|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include <linux/stddef.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/bio.h> | 
|  | #include <linux/sysctl.h> | 
|  | #include <linux/proc_fs.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/percpu.h> | 
|  | #include <linux/blkdev.h> | 
|  | #include <linux/hash.h> | 
|  | #include <linux/kthread.h> | 
|  | #include <linux/migrate.h> | 
|  | #include "xfs_linux.h" | 
|  |  | 
|  | STATIC kmem_zone_t *xfs_buf_zone; | 
|  | STATIC kmem_shaker_t xfs_buf_shake; | 
|  | STATIC int xfsbufd(void *); | 
|  | STATIC int xfsbufd_wakeup(int, gfp_t); | 
|  | STATIC void xfs_buf_delwri_queue(xfs_buf_t *, int); | 
|  |  | 
|  | STATIC struct workqueue_struct *xfslogd_workqueue; | 
|  | struct workqueue_struct *xfsdatad_workqueue; | 
|  |  | 
|  | #ifdef XFS_BUF_TRACE | 
|  | void | 
|  | xfs_buf_trace( | 
|  | xfs_buf_t	*bp, | 
|  | char		*id, | 
|  | void		*data, | 
|  | void		*ra) | 
|  | { | 
|  | ktrace_enter(xfs_buf_trace_buf, | 
|  | bp, id, | 
|  | (void *)(unsigned long)bp->b_flags, | 
|  | (void *)(unsigned long)bp->b_hold.counter, | 
|  | (void *)(unsigned long)bp->b_sema.count.counter, | 
|  | (void *)current, | 
|  | data, ra, | 
|  | (void *)(unsigned long)((bp->b_file_offset>>32) & 0xffffffff), | 
|  | (void *)(unsigned long)(bp->b_file_offset & 0xffffffff), | 
|  | (void *)(unsigned long)bp->b_buffer_length, | 
|  | NULL, NULL, NULL, NULL, NULL); | 
|  | } | 
|  | ktrace_t *xfs_buf_trace_buf; | 
|  | #define XFS_BUF_TRACE_SIZE	4096 | 
|  | #define XB_TRACE(bp, id, data)	\ | 
|  | xfs_buf_trace(bp, id, (void *)data, (void *)__builtin_return_address(0)) | 
|  | #else | 
|  | #define XB_TRACE(bp, id, data)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #ifdef XFS_BUF_LOCK_TRACKING | 
|  | # define XB_SET_OWNER(bp)	((bp)->b_last_holder = current->pid) | 
|  | # define XB_CLEAR_OWNER(bp)	((bp)->b_last_holder = -1) | 
|  | # define XB_GET_OWNER(bp)	((bp)->b_last_holder) | 
|  | #else | 
|  | # define XB_SET_OWNER(bp)	do { } while (0) | 
|  | # define XB_CLEAR_OWNER(bp)	do { } while (0) | 
|  | # define XB_GET_OWNER(bp)	do { } while (0) | 
|  | #endif | 
|  |  | 
|  | #define xb_to_gfp(flags) \ | 
|  | ((((flags) & XBF_READ_AHEAD) ? __GFP_NORETRY : \ | 
|  | ((flags) & XBF_DONT_BLOCK) ? GFP_NOFS : GFP_KERNEL) | __GFP_NOWARN) | 
|  |  | 
|  | #define xb_to_km(flags) \ | 
|  | (((flags) & XBF_DONT_BLOCK) ? KM_NOFS : KM_SLEEP) | 
|  |  | 
|  | #define xfs_buf_allocate(flags) \ | 
|  | kmem_zone_alloc(xfs_buf_zone, xb_to_km(flags)) | 
|  | #define xfs_buf_deallocate(bp) \ | 
|  | kmem_zone_free(xfs_buf_zone, (bp)); | 
|  |  | 
|  | /* | 
|  | *	Page Region interfaces. | 
|  | * | 
|  | *	For pages in filesystems where the blocksize is smaller than the | 
|  | *	pagesize, we use the page->private field (long) to hold a bitmap | 
|  | * 	of uptodate regions within the page. | 
|  | * | 
|  | *	Each such region is "bytes per page / bits per long" bytes long. | 
|  | * | 
|  | *	NBPPR == number-of-bytes-per-page-region | 
|  | *	BTOPR == bytes-to-page-region (rounded up) | 
|  | *	BTOPRT == bytes-to-page-region-truncated (rounded down) | 
|  | */ | 
|  | #if (BITS_PER_LONG == 32) | 
|  | #define PRSHIFT		(PAGE_CACHE_SHIFT - 5)	/* (32 == 1<<5) */ | 
|  | #elif (BITS_PER_LONG == 64) | 
|  | #define PRSHIFT		(PAGE_CACHE_SHIFT - 6)	/* (64 == 1<<6) */ | 
|  | #else | 
|  | #error BITS_PER_LONG must be 32 or 64 | 
|  | #endif | 
|  | #define NBPPR		(PAGE_CACHE_SIZE/BITS_PER_LONG) | 
|  | #define BTOPR(b)	(((unsigned int)(b) + (NBPPR - 1)) >> PRSHIFT) | 
|  | #define BTOPRT(b)	(((unsigned int)(b) >> PRSHIFT)) | 
|  |  | 
|  | STATIC unsigned long | 
|  | page_region_mask( | 
|  | size_t		offset, | 
|  | size_t		length) | 
|  | { | 
|  | unsigned long	mask; | 
|  | int		first, final; | 
|  |  | 
|  | first = BTOPR(offset); | 
|  | final = BTOPRT(offset + length - 1); | 
|  | first = min(first, final); | 
|  |  | 
|  | mask = ~0UL; | 
|  | mask <<= BITS_PER_LONG - (final - first); | 
|  | mask >>= BITS_PER_LONG - (final); | 
|  |  | 
|  | ASSERT(offset + length <= PAGE_CACHE_SIZE); | 
|  | ASSERT((final - first) < BITS_PER_LONG && (final - first) >= 0); | 
|  |  | 
|  | return mask; | 
|  | } | 
|  |  | 
|  | STATIC inline void | 
|  | set_page_region( | 
|  | struct page	*page, | 
|  | size_t		offset, | 
|  | size_t		length) | 
|  | { | 
|  | set_page_private(page, | 
|  | page_private(page) | page_region_mask(offset, length)); | 
|  | if (page_private(page) == ~0UL) | 
|  | SetPageUptodate(page); | 
|  | } | 
|  |  | 
|  | STATIC inline int | 
|  | test_page_region( | 
|  | struct page	*page, | 
|  | size_t		offset, | 
|  | size_t		length) | 
|  | { | 
|  | unsigned long	mask = page_region_mask(offset, length); | 
|  |  | 
|  | return (mask && (page_private(page) & mask) == mask); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Mapping of multi-page buffers into contiguous virtual space | 
|  | */ | 
|  |  | 
|  | typedef struct a_list { | 
|  | void		*vm_addr; | 
|  | struct a_list	*next; | 
|  | } a_list_t; | 
|  |  | 
|  | STATIC a_list_t		*as_free_head; | 
|  | STATIC int		as_list_len; | 
|  | STATIC DEFINE_SPINLOCK(as_lock); | 
|  |  | 
|  | /* | 
|  | *	Try to batch vunmaps because they are costly. | 
|  | */ | 
|  | STATIC void | 
|  | free_address( | 
|  | void		*addr) | 
|  | { | 
|  | a_list_t	*aentry; | 
|  |  | 
|  | aentry = kmalloc(sizeof(a_list_t), GFP_NOWAIT); | 
|  | if (likely(aentry)) { | 
|  | spin_lock(&as_lock); | 
|  | aentry->next = as_free_head; | 
|  | aentry->vm_addr = addr; | 
|  | as_free_head = aentry; | 
|  | as_list_len++; | 
|  | spin_unlock(&as_lock); | 
|  | } else { | 
|  | vunmap(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | purge_addresses(void) | 
|  | { | 
|  | a_list_t	*aentry, *old; | 
|  |  | 
|  | if (as_free_head == NULL) | 
|  | return; | 
|  |  | 
|  | spin_lock(&as_lock); | 
|  | aentry = as_free_head; | 
|  | as_free_head = NULL; | 
|  | as_list_len = 0; | 
|  | spin_unlock(&as_lock); | 
|  |  | 
|  | while ((old = aentry) != NULL) { | 
|  | vunmap(aentry->vm_addr); | 
|  | aentry = aentry->next; | 
|  | kfree(old); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Internal xfs_buf_t object manipulation | 
|  | */ | 
|  |  | 
|  | STATIC void | 
|  | _xfs_buf_initialize( | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buftarg_t		*target, | 
|  | xfs_off_t		range_base, | 
|  | size_t			range_length, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | /* | 
|  | * We don't want certain flags to appear in b_flags. | 
|  | */ | 
|  | flags &= ~(XBF_LOCK|XBF_MAPPED|XBF_DONT_BLOCK|XBF_READ_AHEAD); | 
|  |  | 
|  | memset(bp, 0, sizeof(xfs_buf_t)); | 
|  | atomic_set(&bp->b_hold, 1); | 
|  | init_MUTEX_LOCKED(&bp->b_iodonesema); | 
|  | INIT_LIST_HEAD(&bp->b_list); | 
|  | INIT_LIST_HEAD(&bp->b_hash_list); | 
|  | init_MUTEX_LOCKED(&bp->b_sema); /* held, no waiters */ | 
|  | XB_SET_OWNER(bp); | 
|  | bp->b_target = target; | 
|  | bp->b_file_offset = range_base; | 
|  | /* | 
|  | * Set buffer_length and count_desired to the same value initially. | 
|  | * I/O routines should use count_desired, which will be the same in | 
|  | * most cases but may be reset (e.g. XFS recovery). | 
|  | */ | 
|  | bp->b_buffer_length = bp->b_count_desired = range_length; | 
|  | bp->b_flags = flags; | 
|  | bp->b_bn = XFS_BUF_DADDR_NULL; | 
|  | atomic_set(&bp->b_pin_count, 0); | 
|  | init_waitqueue_head(&bp->b_waiters); | 
|  |  | 
|  | XFS_STATS_INC(xb_create); | 
|  | XB_TRACE(bp, "initialize", target); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Allocate a page array capable of holding a specified number | 
|  | *	of pages, and point the page buf at it. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_get_pages( | 
|  | xfs_buf_t		*bp, | 
|  | int			page_count, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | /* Make sure that we have a page list */ | 
|  | if (bp->b_pages == NULL) { | 
|  | bp->b_offset = xfs_buf_poff(bp->b_file_offset); | 
|  | bp->b_page_count = page_count; | 
|  | if (page_count <= XB_PAGES) { | 
|  | bp->b_pages = bp->b_page_array; | 
|  | } else { | 
|  | bp->b_pages = kmem_alloc(sizeof(struct page *) * | 
|  | page_count, xb_to_km(flags)); | 
|  | if (bp->b_pages == NULL) | 
|  | return -ENOMEM; | 
|  | } | 
|  | memset(bp->b_pages, 0, sizeof(struct page *) * page_count); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Frees b_pages if it was allocated. | 
|  | */ | 
|  | STATIC void | 
|  | _xfs_buf_free_pages( | 
|  | xfs_buf_t	*bp) | 
|  | { | 
|  | if (bp->b_pages != bp->b_page_array) { | 
|  | kmem_free(bp->b_pages, | 
|  | bp->b_page_count * sizeof(struct page *)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases the specified buffer. | 
|  | * | 
|  | * 	The modification state of any associated pages is left unchanged. | 
|  | * 	The buffer most not be on any hash - use xfs_buf_rele instead for | 
|  | * 	hashed and refcounted buffers | 
|  | */ | 
|  | void | 
|  | xfs_buf_free( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | XB_TRACE(bp, "free", 0); | 
|  |  | 
|  | ASSERT(list_empty(&bp->b_hash_list)); | 
|  |  | 
|  | if (bp->b_flags & _XBF_PAGE_CACHE) { | 
|  | uint		i; | 
|  |  | 
|  | if ((bp->b_flags & XBF_MAPPED) && (bp->b_page_count > 1)) | 
|  | free_address(bp->b_addr - bp->b_offset); | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) | 
|  | page_cache_release(bp->b_pages[i]); | 
|  | _xfs_buf_free_pages(bp); | 
|  | } else if (bp->b_flags & _XBF_KMEM_ALLOC) { | 
|  | /* | 
|  | * XXX(hch): bp->b_count_desired might be incorrect (see | 
|  | * xfs_buf_associate_memory for details), but fortunately | 
|  | * the Linux version of kmem_free ignores the len argument.. | 
|  | */ | 
|  | kmem_free(bp->b_addr, bp->b_count_desired); | 
|  | _xfs_buf_free_pages(bp); | 
|  | } | 
|  |  | 
|  | xfs_buf_deallocate(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finds all pages for buffer in question and builds it's page list. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_lookup_pages( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | struct address_space	*mapping = bp->b_target->bt_mapping; | 
|  | size_t			blocksize = bp->b_target->bt_bsize; | 
|  | size_t			size = bp->b_count_desired; | 
|  | size_t			nbytes, offset; | 
|  | gfp_t			gfp_mask = xb_to_gfp(flags); | 
|  | unsigned short		page_count, i; | 
|  | pgoff_t			first; | 
|  | xfs_off_t		end; | 
|  | int			error; | 
|  |  | 
|  | end = bp->b_file_offset + bp->b_buffer_length; | 
|  | page_count = xfs_buf_btoc(end) - xfs_buf_btoct(bp->b_file_offset); | 
|  |  | 
|  | error = _xfs_buf_get_pages(bp, page_count, flags); | 
|  | if (unlikely(error)) | 
|  | return error; | 
|  | bp->b_flags |= _XBF_PAGE_CACHE; | 
|  |  | 
|  | offset = bp->b_offset; | 
|  | first = bp->b_file_offset >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) { | 
|  | struct page	*page; | 
|  | uint		retries = 0; | 
|  |  | 
|  | retry: | 
|  | page = find_or_create_page(mapping, first + i, gfp_mask); | 
|  | if (unlikely(page == NULL)) { | 
|  | if (flags & XBF_READ_AHEAD) { | 
|  | bp->b_page_count = i; | 
|  | for (i = 0; i < bp->b_page_count; i++) | 
|  | unlock_page(bp->b_pages[i]); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This could deadlock. | 
|  | * | 
|  | * But until all the XFS lowlevel code is revamped to | 
|  | * handle buffer allocation failures we can't do much. | 
|  | */ | 
|  | if (!(++retries % 100)) | 
|  | printk(KERN_ERR | 
|  | "XFS: possible memory allocation " | 
|  | "deadlock in %s (mode:0x%x)\n", | 
|  | __FUNCTION__, gfp_mask); | 
|  |  | 
|  | XFS_STATS_INC(xb_page_retries); | 
|  | xfsbufd_wakeup(0, gfp_mask); | 
|  | blk_congestion_wait(WRITE, HZ/50); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(xb_page_found); | 
|  |  | 
|  | nbytes = min_t(size_t, size, PAGE_CACHE_SIZE - offset); | 
|  | size -= nbytes; | 
|  |  | 
|  | if (!PageUptodate(page)) { | 
|  | page_count--; | 
|  | if (blocksize >= PAGE_CACHE_SIZE) { | 
|  | if (flags & XBF_READ) | 
|  | bp->b_locked = 1; | 
|  | } else if (!PagePrivate(page)) { | 
|  | if (test_page_region(page, offset, nbytes)) | 
|  | page_count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | bp->b_pages[i] = page; | 
|  | offset = 0; | 
|  | } | 
|  |  | 
|  | if (!bp->b_locked) { | 
|  | for (i = 0; i < bp->b_page_count; i++) | 
|  | unlock_page(bp->b_pages[i]); | 
|  | } | 
|  |  | 
|  | if (page_count == bp->b_page_count) | 
|  | bp->b_flags |= XBF_DONE; | 
|  |  | 
|  | XB_TRACE(bp, "lookup_pages", (long)page_count); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Map buffer into kernel address-space if nessecary. | 
|  | */ | 
|  | STATIC int | 
|  | _xfs_buf_map_pages( | 
|  | xfs_buf_t		*bp, | 
|  | uint			flags) | 
|  | { | 
|  | /* A single page buffer is always mappable */ | 
|  | if (bp->b_page_count == 1) { | 
|  | bp->b_addr = page_address(bp->b_pages[0]) + bp->b_offset; | 
|  | bp->b_flags |= XBF_MAPPED; | 
|  | } else if (flags & XBF_MAPPED) { | 
|  | if (as_list_len > 64) | 
|  | purge_addresses(); | 
|  | bp->b_addr = vmap(bp->b_pages, bp->b_page_count, | 
|  | VM_MAP, PAGE_KERNEL); | 
|  | if (unlikely(bp->b_addr == NULL)) | 
|  | return -ENOMEM; | 
|  | bp->b_addr += bp->b_offset; | 
|  | bp->b_flags |= XBF_MAPPED; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Finding and Reading Buffers | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	Look up, and creates if absent, a lockable buffer for | 
|  | *	a given range of an inode.  The buffer is returned | 
|  | *	locked.	 If other overlapping buffers exist, they are | 
|  | *	released before the new buffer is created and locked, | 
|  | *	which may imply that this call will block until those buffers | 
|  | *	are unlocked.  No I/O is implied by this call. | 
|  | */ | 
|  | xfs_buf_t * | 
|  | _xfs_buf_find( | 
|  | xfs_buftarg_t		*btp,	/* block device target		*/ | 
|  | xfs_off_t		ioff,	/* starting offset of range	*/ | 
|  | size_t			isize,	/* length of range		*/ | 
|  | xfs_buf_flags_t		flags, | 
|  | xfs_buf_t		*new_bp) | 
|  | { | 
|  | xfs_off_t		range_base; | 
|  | size_t			range_length; | 
|  | xfs_bufhash_t		*hash; | 
|  | xfs_buf_t		*bp, *n; | 
|  |  | 
|  | range_base = (ioff << BBSHIFT); | 
|  | range_length = (isize << BBSHIFT); | 
|  |  | 
|  | /* Check for IOs smaller than the sector size / not sector aligned */ | 
|  | ASSERT(!(range_length < (1 << btp->bt_sshift))); | 
|  | ASSERT(!(range_base & (xfs_off_t)btp->bt_smask)); | 
|  |  | 
|  | hash = &btp->bt_hash[hash_long((unsigned long)ioff, btp->bt_hashshift)]; | 
|  |  | 
|  | spin_lock(&hash->bh_lock); | 
|  |  | 
|  | list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) { | 
|  | ASSERT(btp == bp->b_target); | 
|  | if (bp->b_file_offset == range_base && | 
|  | bp->b_buffer_length == range_length) { | 
|  | /* | 
|  | * If we look at something, bring it to the | 
|  | * front of the list for next time. | 
|  | */ | 
|  | atomic_inc(&bp->b_hold); | 
|  | list_move(&bp->b_hash_list, &hash->bh_list); | 
|  | goto found; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* No match found */ | 
|  | if (new_bp) { | 
|  | _xfs_buf_initialize(new_bp, btp, range_base, | 
|  | range_length, flags); | 
|  | new_bp->b_hash = hash; | 
|  | list_add(&new_bp->b_hash_list, &hash->bh_list); | 
|  | } else { | 
|  | XFS_STATS_INC(xb_miss_locked); | 
|  | } | 
|  |  | 
|  | spin_unlock(&hash->bh_lock); | 
|  | return new_bp; | 
|  |  | 
|  | found: | 
|  | spin_unlock(&hash->bh_lock); | 
|  |  | 
|  | /* Attempt to get the semaphore without sleeping, | 
|  | * if this does not work then we need to drop the | 
|  | * spinlock and do a hard attempt on the semaphore. | 
|  | */ | 
|  | if (down_trylock(&bp->b_sema)) { | 
|  | if (!(flags & XBF_TRYLOCK)) { | 
|  | /* wait for buffer ownership */ | 
|  | XB_TRACE(bp, "get_lock", 0); | 
|  | xfs_buf_lock(bp); | 
|  | XFS_STATS_INC(xb_get_locked_waited); | 
|  | } else { | 
|  | /* We asked for a trylock and failed, no need | 
|  | * to look at file offset and length here, we | 
|  | * know that this buffer at least overlaps our | 
|  | * buffer and is locked, therefore our buffer | 
|  | * either does not exist, or is this buffer. | 
|  | */ | 
|  | xfs_buf_rele(bp); | 
|  | XFS_STATS_INC(xb_busy_locked); | 
|  | return NULL; | 
|  | } | 
|  | } else { | 
|  | /* trylock worked */ | 
|  | XB_SET_OWNER(bp); | 
|  | } | 
|  |  | 
|  | if (bp->b_flags & XBF_STALE) { | 
|  | ASSERT((bp->b_flags & _XBF_DELWRI_Q) == 0); | 
|  | bp->b_flags &= XBF_MAPPED; | 
|  | } | 
|  | XB_TRACE(bp, "got_lock", 0); | 
|  | XFS_STATS_INC(xb_get_locked); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Assembles a buffer covering the specified range. | 
|  | *	Storage in memory for all portions of the buffer will be allocated, | 
|  | *	although backing storage may not be. | 
|  | */ | 
|  | xfs_buf_t * | 
|  | xfs_buf_get_flags( | 
|  | xfs_buftarg_t		*target,/* target for buffer		*/ | 
|  | xfs_off_t		ioff,	/* starting offset of range	*/ | 
|  | size_t			isize,	/* length of range		*/ | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | xfs_buf_t		*bp, *new_bp; | 
|  | int			error = 0, i; | 
|  |  | 
|  | new_bp = xfs_buf_allocate(flags); | 
|  | if (unlikely(!new_bp)) | 
|  | return NULL; | 
|  |  | 
|  | bp = _xfs_buf_find(target, ioff, isize, flags, new_bp); | 
|  | if (bp == new_bp) { | 
|  | error = _xfs_buf_lookup_pages(bp, flags); | 
|  | if (error) | 
|  | goto no_buffer; | 
|  | } else { | 
|  | xfs_buf_deallocate(new_bp); | 
|  | if (unlikely(bp == NULL)) | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < bp->b_page_count; i++) | 
|  | mark_page_accessed(bp->b_pages[i]); | 
|  |  | 
|  | if (!(bp->b_flags & XBF_MAPPED)) { | 
|  | error = _xfs_buf_map_pages(bp, flags); | 
|  | if (unlikely(error)) { | 
|  | printk(KERN_WARNING "%s: failed to map pages\n", | 
|  | __FUNCTION__); | 
|  | goto no_buffer; | 
|  | } | 
|  | } | 
|  |  | 
|  | XFS_STATS_INC(xb_get); | 
|  |  | 
|  | /* | 
|  | * Always fill in the block number now, the mapped cases can do | 
|  | * their own overlay of this later. | 
|  | */ | 
|  | bp->b_bn = ioff; | 
|  | bp->b_count_desired = bp->b_buffer_length; | 
|  |  | 
|  | XB_TRACE(bp, "get", (unsigned long)flags); | 
|  | return bp; | 
|  |  | 
|  | no_buffer: | 
|  | if (flags & (XBF_LOCK | XBF_TRYLOCK)) | 
|  | xfs_buf_unlock(bp); | 
|  | xfs_buf_rele(bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_read_flags( | 
|  | xfs_buftarg_t		*target, | 
|  | xfs_off_t		ioff, | 
|  | size_t			isize, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | xfs_buf_t		*bp; | 
|  |  | 
|  | flags |= XBF_READ; | 
|  |  | 
|  | bp = xfs_buf_get_flags(target, ioff, isize, flags); | 
|  | if (bp) { | 
|  | if (!XFS_BUF_ISDONE(bp)) { | 
|  | XB_TRACE(bp, "read", (unsigned long)flags); | 
|  | XFS_STATS_INC(xb_get_read); | 
|  | xfs_buf_iostart(bp, flags); | 
|  | } else if (flags & XBF_ASYNC) { | 
|  | XB_TRACE(bp, "read_async", (unsigned long)flags); | 
|  | /* | 
|  | * Read ahead call which is already satisfied, | 
|  | * drop the buffer | 
|  | */ | 
|  | goto no_buffer; | 
|  | } else { | 
|  | XB_TRACE(bp, "read_done", (unsigned long)flags); | 
|  | /* We do not want read in the flags */ | 
|  | bp->b_flags &= ~XBF_READ; | 
|  | } | 
|  | } | 
|  |  | 
|  | return bp; | 
|  |  | 
|  | no_buffer: | 
|  | if (flags & (XBF_LOCK | XBF_TRYLOCK)) | 
|  | xfs_buf_unlock(bp); | 
|  | xfs_buf_rele(bp); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	If we are not low on memory then do the readahead in a deadlock | 
|  | *	safe manner. | 
|  | */ | 
|  | void | 
|  | xfs_buf_readahead( | 
|  | xfs_buftarg_t		*target, | 
|  | xfs_off_t		ioff, | 
|  | size_t			isize, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | struct backing_dev_info *bdi; | 
|  |  | 
|  | bdi = target->bt_mapping->backing_dev_info; | 
|  | if (bdi_read_congested(bdi)) | 
|  | return; | 
|  |  | 
|  | flags |= (XBF_TRYLOCK|XBF_ASYNC|XBF_READ_AHEAD); | 
|  | xfs_buf_read_flags(target, ioff, isize, flags); | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_get_empty( | 
|  | size_t			len, | 
|  | xfs_buftarg_t		*target) | 
|  | { | 
|  | xfs_buf_t		*bp; | 
|  |  | 
|  | bp = xfs_buf_allocate(0); | 
|  | if (bp) | 
|  | _xfs_buf_initialize(bp, target, 0, len, 0); | 
|  | return bp; | 
|  | } | 
|  |  | 
|  | static inline struct page * | 
|  | mem_to_page( | 
|  | void			*addr) | 
|  | { | 
|  | if (((unsigned long)addr < VMALLOC_START) || | 
|  | ((unsigned long)addr >= VMALLOC_END)) { | 
|  | return virt_to_page(addr); | 
|  | } else { | 
|  | return vmalloc_to_page(addr); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_associate_memory( | 
|  | xfs_buf_t		*bp, | 
|  | void			*mem, | 
|  | size_t			len) | 
|  | { | 
|  | int			rval; | 
|  | int			i = 0; | 
|  | size_t			ptr; | 
|  | size_t			end, end_cur; | 
|  | off_t			offset; | 
|  | int			page_count; | 
|  |  | 
|  | page_count = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT; | 
|  | offset = (off_t) mem - ((off_t)mem & PAGE_CACHE_MASK); | 
|  | if (offset && (len > PAGE_CACHE_SIZE)) | 
|  | page_count++; | 
|  |  | 
|  | /* Free any previous set of page pointers */ | 
|  | if (bp->b_pages) | 
|  | _xfs_buf_free_pages(bp); | 
|  |  | 
|  | bp->b_pages = NULL; | 
|  | bp->b_addr = mem; | 
|  |  | 
|  | rval = _xfs_buf_get_pages(bp, page_count, 0); | 
|  | if (rval) | 
|  | return rval; | 
|  |  | 
|  | bp->b_offset = offset; | 
|  | ptr = (size_t) mem & PAGE_CACHE_MASK; | 
|  | end = PAGE_CACHE_ALIGN((size_t) mem + len); | 
|  | end_cur = end; | 
|  | /* set up first page */ | 
|  | bp->b_pages[0] = mem_to_page(mem); | 
|  |  | 
|  | ptr += PAGE_CACHE_SIZE; | 
|  | bp->b_page_count = ++i; | 
|  | while (ptr < end) { | 
|  | bp->b_pages[i] = mem_to_page((void *)ptr); | 
|  | bp->b_page_count = ++i; | 
|  | ptr += PAGE_CACHE_SIZE; | 
|  | } | 
|  | bp->b_locked = 0; | 
|  |  | 
|  | bp->b_count_desired = bp->b_buffer_length = len; | 
|  | bp->b_flags |= XBF_MAPPED; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | xfs_buf_t * | 
|  | xfs_buf_get_noaddr( | 
|  | size_t			len, | 
|  | xfs_buftarg_t		*target) | 
|  | { | 
|  | size_t			malloc_len = len; | 
|  | xfs_buf_t		*bp; | 
|  | void			*data; | 
|  | int			error; | 
|  |  | 
|  | bp = xfs_buf_allocate(0); | 
|  | if (unlikely(bp == NULL)) | 
|  | goto fail; | 
|  | _xfs_buf_initialize(bp, target, 0, len, 0); | 
|  |  | 
|  | try_again: | 
|  | data = kmem_alloc(malloc_len, KM_SLEEP | KM_MAYFAIL); | 
|  | if (unlikely(data == NULL)) | 
|  | goto fail_free_buf; | 
|  |  | 
|  | /* check whether alignment matches.. */ | 
|  | if ((__psunsigned_t)data != | 
|  | ((__psunsigned_t)data & ~target->bt_smask)) { | 
|  | /* .. else double the size and try again */ | 
|  | kmem_free(data, malloc_len); | 
|  | malloc_len <<= 1; | 
|  | goto try_again; | 
|  | } | 
|  |  | 
|  | error = xfs_buf_associate_memory(bp, data, len); | 
|  | if (error) | 
|  | goto fail_free_mem; | 
|  | bp->b_flags |= _XBF_KMEM_ALLOC; | 
|  |  | 
|  | xfs_buf_unlock(bp); | 
|  |  | 
|  | XB_TRACE(bp, "no_daddr", data); | 
|  | return bp; | 
|  | fail_free_mem: | 
|  | kmem_free(data, malloc_len); | 
|  | fail_free_buf: | 
|  | xfs_buf_free(bp); | 
|  | fail: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Increment reference count on buffer, to hold the buffer concurrently | 
|  | *	with another thread which may release (free) the buffer asynchronously. | 
|  | *	Must hold the buffer already to call this function. | 
|  | */ | 
|  | void | 
|  | xfs_buf_hold( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | atomic_inc(&bp->b_hold); | 
|  | XB_TRACE(bp, "hold", 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases a hold on the specified buffer.  If the | 
|  | *	the hold count is 1, calls xfs_buf_free. | 
|  | */ | 
|  | void | 
|  | xfs_buf_rele( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | xfs_bufhash_t		*hash = bp->b_hash; | 
|  |  | 
|  | XB_TRACE(bp, "rele", bp->b_relse); | 
|  |  | 
|  | if (unlikely(!hash)) { | 
|  | ASSERT(!bp->b_relse); | 
|  | if (atomic_dec_and_test(&bp->b_hold)) | 
|  | xfs_buf_free(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (atomic_dec_and_lock(&bp->b_hold, &hash->bh_lock)) { | 
|  | if (bp->b_relse) { | 
|  | atomic_inc(&bp->b_hold); | 
|  | spin_unlock(&hash->bh_lock); | 
|  | (*(bp->b_relse)) (bp); | 
|  | } else if (bp->b_flags & XBF_FS_MANAGED) { | 
|  | spin_unlock(&hash->bh_lock); | 
|  | } else { | 
|  | ASSERT(!(bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q))); | 
|  | list_del_init(&bp->b_hash_list); | 
|  | spin_unlock(&hash->bh_lock); | 
|  | xfs_buf_free(bp); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Catch reference count leaks | 
|  | */ | 
|  | ASSERT(atomic_read(&bp->b_hold) >= 0); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Mutual exclusion on buffers.  Locking model: | 
|  | * | 
|  | *	Buffers associated with inodes for which buffer locking | 
|  | *	is not enabled are not protected by semaphores, and are | 
|  | *	assumed to be exclusively owned by the caller.  There is a | 
|  | *	spinlock in the buffer, used by the caller when concurrent | 
|  | *	access is possible. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	Locks a buffer object, if it is not already locked. | 
|  | *	Note that this in no way locks the underlying pages, so it is only | 
|  | *	useful for synchronizing concurrent use of buffer objects, not for | 
|  | *	synchronizing independent access to the underlying pages. | 
|  | */ | 
|  | int | 
|  | xfs_buf_cond_lock( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | int			locked; | 
|  |  | 
|  | locked = down_trylock(&bp->b_sema) == 0; | 
|  | if (locked) { | 
|  | XB_SET_OWNER(bp); | 
|  | } | 
|  | XB_TRACE(bp, "cond_lock", (long)locked); | 
|  | return locked ? 0 : -EBUSY; | 
|  | } | 
|  |  | 
|  | #if defined(DEBUG) || defined(XFS_BLI_TRACE) | 
|  | int | 
|  | xfs_buf_lock_value( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | return atomic_read(&bp->b_sema.count); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | /* | 
|  | *	Locks a buffer object. | 
|  | *	Note that this in no way locks the underlying pages, so it is only | 
|  | *	useful for synchronizing concurrent use of buffer objects, not for | 
|  | *	synchronizing independent access to the underlying pages. | 
|  | */ | 
|  | void | 
|  | xfs_buf_lock( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | XB_TRACE(bp, "lock", 0); | 
|  | if (atomic_read(&bp->b_io_remaining)) | 
|  | blk_run_address_space(bp->b_target->bt_mapping); | 
|  | down(&bp->b_sema); | 
|  | XB_SET_OWNER(bp); | 
|  | XB_TRACE(bp, "locked", 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Releases the lock on the buffer object. | 
|  | *	If the buffer is marked delwri but is not queued, do so before we | 
|  | *	unlock the buffer as we need to set flags correctly.  We also need to | 
|  | *	take a reference for the delwri queue because the unlocker is going to | 
|  | *	drop their's and they don't know we just queued it. | 
|  | */ | 
|  | void | 
|  | xfs_buf_unlock( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | if ((bp->b_flags & (XBF_DELWRI|_XBF_DELWRI_Q)) == XBF_DELWRI) { | 
|  | atomic_inc(&bp->b_hold); | 
|  | bp->b_flags |= XBF_ASYNC; | 
|  | xfs_buf_delwri_queue(bp, 0); | 
|  | } | 
|  |  | 
|  | XB_CLEAR_OWNER(bp); | 
|  | up(&bp->b_sema); | 
|  | XB_TRACE(bp, "unlock", 0); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Pinning Buffer Storage in Memory | 
|  | *	Ensure that no attempt to force a buffer to disk will succeed. | 
|  | */ | 
|  | void | 
|  | xfs_buf_pin( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | atomic_inc(&bp->b_pin_count); | 
|  | XB_TRACE(bp, "pin", (long)bp->b_pin_count.counter); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_unpin( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | if (atomic_dec_and_test(&bp->b_pin_count)) | 
|  | wake_up_all(&bp->b_waiters); | 
|  | XB_TRACE(bp, "unpin", (long)bp->b_pin_count.counter); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_ispin( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | return atomic_read(&bp->b_pin_count); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_wait_unpin( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | DECLARE_WAITQUEUE	(wait, current); | 
|  |  | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | return; | 
|  |  | 
|  | add_wait_queue(&bp->b_waiters, &wait); | 
|  | for (;;) { | 
|  | set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | if (atomic_read(&bp->b_pin_count) == 0) | 
|  | break; | 
|  | if (atomic_read(&bp->b_io_remaining)) | 
|  | blk_run_address_space(bp->b_target->bt_mapping); | 
|  | schedule(); | 
|  | } | 
|  | remove_wait_queue(&bp->b_waiters, &wait); | 
|  | set_current_state(TASK_RUNNING); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Buffer Utility Routines | 
|  | */ | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_iodone_work( | 
|  | void			*v) | 
|  | { | 
|  | xfs_buf_t		*bp = (xfs_buf_t *)v; | 
|  |  | 
|  | if (bp->b_iodone) | 
|  | (*(bp->b_iodone))(bp); | 
|  | else if (bp->b_flags & XBF_ASYNC) | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioend( | 
|  | xfs_buf_t		*bp, | 
|  | int			schedule) | 
|  | { | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE); | 
|  | if (bp->b_error == 0) | 
|  | bp->b_flags |= XBF_DONE; | 
|  |  | 
|  | XB_TRACE(bp, "iodone", bp->b_iodone); | 
|  |  | 
|  | if ((bp->b_iodone) || (bp->b_flags & XBF_ASYNC)) { | 
|  | if (schedule) { | 
|  | INIT_WORK(&bp->b_iodone_work, xfs_buf_iodone_work, bp); | 
|  | queue_work(xfslogd_workqueue, &bp->b_iodone_work); | 
|  | } else { | 
|  | xfs_buf_iodone_work(bp); | 
|  | } | 
|  | } else { | 
|  | up(&bp->b_iodonesema); | 
|  | } | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_ioerror( | 
|  | xfs_buf_t		*bp, | 
|  | int			error) | 
|  | { | 
|  | ASSERT(error >= 0 && error <= 0xffff); | 
|  | bp->b_error = (unsigned short)error; | 
|  | XB_TRACE(bp, "ioerror", (unsigned long)error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Initiate I/O on a buffer, based on the flags supplied. | 
|  | *	The b_iodone routine in the buffer supplied will only be called | 
|  | *	when all of the subsidiary I/O requests, if any, have been completed. | 
|  | */ | 
|  | int | 
|  | xfs_buf_iostart( | 
|  | xfs_buf_t		*bp, | 
|  | xfs_buf_flags_t		flags) | 
|  | { | 
|  | int			status = 0; | 
|  |  | 
|  | XB_TRACE(bp, "iostart", (unsigned long)flags); | 
|  |  | 
|  | if (flags & XBF_DELWRI) { | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC); | 
|  | bp->b_flags |= flags & (XBF_DELWRI | XBF_ASYNC); | 
|  | xfs_buf_delwri_queue(bp, 1); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | bp->b_flags &= ~(XBF_READ | XBF_WRITE | XBF_ASYNC | XBF_DELWRI | \ | 
|  | XBF_READ_AHEAD | _XBF_RUN_QUEUES); | 
|  | bp->b_flags |= flags & (XBF_READ | XBF_WRITE | XBF_ASYNC | \ | 
|  | XBF_READ_AHEAD | _XBF_RUN_QUEUES); | 
|  |  | 
|  | BUG_ON(bp->b_bn == XFS_BUF_DADDR_NULL); | 
|  |  | 
|  | /* For writes allow an alternate strategy routine to precede | 
|  | * the actual I/O request (which may not be issued at all in | 
|  | * a shutdown situation, for example). | 
|  | */ | 
|  | status = (flags & XBF_WRITE) ? | 
|  | xfs_buf_iostrategy(bp) : xfs_buf_iorequest(bp); | 
|  |  | 
|  | /* Wait for I/O if we are not an async request. | 
|  | * Note: async I/O request completion will release the buffer, | 
|  | * and that can already be done by this point.  So using the | 
|  | * buffer pointer from here on, after async I/O, is invalid. | 
|  | */ | 
|  | if (!status && !(flags & XBF_ASYNC)) | 
|  | status = xfs_buf_iowait(bp); | 
|  |  | 
|  | return status; | 
|  | } | 
|  |  | 
|  | STATIC __inline__ int | 
|  | _xfs_buf_iolocked( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | ASSERT(bp->b_flags & (XBF_READ | XBF_WRITE)); | 
|  | if (bp->b_flags & XBF_READ) | 
|  | return bp->b_locked; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC __inline__ void | 
|  | _xfs_buf_ioend( | 
|  | xfs_buf_t		*bp, | 
|  | int			schedule) | 
|  | { | 
|  | if (atomic_dec_and_test(&bp->b_io_remaining) == 1) { | 
|  | bp->b_locked = 0; | 
|  | xfs_buf_ioend(bp, schedule); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_buf_bio_end_io( | 
|  | struct bio		*bio, | 
|  | unsigned int		bytes_done, | 
|  | int			error) | 
|  | { | 
|  | xfs_buf_t		*bp = (xfs_buf_t *)bio->bi_private; | 
|  | unsigned int		blocksize = bp->b_target->bt_bsize; | 
|  | struct bio_vec		*bvec = bio->bi_io_vec + bio->bi_vcnt - 1; | 
|  |  | 
|  | if (bio->bi_size) | 
|  | return 1; | 
|  |  | 
|  | if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
|  | bp->b_error = EIO; | 
|  |  | 
|  | do { | 
|  | struct page	*page = bvec->bv_page; | 
|  |  | 
|  | if (unlikely(bp->b_error)) { | 
|  | if (bp->b_flags & XBF_READ) | 
|  | ClearPageUptodate(page); | 
|  | SetPageError(page); | 
|  | } else if (blocksize >= PAGE_CACHE_SIZE) { | 
|  | SetPageUptodate(page); | 
|  | } else if (!PagePrivate(page) && | 
|  | (bp->b_flags & _XBF_PAGE_CACHE)) { | 
|  | set_page_region(page, bvec->bv_offset, bvec->bv_len); | 
|  | } | 
|  |  | 
|  | if (--bvec >= bio->bi_io_vec) | 
|  | prefetchw(&bvec->bv_page->flags); | 
|  |  | 
|  | if (_xfs_buf_iolocked(bp)) { | 
|  | unlock_page(page); | 
|  | } | 
|  | } while (bvec >= bio->bi_io_vec); | 
|  |  | 
|  | _xfs_buf_ioend(bp, 1); | 
|  | bio_put(bio); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | _xfs_buf_ioapply( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | int			i, rw, map_i, total_nr_pages, nr_pages; | 
|  | struct bio		*bio; | 
|  | int			offset = bp->b_offset; | 
|  | int			size = bp->b_count_desired; | 
|  | sector_t		sector = bp->b_bn; | 
|  | unsigned int		blocksize = bp->b_target->bt_bsize; | 
|  | int			locking = _xfs_buf_iolocked(bp); | 
|  |  | 
|  | total_nr_pages = bp->b_page_count; | 
|  | map_i = 0; | 
|  |  | 
|  | if (bp->b_flags & _XBF_RUN_QUEUES) { | 
|  | bp->b_flags &= ~_XBF_RUN_QUEUES; | 
|  | rw = (bp->b_flags & XBF_READ) ? READ_SYNC : WRITE_SYNC; | 
|  | } else { | 
|  | rw = (bp->b_flags & XBF_READ) ? READ : WRITE; | 
|  | } | 
|  |  | 
|  | if (bp->b_flags & XBF_ORDERED) { | 
|  | ASSERT(!(bp->b_flags & XBF_READ)); | 
|  | rw = WRITE_BARRIER; | 
|  | } | 
|  |  | 
|  | /* Special code path for reading a sub page size buffer in -- | 
|  | * we populate up the whole page, and hence the other metadata | 
|  | * in the same page.  This optimization is only valid when the | 
|  | * filesystem block size is not smaller than the page size. | 
|  | */ | 
|  | if ((bp->b_buffer_length < PAGE_CACHE_SIZE) && | 
|  | (bp->b_flags & XBF_READ) && locking && | 
|  | (blocksize >= PAGE_CACHE_SIZE)) { | 
|  | bio = bio_alloc(GFP_NOIO, 1); | 
|  |  | 
|  | bio->bi_bdev = bp->b_target->bt_bdev; | 
|  | bio->bi_sector = sector - (offset >> BBSHIFT); | 
|  | bio->bi_end_io = xfs_buf_bio_end_io; | 
|  | bio->bi_private = bp; | 
|  |  | 
|  | bio_add_page(bio, bp->b_pages[0], PAGE_CACHE_SIZE, 0); | 
|  | size = 0; | 
|  |  | 
|  | atomic_inc(&bp->b_io_remaining); | 
|  |  | 
|  | goto submit_io; | 
|  | } | 
|  |  | 
|  | /* Lock down the pages which we need to for the request */ | 
|  | if (locking && (bp->b_flags & XBF_WRITE) && (bp->b_locked == 0)) { | 
|  | for (i = 0; size; i++) { | 
|  | int		nbytes = PAGE_CACHE_SIZE - offset; | 
|  | struct page	*page = bp->b_pages[i]; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | lock_page(page); | 
|  |  | 
|  | size -= nbytes; | 
|  | offset = 0; | 
|  | } | 
|  | offset = bp->b_offset; | 
|  | size = bp->b_count_desired; | 
|  | } | 
|  |  | 
|  | next_chunk: | 
|  | atomic_inc(&bp->b_io_remaining); | 
|  | nr_pages = BIO_MAX_SECTORS >> (PAGE_SHIFT - BBSHIFT); | 
|  | if (nr_pages > total_nr_pages) | 
|  | nr_pages = total_nr_pages; | 
|  |  | 
|  | bio = bio_alloc(GFP_NOIO, nr_pages); | 
|  | bio->bi_bdev = bp->b_target->bt_bdev; | 
|  | bio->bi_sector = sector; | 
|  | bio->bi_end_io = xfs_buf_bio_end_io; | 
|  | bio->bi_private = bp; | 
|  |  | 
|  | for (; size && nr_pages; nr_pages--, map_i++) { | 
|  | int	rbytes, nbytes = PAGE_CACHE_SIZE - offset; | 
|  |  | 
|  | if (nbytes > size) | 
|  | nbytes = size; | 
|  |  | 
|  | rbytes = bio_add_page(bio, bp->b_pages[map_i], nbytes, offset); | 
|  | if (rbytes < nbytes) | 
|  | break; | 
|  |  | 
|  | offset = 0; | 
|  | sector += nbytes >> BBSHIFT; | 
|  | size -= nbytes; | 
|  | total_nr_pages--; | 
|  | } | 
|  |  | 
|  | submit_io: | 
|  | if (likely(bio->bi_size)) { | 
|  | submit_bio(rw, bio); | 
|  | if (size) | 
|  | goto next_chunk; | 
|  | } else { | 
|  | bio_put(bio); | 
|  | xfs_buf_ioerror(bp, EIO); | 
|  | } | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_buf_iorequest( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | XB_TRACE(bp, "iorequest", 0); | 
|  |  | 
|  | if (bp->b_flags & XBF_DELWRI) { | 
|  | xfs_buf_delwri_queue(bp, 1); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (bp->b_flags & XBF_WRITE) { | 
|  | xfs_buf_wait_unpin(bp); | 
|  | } | 
|  |  | 
|  | xfs_buf_hold(bp); | 
|  |  | 
|  | /* Set the count to 1 initially, this will stop an I/O | 
|  | * completion callout which happens before we have started | 
|  | * all the I/O from calling xfs_buf_ioend too early. | 
|  | */ | 
|  | atomic_set(&bp->b_io_remaining, 1); | 
|  | _xfs_buf_ioapply(bp); | 
|  | _xfs_buf_ioend(bp, 0); | 
|  |  | 
|  | xfs_buf_rele(bp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Waits for I/O to complete on the buffer supplied. | 
|  | *	It returns immediately if no I/O is pending. | 
|  | *	It returns the I/O error code, if any, or 0 if there was no error. | 
|  | */ | 
|  | int | 
|  | xfs_buf_iowait( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | XB_TRACE(bp, "iowait", 0); | 
|  | if (atomic_read(&bp->b_io_remaining)) | 
|  | blk_run_address_space(bp->b_target->bt_mapping); | 
|  | down(&bp->b_iodonesema); | 
|  | XB_TRACE(bp, "iowaited", (long)bp->b_error); | 
|  | return bp->b_error; | 
|  | } | 
|  |  | 
|  | xfs_caddr_t | 
|  | xfs_buf_offset( | 
|  | xfs_buf_t		*bp, | 
|  | size_t			offset) | 
|  | { | 
|  | struct page		*page; | 
|  |  | 
|  | if (bp->b_flags & XBF_MAPPED) | 
|  | return XFS_BUF_PTR(bp) + offset; | 
|  |  | 
|  | offset += bp->b_offset; | 
|  | page = bp->b_pages[offset >> PAGE_CACHE_SHIFT]; | 
|  | return (xfs_caddr_t)page_address(page) + (offset & (PAGE_CACHE_SIZE-1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Move data into or out of a buffer. | 
|  | */ | 
|  | void | 
|  | xfs_buf_iomove( | 
|  | xfs_buf_t		*bp,	/* buffer to process		*/ | 
|  | size_t			boff,	/* starting buffer offset	*/ | 
|  | size_t			bsize,	/* length to copy		*/ | 
|  | caddr_t			data,	/* data address			*/ | 
|  | xfs_buf_rw_t		mode)	/* read/write/zero flag		*/ | 
|  | { | 
|  | size_t			bend, cpoff, csize; | 
|  | struct page		*page; | 
|  |  | 
|  | bend = boff + bsize; | 
|  | while (boff < bend) { | 
|  | page = bp->b_pages[xfs_buf_btoct(boff + bp->b_offset)]; | 
|  | cpoff = xfs_buf_poff(boff + bp->b_offset); | 
|  | csize = min_t(size_t, | 
|  | PAGE_CACHE_SIZE-cpoff, bp->b_count_desired-boff); | 
|  |  | 
|  | ASSERT(((csize + cpoff) <= PAGE_CACHE_SIZE)); | 
|  |  | 
|  | switch (mode) { | 
|  | case XBRW_ZERO: | 
|  | memset(page_address(page) + cpoff, 0, csize); | 
|  | break; | 
|  | case XBRW_READ: | 
|  | memcpy(data, page_address(page) + cpoff, csize); | 
|  | break; | 
|  | case XBRW_WRITE: | 
|  | memcpy(page_address(page) + cpoff, data, csize); | 
|  | } | 
|  |  | 
|  | boff += csize; | 
|  | data += csize; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Handling of buffer targets (buftargs). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | *	Wait for any bufs with callbacks that have been submitted but | 
|  | *	have not yet returned... walk the hash list for the target. | 
|  | */ | 
|  | void | 
|  | xfs_wait_buftarg( | 
|  | xfs_buftarg_t	*btp) | 
|  | { | 
|  | xfs_buf_t	*bp, *n; | 
|  | xfs_bufhash_t	*hash; | 
|  | uint		i; | 
|  |  | 
|  | for (i = 0; i < (1 << btp->bt_hashshift); i++) { | 
|  | hash = &btp->bt_hash[i]; | 
|  | again: | 
|  | spin_lock(&hash->bh_lock); | 
|  | list_for_each_entry_safe(bp, n, &hash->bh_list, b_hash_list) { | 
|  | ASSERT(btp == bp->b_target); | 
|  | if (!(bp->b_flags & XBF_FS_MANAGED)) { | 
|  | spin_unlock(&hash->bh_lock); | 
|  | /* | 
|  | * Catch superblock reference count leaks | 
|  | * immediately | 
|  | */ | 
|  | BUG_ON(bp->b_bn == 0); | 
|  | delay(100); | 
|  | goto again; | 
|  | } | 
|  | } | 
|  | spin_unlock(&hash->bh_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Allocate buffer hash table for a given target. | 
|  | *	For devices containing metadata (i.e. not the log/realtime devices) | 
|  | *	we need to allocate a much larger hash table. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_alloc_bufhash( | 
|  | xfs_buftarg_t		*btp, | 
|  | int			external) | 
|  | { | 
|  | unsigned int		i; | 
|  |  | 
|  | btp->bt_hashshift = external ? 3 : 8;	/* 8 or 256 buckets */ | 
|  | btp->bt_hashmask = (1 << btp->bt_hashshift) - 1; | 
|  | btp->bt_hash = kmem_zalloc((1 << btp->bt_hashshift) * | 
|  | sizeof(xfs_bufhash_t), KM_SLEEP); | 
|  | for (i = 0; i < (1 << btp->bt_hashshift); i++) { | 
|  | spin_lock_init(&btp->bt_hash[i].bh_lock); | 
|  | INIT_LIST_HEAD(&btp->bt_hash[i].bh_list); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_free_bufhash( | 
|  | xfs_buftarg_t		*btp) | 
|  | { | 
|  | kmem_free(btp->bt_hash, (1<<btp->bt_hashshift) * sizeof(xfs_bufhash_t)); | 
|  | btp->bt_hash = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	buftarg list for delwrite queue processing | 
|  | */ | 
|  | STATIC LIST_HEAD(xfs_buftarg_list); | 
|  | STATIC DEFINE_SPINLOCK(xfs_buftarg_lock); | 
|  |  | 
|  | STATIC void | 
|  | xfs_register_buftarg( | 
|  | xfs_buftarg_t           *btp) | 
|  | { | 
|  | spin_lock(&xfs_buftarg_lock); | 
|  | list_add(&btp->bt_list, &xfs_buftarg_list); | 
|  | spin_unlock(&xfs_buftarg_lock); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_unregister_buftarg( | 
|  | xfs_buftarg_t           *btp) | 
|  | { | 
|  | spin_lock(&xfs_buftarg_lock); | 
|  | list_del(&btp->bt_list); | 
|  | spin_unlock(&xfs_buftarg_lock); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_free_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | int			external) | 
|  | { | 
|  | xfs_flush_buftarg(btp, 1); | 
|  | if (external) | 
|  | xfs_blkdev_put(btp->bt_bdev); | 
|  | xfs_free_bufhash(btp); | 
|  | iput(btp->bt_mapping->host); | 
|  |  | 
|  | /* Unregister the buftarg first so that we don't get a | 
|  | * wakeup finding a non-existent task | 
|  | */ | 
|  | xfs_unregister_buftarg(btp); | 
|  | kthread_stop(btp->bt_task); | 
|  |  | 
|  | kmem_free(btp, sizeof(*btp)); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_flags( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		blocksize, | 
|  | unsigned int		sectorsize, | 
|  | int			verbose) | 
|  | { | 
|  | btp->bt_bsize = blocksize; | 
|  | btp->bt_sshift = ffs(sectorsize) - 1; | 
|  | btp->bt_smask = sectorsize - 1; | 
|  |  | 
|  | if (set_blocksize(btp->bt_bdev, sectorsize)) { | 
|  | printk(KERN_WARNING | 
|  | "XFS: Cannot set_blocksize to %u on device %s\n", | 
|  | sectorsize, XFS_BUFTARG_NAME(btp)); | 
|  | return EINVAL; | 
|  | } | 
|  |  | 
|  | if (verbose && | 
|  | (PAGE_CACHE_SIZE / BITS_PER_LONG) > sectorsize) { | 
|  | printk(KERN_WARNING | 
|  | "XFS: %u byte sectors in use on device %s.  " | 
|  | "This is suboptimal; %u or greater is ideal.\n", | 
|  | sectorsize, XFS_BUFTARG_NAME(btp), | 
|  | (unsigned int)PAGE_CACHE_SIZE / BITS_PER_LONG); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	When allocating the initial buffer target we have not yet | 
|  | *	read in the superblock, so don't know what sized sectors | 
|  | *	are being used is at this early stage.  Play safe. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_setsize_buftarg_early( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | return xfs_setsize_buftarg_flags(btp, | 
|  | PAGE_CACHE_SIZE, bdev_hardsect_size(bdev), 0); | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_setsize_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | unsigned int		blocksize, | 
|  | unsigned int		sectorsize) | 
|  | { | 
|  | return xfs_setsize_buftarg_flags(btp, blocksize, sectorsize, 1); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_mapping_buftarg( | 
|  | xfs_buftarg_t		*btp, | 
|  | struct block_device	*bdev) | 
|  | { | 
|  | struct backing_dev_info	*bdi; | 
|  | struct inode		*inode; | 
|  | struct address_space	*mapping; | 
|  | static const struct address_space_operations mapping_aops = { | 
|  | .sync_page = block_sync_page, | 
|  | .migratepage = fail_migrate_page, | 
|  | }; | 
|  |  | 
|  | inode = new_inode(bdev->bd_inode->i_sb); | 
|  | if (!inode) { | 
|  | printk(KERN_WARNING | 
|  | "XFS: Cannot allocate mapping inode for device %s\n", | 
|  | XFS_BUFTARG_NAME(btp)); | 
|  | return ENOMEM; | 
|  | } | 
|  | inode->i_mode = S_IFBLK; | 
|  | inode->i_bdev = bdev; | 
|  | inode->i_rdev = bdev->bd_dev; | 
|  | bdi = blk_get_backing_dev_info(bdev); | 
|  | if (!bdi) | 
|  | bdi = &default_backing_dev_info; | 
|  | mapping = &inode->i_data; | 
|  | mapping->a_ops = &mapping_aops; | 
|  | mapping->backing_dev_info = bdi; | 
|  | mapping_set_gfp_mask(mapping, GFP_NOFS); | 
|  | btp->bt_mapping = mapping; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_alloc_delwrite_queue( | 
|  | xfs_buftarg_t		*btp) | 
|  | { | 
|  | int	error = 0; | 
|  |  | 
|  | INIT_LIST_HEAD(&btp->bt_list); | 
|  | INIT_LIST_HEAD(&btp->bt_delwrite_queue); | 
|  | spinlock_init(&btp->bt_delwrite_lock, "delwri_lock"); | 
|  | btp->bt_flags = 0; | 
|  | btp->bt_task = kthread_run(xfsbufd, btp, "xfsbufd"); | 
|  | if (IS_ERR(btp->bt_task)) { | 
|  | error = PTR_ERR(btp->bt_task); | 
|  | goto out_error; | 
|  | } | 
|  | xfs_register_buftarg(btp); | 
|  | out_error: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | xfs_buftarg_t * | 
|  | xfs_alloc_buftarg( | 
|  | struct block_device	*bdev, | 
|  | int			external) | 
|  | { | 
|  | xfs_buftarg_t		*btp; | 
|  |  | 
|  | btp = kmem_zalloc(sizeof(*btp), KM_SLEEP); | 
|  |  | 
|  | btp->bt_dev =  bdev->bd_dev; | 
|  | btp->bt_bdev = bdev; | 
|  | if (xfs_setsize_buftarg_early(btp, bdev)) | 
|  | goto error; | 
|  | if (xfs_mapping_buftarg(btp, bdev)) | 
|  | goto error; | 
|  | if (xfs_alloc_delwrite_queue(btp)) | 
|  | goto error; | 
|  | xfs_alloc_bufhash(btp, external); | 
|  | return btp; | 
|  |  | 
|  | error: | 
|  | kmem_free(btp, sizeof(*btp)); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | *	Delayed write buffer handling | 
|  | */ | 
|  | STATIC void | 
|  | xfs_buf_delwri_queue( | 
|  | xfs_buf_t		*bp, | 
|  | int			unlock) | 
|  | { | 
|  | struct list_head	*dwq = &bp->b_target->bt_delwrite_queue; | 
|  | spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock; | 
|  |  | 
|  | XB_TRACE(bp, "delwri_q", (long)unlock); | 
|  | ASSERT((bp->b_flags&(XBF_DELWRI|XBF_ASYNC)) == (XBF_DELWRI|XBF_ASYNC)); | 
|  |  | 
|  | spin_lock(dwlk); | 
|  | /* If already in the queue, dequeue and place at tail */ | 
|  | if (!list_empty(&bp->b_list)) { | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  | if (unlock) | 
|  | atomic_dec(&bp->b_hold); | 
|  | list_del(&bp->b_list); | 
|  | } | 
|  |  | 
|  | bp->b_flags |= _XBF_DELWRI_Q; | 
|  | list_add_tail(&bp->b_list, dwq); | 
|  | bp->b_queuetime = jiffies; | 
|  | spin_unlock(dwlk); | 
|  |  | 
|  | if (unlock) | 
|  | xfs_buf_unlock(bp); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_delwri_dequeue( | 
|  | xfs_buf_t		*bp) | 
|  | { | 
|  | spinlock_t		*dwlk = &bp->b_target->bt_delwrite_lock; | 
|  | int			dequeued = 0; | 
|  |  | 
|  | spin_lock(dwlk); | 
|  | if ((bp->b_flags & XBF_DELWRI) && !list_empty(&bp->b_list)) { | 
|  | ASSERT(bp->b_flags & _XBF_DELWRI_Q); | 
|  | list_del_init(&bp->b_list); | 
|  | dequeued = 1; | 
|  | } | 
|  | bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); | 
|  | spin_unlock(dwlk); | 
|  |  | 
|  | if (dequeued) | 
|  | xfs_buf_rele(bp); | 
|  |  | 
|  | XB_TRACE(bp, "delwri_dq", (long)dequeued); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_buf_runall_queues( | 
|  | struct workqueue_struct	*queue) | 
|  | { | 
|  | flush_workqueue(queue); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfsbufd_wakeup( | 
|  | int			priority, | 
|  | gfp_t			mask) | 
|  | { | 
|  | xfs_buftarg_t		*btp; | 
|  |  | 
|  | spin_lock(&xfs_buftarg_lock); | 
|  | list_for_each_entry(btp, &xfs_buftarg_list, bt_list) { | 
|  | if (test_bit(XBT_FORCE_SLEEP, &btp->bt_flags)) | 
|  | continue; | 
|  | set_bit(XBT_FORCE_FLUSH, &btp->bt_flags); | 
|  | wake_up_process(btp->bt_task); | 
|  | } | 
|  | spin_unlock(&xfs_buftarg_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfsbufd( | 
|  | void			*data) | 
|  | { | 
|  | struct list_head	tmp; | 
|  | unsigned long		age; | 
|  | xfs_buftarg_t		*target = (xfs_buftarg_t *)data; | 
|  | xfs_buf_t		*bp, *n; | 
|  | struct list_head	*dwq = &target->bt_delwrite_queue; | 
|  | spinlock_t		*dwlk = &target->bt_delwrite_lock; | 
|  |  | 
|  | current->flags |= PF_MEMALLOC; | 
|  |  | 
|  | INIT_LIST_HEAD(&tmp); | 
|  | do { | 
|  | if (unlikely(freezing(current))) { | 
|  | set_bit(XBT_FORCE_SLEEP, &target->bt_flags); | 
|  | refrigerator(); | 
|  | } else { | 
|  | clear_bit(XBT_FORCE_SLEEP, &target->bt_flags); | 
|  | } | 
|  |  | 
|  | schedule_timeout_interruptible( | 
|  | xfs_buf_timer_centisecs * msecs_to_jiffies(10)); | 
|  |  | 
|  | age = xfs_buf_age_centisecs * msecs_to_jiffies(10); | 
|  | spin_lock(dwlk); | 
|  | list_for_each_entry_safe(bp, n, dwq, b_list) { | 
|  | XB_TRACE(bp, "walkq1", (long)xfs_buf_ispin(bp)); | 
|  | ASSERT(bp->b_flags & XBF_DELWRI); | 
|  |  | 
|  | if (!xfs_buf_ispin(bp) && !xfs_buf_cond_lock(bp)) { | 
|  | if (!test_bit(XBT_FORCE_FLUSH, | 
|  | &target->bt_flags) && | 
|  | time_before(jiffies, | 
|  | bp->b_queuetime + age)) { | 
|  | xfs_buf_unlock(bp); | 
|  | break; | 
|  | } | 
|  |  | 
|  | bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | list_move(&bp->b_list, &tmp); | 
|  | } | 
|  | } | 
|  | spin_unlock(dwlk); | 
|  |  | 
|  | while (!list_empty(&tmp)) { | 
|  | bp = list_entry(tmp.next, xfs_buf_t, b_list); | 
|  | ASSERT(target == bp->b_target); | 
|  |  | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_buf_iostrategy(bp); | 
|  |  | 
|  | blk_run_address_space(target->bt_mapping); | 
|  | } | 
|  |  | 
|  | if (as_list_len > 0) | 
|  | purge_addresses(); | 
|  |  | 
|  | clear_bit(XBT_FORCE_FLUSH, &target->bt_flags); | 
|  | } while (!kthread_should_stop()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | *	Go through all incore buffers, and release buffers if they belong to | 
|  | *	the given device. This is used in filesystem error handling to | 
|  | *	preserve the consistency of its metadata. | 
|  | */ | 
|  | int | 
|  | xfs_flush_buftarg( | 
|  | xfs_buftarg_t		*target, | 
|  | int			wait) | 
|  | { | 
|  | struct list_head	tmp; | 
|  | xfs_buf_t		*bp, *n; | 
|  | int			pincount = 0; | 
|  | struct list_head	*dwq = &target->bt_delwrite_queue; | 
|  | spinlock_t		*dwlk = &target->bt_delwrite_lock; | 
|  |  | 
|  | xfs_buf_runall_queues(xfsdatad_workqueue); | 
|  | xfs_buf_runall_queues(xfslogd_workqueue); | 
|  |  | 
|  | INIT_LIST_HEAD(&tmp); | 
|  | spin_lock(dwlk); | 
|  | list_for_each_entry_safe(bp, n, dwq, b_list) { | 
|  | ASSERT(bp->b_target == target); | 
|  | ASSERT(bp->b_flags & (XBF_DELWRI | _XBF_DELWRI_Q)); | 
|  | XB_TRACE(bp, "walkq2", (long)xfs_buf_ispin(bp)); | 
|  | if (xfs_buf_ispin(bp)) { | 
|  | pincount++; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | list_move(&bp->b_list, &tmp); | 
|  | } | 
|  | spin_unlock(dwlk); | 
|  |  | 
|  | /* | 
|  | * Dropped the delayed write list lock, now walk the temporary list | 
|  | */ | 
|  | list_for_each_entry_safe(bp, n, &tmp, b_list) { | 
|  | xfs_buf_lock(bp); | 
|  | bp->b_flags &= ~(XBF_DELWRI|_XBF_DELWRI_Q); | 
|  | bp->b_flags |= XBF_WRITE; | 
|  | if (wait) | 
|  | bp->b_flags &= ~XBF_ASYNC; | 
|  | else | 
|  | list_del_init(&bp->b_list); | 
|  |  | 
|  | xfs_buf_iostrategy(bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remaining list items must be flushed before returning | 
|  | */ | 
|  | while (!list_empty(&tmp)) { | 
|  | bp = list_entry(tmp.next, xfs_buf_t, b_list); | 
|  |  | 
|  | list_del_init(&bp->b_list); | 
|  | xfs_iowait(bp); | 
|  | xfs_buf_relse(bp); | 
|  | } | 
|  |  | 
|  | if (wait) | 
|  | blk_run_address_space(target->bt_mapping); | 
|  |  | 
|  | return pincount; | 
|  | } | 
|  |  | 
|  | int __init | 
|  | xfs_buf_init(void) | 
|  | { | 
|  | #ifdef XFS_BUF_TRACE | 
|  | xfs_buf_trace_buf = ktrace_alloc(XFS_BUF_TRACE_SIZE, KM_SLEEP); | 
|  | #endif | 
|  |  | 
|  | xfs_buf_zone = kmem_zone_init_flags(sizeof(xfs_buf_t), "xfs_buf", | 
|  | KM_ZONE_HWALIGN, NULL); | 
|  | if (!xfs_buf_zone) | 
|  | goto out_free_trace_buf; | 
|  |  | 
|  | xfslogd_workqueue = create_workqueue("xfslogd"); | 
|  | if (!xfslogd_workqueue) | 
|  | goto out_free_buf_zone; | 
|  |  | 
|  | xfsdatad_workqueue = create_workqueue("xfsdatad"); | 
|  | if (!xfsdatad_workqueue) | 
|  | goto out_destroy_xfslogd_workqueue; | 
|  |  | 
|  | xfs_buf_shake = kmem_shake_register(xfsbufd_wakeup); | 
|  | if (!xfs_buf_shake) | 
|  | goto out_destroy_xfsdatad_workqueue; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_destroy_xfsdatad_workqueue: | 
|  | destroy_workqueue(xfsdatad_workqueue); | 
|  | out_destroy_xfslogd_workqueue: | 
|  | destroy_workqueue(xfslogd_workqueue); | 
|  | out_free_buf_zone: | 
|  | kmem_zone_destroy(xfs_buf_zone); | 
|  | out_free_trace_buf: | 
|  | #ifdef XFS_BUF_TRACE | 
|  | ktrace_free(xfs_buf_trace_buf); | 
|  | #endif | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_buf_terminate(void) | 
|  | { | 
|  | kmem_shake_deregister(xfs_buf_shake); | 
|  | destroy_workqueue(xfsdatad_workqueue); | 
|  | destroy_workqueue(xfslogd_workqueue); | 
|  | kmem_zone_destroy(xfs_buf_zone); | 
|  | #ifdef XFS_BUF_TRACE | 
|  | ktrace_free(xfs_buf_trace_buf); | 
|  | #endif | 
|  | } |