration space address format: | 
|  | * | 
|  | *  32             24 23 16 15    11 10       8 7   2  1 0 | 
|  | * --------------------------------------------------------- | 
|  | * |0 0 0 0 0 0 0 0 1| bus | device | function | reg | 0 0 | | 
|  | * --------------------------------------------------------- | 
|  | */ | 
|  | #define SABRE_CONFIG_BASE(PBM)	\ | 
|  | ((PBM)->config_space | (1UL << 24)) | 
|  | #define SABRE_CONFIG_ENCODE(BUS, DEVFN, REG)	\ | 
|  | (((unsigned long)(BUS)   << 16) |	\ | 
|  | ((unsigned long)(DEVFN) << 8)  |	\ | 
|  | ((unsigned long)(REG))) | 
|  |  | 
|  | static int hummingbird_p; | 
|  | static struct pci_bus *sabre_root_bus; | 
|  |  | 
|  | static void *sabre_pci_config_mkaddr(struct pci_pbm_info *pbm, | 
|  | unsigned char bus, | 
|  | unsigned int devfn, | 
|  | int where) | 
|  | { | 
|  | if (!pbm) | 
|  | return NULL; | 
|  | return (void *) | 
|  | (SABRE_CONFIG_BASE(pbm) | | 
|  | SABRE_CONFIG_ENCODE(bus, devfn, where)); | 
|  | } | 
|  |  | 
|  | static int sabre_out_of_range(unsigned char devfn) | 
|  | { | 
|  | if (hummingbird_p) | 
|  | return 0; | 
|  |  | 
|  | return (((PCI_SLOT(devfn) == 0) && (PCI_FUNC(devfn) > 0)) || | 
|  | ((PCI_SLOT(devfn) == 1) && (PCI_FUNC(devfn) > 1)) || | 
|  | (PCI_SLOT(devfn) > 1)); | 
|  | } | 
|  |  | 
|  | static int __sabre_out_of_range(struct pci_pbm_info *pbm, | 
|  | unsigned char bus, | 
|  | unsigned char devfn) | 
|  | { | 
|  | if (hummingbird_p) | 
|  | return 0; | 
|  |  | 
|  | return ((pbm->parent == 0) || | 
|  | ((pbm == &pbm->parent->pbm_B) && | 
|  | (bus == pbm->pci_first_busno) && | 
|  | PCI_SLOT(devfn) > 8) || | 
|  | ((pbm == &pbm->parent->pbm_A) && | 
|  | (bus == pbm->pci_first_busno) && | 
|  | PCI_SLOT(devfn) > 8)); | 
|  | } | 
|  |  | 
|  | static int __sabre_read_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, | 
|  | int where, int size, u32 *value) | 
|  | { | 
|  | struct pci_pbm_info *pbm = bus_dev->sysdata; | 
|  | unsigned char bus = bus_dev->number; | 
|  | u32 *addr; | 
|  | u16 tmp16; | 
|  | u8 tmp8; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | *value = 0xff; | 
|  | break; | 
|  | case 2: | 
|  | *value = 0xffff; | 
|  | break; | 
|  | case 4: | 
|  | *value = 0xffffffff; | 
|  | break; | 
|  | } | 
|  |  | 
|  | addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); | 
|  | if (!addr) | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  |  | 
|  | if (__sabre_out_of_range(pbm, bus, devfn)) | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | pci_config_read8((u8 *) addr, &tmp8); | 
|  | *value = tmp8; | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | if (where & 0x01) { | 
|  | printk("pci_read_config_word: misaligned reg [%x]\n", | 
|  | where); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  | pci_config_read16((u16 *) addr, &tmp16); | 
|  | *value = tmp16; | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | if (where & 0x03) { | 
|  | printk("pci_read_config_dword: misaligned reg [%x]\n", | 
|  | where); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  | pci_config_read32(addr, value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | static int sabre_read_pci_cfg(struct pci_bus *bus, unsigned int devfn, | 
|  | int where, int size, u32 *value) | 
|  | { | 
|  | if (!bus->number && sabre_out_of_range(devfn)) { | 
|  | switch (size) { | 
|  | case 1: | 
|  | *value = 0xff; | 
|  | break; | 
|  | case 2: | 
|  | *value = 0xffff; | 
|  | break; | 
|  | case 4: | 
|  | *value = 0xffffffff; | 
|  | break; | 
|  | } | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | if (bus->number || PCI_SLOT(devfn)) | 
|  | return __sabre_read_pci_cfg(bus, devfn, where, size, value); | 
|  |  | 
|  | /* When accessing PCI config space of the PCI controller itself (bus | 
|  | * 0, device slot 0, function 0) there are restrictions.  Each | 
|  | * register must be accessed as it's natural size.  Thus, for example | 
|  | * the Vendor ID must be accessed as a 16-bit quantity. | 
|  | */ | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | if (where < 8) { | 
|  | u32 tmp32; | 
|  | u16 tmp16; | 
|  |  | 
|  | __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); | 
|  | tmp16 = (u16) tmp32; | 
|  | if (where & 1) | 
|  | *value = tmp16 >> 8; | 
|  | else | 
|  | *value = tmp16 & 0xff; | 
|  | } else | 
|  | return __sabre_read_pci_cfg(bus, devfn, where, 1, value); | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | if (where < 8) | 
|  | return __sabre_read_pci_cfg(bus, devfn, where, 2, value); | 
|  | else { | 
|  | u32 tmp32; | 
|  | u8 tmp8; | 
|  |  | 
|  | __sabre_read_pci_cfg(bus, devfn, where, 1, &tmp32); | 
|  | tmp8 = (u8) tmp32; | 
|  | *value = tmp8; | 
|  | __sabre_read_pci_cfg(bus, devfn, where + 1, 1, &tmp32); | 
|  | tmp8 = (u8) tmp32; | 
|  | *value |= tmp8 << 8; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case 4: { | 
|  | u32 tmp32; | 
|  | u16 tmp16; | 
|  |  | 
|  | sabre_read_pci_cfg(bus, devfn, where, 2, &tmp32); | 
|  | tmp16 = (u16) tmp32; | 
|  | *value = tmp16; | 
|  | sabre_read_pci_cfg(bus, devfn, where + 2, 2, &tmp32); | 
|  | tmp16 = (u16) tmp32; | 
|  | *value |= tmp16 << 16; | 
|  | break; | 
|  | } | 
|  | } | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | static int __sabre_write_pci_cfg(struct pci_bus *bus_dev, unsigned int devfn, | 
|  | int where, int size, u32 value) | 
|  | { | 
|  | struct pci_pbm_info *pbm = bus_dev->sysdata; | 
|  | unsigned char bus = bus_dev->number; | 
|  | u32 *addr; | 
|  |  | 
|  | addr = sabre_pci_config_mkaddr(pbm, bus, devfn, where); | 
|  | if (!addr) | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  |  | 
|  | if (__sabre_out_of_range(pbm, bus, devfn)) | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | pci_config_write8((u8 *) addr, value); | 
|  | break; | 
|  |  | 
|  | case 2: | 
|  | if (where & 0x01) { | 
|  | printk("pci_write_config_word: misaligned reg [%x]\n", | 
|  | where); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  | pci_config_write16((u16 *) addr, value); | 
|  | break; | 
|  |  | 
|  | case 4: | 
|  | if (where & 0x03) { | 
|  | printk("pci_write_config_dword: misaligned reg [%x]\n", | 
|  | where); | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  | pci_config_write32(addr, value); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | static int sabre_write_pci_cfg(struct pci_bus *bus, unsigned int devfn, | 
|  | int where, int size, u32 value) | 
|  | { | 
|  | if (bus->number) | 
|  | return __sabre_write_pci_cfg(bus, devfn, where, size, value); | 
|  |  | 
|  | if (sabre_out_of_range(devfn)) | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  |  | 
|  | switch (size) { | 
|  | case 1: | 
|  | if (where < 8) { | 
|  | u32 tmp32; | 
|  | u16 tmp16; | 
|  |  | 
|  | __sabre_read_pci_cfg(bus, devfn, where & ~1, 2, &tmp32); | 
|  | tmp16 = (u16) tmp32; | 
|  | if (where & 1) { | 
|  | value &= 0x00ff; | 
|  | value |= tmp16 << 8; | 
|  | } else { | 
|  | value &= 0xff00; | 
|  | value |= tmp16; | 
|  | } | 
|  | tmp32 = (u32) tmp16; | 
|  | return __sabre_write_pci_cfg(bus, devfn, where & ~1, 2, tmp32); | 
|  | } else | 
|  | return __sabre_write_pci_cfg(bus, devfn, where, 1, value); | 
|  | break; | 
|  | case 2: | 
|  | if (where < 8) | 
|  | return __sabre_write_pci_cfg(bus, devfn, where, 2, value); | 
|  | else { | 
|  | __sabre_write_pci_cfg(bus, devfn, where, 1, value & 0xff); | 
|  | __sabre_write_pci_cfg(bus, devfn, where + 1, 1, value >> 8); | 
|  | } | 
|  | break; | 
|  | case 4: | 
|  | sabre_write_pci_cfg(bus, devfn, where, 2, value & 0xffff); | 
|  | sabre_write_pci_cfg(bus, devfn, where + 2, 2, value >> 16); | 
|  | break; | 
|  | } | 
|  | return PCIBIOS_SUCCESSFUL; | 
|  | } | 
|  |  | 
|  | static struct pci_ops sabre_ops = { | 
|  | .read =		sabre_read_pci_cfg, | 
|  | .write =	sabre_write_pci_cfg, | 
|  | }; | 
|  |  | 
|  | /* SABRE error handling support. */ | 
|  | static void sabre_check_iommu_error(struct pci_controller_info *p, | 
|  | unsigned long afsr, | 
|  | unsigned long afar) | 
|  | { | 
|  | struct pci_iommu *iommu = p->pbm_A.iommu; | 
|  | unsigned long iommu_tag[16]; | 
|  | unsigned long iommu_data[16]; | 
|  | unsigned long flags; | 
|  | u64 control; | 
|  | int i; | 
|  |  | 
|  | spin_lock_irqsave(&iommu->lock, flags); | 
|  | control = sabre_read(iommu->iommu_control); | 
|  | if (control & SABRE_IOMMUCTRL_ERR) { | 
|  | char *type_string; | 
|  |  | 
|  | /* Clear the error encountered bit. | 
|  | * NOTE: On Sabre this is write 1 to clear, | 
|  | *       which is different from Psycho. | 
|  | */ | 
|  | sabre_write(iommu->iommu_control, control); | 
|  | switch((control & SABRE_IOMMUCTRL_ERRSTS) >> 25UL) { | 
|  | case 1: | 
|  | type_string = "Invalid Error"; | 
|  | break; | 
|  | case 3: | 
|  | type_string = "ECC Error"; | 
|  | break; | 
|  | default: | 
|  | type_string = "Unknown"; | 
|  | break; | 
|  | }; | 
|  | printk("SABRE%d: IOMMU Error, type[%s]\n", | 
|  | p->index, type_string); | 
|  |  | 
|  | /* Enter diagnostic mode and probe for error'd | 
|  | * entries in the IOTLB. | 
|  | */ | 
|  | control &= ~(SABRE_IOMMUCTRL_ERRSTS | SABRE_IOMMUCTRL_ERR); | 
|  | sabre_write(iommu->iommu_control, | 
|  | (control | SABRE_IOMMUCTRL_DENAB)); | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long base = p->pbm_A.controller_regs; | 
|  |  | 
|  | iommu_tag[i] = | 
|  | sabre_read(base + SABRE_IOMMU_TAG + (i * 8UL)); | 
|  | iommu_data[i] = | 
|  | sabre_read(base + SABRE_IOMMU_DATA + (i * 8UL)); | 
|  | sabre_write(base + SABRE_IOMMU_TAG + (i * 8UL), 0); | 
|  | sabre_write(base + SABRE_IOMMU_DATA + (i * 8UL), 0); | 
|  | } | 
|  | sabre_write(iommu->iommu_control, control); | 
|  |  | 
|  | for (i = 0; i < 16; i++) { | 
|  | unsigned long tag, data; | 
|  |  | 
|  | tag = iommu_tag[i]; | 
|  | if (!(tag & SABRE_IOMMUTAG_ERR)) | 
|  | continue; | 
|  |  | 
|  | data = iommu_data[i]; | 
|  | switch((tag & SABRE_IOMMUTAG_ERRSTS) >> 23UL) { | 
|  | case 1: | 
|  | type_string = "Invalid Error"; | 
|  | break; | 
|  | case 3: | 
|  | type_string = "ECC Error"; | 
|  | break; | 
|  | default: | 
|  | type_string = "Unknown"; | 
|  | break; | 
|  | }; | 
|  | printk("SABRE%d: IOMMU TAG(%d)[RAW(%016lx)error(%s)wr(%d)sz(%dK)vpg(%08lx)]\n", | 
|  | p->index, i, tag, type_string, | 
|  | ((tag & SABRE_IOMMUTAG_WRITE) ? 1 : 0), | 
|  | ((tag & SABRE_IOMMUTAG_SIZE) ? 64 : 8), | 
|  | ((tag & SABRE_IOMMUTAG_VPN) << IOMMU_PAGE_SHIFT)); | 
|  | printk("SABRE%d: IOMMU DATA(%d)[RAW(%016lx)valid(%d)used(%d)cache(%d)ppg(%016lx)\n", | 
|  | p->index, i, data, | 
|  | ((data & SABRE_IOMMUDATA_VALID) ? 1 : 0), | 
|  | ((data & SABRE_IOMMUDATA_USED) ? 1 : 0), | 
|  | ((data & SABRE_IOMMUDATA_CACHE) ? 1 : 0), | 
|  | ((data & SABRE_IOMMUDATA_PPN) << IOMMU_PAGE_SHIFT)); | 
|  | } | 
|  | } | 
|  | spin_unlock_irqrestore(&iommu->lock, flags); | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_ue_intr(int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | struct pci_controller_info *p = dev_id; | 
|  | unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_UE_AFSR; | 
|  | unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; | 
|  | unsigned long afsr, afar, error_bits; | 
|  | int reported; | 
|  |  | 
|  | /* Latch uncorrectable error status. */ | 
|  | afar = sabre_read(afar_reg); | 
|  | afsr = sabre_read(afsr_reg); | 
|  |  | 
|  | /* Clear the primary/secondary error status bits. */ | 
|  | error_bits = afsr & | 
|  | (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | | 
|  | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | | 
|  | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE); | 
|  | if (!error_bits) | 
|  | return IRQ_NONE; | 
|  | sabre_write(afsr_reg, error_bits); | 
|  |  | 
|  | /* Log the error. */ | 
|  | printk("SABRE%d: Uncorrectable Error, primary error type[%s%s]\n", | 
|  | p->index, | 
|  | ((error_bits & SABRE_UEAFSR_PDRD) ? | 
|  | "DMA Read" : | 
|  | ((error_bits & SABRE_UEAFSR_PDWR) ? | 
|  | "DMA Write" : "???")), | 
|  | ((error_bits & SABRE_UEAFSR_PDTE) ? | 
|  | ":Translation Error" : "")); | 
|  | printk("SABRE%d: bytemask[%04lx] dword_offset[%lx] was_block(%d)\n", | 
|  | p->index, | 
|  | (afsr & SABRE_UEAFSR_BMSK) >> 32UL, | 
|  | (afsr & SABRE_UEAFSR_OFF) >> 29UL, | 
|  | ((afsr & SABRE_UEAFSR_BLK) ? 1 : 0)); | 
|  | printk("SABRE%d: UE AFAR [%016lx]\n", p->index, afar); | 
|  | printk("SABRE%d: UE Secondary errors [", p->index); | 
|  | reported = 0; | 
|  | if (afsr & SABRE_UEAFSR_SDRD) { | 
|  | reported++; | 
|  | printk("(DMA Read)"); | 
|  | } | 
|  | if (afsr & SABRE_UEAFSR_SDWR) { | 
|  | reported++; | 
|  | printk("(DMA Write)"); | 
|  | } | 
|  | if (afsr & SABRE_UEAFSR_SDTE) { | 
|  | reported++; | 
|  | printk("(Translation Error)"); | 
|  | } | 
|  | if (!reported) | 
|  | printk("(none)"); | 
|  | printk("]\n"); | 
|  |  | 
|  | /* Interrogate IOMMU for error status. */ | 
|  | sabre_check_iommu_error(p, afsr, afar); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_ce_intr(int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | struct pci_controller_info *p = dev_id; | 
|  | unsigned long afsr_reg = p->pbm_A.controller_regs + SABRE_CE_AFSR; | 
|  | unsigned long afar_reg = p->pbm_A.controller_regs + SABRE_UECE_AFAR; | 
|  | unsigned long afsr, afar, error_bits; | 
|  | int reported; | 
|  |  | 
|  | /* Latch error status. */ | 
|  | afar = sabre_read(afar_reg); | 
|  | afsr = sabre_read(afsr_reg); | 
|  |  | 
|  | /* Clear primary/secondary error status bits. */ | 
|  | error_bits = afsr & | 
|  | (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | | 
|  | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR); | 
|  | if (!error_bits) | 
|  | return IRQ_NONE; | 
|  | sabre_write(afsr_reg, error_bits); | 
|  |  | 
|  | /* Log the error. */ | 
|  | printk("SABRE%d: Correctable Error, primary error type[%s]\n", | 
|  | p->index, | 
|  | ((error_bits & SABRE_CEAFSR_PDRD) ? | 
|  | "DMA Read" : | 
|  | ((error_bits & SABRE_CEAFSR_PDWR) ? | 
|  | "DMA Write" : "???"))); | 
|  |  | 
|  | /* XXX Use syndrome and afar to print out module string just like | 
|  | * XXX UDB CE trap handler does... -DaveM | 
|  | */ | 
|  | printk("SABRE%d: syndrome[%02lx] bytemask[%04lx] dword_offset[%lx] " | 
|  | "was_block(%d)\n", | 
|  | p->index, | 
|  | (afsr & SABRE_CEAFSR_ESYND) >> 48UL, | 
|  | (afsr & SABRE_CEAFSR_BMSK) >> 32UL, | 
|  | (afsr & SABRE_CEAFSR_OFF) >> 29UL, | 
|  | ((afsr & SABRE_CEAFSR_BLK) ? 1 : 0)); | 
|  | printk("SABRE%d: CE AFAR [%016lx]\n", p->index, afar); | 
|  | printk("SABRE%d: CE Secondary errors [", p->index); | 
|  | reported = 0; | 
|  | if (afsr & SABRE_CEAFSR_SDRD) { | 
|  | reported++; | 
|  | printk("(DMA Read)"); | 
|  | } | 
|  | if (afsr & SABRE_CEAFSR_SDWR) { | 
|  | reported++; | 
|  | printk("(DMA Write)"); | 
|  | } | 
|  | if (!reported) | 
|  | printk("(none)"); | 
|  | printk("]\n"); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_pcierr_intr_other(struct pci_controller_info *p) | 
|  | { | 
|  | unsigned long csr_reg, csr, csr_error_bits; | 
|  | irqreturn_t ret = IRQ_NONE; | 
|  | u16 stat; | 
|  |  | 
|  | csr_reg = p->pbm_A.controller_regs + SABRE_PCICTRL; | 
|  | csr = sabre_read(csr_reg); | 
|  | csr_error_bits = | 
|  | csr & SABRE_PCICTRL_SERR; | 
|  | if (csr_error_bits) { | 
|  | /* Clear the errors.  */ | 
|  | sabre_write(csr_reg, csr); | 
|  |  | 
|  | /* Log 'em.  */ | 
|  | if (csr_error_bits & SABRE_PCICTRL_SERR) | 
|  | printk("SABRE%d: PCI SERR signal asserted.\n", | 
|  | p->index); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  | pci_read_config_word(sabre_root_bus->self, | 
|  | PCI_STATUS, &stat); | 
|  | if (stat & (PCI_STATUS_PARITY | | 
|  | PCI_STATUS_SIG_TARGET_ABORT | | 
|  | PCI_STATUS_REC_TARGET_ABORT | | 
|  | PCI_STATUS_REC_MASTER_ABORT | | 
|  | PCI_STATUS_SIG_SYSTEM_ERROR)) { | 
|  | printk("SABRE%d: PCI bus error, PCI_STATUS[%04x]\n", | 
|  | p->index, stat); | 
|  | pci_write_config_word(sabre_root_bus->self, | 
|  | PCI_STATUS, 0xffff); | 
|  | ret = IRQ_HANDLED; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static irqreturn_t sabre_pcierr_intr(int irq, void *dev_id, struct pt_regs *regs) | 
|  | { | 
|  | struct pci_controller_info *p = dev_id; | 
|  | unsigned long afsr_reg, afar_reg; | 
|  | unsigned long afsr, afar, error_bits; | 
|  | int reported; | 
|  |  | 
|  | afsr_reg = p->pbm_A.controller_regs + SABRE_PIOAFSR; | 
|  | afar_reg = p->pbm_A.controller_regs + SABRE_PIOAFAR; | 
|  |  | 
|  | /* Latch error status. */ | 
|  | afar = sabre_read(afar_reg); | 
|  | afsr = sabre_read(afsr_reg); | 
|  |  | 
|  | /* Clear primary/secondary error status bits. */ | 
|  | error_bits = afsr & | 
|  | (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_PTA | | 
|  | SABRE_PIOAFSR_PRTRY | SABRE_PIOAFSR_PPERR | | 
|  | SABRE_PIOAFSR_SMA | SABRE_PIOAFSR_STA | | 
|  | SABRE_PIOAFSR_SRTRY | SABRE_PIOAFSR_SPERR); | 
|  | if (!error_bits) | 
|  | return sabre_pcierr_intr_other(p); | 
|  | sabre_write(afsr_reg, error_bits); | 
|  |  | 
|  | /* Log the error. */ | 
|  | printk("SABRE%d: PCI Error, primary error type[%s]\n", | 
|  | p->index, | 
|  | (((error_bits & SABRE_PIOAFSR_PMA) ? | 
|  | "Master Abort" : | 
|  | ((error_bits & SABRE_PIOAFSR_PTA) ? | 
|  | "Target Abort" : | 
|  | ((error_bits & SABRE_PIOAFSR_PRTRY) ? | 
|  | "Excessive Retries" : | 
|  | ((error_bits & SABRE_PIOAFSR_PPERR) ? | 
|  | "Parity Error" : "???")))))); | 
|  | printk("SABRE%d: bytemask[%04lx] was_block(%d)\n", | 
|  | p->index, | 
|  | (afsr & SABRE_PIOAFSR_BMSK) >> 32UL, | 
|  | (afsr & SABRE_PIOAFSR_BLK) ? 1 : 0); | 
|  | printk("SABRE%d: PCI AFAR [%016lx]\n", p->index, afar); | 
|  | printk("SABRE%d: PCI Secondary errors [", p->index); | 
|  | reported = 0; | 
|  | if (afsr & SABRE_PIOAFSR_SMA) { | 
|  | reported++; | 
|  | printk("(Master Abort)"); | 
|  | } | 
|  | if (afsr & SABRE_PIOAFSR_STA) { | 
|  | reported++; | 
|  | printk("(Target Abort)"); | 
|  | } | 
|  | if (afsr & SABRE_PIOAFSR_SRTRY) { | 
|  | reported++; | 
|  | printk("(Excessive Retries)"); | 
|  | } | 
|  | if (afsr & SABRE_PIOAFSR_SPERR) { | 
|  | reported++; | 
|  | printk("(Parity Error)"); | 
|  | } | 
|  | if (!reported) | 
|  | printk("(none)"); | 
|  | printk("]\n"); | 
|  |  | 
|  | /* For the error types shown, scan both PCI buses for devices | 
|  | * which have logged that error type. | 
|  | */ | 
|  |  | 
|  | /* If we see a Target Abort, this could be the result of an | 
|  | * IOMMU translation error of some sort.  It is extremely | 
|  | * useful to log this information as usually it indicates | 
|  | * a bug in the IOMMU support code or a PCI device driver. | 
|  | */ | 
|  | if (error_bits & (SABRE_PIOAFSR_PTA | SABRE_PIOAFSR_STA)) { | 
|  | sabre_check_iommu_error(p, afsr, afar); | 
|  | pci_scan_for_target_abort(p, &p->pbm_A, p->pbm_A.pci_bus); | 
|  | pci_scan_for_target_abort(p, &p->pbm_B, p->pbm_B.pci_bus); | 
|  | } | 
|  | if (error_bits & (SABRE_PIOAFSR_PMA | SABRE_PIOAFSR_SMA)) { | 
|  | pci_scan_for_master_abort(p, &p->pbm_A, p->pbm_A.pci_bus); | 
|  | pci_scan_for_master_abort(p, &p->pbm_B, p->pbm_B.pci_bus); | 
|  | } | 
|  | /* For excessive retries, SABRE/PBM will abort the device | 
|  | * and there is no way to specifically check for excessive | 
|  | * retries in the config space status registers.  So what | 
|  | * we hope is that we'll catch it via the master/target | 
|  | * abort events. | 
|  | */ | 
|  |  | 
|  | if (error_bits & (SABRE_PIOAFSR_PPERR | SABRE_PIOAFSR_SPERR)) { | 
|  | pci_scan_for_parity_error(p, &p->pbm_A, p->pbm_A.pci_bus); | 
|  | pci_scan_for_parity_error(p, &p->pbm_B, p->pbm_B.pci_bus); | 
|  | } | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | static void sabre_register_error_handlers(struct pci_controller_info *p) | 
|  | { | 
|  | struct pci_pbm_info *pbm = &p->pbm_A; /* arbitrary */ | 
|  | struct device_node *dp = pbm->prom_node; | 
|  | struct of_device *op; | 
|  | unsigned long base = pbm->controller_regs; | 
|  | u64 tmp; | 
|  |  | 
|  | if (pbm->chip_type == PBM_CHIP_TYPE_SABRE) | 
|  | dp = dp->parent; | 
|  |  | 
|  | op = of_find_device_by_node(dp); | 
|  | if (!op) | 
|  | return; | 
|  |  | 
|  | /* Sabre/Hummingbird IRQ property layout is: | 
|  | * 0: PCI ERR | 
|  | * 1: UE ERR | 
|  | * 2: CE ERR | 
|  | * 3: POWER FAIL | 
|  | */ | 
|  | if (op->num_irqs < 4) | 
|  | return; | 
|  |  | 
|  | /* We clear the error bits in the appropriate AFSR before | 
|  | * registering the handler so that we don't get spurious | 
|  | * interrupts. | 
|  | */ | 
|  | sabre_write(base + SABRE_UE_AFSR, | 
|  | (SABRE_UEAFSR_PDRD | SABRE_UEAFSR_PDWR | | 
|  | SABRE_UEAFSR_SDRD | SABRE_UEAFSR_SDWR | | 
|  | SABRE_UEAFSR_SDTE | SABRE_UEAFSR_PDTE)); | 
|  |  | 
|  | request_irq(op->irqs[1], sabre_ue_intr, IRQF_SHARED, "SABRE UE", p); | 
|  |  | 
|  | sabre_write(base + SABRE_CE_AFSR, | 
|  | (SABRE_CEAFSR_PDRD | SABRE_CEAFSR_PDWR | | 
|  | SABRE_CEAFSR_SDRD | SABRE_CEAFSR_SDWR)); | 
|  |  | 
|  | request_irq(op->irqs[2], sabre_ce_intr, IRQF_SHARED, "SABRE CE", p); | 
|  | request_irq(op->irqs[0], sabre_pcierr_intr, IRQF_SHARED, | 
|  | "SABRE PCIERR", p); | 
|  |  | 
|  | tmp = sabre_read(base + SABRE_PCICTRL); | 
|  | tmp |= SABRE_PCICTRL_ERREN; | 
|  | sabre_write(base + SABRE_PCICTRL, tmp); | 
|  | } | 
|  |  | 
|  | static void sabre_resource_adjust(struct pci_dev *pdev, | 
|  | struct resource *res, | 
|  | struct resource *root) | 
|  | { | 
|  | struct pci_pbm_info *pbm = pdev->bus->sysdata; | 
|  | unsigned long base; | 
|  |  | 
|  | if (res->flags & IORESOURCE_IO) | 
|  | base = pbm->controller_regs + SABRE_IOSPACE; | 
|  | else | 
|  | base = pbm->controller_regs + SABRE_MEMSPACE; | 
|  |  | 
|  | res->start += base; | 
|  | res->end += base; | 
|  | } | 
|  |  | 
|  | static void sabre_base_address_update(struct pci_dev *pdev, int resource) | 
|  | { | 
|  | struct pcidev_cookie *pcp = pdev->sysdata; | 
|  | struct pci_pbm_info *pbm = pcp->pbm; | 
|  | struct resource *res; | 
|  | unsigned long base; | 
|  | u32 reg; | 
|  | int where, size, is_64bit; | 
|  |  | 
|  | res = &pdev->resource[resource]; | 
|  | if (resource < 6) { | 
|  | where = PCI_BASE_ADDRESS_0 + (resource * 4); | 
|  | } else if (resource == PCI_ROM_RESOURCE) { | 
|  | where = pdev->rom_base_reg; | 
|  | } else { | 
|  | /* Somebody might have asked allocation of a non-standard resource */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | is_64bit = 0; | 
|  | if (res->flags & IORESOURCE_IO) | 
|  | base = pbm->controller_regs + SABRE_IOSPACE; | 
|  | else { | 
|  | base = pbm->controller_regs + SABRE_MEMSPACE; | 
|  | if ((res->flags & PCI_BASE_ADDRESS_MEM_TYPE_MASK) | 
|  | == PCI_BASE_ADDRESS_MEM_TYPE_64) | 
|  | is_64bit = 1; | 
|  | } | 
|  |  | 
|  | size = res->end - res->start; | 
|  | pci_read_config_dword(pdev, where, ®); | 
|  | reg = ((reg & size) | | 
|  | (((u32)(res->start - base)) & ~size)); | 
|  | if (resource == PCI_ROM_RESOURCE) { | 
|  | reg |= PCI_ROM_ADDRESS_ENABLE; | 
|  | res->flags |= IORESOURCE_ROM_ENABLE; | 
|  | } | 
|  | pci_write_config_dword(pdev, where, reg); | 
|  |  | 
|  | /* This knows that the upper 32-bits of the address | 
|  | * must be zero.  Our PCI common layer enforces this. | 
|  | */ | 
|  | if (is_64bit) | 
|  | pci_write_config_dword(pdev, where + 4, 0); | 
|  | } | 
|  |  | 
|  | static void apb_init(struct pci_controller_info *p, struct pci_bus *sabre_bus) | 
|  | { | 
|  | struct pci_dev *pdev; | 
|  |  | 
|  | list_for_each_entry(pdev, &sabre_bus->devices, bus_list) { | 
|  |  | 
|  | if (pdev->vendor == PCI_VENDOR_ID_SUN && | 
|  | pdev->device == PCI_DEVICE_ID_SUN_SIMBA) { | 
|  | u32 word32; | 
|  | u16 word16; | 
|  |  | 
|  | sabre_read_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_COMMAND, 2, &word32); | 
|  | word16 = (u16) word32; | 
|  | word16 |= PCI_COMMAND_SERR | PCI_COMMAND_PARITY | | 
|  | PCI_COMMAND_MASTER | PCI_COMMAND_MEMORY | | 
|  | PCI_COMMAND_IO; | 
|  | word32 = (u32) word16; | 
|  | sabre_write_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_COMMAND, 2, word32); | 
|  |  | 
|  | /* Status register bits are "write 1 to clear". */ | 
|  | sabre_write_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_STATUS, 2, 0xffff); | 
|  | sabre_write_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_SEC_STATUS, 2, 0xffff); | 
|  |  | 
|  | /* Use a primary/seconday latency timer value | 
|  | * of 64. | 
|  | */ | 
|  | sabre_write_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_LATENCY_TIMER, 1, 64); | 
|  | sabre_write_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_SEC_LATENCY_TIMER, 1, 64); | 
|  |  | 
|  | /* Enable reporting/forwarding of master aborts, | 
|  | * parity, and SERR. | 
|  | */ | 
|  | sabre_write_pci_cfg(pdev->bus, pdev->devfn, | 
|  | PCI_BRIDGE_CONTROL, 1, | 
|  | (PCI_BRIDGE_CTL_PARITY | | 
|  | PCI_BRIDGE_CTL_SERR | | 
|  | PCI_BRIDGE_CTL_MASTER_ABORT)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static struct pcidev_cookie *alloc_bridge_cookie(struct pci_pbm_info *pbm) | 
|  | { | 
|  | struct pcidev_cookie *cookie = kzalloc(sizeof(*cookie), GFP_KERNEL); | 
|  |  | 
|  | if (!cookie) { | 
|  | prom_printf("SABRE: Critical allocation failure.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | /* All we care about is the PBM. */ | 
|  | cookie->pbm = pbm; | 
|  |  | 
|  | return cookie; | 
|  | } | 
|  |  | 
|  | static void sabre_scan_bus(struct pci_controller_info *p) | 
|  | { | 
|  | static int once; | 
|  | struct pci_bus *sabre_bus, *pbus; | 
|  | struct pci_pbm_info *pbm; | 
|  | struct pcidev_cookie *cookie; | 
|  | int sabres_scanned; | 
|  |  | 
|  | /* The APB bridge speaks to the Sabre host PCI bridge | 
|  | * at 66Mhz, but the front side of APB runs at 33Mhz | 
|  | * for both segments. | 
|  | */ | 
|  | p->pbm_A.is_66mhz_capable = 0; | 
|  | p->pbm_B.is_66mhz_capable = 0; | 
|  |  | 
|  | /* This driver has not been verified to handle | 
|  | * multiple SABREs yet, so trap this. | 
|  | * | 
|  | * Also note that the SABRE host bridge is hardwired | 
|  | * to live at bus 0. | 
|  | */ | 
|  | if (once != 0) { | 
|  | prom_printf("SABRE: Multiple controllers unsupported.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  | once++; | 
|  |  | 
|  | cookie = alloc_bridge_cookie(&p->pbm_A); | 
|  |  | 
|  | sabre_bus = pci_scan_bus(p->pci_first_busno, | 
|  | p->pci_ops, | 
|  | &p->pbm_A); | 
|  | pci_fixup_host_bridge_self(sabre_bus); | 
|  | sabre_bus->self->sysdata = cookie; | 
|  |  | 
|  | sabre_root_bus = sabre_bus; | 
|  |  | 
|  | apb_init(p, sabre_bus); | 
|  |  | 
|  | sabres_scanned = 0; | 
|  |  | 
|  | list_for_each_entry(pbus, &sabre_bus->children, node) { | 
|  |  | 
|  | if (pbus->number == p->pbm_A.pci_first_busno) { | 
|  | pbm = &p->pbm_A; | 
|  | } else if (pbus->number == p->pbm_B.pci_first_busno) { | 
|  | pbm = &p->pbm_B; | 
|  | } else | 
|  | continue; | 
|  |  | 
|  | cookie = alloc_bridge_cookie(pbm); | 
|  | pbus->self->sysdata = cookie; | 
|  |  | 
|  | sabres_scanned++; | 
|  |  | 
|  | pbus->sysdata = pbm; | 
|  | pbm->pci_bus = pbus; | 
|  | pci_fill_in_pbm_cookies(pbus, pbm, pbm->prom_node); | 
|  | pci_record_assignments(pbm, pbus); | 
|  | pci_assign_unassigned(pbm, pbus); | 
|  | pci_fixup_irq(pbm, pbus); | 
|  | pci_determine_66mhz_disposition(pbm, pbus); | 
|  | pci_setup_busmastering(pbm, pbus); | 
|  | } | 
|  |  | 
|  | if (!sabres_scanned) { | 
|  | /* Hummingbird, no APBs. */ | 
|  | pbm = &p->pbm_A; | 
|  | sabre_bus->sysdata = pbm; | 
|  | pbm->pci_bus = sabre_bus; | 
|  | pci_fill_in_pbm_cookies(sabre_bus, pbm, pbm->prom_node); | 
|  | pci_record_assignments(pbm, sabre_bus); | 
|  | pci_assign_unassigned(pbm, sabre_bus); | 
|  | pci_fixup_irq(pbm, sabre_bus); | 
|  | pci_determine_66mhz_disposition(pbm, sabre_bus); | 
|  | pci_setup_busmastering(pbm, sabre_bus); | 
|  | } | 
|  |  | 
|  | sabre_register_error_handlers(p); | 
|  | } | 
|  |  | 
|  | static void sabre_iommu_init(struct pci_controller_info *p, | 
|  | int tsbsize, unsigned long dvma_offset, | 
|  | u32 dma_mask) | 
|  | { | 
|  | struct pci_iommu *iommu = p->pbm_A.iommu; | 
|  | unsigned long i; | 
|  | u64 control; | 
|  |  | 
|  | /* Register addresses. */ | 
|  | iommu->iommu_control  = p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL; | 
|  | iommu->iommu_tsbbase  = p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE; | 
|  | iommu->iommu_flush    = p->pbm_A.controller_regs + SABRE_IOMMU_FLUSH; | 
|  | iommu->write_complete_reg = p->pbm_A.controller_regs + SABRE_WRSYNC; | 
|  | /* Sabre's IOMMU lacks ctx flushing. */ | 
|  | iommu->iommu_ctxflush = 0; | 
|  |  | 
|  | /* Invalidate TLB Entries. */ | 
|  | control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); | 
|  | control |= SABRE_IOMMUCTRL_DENAB; | 
|  | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); | 
|  |  | 
|  | for(i = 0; i < 16; i++) { | 
|  | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TAG + (i * 8UL), 0); | 
|  | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_DATA + (i * 8UL), 0); | 
|  | } | 
|  |  | 
|  | /* Leave diag mode enabled for full-flushing done | 
|  | * in pci_iommu.c | 
|  | */ | 
|  | pci_iommu_table_init(iommu, tsbsize * 1024 * 8, dvma_offset, dma_mask); | 
|  |  | 
|  | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_TSBBASE, | 
|  | __pa(iommu->page_table)); | 
|  |  | 
|  | control = sabre_read(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL); | 
|  | control &= ~(SABRE_IOMMUCTRL_TSBSZ | SABRE_IOMMUCTRL_TBWSZ); | 
|  | control |= SABRE_IOMMUCTRL_ENAB; | 
|  | switch(tsbsize) { | 
|  | case 64: | 
|  | control |= SABRE_IOMMU_TSBSZ_64K; | 
|  | break; | 
|  | case 128: | 
|  | control |= SABRE_IOMMU_TSBSZ_128K; | 
|  | break; | 
|  | default: | 
|  | prom_printf("iommu_init: Illegal TSB size %d\n", tsbsize); | 
|  | prom_halt(); | 
|  | break; | 
|  | } | 
|  | sabre_write(p->pbm_A.controller_regs + SABRE_IOMMU_CONTROL, control); | 
|  | } | 
|  |  | 
|  | static void pbm_register_toplevel_resources(struct pci_controller_info *p, | 
|  | struct pci_pbm_info *pbm) | 
|  | { | 
|  | char *name = pbm->name; | 
|  | unsigned long ibase = p->pbm_A.controller_regs + SABRE_IOSPACE; | 
|  | unsigned long mbase = p->pbm_A.controller_regs + SABRE_MEMSPACE; | 
|  | unsigned int devfn; | 
|  | unsigned long first, last, i; | 
|  | u8 *addr, map; | 
|  |  | 
|  | sprintf(name, "SABRE%d PBM%c", | 
|  | p->index, | 
|  | (pbm == &p->pbm_A ? 'A' : 'B')); | 
|  | pbm->io_space.name = pbm->mem_space.name = name; | 
|  |  | 
|  | devfn = PCI_DEVFN(1, (pbm == &p->pbm_A) ? 0 : 1); | 
|  | addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_IO_ADDRESS_MAP); | 
|  | map = 0; | 
|  | pci_config_read8(addr, &map); | 
|  |  | 
|  | first = 8; | 
|  | last = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | if ((map & (1 << i)) != 0) { | 
|  | if (first > i) | 
|  | first = i; | 
|  | if (last < i) | 
|  | last = i; | 
|  | } | 
|  | } | 
|  | pbm->io_space.start = ibase + (first << 21UL); | 
|  | pbm->io_space.end   = ibase + (last << 21UL) + ((1 << 21UL) - 1); | 
|  | pbm->io_space.flags = IORESOURCE_IO; | 
|  |  | 
|  | addr = sabre_pci_config_mkaddr(pbm, 0, devfn, APB_MEM_ADDRESS_MAP); | 
|  | map = 0; | 
|  | pci_config_read8(addr, &map); | 
|  |  | 
|  | first = 8; | 
|  | last = 0; | 
|  | for (i = 0; i < 8; i++) { | 
|  | if ((map & (1 << i)) != 0) { | 
|  | if (first > i) | 
|  | first = i; | 
|  | if (last < i) | 
|  | last = i; | 
|  | } | 
|  | } | 
|  | pbm->mem_space.start = mbase + (first << 29UL); | 
|  | pbm->mem_space.end   = mbase + (last << 29UL) + ((1 << 29UL) - 1); | 
|  | pbm->mem_space.flags = IORESOURCE_MEM; | 
|  |  | 
|  | if (request_resource(&ioport_resource, &pbm->io_space) < 0) { | 
|  | prom_printf("Cannot register PBM-%c's IO space.\n", | 
|  | (pbm == &p->pbm_A ? 'A' : 'B')); | 
|  | prom_halt(); | 
|  | } | 
|  | if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { | 
|  | prom_printf("Cannot register PBM-%c's MEM space.\n", | 
|  | (pbm == &p->pbm_A ? 'A' : 'B')); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | /* Register legacy regions if this PBM covers that area. */ | 
|  | if (pbm->io_space.start == ibase && | 
|  | pbm->mem_space.start == mbase) | 
|  | pci_register_legacy_regions(&pbm->io_space, | 
|  | &pbm->mem_space); | 
|  | } | 
|  |  | 
|  | static void sabre_pbm_init(struct pci_controller_info *p, struct device_node *dp, u32 dma_begin) | 
|  | { | 
|  | struct pci_pbm_info *pbm; | 
|  | struct device_node *node; | 
|  | struct property *prop; | 
|  | u32 *busrange; | 
|  | int len, simbas_found; | 
|  |  | 
|  | simbas_found = 0; | 
|  | node = dp->child; | 
|  | while (node != NULL) { | 
|  | if (strcmp(node->name, "pci")) | 
|  | goto next_pci; | 
|  |  | 
|  | prop = of_find_property(node, "model", NULL); | 
|  | if (!prop || strncmp(prop->value, "SUNW,simba", prop->length)) | 
|  | goto next_pci; | 
|  |  | 
|  | simbas_found++; | 
|  |  | 
|  | prop = of_find_property(node, "bus-range", NULL); | 
|  | busrange = prop->value; | 
|  | if (busrange[0] == 1) | 
|  | pbm = &p->pbm_B; | 
|  | else | 
|  | pbm = &p->pbm_A; | 
|  |  | 
|  | pbm->name = node->full_name; | 
|  | printk("%s: SABRE PCI Bus Module\n", pbm->name); | 
|  |  | 
|  | pbm->chip_type = PBM_CHIP_TYPE_SABRE; | 
|  | pbm->parent = p; | 
|  | pbm->prom_node = node; | 
|  | pbm->pci_first_slot = 1; | 
|  | pbm->pci_first_busno = busrange[0]; | 
|  | pbm->pci_last_busno = busrange[1]; | 
|  |  | 
|  | prop = of_find_property(node, "ranges", &len); | 
|  | if (prop) { | 
|  | pbm->pbm_ranges = prop->value; | 
|  | pbm->num_pbm_ranges = | 
|  | (len / sizeof(struct linux_prom_pci_ranges)); | 
|  | } else { | 
|  | pbm->num_pbm_ranges = 0; | 
|  | } | 
|  |  | 
|  | prop = of_find_property(node, "interrupt-map", &len); | 
|  | if (prop) { | 
|  | pbm->pbm_intmap = prop->value; | 
|  | pbm->num_pbm_intmap = | 
|  | (len / sizeof(struct linux_prom_pci_intmap)); | 
|  |  | 
|  | prop = of_find_property(node, "interrupt-map-mask", | 
|  | NULL); | 
|  | pbm->pbm_intmask = prop->value; | 
|  | } else { | 
|  | pbm->num_pbm_intmap = 0; | 
|  | } | 
|  |  | 
|  | pbm_register_toplevel_resources(p, pbm); | 
|  |  | 
|  | next_pci: | 
|  | node = node->sibling; | 
|  | } | 
|  | if (simbas_found == 0) { | 
|  | /* No APBs underneath, probably this is a hummingbird | 
|  | * system. | 
|  | */ | 
|  | pbm = &p->pbm_A; | 
|  | pbm->parent = p; | 
|  | pbm->prom_node = dp; | 
|  | pbm->pci_first_busno = p->pci_first_busno; | 
|  | pbm->pci_last_busno = p->pci_last_busno; | 
|  |  | 
|  | prop = of_find_property(dp, "ranges", &len); | 
|  | if (prop) { | 
|  | pbm->pbm_ranges = prop->value; | 
|  | pbm->num_pbm_ranges = | 
|  | (len / sizeof(struct linux_prom_pci_ranges)); | 
|  | } else { | 
|  | pbm->num_pbm_ranges = 0; | 
|  | } | 
|  |  | 
|  | prop = of_find_property(dp, "interrupt-map", &len); | 
|  | if (prop) { | 
|  | pbm->pbm_intmap = prop->value; | 
|  | pbm->num_pbm_intmap = | 
|  | (len / sizeof(struct linux_prom_pci_intmap)); | 
|  |  | 
|  | prop = of_find_property(dp, "interrupt-map-mask", | 
|  | NULL); | 
|  | pbm->pbm_intmask = prop->value; | 
|  | } else { | 
|  | pbm->num_pbm_intmap = 0; | 
|  | } | 
|  |  | 
|  | pbm->name = dp->full_name; | 
|  | printk("%s: SABRE PCI Bus Module\n", pbm->name); | 
|  |  | 
|  | pbm->io_space.name = pbm->mem_space.name = pbm->name; | 
|  |  | 
|  | /* Hack up top-level resources. */ | 
|  | pbm->io_space.start = p->pbm_A.controller_regs + SABRE_IOSPACE; | 
|  | pbm->io_space.end   = pbm->io_space.start + (1UL << 24) - 1UL; | 
|  | pbm->io_space.flags = IORESOURCE_IO; | 
|  |  | 
|  | pbm->mem_space.start = p->pbm_A.controller_regs + SABRE_MEMSPACE; | 
|  | pbm->mem_space.end   = pbm->mem_space.start + (unsigned long)dma_begin - 1UL; | 
|  | pbm->mem_space.flags = IORESOURCE_MEM; | 
|  |  | 
|  | if (request_resource(&ioport_resource, &pbm->io_space) < 0) { | 
|  | prom_printf("Cannot register Hummingbird's IO space.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  | if (request_resource(&iomem_resource, &pbm->mem_space) < 0) { | 
|  | prom_printf("Cannot register Hummingbird's MEM space.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | pci_register_legacy_regions(&pbm->io_space, | 
|  | &pbm->mem_space); | 
|  | } | 
|  | } | 
|  |  | 
|  | void sabre_init(struct device_node *dp, char *model_name) | 
|  | { | 
|  | struct linux_prom64_registers *pr_regs; | 
|  | struct pci_controller_info *p; | 
|  | struct pci_iommu *iommu; | 
|  | struct property *prop; | 
|  | int tsbsize; | 
|  | u32 *busrange; | 
|  | u32 *vdma; | 
|  | u32 upa_portid, dma_mask; | 
|  | u64 clear_irq; | 
|  |  | 
|  | hummingbird_p = 0; | 
|  | if (!strcmp(model_name, "pci108e,a001")) | 
|  | hummingbird_p = 1; | 
|  | else if (!strcmp(model_name, "SUNW,sabre")) { | 
|  | prop = of_find_property(dp, "compatible", NULL); | 
|  | if (prop) { | 
|  | const char *compat = prop->value; | 
|  |  | 
|  | if (!strcmp(compat, "pci108e,a001")) | 
|  | hummingbird_p = 1; | 
|  | } | 
|  | if (!hummingbird_p) { | 
|  | struct device_node *dp; | 
|  |  | 
|  | /* Of course, Sun has to encode things a thousand | 
|  | * different ways, inconsistently. | 
|  | */ | 
|  | cpu_find_by_instance(0, &dp, NULL); | 
|  | if (!strcmp(dp->name, "SUNW,UltraSPARC-IIe")) | 
|  | hummingbird_p = 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | p = kzalloc(sizeof(*p), GFP_ATOMIC); | 
|  | if (!p) { | 
|  | prom_printf("SABRE: Error, kmalloc(pci_controller_info) failed.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | iommu = kzalloc(sizeof(*iommu), GFP_ATOMIC); | 
|  | if (!iommu) { | 
|  | prom_printf("SABRE: Error, kmalloc(pci_iommu) failed.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  | p->pbm_A.iommu = p->pbm_B.iommu = iommu; | 
|  |  | 
|  | upa_portid = 0xff; | 
|  | prop = of_find_property(dp, "upa-portid", NULL); | 
|  | if (prop) | 
|  | upa_portid = *(u32 *) prop->value; | 
|  |  | 
|  | p->next = pci_controller_root; | 
|  | pci_controller_root = p; | 
|  |  | 
|  | p->pbm_A.portid = upa_portid; | 
|  | p->pbm_B.portid = upa_portid; | 
|  | p->index = pci_num_controllers++; | 
|  | p->pbms_same_domain = 1; | 
|  | p->scan_bus = sabre_scan_bus; | 
|  | p->base_address_update = sabre_base_address_update; | 
|  | p->resource_adjust = sabre_resource_adjust; | 
|  | p->pci_ops = &sabre_ops; | 
|  |  | 
|  | /* | 
|  | * Map in SABRE register set and report the presence of this SABRE. | 
|  | */ | 
|  |  | 
|  | prop = of_find_property(dp, "reg", NULL); | 
|  | pr_regs = prop->value; | 
|  |  | 
|  | /* | 
|  | * First REG in property is base of entire SABRE register space. | 
|  | */ | 
|  | p->pbm_A.controller_regs = pr_regs[0].phys_addr; | 
|  | p->pbm_B.controller_regs = pr_regs[0].phys_addr; | 
|  |  | 
|  | /* Clear interrupts */ | 
|  |  | 
|  | /* PCI first */ | 
|  | for (clear_irq = SABRE_ICLR_A_SLOT0; clear_irq < SABRE_ICLR_B_SLOT0 + 0x80; clear_irq += 8) | 
|  | sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); | 
|  |  | 
|  | /* Then OBIO */ | 
|  | for (clear_irq = SABRE_ICLR_SCSI; clear_irq < SABRE_ICLR_SCSI + 0x80; clear_irq += 8) | 
|  | sabre_write(p->pbm_A.controller_regs + clear_irq, 0x0UL); | 
|  |  | 
|  | /* Error interrupts are enabled later after the bus scan. */ | 
|  | sabre_write(p->pbm_A.controller_regs + SABRE_PCICTRL, | 
|  | (SABRE_PCICTRL_MRLEN   | SABRE_PCICTRL_SERR | | 
|  | SABRE_PCICTRL_ARBPARK | SABRE_PCICTRL_AEN)); | 
|  |  | 
|  | /* Now map in PCI config space for entire SABRE. */ | 
|  | p->pbm_A.config_space = p->pbm_B.config_space = | 
|  | (p->pbm_A.controller_regs + SABRE_CONFIGSPACE); | 
|  |  | 
|  | prop = of_find_property(dp, "virtual-dma", NULL); | 
|  | vdma = prop->value; | 
|  |  | 
|  | dma_mask = vdma[0]; | 
|  | switch(vdma[1]) { | 
|  | case 0x20000000: | 
|  | dma_mask |= 0x1fffffff; | 
|  | tsbsize = 64; | 
|  | break; | 
|  | case 0x40000000: | 
|  | dma_mask |= 0x3fffffff; | 
|  | tsbsize = 128; | 
|  | break; | 
|  |  | 
|  | case 0x80000000: | 
|  | dma_mask |= 0x7fffffff; | 
|  | tsbsize = 128; | 
|  | break; | 
|  | default: | 
|  | prom_printf("SABRE: strange virtual-dma size.\n"); | 
|  | prom_halt(); | 
|  | } | 
|  |  | 
|  | sabre_iommu_init(p, tsbsize, vdma[0], dma_mask); | 
|  |  | 
|  | prop = of_find_property(dp, "bus-range", NULL); | 
|  | busrange = prop->value; | 
|  | p->pci_first_busno = busrange[0]; | 
|  | p->pci_last_busno = busrange[1]; | 
|  |  | 
|  | /* | 
|  | * Look for APB underneath. | 
|  | */ | 
|  | sabre_pbm_init(p, dp, vdma[0]); | 
|  | } |