| /* | 
 |  * File:	mca.c | 
 |  * Purpose:	Generic MCA handling layer | 
 |  * | 
 |  * Updated for latest kernel | 
 |  * Copyright (C) 2003 Hewlett-Packard Co | 
 |  *	David Mosberger-Tang <davidm@hpl.hp.com> | 
 |  * | 
 |  * Copyright (C) 2002 Dell Inc. | 
 |  * Copyright (C) Matt Domsch (Matt_Domsch@dell.com) | 
 |  * | 
 |  * Copyright (C) 2002 Intel | 
 |  * Copyright (C) Jenna Hall (jenna.s.hall@intel.com) | 
 |  * | 
 |  * Copyright (C) 2001 Intel | 
 |  * Copyright (C) Fred Lewis (frederick.v.lewis@intel.com) | 
 |  * | 
 |  * Copyright (C) 2000 Intel | 
 |  * Copyright (C) Chuck Fleckenstein (cfleck@co.intel.com) | 
 |  * | 
 |  * Copyright (C) 1999, 2004 Silicon Graphics, Inc. | 
 |  * Copyright (C) Vijay Chander(vijay@engr.sgi.com) | 
 |  * | 
 |  * 03/04/15 D. Mosberger Added INIT backtrace support. | 
 |  * 02/03/25 M. Domsch	GUID cleanups | 
 |  * | 
 |  * 02/01/04 J. Hall	Aligned MCA stack to 16 bytes, added platform vs. CPU | 
 |  *			error flag, set SAL default return values, changed | 
 |  *			error record structure to linked list, added init call | 
 |  *			to sal_get_state_info_size(). | 
 |  * | 
 |  * 01/01/03 F. Lewis    Added setup of CMCI and CPEI IRQs, logging of corrected | 
 |  *                      platform errors, completed code for logging of | 
 |  *                      corrected & uncorrected machine check errors, and | 
 |  *                      updated for conformance with Nov. 2000 revision of the | 
 |  *                      SAL 3.0 spec. | 
 |  * 00/03/29 C. Fleckenstein  Fixed PAL/SAL update issues, began MCA bug fixes, logging issues, | 
 |  *                           added min save state dump, added INIT handler. | 
 |  * | 
 |  * 2003-12-08 Keith Owens <kaos@sgi.com> | 
 |  *            smp_call_function() must not be called from interrupt context (can | 
 |  *            deadlock on tasklist_lock).  Use keventd to call smp_call_function(). | 
 |  * | 
 |  * 2004-02-01 Keith Owens <kaos@sgi.com> | 
 |  *            Avoid deadlock when using printk() for MCA and INIT records. | 
 |  *            Delete all record printing code, moved to salinfo_decode in user space. | 
 |  *            Mark variables and functions static where possible. | 
 |  *            Delete dead variables and functions. | 
 |  *            Reorder to remove the need for forward declarations and to consolidate | 
 |  *            related code. | 
 |  * | 
 |  * 2005-08-12 Keith Owens <kaos@sgi.com> | 
 |  *	      Convert MCA/INIT handlers to use per event stacks and SAL/OS state. | 
 |  * | 
 |  * 2005-10-07 Keith Owens <kaos@sgi.com> | 
 |  *	      Add notify_die() hooks. | 
 |  */ | 
 | #include <linux/types.h> | 
 | #include <linux/init.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/interrupt.h> | 
 | #include <linux/irq.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/timer.h> | 
 | #include <linux/module.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/smp.h> | 
 | #include <linux/workqueue.h> | 
 | #include <linux/cpumask.h> | 
 |  | 
 | #include <asm/delay.h> | 
 | #include <asm/kdebug.h> | 
 | #include <asm/machvec.h> | 
 | #include <asm/meminit.h> | 
 | #include <asm/page.h> | 
 | #include <asm/ptrace.h> | 
 | #include <asm/system.h> | 
 | #include <asm/sal.h> | 
 | #include <asm/mca.h> | 
 |  | 
 | #include <asm/irq.h> | 
 | #include <asm/hw_irq.h> | 
 |  | 
 | #include "mca_drv.h" | 
 | #include "entry.h" | 
 |  | 
 | #if defined(IA64_MCA_DEBUG_INFO) | 
 | # define IA64_MCA_DEBUG(fmt...)	printk(fmt) | 
 | #else | 
 | # define IA64_MCA_DEBUG(fmt...) | 
 | #endif | 
 |  | 
 | /* Used by mca_asm.S */ | 
 | u32				ia64_mca_serialize; | 
 | DEFINE_PER_CPU(u64, ia64_mca_data); /* == __per_cpu_mca[smp_processor_id()] */ | 
 | DEFINE_PER_CPU(u64, ia64_mca_per_cpu_pte); /* PTE to map per-CPU area */ | 
 | DEFINE_PER_CPU(u64, ia64_mca_pal_pte);	    /* PTE to map PAL code */ | 
 | DEFINE_PER_CPU(u64, ia64_mca_pal_base);    /* vaddr PAL code granule */ | 
 |  | 
 | unsigned long __per_cpu_mca[NR_CPUS]; | 
 |  | 
 | /* In mca_asm.S */ | 
 | extern void			ia64_os_init_dispatch_monarch (void); | 
 | extern void			ia64_os_init_dispatch_slave (void); | 
 |  | 
 | static int monarch_cpu = -1; | 
 |  | 
 | static ia64_mc_info_t		ia64_mc_info; | 
 |  | 
 | #define MAX_CPE_POLL_INTERVAL (15*60*HZ) /* 15 minutes */ | 
 | #define MIN_CPE_POLL_INTERVAL (2*60*HZ)  /* 2 minutes */ | 
 | #define CMC_POLL_INTERVAL     (1*60*HZ)  /* 1 minute */ | 
 | #define CPE_HISTORY_LENGTH    5 | 
 | #define CMC_HISTORY_LENGTH    5 | 
 |  | 
 | static struct timer_list cpe_poll_timer; | 
 | static struct timer_list cmc_poll_timer; | 
 | /* | 
 |  * This variable tells whether we are currently in polling mode. | 
 |  * Start with this in the wrong state so we won't play w/ timers | 
 |  * before the system is ready. | 
 |  */ | 
 | static int cmc_polling_enabled = 1; | 
 |  | 
 | /* | 
 |  * Clearing this variable prevents CPE polling from getting activated | 
 |  * in mca_late_init.  Use it if your system doesn't provide a CPEI, | 
 |  * but encounters problems retrieving CPE logs.  This should only be | 
 |  * necessary for debugging. | 
 |  */ | 
 | static int cpe_poll_enabled = 1; | 
 |  | 
 | extern void salinfo_log_wakeup(int type, u8 *buffer, u64 size, int irqsafe); | 
 |  | 
 | static int mca_init __initdata; | 
 |  | 
 |  | 
 | static void inline | 
 | ia64_mca_spin(const char *func) | 
 | { | 
 | 	printk(KERN_EMERG "%s: spinning here, not returning to SAL\n", func); | 
 | 	while (1) | 
 | 		cpu_relax(); | 
 | } | 
 | /* | 
 |  * IA64_MCA log support | 
 |  */ | 
 | #define IA64_MAX_LOGS		2	/* Double-buffering for nested MCAs */ | 
 | #define IA64_MAX_LOG_TYPES      4   /* MCA, INIT, CMC, CPE */ | 
 |  | 
 | typedef struct ia64_state_log_s | 
 | { | 
 | 	spinlock_t	isl_lock; | 
 | 	int		isl_index; | 
 | 	unsigned long	isl_count; | 
 | 	ia64_err_rec_t  *isl_log[IA64_MAX_LOGS]; /* need space to store header + error log */ | 
 | } ia64_state_log_t; | 
 |  | 
 | static ia64_state_log_t ia64_state_log[IA64_MAX_LOG_TYPES]; | 
 |  | 
 | #define IA64_LOG_ALLOCATE(it, size) \ | 
 | 	{ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)] = \ | 
 | 		(ia64_err_rec_t *)alloc_bootmem(size); \ | 
 | 	ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)] = \ | 
 | 		(ia64_err_rec_t *)alloc_bootmem(size);} | 
 | #define IA64_LOG_LOCK_INIT(it) spin_lock_init(&ia64_state_log[it].isl_lock) | 
 | #define IA64_LOG_LOCK(it)      spin_lock_irqsave(&ia64_state_log[it].isl_lock, s) | 
 | #define IA64_LOG_UNLOCK(it)    spin_unlock_irqrestore(&ia64_state_log[it].isl_lock,s) | 
 | #define IA64_LOG_NEXT_INDEX(it)    ia64_state_log[it].isl_index | 
 | #define IA64_LOG_CURR_INDEX(it)    1 - ia64_state_log[it].isl_index | 
 | #define IA64_LOG_INDEX_INC(it) \ | 
 |     {ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index; \ | 
 |     ia64_state_log[it].isl_count++;} | 
 | #define IA64_LOG_INDEX_DEC(it) \ | 
 |     ia64_state_log[it].isl_index = 1 - ia64_state_log[it].isl_index | 
 | #define IA64_LOG_NEXT_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_NEXT_INDEX(it)])) | 
 | #define IA64_LOG_CURR_BUFFER(it)   (void *)((ia64_state_log[it].isl_log[IA64_LOG_CURR_INDEX(it)])) | 
 | #define IA64_LOG_COUNT(it)         ia64_state_log[it].isl_count | 
 |  | 
 | /* | 
 |  * ia64_log_init | 
 |  *	Reset the OS ia64 log buffer | 
 |  * Inputs   :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) | 
 |  * Outputs	:	None | 
 |  */ | 
 | static void __init | 
 | ia64_log_init(int sal_info_type) | 
 | { | 
 | 	u64	max_size = 0; | 
 |  | 
 | 	IA64_LOG_NEXT_INDEX(sal_info_type) = 0; | 
 | 	IA64_LOG_LOCK_INIT(sal_info_type); | 
 |  | 
 | 	// SAL will tell us the maximum size of any error record of this type | 
 | 	max_size = ia64_sal_get_state_info_size(sal_info_type); | 
 | 	if (!max_size) | 
 | 		/* alloc_bootmem() doesn't like zero-sized allocations! */ | 
 | 		return; | 
 |  | 
 | 	// set up OS data structures to hold error info | 
 | 	IA64_LOG_ALLOCATE(sal_info_type, max_size); | 
 | 	memset(IA64_LOG_CURR_BUFFER(sal_info_type), 0, max_size); | 
 | 	memset(IA64_LOG_NEXT_BUFFER(sal_info_type), 0, max_size); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_log_get | 
 |  * | 
 |  *	Get the current MCA log from SAL and copy it into the OS log buffer. | 
 |  * | 
 |  *  Inputs  :   info_type   (SAL_INFO_TYPE_{MCA,INIT,CMC,CPE}) | 
 |  *              irq_safe    whether you can use printk at this point | 
 |  *  Outputs :   size        (total record length) | 
 |  *              *buffer     (ptr to error record) | 
 |  * | 
 |  */ | 
 | static u64 | 
 | ia64_log_get(int sal_info_type, u8 **buffer, int irq_safe) | 
 | { | 
 | 	sal_log_record_header_t     *log_buffer; | 
 | 	u64                         total_len = 0; | 
 | 	int                         s; | 
 |  | 
 | 	IA64_LOG_LOCK(sal_info_type); | 
 |  | 
 | 	/* Get the process state information */ | 
 | 	log_buffer = IA64_LOG_NEXT_BUFFER(sal_info_type); | 
 |  | 
 | 	total_len = ia64_sal_get_state_info(sal_info_type, (u64 *)log_buffer); | 
 |  | 
 | 	if (total_len) { | 
 | 		IA64_LOG_INDEX_INC(sal_info_type); | 
 | 		IA64_LOG_UNLOCK(sal_info_type); | 
 | 		if (irq_safe) { | 
 | 			IA64_MCA_DEBUG("%s: SAL error record type %d retrieved. " | 
 | 				       "Record length = %ld\n", __FUNCTION__, sal_info_type, total_len); | 
 | 		} | 
 | 		*buffer = (u8 *) log_buffer; | 
 | 		return total_len; | 
 | 	} else { | 
 | 		IA64_LOG_UNLOCK(sal_info_type); | 
 | 		return 0; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  *  ia64_mca_log_sal_error_record | 
 |  * | 
 |  *  This function retrieves a specified error record type from SAL | 
 |  *  and wakes up any processes waiting for error records. | 
 |  * | 
 |  *  Inputs  :   sal_info_type   (Type of error record MCA/CMC/CPE) | 
 |  *              FIXME: remove MCA and irq_safe. | 
 |  */ | 
 | static void | 
 | ia64_mca_log_sal_error_record(int sal_info_type) | 
 | { | 
 | 	u8 *buffer; | 
 | 	sal_log_record_header_t *rh; | 
 | 	u64 size; | 
 | 	int irq_safe = sal_info_type != SAL_INFO_TYPE_MCA; | 
 | #ifdef IA64_MCA_DEBUG_INFO | 
 | 	static const char * const rec_name[] = { "MCA", "INIT", "CMC", "CPE" }; | 
 | #endif | 
 |  | 
 | 	size = ia64_log_get(sal_info_type, &buffer, irq_safe); | 
 | 	if (!size) | 
 | 		return; | 
 |  | 
 | 	salinfo_log_wakeup(sal_info_type, buffer, size, irq_safe); | 
 |  | 
 | 	if (irq_safe) | 
 | 		IA64_MCA_DEBUG("CPU %d: SAL log contains %s error record\n", | 
 | 			smp_processor_id(), | 
 | 			sal_info_type < ARRAY_SIZE(rec_name) ? rec_name[sal_info_type] : "UNKNOWN"); | 
 |  | 
 | 	/* Clear logs from corrected errors in case there's no user-level logger */ | 
 | 	rh = (sal_log_record_header_t *)buffer; | 
 | 	if (rh->severity == sal_log_severity_corrected) | 
 | 		ia64_sal_clear_state_info(sal_info_type); | 
 | } | 
 |  | 
 | /* | 
 |  * search_mca_table | 
 |  *  See if the MCA surfaced in an instruction range | 
 |  *  that has been tagged as recoverable. | 
 |  * | 
 |  *  Inputs | 
 |  *	first	First address range to check | 
 |  *	last	Last address range to check | 
 |  *	ip	Instruction pointer, address we are looking for | 
 |  * | 
 |  * Return value: | 
 |  *      1 on Success (in the table)/ 0 on Failure (not in the  table) | 
 |  */ | 
 | int | 
 | search_mca_table (const struct mca_table_entry *first, | 
 |                 const struct mca_table_entry *last, | 
 |                 unsigned long ip) | 
 | { | 
 |         const struct mca_table_entry *curr; | 
 |         u64 curr_start, curr_end; | 
 |  | 
 |         curr = first; | 
 |         while (curr <= last) { | 
 |                 curr_start = (u64) &curr->start_addr + curr->start_addr; | 
 |                 curr_end = (u64) &curr->end_addr + curr->end_addr; | 
 |  | 
 |                 if ((ip >= curr_start) && (ip <= curr_end)) { | 
 |                         return 1; | 
 |                 } | 
 |                 curr++; | 
 |         } | 
 |         return 0; | 
 | } | 
 |  | 
 | /* Given an address, look for it in the mca tables. */ | 
 | int mca_recover_range(unsigned long addr) | 
 | { | 
 | 	extern struct mca_table_entry __start___mca_table[]; | 
 | 	extern struct mca_table_entry __stop___mca_table[]; | 
 |  | 
 | 	return search_mca_table(__start___mca_table, __stop___mca_table-1, addr); | 
 | } | 
 | EXPORT_SYMBOL_GPL(mca_recover_range); | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 |  | 
 | int cpe_vector = -1; | 
 | int ia64_cpe_irq = -1; | 
 |  | 
 | static irqreturn_t | 
 | ia64_mca_cpe_int_handler (int cpe_irq, void *arg, struct pt_regs *ptregs) | 
 | { | 
 | 	static unsigned long	cpe_history[CPE_HISTORY_LENGTH]; | 
 | 	static int		index; | 
 | 	static DEFINE_SPINLOCK(cpe_history_lock); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", | 
 | 		       __FUNCTION__, cpe_irq, smp_processor_id()); | 
 |  | 
 | 	/* SAL spec states this should run w/ interrupts enabled */ | 
 | 	local_irq_enable(); | 
 |  | 
 | 	/* Get the CPE error record and log it */ | 
 | 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CPE); | 
 |  | 
 | 	spin_lock(&cpe_history_lock); | 
 | 	if (!cpe_poll_enabled && cpe_vector >= 0) { | 
 |  | 
 | 		int i, count = 1; /* we know 1 happened now */ | 
 | 		unsigned long now = jiffies; | 
 |  | 
 | 		for (i = 0; i < CPE_HISTORY_LENGTH; i++) { | 
 | 			if (now - cpe_history[i] <= HZ) | 
 | 				count++; | 
 | 		} | 
 |  | 
 | 		IA64_MCA_DEBUG(KERN_INFO "CPE threshold %d/%d\n", count, CPE_HISTORY_LENGTH); | 
 | 		if (count >= CPE_HISTORY_LENGTH) { | 
 |  | 
 | 			cpe_poll_enabled = 1; | 
 | 			spin_unlock(&cpe_history_lock); | 
 | 			disable_irq_nosync(local_vector_to_irq(IA64_CPE_VECTOR)); | 
 |  | 
 | 			/* | 
 | 			 * Corrected errors will still be corrected, but | 
 | 			 * make sure there's a log somewhere that indicates | 
 | 			 * something is generating more than we can handle. | 
 | 			 */ | 
 | 			printk(KERN_WARNING "WARNING: Switching to polling CPE handler; error records may be lost\n"); | 
 |  | 
 | 			mod_timer(&cpe_poll_timer, jiffies + MIN_CPE_POLL_INTERVAL); | 
 |  | 
 | 			/* lock already released, get out now */ | 
 | 			return IRQ_HANDLED; | 
 | 		} else { | 
 | 			cpe_history[index++] = now; | 
 | 			if (index == CPE_HISTORY_LENGTH) | 
 | 				index = 0; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&cpe_history_lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | #endif /* CONFIG_ACPI */ | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | /* | 
 |  * ia64_mca_register_cpev | 
 |  * | 
 |  *  Register the corrected platform error vector with SAL. | 
 |  * | 
 |  *  Inputs | 
 |  *      cpev        Corrected Platform Error Vector number | 
 |  * | 
 |  *  Outputs | 
 |  *      None | 
 |  */ | 
 | static void __init | 
 | ia64_mca_register_cpev (int cpev) | 
 | { | 
 | 	/* Register the CPE interrupt vector with SAL */ | 
 | 	struct ia64_sal_retval isrv; | 
 |  | 
 | 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_CPE_INT, SAL_MC_PARAM_MECHANISM_INT, cpev, 0, 0); | 
 | 	if (isrv.status) { | 
 | 		printk(KERN_ERR "Failed to register Corrected Platform " | 
 | 		       "Error interrupt vector with SAL (status %ld)\n", isrv.status); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: corrected platform error " | 
 | 		       "vector %#x registered\n", __FUNCTION__, cpev); | 
 | } | 
 | #endif /* CONFIG_ACPI */ | 
 |  | 
 | /* | 
 |  * ia64_mca_cmc_vector_setup | 
 |  * | 
 |  *  Setup the corrected machine check vector register in the processor. | 
 |  *  (The interrupt is masked on boot. ia64_mca_late_init unmask this.) | 
 |  *  This function is invoked on a per-processor basis. | 
 |  * | 
 |  * Inputs | 
 |  *      None | 
 |  * | 
 |  * Outputs | 
 |  *	None | 
 |  */ | 
 | void __cpuinit | 
 | ia64_mca_cmc_vector_setup (void) | 
 | { | 
 | 	cmcv_reg_t	cmcv; | 
 |  | 
 | 	cmcv.cmcv_regval	= 0; | 
 | 	cmcv.cmcv_mask		= 1;        /* Mask/disable interrupt at first */ | 
 | 	cmcv.cmcv_vector	= IA64_CMC_VECTOR; | 
 | 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: CPU %d corrected " | 
 | 		       "machine check vector %#x registered.\n", | 
 | 		       __FUNCTION__, smp_processor_id(), IA64_CMC_VECTOR); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: CPU %d CMCV = %#016lx\n", | 
 | 		       __FUNCTION__, smp_processor_id(), ia64_getreg(_IA64_REG_CR_CMCV)); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_cmc_vector_disable | 
 |  * | 
 |  *  Mask the corrected machine check vector register in the processor. | 
 |  *  This function is invoked on a per-processor basis. | 
 |  * | 
 |  * Inputs | 
 |  *      dummy(unused) | 
 |  * | 
 |  * Outputs | 
 |  *	None | 
 |  */ | 
 | static void | 
 | ia64_mca_cmc_vector_disable (void *dummy) | 
 | { | 
 | 	cmcv_reg_t	cmcv; | 
 |  | 
 | 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); | 
 |  | 
 | 	cmcv.cmcv_mask = 1; /* Mask/disable interrupt */ | 
 | 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: CPU %d corrected " | 
 | 		       "machine check vector %#x disabled.\n", | 
 | 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_cmc_vector_enable | 
 |  * | 
 |  *  Unmask the corrected machine check vector register in the processor. | 
 |  *  This function is invoked on a per-processor basis. | 
 |  * | 
 |  * Inputs | 
 |  *      dummy(unused) | 
 |  * | 
 |  * Outputs | 
 |  *	None | 
 |  */ | 
 | static void | 
 | ia64_mca_cmc_vector_enable (void *dummy) | 
 | { | 
 | 	cmcv_reg_t	cmcv; | 
 |  | 
 | 	cmcv.cmcv_regval = ia64_getreg(_IA64_REG_CR_CMCV); | 
 |  | 
 | 	cmcv.cmcv_mask = 0; /* Unmask/enable interrupt */ | 
 | 	ia64_setreg(_IA64_REG_CR_CMCV, cmcv.cmcv_regval); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: CPU %d corrected " | 
 | 		       "machine check vector %#x enabled.\n", | 
 | 		       __FUNCTION__, smp_processor_id(), cmcv.cmcv_vector); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_cmc_vector_disable_keventd | 
 |  * | 
 |  * Called via keventd (smp_call_function() is not safe in interrupt context) to | 
 |  * disable the cmc interrupt vector. | 
 |  */ | 
 | static void | 
 | ia64_mca_cmc_vector_disable_keventd(void *unused) | 
 | { | 
 | 	on_each_cpu(ia64_mca_cmc_vector_disable, NULL, 1, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_cmc_vector_enable_keventd | 
 |  * | 
 |  * Called via keventd (smp_call_function() is not safe in interrupt context) to | 
 |  * enable the cmc interrupt vector. | 
 |  */ | 
 | static void | 
 | ia64_mca_cmc_vector_enable_keventd(void *unused) | 
 | { | 
 | 	on_each_cpu(ia64_mca_cmc_vector_enable, NULL, 1, 0); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_wakeup | 
 |  * | 
 |  *	Send an inter-cpu interrupt to wake-up a particular cpu | 
 |  *	and mark that cpu to be out of rendez. | 
 |  * | 
 |  *  Inputs  :   cpuid | 
 |  *  Outputs :   None | 
 |  */ | 
 | static void | 
 | ia64_mca_wakeup(int cpu) | 
 | { | 
 | 	platform_send_ipi(cpu, IA64_MCA_WAKEUP_VECTOR, IA64_IPI_DM_INT, 0); | 
 | 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_wakeup_all | 
 |  * | 
 |  *	Wakeup all the cpus which have rendez'ed previously. | 
 |  * | 
 |  *  Inputs  :   None | 
 |  *  Outputs :   None | 
 |  */ | 
 | static void | 
 | ia64_mca_wakeup_all(void) | 
 | { | 
 | 	int cpu; | 
 |  | 
 | 	/* Clear the Rendez checkin flag for all cpus */ | 
 | 	for_each_online_cpu(cpu) { | 
 | 		if (ia64_mc_info.imi_rendez_checkin[cpu] == IA64_MCA_RENDEZ_CHECKIN_DONE) | 
 | 			ia64_mca_wakeup(cpu); | 
 | 	} | 
 |  | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_rendez_interrupt_handler | 
 |  * | 
 |  *	This is handler used to put slave processors into spinloop | 
 |  *	while the monarch processor does the mca handling and later | 
 |  *	wake each slave up once the monarch is done. | 
 |  * | 
 |  *  Inputs  :   None | 
 |  *  Outputs :   None | 
 |  */ | 
 | static irqreturn_t | 
 | ia64_mca_rendez_int_handler(int rendez_irq, void *arg, struct pt_regs *regs) | 
 | { | 
 | 	unsigned long flags; | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct ia64_mca_notify_die nd = | 
 | 		{ .sos = NULL, .monarch_cpu = &monarch_cpu }; | 
 |  | 
 | 	/* Mask all interrupts */ | 
 | 	local_irq_save(flags); | 
 | 	if (notify_die(DIE_MCA_RENDZVOUS_ENTER, "MCA", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 |  | 
 | 	ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_DONE; | 
 | 	/* Register with the SAL monarch that the slave has | 
 | 	 * reached SAL | 
 | 	 */ | 
 | 	ia64_sal_mc_rendez(); | 
 |  | 
 | 	if (notify_die(DIE_MCA_RENDZVOUS_PROCESS, "MCA", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 |  | 
 | 	/* Wait for the monarch cpu to exit. */ | 
 | 	while (monarch_cpu != -1) | 
 | 	       cpu_relax();	/* spin until monarch leaves */ | 
 |  | 
 | 	if (notify_die(DIE_MCA_RENDZVOUS_LEAVE, "MCA", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 |  | 
 | 	/* Enable all interrupts */ | 
 | 	local_irq_restore(flags); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_wakeup_int_handler | 
 |  * | 
 |  *	The interrupt handler for processing the inter-cpu interrupt to the | 
 |  *	slave cpu which was spinning in the rendez loop. | 
 |  *	Since this spinning is done by turning off the interrupts and | 
 |  *	polling on the wakeup-interrupt bit in the IRR, there is | 
 |  *	nothing useful to be done in the handler. | 
 |  * | 
 |  *  Inputs  :   wakeup_irq  (Wakeup-interrupt bit) | 
 |  *	arg		(Interrupt handler specific argument) | 
 |  *	ptregs		(Exception frame at the time of the interrupt) | 
 |  *  Outputs :   None | 
 |  * | 
 |  */ | 
 | static irqreturn_t | 
 | ia64_mca_wakeup_int_handler(int wakeup_irq, void *arg, struct pt_regs *ptregs) | 
 | { | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* Function pointer for extra MCA recovery */ | 
 | int (*ia64_mca_ucmc_extension) | 
 | 	(void*,struct ia64_sal_os_state*) | 
 | 	= NULL; | 
 |  | 
 | int | 
 | ia64_reg_MCA_extension(int (*fn)(void *, struct ia64_sal_os_state *)) | 
 | { | 
 | 	if (ia64_mca_ucmc_extension) | 
 | 		return 1; | 
 |  | 
 | 	ia64_mca_ucmc_extension = fn; | 
 | 	return 0; | 
 | } | 
 |  | 
 | void | 
 | ia64_unreg_MCA_extension(void) | 
 | { | 
 | 	if (ia64_mca_ucmc_extension) | 
 | 		ia64_mca_ucmc_extension = NULL; | 
 | } | 
 |  | 
 | EXPORT_SYMBOL(ia64_reg_MCA_extension); | 
 | EXPORT_SYMBOL(ia64_unreg_MCA_extension); | 
 |  | 
 |  | 
 | static inline void | 
 | copy_reg(const u64 *fr, u64 fnat, u64 *tr, u64 *tnat) | 
 | { | 
 | 	u64 fslot, tslot, nat; | 
 | 	*tr = *fr; | 
 | 	fslot = ((unsigned long)fr >> 3) & 63; | 
 | 	tslot = ((unsigned long)tr >> 3) & 63; | 
 | 	*tnat &= ~(1UL << tslot); | 
 | 	nat = (fnat >> fslot) & 1; | 
 | 	*tnat |= (nat << tslot); | 
 | } | 
 |  | 
 | /* Change the comm field on the MCA/INT task to include the pid that | 
 |  * was interrupted, it makes for easier debugging.  If that pid was 0 | 
 |  * (swapper or nested MCA/INIT) then use the start of the previous comm | 
 |  * field suffixed with its cpu. | 
 |  */ | 
 |  | 
 | static void | 
 | ia64_mca_modify_comm(const struct task_struct *previous_current) | 
 | { | 
 | 	char *p, comm[sizeof(current->comm)]; | 
 | 	if (previous_current->pid) | 
 | 		snprintf(comm, sizeof(comm), "%s %d", | 
 | 			current->comm, previous_current->pid); | 
 | 	else { | 
 | 		int l; | 
 | 		if ((p = strchr(previous_current->comm, ' '))) | 
 | 			l = p - previous_current->comm; | 
 | 		else | 
 | 			l = strlen(previous_current->comm); | 
 | 		snprintf(comm, sizeof(comm), "%s %*s %d", | 
 | 			current->comm, l, previous_current->comm, | 
 | 			task_thread_info(previous_current)->cpu); | 
 | 	} | 
 | 	memcpy(current->comm, comm, sizeof(current->comm)); | 
 | } | 
 |  | 
 | /* On entry to this routine, we are running on the per cpu stack, see | 
 |  * mca_asm.h.  The original stack has not been touched by this event.  Some of | 
 |  * the original stack's registers will be in the RBS on this stack.  This stack | 
 |  * also contains a partial pt_regs and switch_stack, the rest of the data is in | 
 |  * PAL minstate. | 
 |  * | 
 |  * The first thing to do is modify the original stack to look like a blocked | 
 |  * task so we can run backtrace on the original task.  Also mark the per cpu | 
 |  * stack as current to ensure that we use the correct task state, it also means | 
 |  * that we can do backtrace on the MCA/INIT handler code itself. | 
 |  */ | 
 |  | 
 | static struct task_struct * | 
 | ia64_mca_modify_original_stack(struct pt_regs *regs, | 
 | 		const struct switch_stack *sw, | 
 | 		struct ia64_sal_os_state *sos, | 
 | 		const char *type) | 
 | { | 
 | 	char *p; | 
 | 	ia64_va va; | 
 | 	extern char ia64_leave_kernel[];	/* Need asm address, not function descriptor */ | 
 | 	const pal_min_state_area_t *ms = sos->pal_min_state; | 
 | 	struct task_struct *previous_current; | 
 | 	struct pt_regs *old_regs; | 
 | 	struct switch_stack *old_sw; | 
 | 	unsigned size = sizeof(struct pt_regs) + | 
 | 			sizeof(struct switch_stack) + 16; | 
 | 	u64 *old_bspstore, *old_bsp; | 
 | 	u64 *new_bspstore, *new_bsp; | 
 | 	u64 old_unat, old_rnat, new_rnat, nat; | 
 | 	u64 slots, loadrs = regs->loadrs; | 
 | 	u64 r12 = ms->pmsa_gr[12-1], r13 = ms->pmsa_gr[13-1]; | 
 | 	u64 ar_bspstore = regs->ar_bspstore; | 
 | 	u64 ar_bsp = regs->ar_bspstore + (loadrs >> 16); | 
 | 	const u64 *bank; | 
 | 	const char *msg; | 
 | 	int cpu = smp_processor_id(); | 
 |  | 
 | 	previous_current = curr_task(cpu); | 
 | 	set_curr_task(cpu, current); | 
 | 	if ((p = strchr(current->comm, ' '))) | 
 | 		*p = '\0'; | 
 |  | 
 | 	/* Best effort attempt to cope with MCA/INIT delivered while in | 
 | 	 * physical mode. | 
 | 	 */ | 
 | 	regs->cr_ipsr = ms->pmsa_ipsr; | 
 | 	if (ia64_psr(regs)->dt == 0) { | 
 | 		va.l = r12; | 
 | 		if (va.f.reg == 0) { | 
 | 			va.f.reg = 7; | 
 | 			r12 = va.l; | 
 | 		} | 
 | 		va.l = r13; | 
 | 		if (va.f.reg == 0) { | 
 | 			va.f.reg = 7; | 
 | 			r13 = va.l; | 
 | 		} | 
 | 	} | 
 | 	if (ia64_psr(regs)->rt == 0) { | 
 | 		va.l = ar_bspstore; | 
 | 		if (va.f.reg == 0) { | 
 | 			va.f.reg = 7; | 
 | 			ar_bspstore = va.l; | 
 | 		} | 
 | 		va.l = ar_bsp; | 
 | 		if (va.f.reg == 0) { | 
 | 			va.f.reg = 7; | 
 | 			ar_bsp = va.l; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* mca_asm.S ia64_old_stack() cannot assume that the dirty registers | 
 | 	 * have been copied to the old stack, the old stack may fail the | 
 | 	 * validation tests below.  So ia64_old_stack() must restore the dirty | 
 | 	 * registers from the new stack.  The old and new bspstore probably | 
 | 	 * have different alignments, so loadrs calculated on the old bsp | 
 | 	 * cannot be used to restore from the new bsp.  Calculate a suitable | 
 | 	 * loadrs for the new stack and save it in the new pt_regs, where | 
 | 	 * ia64_old_stack() can get it. | 
 | 	 */ | 
 | 	old_bspstore = (u64 *)ar_bspstore; | 
 | 	old_bsp = (u64 *)ar_bsp; | 
 | 	slots = ia64_rse_num_regs(old_bspstore, old_bsp); | 
 | 	new_bspstore = (u64 *)((u64)current + IA64_RBS_OFFSET); | 
 | 	new_bsp = ia64_rse_skip_regs(new_bspstore, slots); | 
 | 	regs->loadrs = (new_bsp - new_bspstore) * 8 << 16; | 
 |  | 
 | 	/* Verify the previous stack state before we change it */ | 
 | 	if (user_mode(regs)) { | 
 | 		msg = "occurred in user space"; | 
 | 		/* previous_current is guaranteed to be valid when the task was | 
 | 		 * in user space, so ... | 
 | 		 */ | 
 | 		ia64_mca_modify_comm(previous_current); | 
 | 		goto no_mod; | 
 | 	} | 
 |  | 
 | 	if (!mca_recover_range(ms->pmsa_iip)) { | 
 | 		if (r13 != sos->prev_IA64_KR_CURRENT) { | 
 | 			msg = "inconsistent previous current and r13"; | 
 | 			goto no_mod; | 
 | 		} | 
 | 		if ((r12 - r13) >= KERNEL_STACK_SIZE) { | 
 | 			msg = "inconsistent r12 and r13"; | 
 | 			goto no_mod; | 
 | 		} | 
 | 		if ((ar_bspstore - r13) >= KERNEL_STACK_SIZE) { | 
 | 			msg = "inconsistent ar.bspstore and r13"; | 
 | 			goto no_mod; | 
 | 		} | 
 | 		va.p = old_bspstore; | 
 | 		if (va.f.reg < 5) { | 
 | 			msg = "old_bspstore is in the wrong region"; | 
 | 			goto no_mod; | 
 | 		} | 
 | 		if ((ar_bsp - r13) >= KERNEL_STACK_SIZE) { | 
 | 			msg = "inconsistent ar.bsp and r13"; | 
 | 			goto no_mod; | 
 | 		} | 
 | 		size += (ia64_rse_skip_regs(old_bspstore, slots) - old_bspstore) * 8; | 
 | 		if (ar_bspstore + size > r12) { | 
 | 			msg = "no room for blocked state"; | 
 | 			goto no_mod; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	ia64_mca_modify_comm(previous_current); | 
 |  | 
 | 	/* Make the original task look blocked.  First stack a struct pt_regs, | 
 | 	 * describing the state at the time of interrupt.  mca_asm.S built a | 
 | 	 * partial pt_regs, copy it and fill in the blanks using minstate. | 
 | 	 */ | 
 | 	p = (char *)r12 - sizeof(*regs); | 
 | 	old_regs = (struct pt_regs *)p; | 
 | 	memcpy(old_regs, regs, sizeof(*regs)); | 
 | 	/* If ipsr.ic then use pmsa_{iip,ipsr,ifs}, else use | 
 | 	 * pmsa_{xip,xpsr,xfs} | 
 | 	 */ | 
 | 	if (ia64_psr(regs)->ic) { | 
 | 		old_regs->cr_iip = ms->pmsa_iip; | 
 | 		old_regs->cr_ipsr = ms->pmsa_ipsr; | 
 | 		old_regs->cr_ifs = ms->pmsa_ifs; | 
 | 	} else { | 
 | 		old_regs->cr_iip = ms->pmsa_xip; | 
 | 		old_regs->cr_ipsr = ms->pmsa_xpsr; | 
 | 		old_regs->cr_ifs = ms->pmsa_xfs; | 
 | 	} | 
 | 	old_regs->pr = ms->pmsa_pr; | 
 | 	old_regs->b0 = ms->pmsa_br0; | 
 | 	old_regs->loadrs = loadrs; | 
 | 	old_regs->ar_rsc = ms->pmsa_rsc; | 
 | 	old_unat = old_regs->ar_unat; | 
 | 	copy_reg(&ms->pmsa_gr[1-1], ms->pmsa_nat_bits, &old_regs->r1, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[2-1], ms->pmsa_nat_bits, &old_regs->r2, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[3-1], ms->pmsa_nat_bits, &old_regs->r3, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[8-1], ms->pmsa_nat_bits, &old_regs->r8, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[9-1], ms->pmsa_nat_bits, &old_regs->r9, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[10-1], ms->pmsa_nat_bits, &old_regs->r10, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[11-1], ms->pmsa_nat_bits, &old_regs->r11, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[12-1], ms->pmsa_nat_bits, &old_regs->r12, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[13-1], ms->pmsa_nat_bits, &old_regs->r13, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[14-1], ms->pmsa_nat_bits, &old_regs->r14, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[15-1], ms->pmsa_nat_bits, &old_regs->r15, &old_unat); | 
 | 	if (ia64_psr(old_regs)->bn) | 
 | 		bank = ms->pmsa_bank1_gr; | 
 | 	else | 
 | 		bank = ms->pmsa_bank0_gr; | 
 | 	copy_reg(&bank[16-16], ms->pmsa_nat_bits, &old_regs->r16, &old_unat); | 
 | 	copy_reg(&bank[17-16], ms->pmsa_nat_bits, &old_regs->r17, &old_unat); | 
 | 	copy_reg(&bank[18-16], ms->pmsa_nat_bits, &old_regs->r18, &old_unat); | 
 | 	copy_reg(&bank[19-16], ms->pmsa_nat_bits, &old_regs->r19, &old_unat); | 
 | 	copy_reg(&bank[20-16], ms->pmsa_nat_bits, &old_regs->r20, &old_unat); | 
 | 	copy_reg(&bank[21-16], ms->pmsa_nat_bits, &old_regs->r21, &old_unat); | 
 | 	copy_reg(&bank[22-16], ms->pmsa_nat_bits, &old_regs->r22, &old_unat); | 
 | 	copy_reg(&bank[23-16], ms->pmsa_nat_bits, &old_regs->r23, &old_unat); | 
 | 	copy_reg(&bank[24-16], ms->pmsa_nat_bits, &old_regs->r24, &old_unat); | 
 | 	copy_reg(&bank[25-16], ms->pmsa_nat_bits, &old_regs->r25, &old_unat); | 
 | 	copy_reg(&bank[26-16], ms->pmsa_nat_bits, &old_regs->r26, &old_unat); | 
 | 	copy_reg(&bank[27-16], ms->pmsa_nat_bits, &old_regs->r27, &old_unat); | 
 | 	copy_reg(&bank[28-16], ms->pmsa_nat_bits, &old_regs->r28, &old_unat); | 
 | 	copy_reg(&bank[29-16], ms->pmsa_nat_bits, &old_regs->r29, &old_unat); | 
 | 	copy_reg(&bank[30-16], ms->pmsa_nat_bits, &old_regs->r30, &old_unat); | 
 | 	copy_reg(&bank[31-16], ms->pmsa_nat_bits, &old_regs->r31, &old_unat); | 
 |  | 
 | 	/* Next stack a struct switch_stack.  mca_asm.S built a partial | 
 | 	 * switch_stack, copy it and fill in the blanks using pt_regs and | 
 | 	 * minstate. | 
 | 	 * | 
 | 	 * In the synthesized switch_stack, b0 points to ia64_leave_kernel, | 
 | 	 * ar.pfs is set to 0. | 
 | 	 * | 
 | 	 * unwind.c::unw_unwind() does special processing for interrupt frames. | 
 | 	 * It checks if the PRED_NON_SYSCALL predicate is set, if the predicate | 
 | 	 * is clear then unw_unwind() does _not_ adjust bsp over pt_regs.  Not | 
 | 	 * that this is documented, of course.  Set PRED_NON_SYSCALL in the | 
 | 	 * switch_stack on the original stack so it will unwind correctly when | 
 | 	 * unwind.c reads pt_regs. | 
 | 	 * | 
 | 	 * thread.ksp is updated to point to the synthesized switch_stack. | 
 | 	 */ | 
 | 	p -= sizeof(struct switch_stack); | 
 | 	old_sw = (struct switch_stack *)p; | 
 | 	memcpy(old_sw, sw, sizeof(*sw)); | 
 | 	old_sw->caller_unat = old_unat; | 
 | 	old_sw->ar_fpsr = old_regs->ar_fpsr; | 
 | 	copy_reg(&ms->pmsa_gr[4-1], ms->pmsa_nat_bits, &old_sw->r4, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[5-1], ms->pmsa_nat_bits, &old_sw->r5, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[6-1], ms->pmsa_nat_bits, &old_sw->r6, &old_unat); | 
 | 	copy_reg(&ms->pmsa_gr[7-1], ms->pmsa_nat_bits, &old_sw->r7, &old_unat); | 
 | 	old_sw->b0 = (u64)ia64_leave_kernel; | 
 | 	old_sw->b1 = ms->pmsa_br1; | 
 | 	old_sw->ar_pfs = 0; | 
 | 	old_sw->ar_unat = old_unat; | 
 | 	old_sw->pr = old_regs->pr | (1UL << PRED_NON_SYSCALL); | 
 | 	previous_current->thread.ksp = (u64)p - 16; | 
 |  | 
 | 	/* Finally copy the original stack's registers back to its RBS. | 
 | 	 * Registers from ar.bspstore through ar.bsp at the time of the event | 
 | 	 * are in the current RBS, copy them back to the original stack.  The | 
 | 	 * copy must be done register by register because the original bspstore | 
 | 	 * and the current one have different alignments, so the saved RNAT | 
 | 	 * data occurs at different places. | 
 | 	 * | 
 | 	 * mca_asm does cover, so the old_bsp already includes all registers at | 
 | 	 * the time of MCA/INIT.  It also does flushrs, so all registers before | 
 | 	 * this function have been written to backing store on the MCA/INIT | 
 | 	 * stack. | 
 | 	 */ | 
 | 	new_rnat = ia64_get_rnat(ia64_rse_rnat_addr(new_bspstore)); | 
 | 	old_rnat = regs->ar_rnat; | 
 | 	while (slots--) { | 
 | 		if (ia64_rse_is_rnat_slot(new_bspstore)) { | 
 | 			new_rnat = ia64_get_rnat(new_bspstore++); | 
 | 		} | 
 | 		if (ia64_rse_is_rnat_slot(old_bspstore)) { | 
 | 			*old_bspstore++ = old_rnat; | 
 | 			old_rnat = 0; | 
 | 		} | 
 | 		nat = (new_rnat >> ia64_rse_slot_num(new_bspstore)) & 1UL; | 
 | 		old_rnat &= ~(1UL << ia64_rse_slot_num(old_bspstore)); | 
 | 		old_rnat |= (nat << ia64_rse_slot_num(old_bspstore)); | 
 | 		*old_bspstore++ = *new_bspstore++; | 
 | 	} | 
 | 	old_sw->ar_bspstore = (unsigned long)old_bspstore; | 
 | 	old_sw->ar_rnat = old_rnat; | 
 |  | 
 | 	sos->prev_task = previous_current; | 
 | 	return previous_current; | 
 |  | 
 | no_mod: | 
 | 	printk(KERN_INFO "cpu %d, %s %s, original stack not modified\n", | 
 | 			smp_processor_id(), type, msg); | 
 | 	return previous_current; | 
 | } | 
 |  | 
 | /* The monarch/slave interaction is based on monarch_cpu and requires that all | 
 |  * slaves have entered rendezvous before the monarch leaves.  If any cpu has | 
 |  * not entered rendezvous yet then wait a bit.  The assumption is that any | 
 |  * slave that has not rendezvoused after a reasonable time is never going to do | 
 |  * so.  In this context, slave includes cpus that respond to the MCA rendezvous | 
 |  * interrupt, as well as cpus that receive the INIT slave event. | 
 |  */ | 
 |  | 
 | static void | 
 | ia64_wait_for_slaves(int monarch, const char *type) | 
 | { | 
 | 	int c, wait = 0, missing = 0; | 
 | 	for_each_online_cpu(c) { | 
 | 		if (c == monarch) | 
 | 			continue; | 
 | 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { | 
 | 			udelay(1000);		/* short wait first */ | 
 | 			wait = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!wait) | 
 | 		goto all_in; | 
 | 	for_each_online_cpu(c) { | 
 | 		if (c == monarch) | 
 | 			continue; | 
 | 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) { | 
 | 			udelay(5*1000000);	/* wait 5 seconds for slaves (arbitrary) */ | 
 | 			if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) | 
 | 				missing = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (!missing) | 
 | 		goto all_in; | 
 | 	printk(KERN_INFO "OS %s slave did not rendezvous on cpu", type); | 
 | 	for_each_online_cpu(c) { | 
 | 		if (c == monarch) | 
 | 			continue; | 
 | 		if (ia64_mc_info.imi_rendez_checkin[c] == IA64_MCA_RENDEZ_CHECKIN_NOTDONE) | 
 | 			printk(" %d", c); | 
 | 	} | 
 | 	printk("\n"); | 
 | 	return; | 
 |  | 
 | all_in: | 
 | 	printk(KERN_INFO "All OS %s slaves have reached rendezvous\n", type); | 
 | 	return; | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_handler | 
 |  * | 
 |  *	This is uncorrectable machine check handler called from OS_MCA | 
 |  *	dispatch code which is in turn called from SAL_CHECK(). | 
 |  *	This is the place where the core of OS MCA handling is done. | 
 |  *	Right now the logs are extracted and displayed in a well-defined | 
 |  *	format. This handler code is supposed to be run only on the | 
 |  *	monarch processor. Once the monarch is done with MCA handling | 
 |  *	further MCA logging is enabled by clearing logs. | 
 |  *	Monarch also has the duty of sending wakeup-IPIs to pull the | 
 |  *	slave processors out of rendezvous spinloop. | 
 |  */ | 
 | void | 
 | ia64_mca_handler(struct pt_regs *regs, struct switch_stack *sw, | 
 | 		 struct ia64_sal_os_state *sos) | 
 | { | 
 | 	pal_processor_state_info_t *psp = (pal_processor_state_info_t *) | 
 | 		&sos->proc_state_param; | 
 | 	int recover, cpu = smp_processor_id(); | 
 | 	struct task_struct *previous_current; | 
 | 	struct ia64_mca_notify_die nd = | 
 | 		{ .sos = sos, .monarch_cpu = &monarch_cpu }; | 
 |  | 
 | 	oops_in_progress = 1;	/* FIXME: make printk NMI/MCA/INIT safe */ | 
 | 	console_loglevel = 15;	/* make sure printks make it to console */ | 
 | 	printk(KERN_INFO "Entered OS MCA handler. PSP=%lx cpu=%d monarch=%ld\n", | 
 | 		sos->proc_state_param, cpu, sos->monarch); | 
 |  | 
 | 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "MCA"); | 
 | 	monarch_cpu = cpu; | 
 | 	if (notify_die(DIE_MCA_MONARCH_ENTER, "MCA", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 | 	ia64_wait_for_slaves(cpu, "MCA"); | 
 |  | 
 | 	/* Wakeup all the processors which are spinning in the rendezvous loop. | 
 | 	 * They will leave SAL, then spin in the OS with interrupts disabled | 
 | 	 * until this monarch cpu leaves the MCA handler.  That gets control | 
 | 	 * back to the OS so we can backtrace the other cpus, backtrace when | 
 | 	 * spinning in SAL does not work. | 
 | 	 */ | 
 | 	ia64_mca_wakeup_all(); | 
 | 	if (notify_die(DIE_MCA_MONARCH_PROCESS, "MCA", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 |  | 
 | 	/* Get the MCA error record and log it */ | 
 | 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_MCA); | 
 |  | 
 | 	/* TLB error is only exist in this SAL error record */ | 
 | 	recover = (psp->tc && !(psp->cc || psp->bc || psp->rc || psp->uc)) | 
 | 	/* other error recovery */ | 
 | 	   || (ia64_mca_ucmc_extension | 
 | 		&& ia64_mca_ucmc_extension( | 
 | 			IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA), | 
 | 			sos)); | 
 |  | 
 | 	if (recover) { | 
 | 		sal_log_record_header_t *rh = IA64_LOG_CURR_BUFFER(SAL_INFO_TYPE_MCA); | 
 | 		rh->severity = sal_log_severity_corrected; | 
 | 		ia64_sal_clear_state_info(SAL_INFO_TYPE_MCA); | 
 | 		sos->os_status = IA64_MCA_CORRECTED; | 
 | 	} | 
 | 	if (notify_die(DIE_MCA_MONARCH_LEAVE, "MCA", regs, (long)&nd, 0, recover) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 |  | 
 | 	set_curr_task(cpu, previous_current); | 
 | 	monarch_cpu = -1; | 
 | } | 
 |  | 
 | static DECLARE_WORK(cmc_disable_work, ia64_mca_cmc_vector_disable_keventd, NULL); | 
 | static DECLARE_WORK(cmc_enable_work, ia64_mca_cmc_vector_enable_keventd, NULL); | 
 |  | 
 | /* | 
 |  * ia64_mca_cmc_int_handler | 
 |  * | 
 |  *  This is corrected machine check interrupt handler. | 
 |  *	Right now the logs are extracted and displayed in a well-defined | 
 |  *	format. | 
 |  * | 
 |  * Inputs | 
 |  *      interrupt number | 
 |  *      client data arg ptr | 
 |  *      saved registers ptr | 
 |  * | 
 |  * Outputs | 
 |  *	None | 
 |  */ | 
 | static irqreturn_t | 
 | ia64_mca_cmc_int_handler(int cmc_irq, void *arg, struct pt_regs *ptregs) | 
 | { | 
 | 	static unsigned long	cmc_history[CMC_HISTORY_LENGTH]; | 
 | 	static int		index; | 
 | 	static DEFINE_SPINLOCK(cmc_history_lock); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: received interrupt vector = %#x on CPU %d\n", | 
 | 		       __FUNCTION__, cmc_irq, smp_processor_id()); | 
 |  | 
 | 	/* SAL spec states this should run w/ interrupts enabled */ | 
 | 	local_irq_enable(); | 
 |  | 
 | 	/* Get the CMC error record and log it */ | 
 | 	ia64_mca_log_sal_error_record(SAL_INFO_TYPE_CMC); | 
 |  | 
 | 	spin_lock(&cmc_history_lock); | 
 | 	if (!cmc_polling_enabled) { | 
 | 		int i, count = 1; /* we know 1 happened now */ | 
 | 		unsigned long now = jiffies; | 
 |  | 
 | 		for (i = 0; i < CMC_HISTORY_LENGTH; i++) { | 
 | 			if (now - cmc_history[i] <= HZ) | 
 | 				count++; | 
 | 		} | 
 |  | 
 | 		IA64_MCA_DEBUG(KERN_INFO "CMC threshold %d/%d\n", count, CMC_HISTORY_LENGTH); | 
 | 		if (count >= CMC_HISTORY_LENGTH) { | 
 |  | 
 | 			cmc_polling_enabled = 1; | 
 | 			spin_unlock(&cmc_history_lock); | 
 | 			/* If we're being hit with CMC interrupts, we won't | 
 | 			 * ever execute the schedule_work() below.  Need to | 
 | 			 * disable CMC interrupts on this processor now. | 
 | 			 */ | 
 | 			ia64_mca_cmc_vector_disable(NULL); | 
 | 			schedule_work(&cmc_disable_work); | 
 |  | 
 | 			/* | 
 | 			 * Corrected errors will still be corrected, but | 
 | 			 * make sure there's a log somewhere that indicates | 
 | 			 * something is generating more than we can handle. | 
 | 			 */ | 
 | 			printk(KERN_WARNING "WARNING: Switching to polling CMC handler; error records may be lost\n"); | 
 |  | 
 | 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); | 
 |  | 
 | 			/* lock already released, get out now */ | 
 | 			return IRQ_HANDLED; | 
 | 		} else { | 
 | 			cmc_history[index++] = now; | 
 | 			if (index == CMC_HISTORY_LENGTH) | 
 | 				index = 0; | 
 | 		} | 
 | 	} | 
 | 	spin_unlock(&cmc_history_lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  *  ia64_mca_cmc_int_caller | 
 |  * | 
 |  * 	Triggered by sw interrupt from CMC polling routine.  Calls | 
 |  * 	real interrupt handler and either triggers a sw interrupt | 
 |  * 	on the next cpu or does cleanup at the end. | 
 |  * | 
 |  * Inputs | 
 |  *	interrupt number | 
 |  *	client data arg ptr | 
 |  *	saved registers ptr | 
 |  * Outputs | 
 |  * 	handled | 
 |  */ | 
 | static irqreturn_t | 
 | ia64_mca_cmc_int_caller(int cmc_irq, void *arg, struct pt_regs *ptregs) | 
 | { | 
 | 	static int start_count = -1; | 
 | 	unsigned int cpuid; | 
 |  | 
 | 	cpuid = smp_processor_id(); | 
 |  | 
 | 	/* If first cpu, update count */ | 
 | 	if (start_count == -1) | 
 | 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CMC); | 
 |  | 
 | 	ia64_mca_cmc_int_handler(cmc_irq, arg, ptregs); | 
 |  | 
 | 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); | 
 |  | 
 | 	if (cpuid < NR_CPUS) { | 
 | 		platform_send_ipi(cpuid, IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); | 
 | 	} else { | 
 | 		/* If no log record, switch out of polling mode */ | 
 | 		if (start_count == IA64_LOG_COUNT(SAL_INFO_TYPE_CMC)) { | 
 |  | 
 | 			printk(KERN_WARNING "Returning to interrupt driven CMC handler\n"); | 
 | 			schedule_work(&cmc_enable_work); | 
 | 			cmc_polling_enabled = 0; | 
 |  | 
 | 		} else { | 
 |  | 
 | 			mod_timer(&cmc_poll_timer, jiffies + CMC_POLL_INTERVAL); | 
 | 		} | 
 |  | 
 | 		start_count = -1; | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  *  ia64_mca_cmc_poll | 
 |  * | 
 |  *	Poll for Corrected Machine Checks (CMCs) | 
 |  * | 
 |  * Inputs   :   dummy(unused) | 
 |  * Outputs  :   None | 
 |  * | 
 |  */ | 
 | static void | 
 | ia64_mca_cmc_poll (unsigned long dummy) | 
 | { | 
 | 	/* Trigger a CMC interrupt cascade  */ | 
 | 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CMCP_VECTOR, IA64_IPI_DM_INT, 0); | 
 | } | 
 |  | 
 | /* | 
 |  *  ia64_mca_cpe_int_caller | 
 |  * | 
 |  * 	Triggered by sw interrupt from CPE polling routine.  Calls | 
 |  * 	real interrupt handler and either triggers a sw interrupt | 
 |  * 	on the next cpu or does cleanup at the end. | 
 |  * | 
 |  * Inputs | 
 |  *	interrupt number | 
 |  *	client data arg ptr | 
 |  *	saved registers ptr | 
 |  * Outputs | 
 |  * 	handled | 
 |  */ | 
 | #ifdef CONFIG_ACPI | 
 |  | 
 | static irqreturn_t | 
 | ia64_mca_cpe_int_caller(int cpe_irq, void *arg, struct pt_regs *ptregs) | 
 | { | 
 | 	static int start_count = -1; | 
 | 	static int poll_time = MIN_CPE_POLL_INTERVAL; | 
 | 	unsigned int cpuid; | 
 |  | 
 | 	cpuid = smp_processor_id(); | 
 |  | 
 | 	/* If first cpu, update count */ | 
 | 	if (start_count == -1) | 
 | 		start_count = IA64_LOG_COUNT(SAL_INFO_TYPE_CPE); | 
 |  | 
 | 	ia64_mca_cpe_int_handler(cpe_irq, arg, ptregs); | 
 |  | 
 | 	for (++cpuid ; cpuid < NR_CPUS && !cpu_online(cpuid) ; cpuid++); | 
 |  | 
 | 	if (cpuid < NR_CPUS) { | 
 | 		platform_send_ipi(cpuid, IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); | 
 | 	} else { | 
 | 		/* | 
 | 		 * If a log was recorded, increase our polling frequency, | 
 | 		 * otherwise, backoff or return to interrupt mode. | 
 | 		 */ | 
 | 		if (start_count != IA64_LOG_COUNT(SAL_INFO_TYPE_CPE)) { | 
 | 			poll_time = max(MIN_CPE_POLL_INTERVAL, poll_time / 2); | 
 | 		} else if (cpe_vector < 0) { | 
 | 			poll_time = min(MAX_CPE_POLL_INTERVAL, poll_time * 2); | 
 | 		} else { | 
 | 			poll_time = MIN_CPE_POLL_INTERVAL; | 
 |  | 
 | 			printk(KERN_WARNING "Returning to interrupt driven CPE handler\n"); | 
 | 			enable_irq(local_vector_to_irq(IA64_CPE_VECTOR)); | 
 | 			cpe_poll_enabled = 0; | 
 | 		} | 
 |  | 
 | 		if (cpe_poll_enabled) | 
 | 			mod_timer(&cpe_poll_timer, jiffies + poll_time); | 
 | 		start_count = -1; | 
 | 	} | 
 |  | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  *  ia64_mca_cpe_poll | 
 |  * | 
 |  *	Poll for Corrected Platform Errors (CPEs), trigger interrupt | 
 |  *	on first cpu, from there it will trickle through all the cpus. | 
 |  * | 
 |  * Inputs   :   dummy(unused) | 
 |  * Outputs  :   None | 
 |  * | 
 |  */ | 
 | static void | 
 | ia64_mca_cpe_poll (unsigned long dummy) | 
 | { | 
 | 	/* Trigger a CPE interrupt cascade  */ | 
 | 	platform_send_ipi(first_cpu(cpu_online_map), IA64_CPEP_VECTOR, IA64_IPI_DM_INT, 0); | 
 | } | 
 |  | 
 | #endif /* CONFIG_ACPI */ | 
 |  | 
 | static int | 
 | default_monarch_init_process(struct notifier_block *self, unsigned long val, void *data) | 
 | { | 
 | 	int c; | 
 | 	struct task_struct *g, *t; | 
 | 	if (val != DIE_INIT_MONARCH_PROCESS) | 
 | 		return NOTIFY_DONE; | 
 | 	printk(KERN_ERR "Processes interrupted by INIT -"); | 
 | 	for_each_online_cpu(c) { | 
 | 		struct ia64_sal_os_state *s; | 
 | 		t = __va(__per_cpu_mca[c] + IA64_MCA_CPU_INIT_STACK_OFFSET); | 
 | 		s = (struct ia64_sal_os_state *)((char *)t + MCA_SOS_OFFSET); | 
 | 		g = s->prev_task; | 
 | 		if (g) { | 
 | 			if (g->pid) | 
 | 				printk(" %d", g->pid); | 
 | 			else | 
 | 				printk(" %d (cpu %d task 0x%p)", g->pid, task_cpu(g), g); | 
 | 		} | 
 | 	} | 
 | 	printk("\n\n"); | 
 | 	if (read_trylock(&tasklist_lock)) { | 
 | 		do_each_thread (g, t) { | 
 | 			printk("\nBacktrace of pid %d (%s)\n", t->pid, t->comm); | 
 | 			show_stack(t, NULL); | 
 | 		} while_each_thread (g, t); | 
 | 		read_unlock(&tasklist_lock); | 
 | 	} | 
 | 	return NOTIFY_DONE; | 
 | } | 
 |  | 
 | /* | 
 |  * C portion of the OS INIT handler | 
 |  * | 
 |  * Called from ia64_os_init_dispatch | 
 |  * | 
 |  * Inputs: pointer to pt_regs where processor info was saved.  SAL/OS state for | 
 |  * this event.  This code is used for both monarch and slave INIT events, see | 
 |  * sos->monarch. | 
 |  * | 
 |  * All INIT events switch to the INIT stack and change the previous process to | 
 |  * blocked status.  If one of the INIT events is the monarch then we are | 
 |  * probably processing the nmi button/command.  Use the monarch cpu to dump all | 
 |  * the processes.  The slave INIT events all spin until the monarch cpu | 
 |  * returns.  We can also get INIT slave events for MCA, in which case the MCA | 
 |  * process is the monarch. | 
 |  */ | 
 |  | 
 | void | 
 | ia64_init_handler(struct pt_regs *regs, struct switch_stack *sw, | 
 | 		  struct ia64_sal_os_state *sos) | 
 | { | 
 | 	static atomic_t slaves; | 
 | 	static atomic_t monarchs; | 
 | 	struct task_struct *previous_current; | 
 | 	int cpu = smp_processor_id(); | 
 | 	struct ia64_mca_notify_die nd = | 
 | 		{ .sos = sos, .monarch_cpu = &monarch_cpu }; | 
 |  | 
 | 	oops_in_progress = 1;	/* FIXME: make printk NMI/MCA/INIT safe */ | 
 | 	console_loglevel = 15;	/* make sure printks make it to console */ | 
 |  | 
 | 	(void) notify_die(DIE_INIT_ENTER, "INIT", regs, (long)&nd, 0, 0); | 
 |  | 
 | 	printk(KERN_INFO "Entered OS INIT handler. PSP=%lx cpu=%d monarch=%ld\n", | 
 | 		sos->proc_state_param, cpu, sos->monarch); | 
 | 	salinfo_log_wakeup(SAL_INFO_TYPE_INIT, NULL, 0, 0); | 
 |  | 
 | 	previous_current = ia64_mca_modify_original_stack(regs, sw, sos, "INIT"); | 
 | 	sos->os_status = IA64_INIT_RESUME; | 
 |  | 
 | 	/* FIXME: Workaround for broken proms that drive all INIT events as | 
 | 	 * slaves.  The last slave that enters is promoted to be a monarch. | 
 | 	 * Remove this code in September 2006, that gives platforms a year to | 
 | 	 * fix their proms and get their customers updated. | 
 | 	 */ | 
 | 	if (!sos->monarch && atomic_add_return(1, &slaves) == num_online_cpus()) { | 
 | 		printk(KERN_WARNING "%s: Promoting cpu %d to monarch.\n", | 
 | 		       __FUNCTION__, cpu); | 
 | 		atomic_dec(&slaves); | 
 | 		sos->monarch = 1; | 
 | 	} | 
 |  | 
 | 	/* FIXME: Workaround for broken proms that drive all INIT events as | 
 | 	 * monarchs.  Second and subsequent monarchs are demoted to slaves. | 
 | 	 * Remove this code in September 2006, that gives platforms a year to | 
 | 	 * fix their proms and get their customers updated. | 
 | 	 */ | 
 | 	if (sos->monarch && atomic_add_return(1, &monarchs) > 1) { | 
 | 		printk(KERN_WARNING "%s: Demoting cpu %d to slave.\n", | 
 | 			       __FUNCTION__, cpu); | 
 | 		atomic_dec(&monarchs); | 
 | 		sos->monarch = 0; | 
 | 	} | 
 |  | 
 | 	if (!sos->monarch) { | 
 | 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_INIT; | 
 | 		while (monarch_cpu == -1) | 
 | 		       cpu_relax();	/* spin until monarch enters */ | 
 | 		if (notify_die(DIE_INIT_SLAVE_ENTER, "INIT", regs, (long)&nd, 0, 0) | 
 | 				== NOTIFY_STOP) | 
 | 			ia64_mca_spin(__FUNCTION__); | 
 | 		if (notify_die(DIE_INIT_SLAVE_PROCESS, "INIT", regs, (long)&nd, 0, 0) | 
 | 				== NOTIFY_STOP) | 
 | 			ia64_mca_spin(__FUNCTION__); | 
 | 		while (monarch_cpu != -1) | 
 | 		       cpu_relax();	/* spin until monarch leaves */ | 
 | 		if (notify_die(DIE_INIT_SLAVE_LEAVE, "INIT", regs, (long)&nd, 0, 0) | 
 | 				== NOTIFY_STOP) | 
 | 			ia64_mca_spin(__FUNCTION__); | 
 | 		printk("Slave on cpu %d returning to normal service.\n", cpu); | 
 | 		set_curr_task(cpu, previous_current); | 
 | 		ia64_mc_info.imi_rendez_checkin[cpu] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
 | 		atomic_dec(&slaves); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	monarch_cpu = cpu; | 
 | 	if (notify_die(DIE_INIT_MONARCH_ENTER, "INIT", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 |  | 
 | 	/* | 
 | 	 * Wait for a bit.  On some machines (e.g., HP's zx2000 and zx6000, INIT can be | 
 | 	 * generated via the BMC's command-line interface, but since the console is on the | 
 | 	 * same serial line, the user will need some time to switch out of the BMC before | 
 | 	 * the dump begins. | 
 | 	 */ | 
 | 	printk("Delaying for 5 seconds...\n"); | 
 | 	udelay(5*1000000); | 
 | 	ia64_wait_for_slaves(cpu, "INIT"); | 
 | 	/* If nobody intercepts DIE_INIT_MONARCH_PROCESS then we drop through | 
 | 	 * to default_monarch_init_process() above and just print all the | 
 | 	 * tasks. | 
 | 	 */ | 
 | 	if (notify_die(DIE_INIT_MONARCH_PROCESS, "INIT", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 | 	if (notify_die(DIE_INIT_MONARCH_LEAVE, "INIT", regs, (long)&nd, 0, 0) | 
 | 			== NOTIFY_STOP) | 
 | 		ia64_mca_spin(__FUNCTION__); | 
 | 	printk("\nINIT dump complete.  Monarch on cpu %d returning to normal service.\n", cpu); | 
 | 	atomic_dec(&monarchs); | 
 | 	set_curr_task(cpu, previous_current); | 
 | 	monarch_cpu = -1; | 
 | 	return; | 
 | } | 
 |  | 
 | static int __init | 
 | ia64_mca_disable_cpe_polling(char *str) | 
 | { | 
 | 	cpe_poll_enabled = 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 | __setup("disable_cpe_poll", ia64_mca_disable_cpe_polling); | 
 |  | 
 | static struct irqaction cmci_irqaction = { | 
 | 	.handler =	ia64_mca_cmc_int_handler, | 
 | 	.flags =	IRQF_DISABLED, | 
 | 	.name =		"cmc_hndlr" | 
 | }; | 
 |  | 
 | static struct irqaction cmcp_irqaction = { | 
 | 	.handler =	ia64_mca_cmc_int_caller, | 
 | 	.flags =	IRQF_DISABLED, | 
 | 	.name =		"cmc_poll" | 
 | }; | 
 |  | 
 | static struct irqaction mca_rdzv_irqaction = { | 
 | 	.handler =	ia64_mca_rendez_int_handler, | 
 | 	.flags =	IRQF_DISABLED, | 
 | 	.name =		"mca_rdzv" | 
 | }; | 
 |  | 
 | static struct irqaction mca_wkup_irqaction = { | 
 | 	.handler =	ia64_mca_wakeup_int_handler, | 
 | 	.flags =	IRQF_DISABLED, | 
 | 	.name =		"mca_wkup" | 
 | }; | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | static struct irqaction mca_cpe_irqaction = { | 
 | 	.handler =	ia64_mca_cpe_int_handler, | 
 | 	.flags =	IRQF_DISABLED, | 
 | 	.name =		"cpe_hndlr" | 
 | }; | 
 |  | 
 | static struct irqaction mca_cpep_irqaction = { | 
 | 	.handler =	ia64_mca_cpe_int_caller, | 
 | 	.flags =	IRQF_DISABLED, | 
 | 	.name =		"cpe_poll" | 
 | }; | 
 | #endif /* CONFIG_ACPI */ | 
 |  | 
 | /* Minimal format of the MCA/INIT stacks.  The pseudo processes that run on | 
 |  * these stacks can never sleep, they cannot return from the kernel to user | 
 |  * space, they do not appear in a normal ps listing.  So there is no need to | 
 |  * format most of the fields. | 
 |  */ | 
 |  | 
 | static void __cpuinit | 
 | format_mca_init_stack(void *mca_data, unsigned long offset, | 
 | 		const char *type, int cpu) | 
 | { | 
 | 	struct task_struct *p = (struct task_struct *)((char *)mca_data + offset); | 
 | 	struct thread_info *ti; | 
 | 	memset(p, 0, KERNEL_STACK_SIZE); | 
 | 	ti = task_thread_info(p); | 
 | 	ti->flags = _TIF_MCA_INIT; | 
 | 	ti->preempt_count = 1; | 
 | 	ti->task = p; | 
 | 	ti->cpu = cpu; | 
 | 	p->thread_info = ti; | 
 | 	p->state = TASK_UNINTERRUPTIBLE; | 
 | 	cpu_set(cpu, p->cpus_allowed); | 
 | 	INIT_LIST_HEAD(&p->tasks); | 
 | 	p->parent = p->real_parent = p->group_leader = p; | 
 | 	INIT_LIST_HEAD(&p->children); | 
 | 	INIT_LIST_HEAD(&p->sibling); | 
 | 	strncpy(p->comm, type, sizeof(p->comm)-1); | 
 | } | 
 |  | 
 | /* Do per-CPU MCA-related initialization.  */ | 
 |  | 
 | void __cpuinit | 
 | ia64_mca_cpu_init(void *cpu_data) | 
 | { | 
 | 	void *pal_vaddr; | 
 | 	static int first_time = 1; | 
 |  | 
 | 	if (first_time) { | 
 | 		void *mca_data; | 
 | 		int cpu; | 
 |  | 
 | 		first_time = 0; | 
 | 		mca_data = alloc_bootmem(sizeof(struct ia64_mca_cpu) | 
 | 					 * NR_CPUS + KERNEL_STACK_SIZE); | 
 | 		mca_data = (void *)(((unsigned long)mca_data + | 
 | 					KERNEL_STACK_SIZE - 1) & | 
 | 				(-KERNEL_STACK_SIZE)); | 
 | 		for (cpu = 0; cpu < NR_CPUS; cpu++) { | 
 | 			format_mca_init_stack(mca_data, | 
 | 					offsetof(struct ia64_mca_cpu, mca_stack), | 
 | 					"MCA", cpu); | 
 | 			format_mca_init_stack(mca_data, | 
 | 					offsetof(struct ia64_mca_cpu, init_stack), | 
 | 					"INIT", cpu); | 
 | 			__per_cpu_mca[cpu] = __pa(mca_data); | 
 | 			mca_data += sizeof(struct ia64_mca_cpu); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * The MCA info structure was allocated earlier and its | 
 | 	 * physical address saved in __per_cpu_mca[cpu].  Copy that | 
 | 	 * address * to ia64_mca_data so we can access it as a per-CPU | 
 | 	 * variable. | 
 | 	 */ | 
 | 	__get_cpu_var(ia64_mca_data) = __per_cpu_mca[smp_processor_id()]; | 
 |  | 
 | 	/* | 
 | 	 * Stash away a copy of the PTE needed to map the per-CPU page. | 
 | 	 * We may need it during MCA recovery. | 
 | 	 */ | 
 | 	__get_cpu_var(ia64_mca_per_cpu_pte) = | 
 | 		pte_val(mk_pte_phys(__pa(cpu_data), PAGE_KERNEL)); | 
 |  | 
 | 	/* | 
 | 	 * Also, stash away a copy of the PAL address and the PTE | 
 | 	 * needed to map it. | 
 | 	 */ | 
 | 	pal_vaddr = efi_get_pal_addr(); | 
 | 	if (!pal_vaddr) | 
 | 		return; | 
 | 	__get_cpu_var(ia64_mca_pal_base) = | 
 | 		GRANULEROUNDDOWN((unsigned long) pal_vaddr); | 
 | 	__get_cpu_var(ia64_mca_pal_pte) = pte_val(mk_pte_phys(__pa(pal_vaddr), | 
 | 							      PAGE_KERNEL)); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_init | 
 |  * | 
 |  *  Do all the system level mca specific initialization. | 
 |  * | 
 |  *	1. Register spinloop and wakeup request interrupt vectors | 
 |  * | 
 |  *	2. Register OS_MCA handler entry point | 
 |  * | 
 |  *	3. Register OS_INIT handler entry point | 
 |  * | 
 |  *  4. Initialize MCA/CMC/INIT related log buffers maintained by the OS. | 
 |  * | 
 |  *  Note that this initialization is done very early before some kernel | 
 |  *  services are available. | 
 |  * | 
 |  *  Inputs  :   None | 
 |  * | 
 |  *  Outputs :   None | 
 |  */ | 
 | void __init | 
 | ia64_mca_init(void) | 
 | { | 
 | 	ia64_fptr_t *init_hldlr_ptr_monarch = (ia64_fptr_t *)ia64_os_init_dispatch_monarch; | 
 | 	ia64_fptr_t *init_hldlr_ptr_slave = (ia64_fptr_t *)ia64_os_init_dispatch_slave; | 
 | 	ia64_fptr_t *mca_hldlr_ptr = (ia64_fptr_t *)ia64_os_mca_dispatch; | 
 | 	int i; | 
 | 	s64 rc; | 
 | 	struct ia64_sal_retval isrv; | 
 | 	u64 timeout = IA64_MCA_RENDEZ_TIMEOUT;	/* platform specific */ | 
 | 	static struct notifier_block default_init_monarch_nb = { | 
 | 		.notifier_call = default_monarch_init_process, | 
 | 		.priority = 0/* we need to notified last */ | 
 | 	}; | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: begin\n", __FUNCTION__); | 
 |  | 
 | 	/* Clear the Rendez checkin flag for all cpus */ | 
 | 	for(i = 0 ; i < NR_CPUS; i++) | 
 | 		ia64_mc_info.imi_rendez_checkin[i] = IA64_MCA_RENDEZ_CHECKIN_NOTDONE; | 
 |  | 
 | 	/* | 
 | 	 * Register the rendezvous spinloop and wakeup mechanism with SAL | 
 | 	 */ | 
 |  | 
 | 	/* Register the rendezvous interrupt vector with SAL */ | 
 | 	while (1) { | 
 | 		isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_INT, | 
 | 					      SAL_MC_PARAM_MECHANISM_INT, | 
 | 					      IA64_MCA_RENDEZ_VECTOR, | 
 | 					      timeout, | 
 | 					      SAL_MC_PARAM_RZ_ALWAYS); | 
 | 		rc = isrv.status; | 
 | 		if (rc == 0) | 
 | 			break; | 
 | 		if (rc == -2) { | 
 | 			printk(KERN_INFO "Increasing MCA rendezvous timeout from " | 
 | 				"%ld to %ld milliseconds\n", timeout, isrv.v0); | 
 | 			timeout = isrv.v0; | 
 | 			(void) notify_die(DIE_MCA_NEW_TIMEOUT, "MCA", NULL, timeout, 0, 0); | 
 | 			continue; | 
 | 		} | 
 | 		printk(KERN_ERR "Failed to register rendezvous interrupt " | 
 | 		       "with SAL (status %ld)\n", rc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Register the wakeup interrupt vector with SAL */ | 
 | 	isrv = ia64_sal_mc_set_params(SAL_MC_PARAM_RENDEZ_WAKEUP, | 
 | 				      SAL_MC_PARAM_MECHANISM_INT, | 
 | 				      IA64_MCA_WAKEUP_VECTOR, | 
 | 				      0, 0); | 
 | 	rc = isrv.status; | 
 | 	if (rc) { | 
 | 		printk(KERN_ERR "Failed to register wakeup interrupt with SAL " | 
 | 		       "(status %ld)\n", rc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: registered MCA rendezvous spinloop and wakeup mech.\n", __FUNCTION__); | 
 |  | 
 | 	ia64_mc_info.imi_mca_handler        = ia64_tpa(mca_hldlr_ptr->fp); | 
 | 	/* | 
 | 	 * XXX - disable SAL checksum by setting size to 0; should be | 
 | 	 *	ia64_tpa(ia64_os_mca_dispatch_end) - ia64_tpa(ia64_os_mca_dispatch); | 
 | 	 */ | 
 | 	ia64_mc_info.imi_mca_handler_size	= 0; | 
 |  | 
 | 	/* Register the os mca handler with SAL */ | 
 | 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_MCA, | 
 | 				       ia64_mc_info.imi_mca_handler, | 
 | 				       ia64_tpa(mca_hldlr_ptr->gp), | 
 | 				       ia64_mc_info.imi_mca_handler_size, | 
 | 				       0, 0, 0))) | 
 | 	{ | 
 | 		printk(KERN_ERR "Failed to register OS MCA handler with SAL " | 
 | 		       "(status %ld)\n", rc); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: registered OS MCA handler with SAL at 0x%lx, gp = 0x%lx\n", __FUNCTION__, | 
 | 		       ia64_mc_info.imi_mca_handler, ia64_tpa(mca_hldlr_ptr->gp)); | 
 |  | 
 | 	/* | 
 | 	 * XXX - disable SAL checksum by setting size to 0, should be | 
 | 	 * size of the actual init handler in mca_asm.S. | 
 | 	 */ | 
 | 	ia64_mc_info.imi_monarch_init_handler		= ia64_tpa(init_hldlr_ptr_monarch->fp); | 
 | 	ia64_mc_info.imi_monarch_init_handler_size	= 0; | 
 | 	ia64_mc_info.imi_slave_init_handler		= ia64_tpa(init_hldlr_ptr_slave->fp); | 
 | 	ia64_mc_info.imi_slave_init_handler_size	= 0; | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: OS INIT handler at %lx\n", __FUNCTION__, | 
 | 		       ia64_mc_info.imi_monarch_init_handler); | 
 |  | 
 | 	/* Register the os init handler with SAL */ | 
 | 	if ((rc = ia64_sal_set_vectors(SAL_VECTOR_OS_INIT, | 
 | 				       ia64_mc_info.imi_monarch_init_handler, | 
 | 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)), | 
 | 				       ia64_mc_info.imi_monarch_init_handler_size, | 
 | 				       ia64_mc_info.imi_slave_init_handler, | 
 | 				       ia64_tpa(ia64_getreg(_IA64_REG_GP)), | 
 | 				       ia64_mc_info.imi_slave_init_handler_size))) | 
 | 	{ | 
 | 		printk(KERN_ERR "Failed to register m/s INIT handlers with SAL " | 
 | 		       "(status %ld)\n", rc); | 
 | 		return; | 
 | 	} | 
 | 	if (register_die_notifier(&default_init_monarch_nb)) { | 
 | 		printk(KERN_ERR "Failed to register default monarch INIT process\n"); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: registered OS INIT handler with SAL\n", __FUNCTION__); | 
 |  | 
 | 	/* | 
 | 	 *  Configure the CMCI/P vector and handler. Interrupts for CMC are | 
 | 	 *  per-processor, so AP CMC interrupts are setup in smp_callin() (smpboot.c). | 
 | 	 */ | 
 | 	register_percpu_irq(IA64_CMC_VECTOR, &cmci_irqaction); | 
 | 	register_percpu_irq(IA64_CMCP_VECTOR, &cmcp_irqaction); | 
 | 	ia64_mca_cmc_vector_setup();       /* Setup vector on BSP */ | 
 |  | 
 | 	/* Setup the MCA rendezvous interrupt vector */ | 
 | 	register_percpu_irq(IA64_MCA_RENDEZ_VECTOR, &mca_rdzv_irqaction); | 
 |  | 
 | 	/* Setup the MCA wakeup interrupt vector */ | 
 | 	register_percpu_irq(IA64_MCA_WAKEUP_VECTOR, &mca_wkup_irqaction); | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | 	/* Setup the CPEI/P handler */ | 
 | 	register_percpu_irq(IA64_CPEP_VECTOR, &mca_cpep_irqaction); | 
 | #endif | 
 |  | 
 | 	/* Initialize the areas set aside by the OS to buffer the | 
 | 	 * platform/processor error states for MCA/INIT/CMC | 
 | 	 * handling. | 
 | 	 */ | 
 | 	ia64_log_init(SAL_INFO_TYPE_MCA); | 
 | 	ia64_log_init(SAL_INFO_TYPE_INIT); | 
 | 	ia64_log_init(SAL_INFO_TYPE_CMC); | 
 | 	ia64_log_init(SAL_INFO_TYPE_CPE); | 
 |  | 
 | 	mca_init = 1; | 
 | 	printk(KERN_INFO "MCA related initialization done\n"); | 
 | } | 
 |  | 
 | /* | 
 |  * ia64_mca_late_init | 
 |  * | 
 |  *	Opportunity to setup things that require initialization later | 
 |  *	than ia64_mca_init.  Setup a timer to poll for CPEs if the | 
 |  *	platform doesn't support an interrupt driven mechanism. | 
 |  * | 
 |  *  Inputs  :   None | 
 |  *  Outputs :   Status | 
 |  */ | 
 | static int __init | 
 | ia64_mca_late_init(void) | 
 | { | 
 | 	if (!mca_init) | 
 | 		return 0; | 
 |  | 
 | 	/* Setup the CMCI/P vector and handler */ | 
 | 	init_timer(&cmc_poll_timer); | 
 | 	cmc_poll_timer.function = ia64_mca_cmc_poll; | 
 |  | 
 | 	/* Unmask/enable the vector */ | 
 | 	cmc_polling_enabled = 0; | 
 | 	schedule_work(&cmc_enable_work); | 
 |  | 
 | 	IA64_MCA_DEBUG("%s: CMCI/P setup and enabled.\n", __FUNCTION__); | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | 	/* Setup the CPEI/P vector and handler */ | 
 | 	cpe_vector = acpi_request_vector(ACPI_INTERRUPT_CPEI); | 
 | 	init_timer(&cpe_poll_timer); | 
 | 	cpe_poll_timer.function = ia64_mca_cpe_poll; | 
 |  | 
 | 	{ | 
 | 		irq_desc_t *desc; | 
 | 		unsigned int irq; | 
 |  | 
 | 		if (cpe_vector >= 0) { | 
 | 			/* If platform supports CPEI, enable the irq. */ | 
 | 			cpe_poll_enabled = 0; | 
 | 			for (irq = 0; irq < NR_IRQS; ++irq) | 
 | 				if (irq_to_vector(irq) == cpe_vector) { | 
 | 					desc = irq_desc + irq; | 
 | 					desc->status |= IRQ_PER_CPU; | 
 | 					setup_irq(irq, &mca_cpe_irqaction); | 
 | 					ia64_cpe_irq = irq; | 
 | 				} | 
 | 			ia64_mca_register_cpev(cpe_vector); | 
 | 			IA64_MCA_DEBUG("%s: CPEI/P setup and enabled.\n", __FUNCTION__); | 
 | 		} else { | 
 | 			/* If platform doesn't support CPEI, get the timer going. */ | 
 | 			if (cpe_poll_enabled) { | 
 | 				ia64_mca_cpe_poll(0UL); | 
 | 				IA64_MCA_DEBUG("%s: CPEP setup and enabled.\n", __FUNCTION__); | 
 | 			} | 
 | 		} | 
 | 	} | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | device_initcall(ia64_mca_late_init); |