|  | /* | 
|  | Copyright (C) 2009 - 2010 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com> | 
|  | Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org> | 
|  | Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com> | 
|  | Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de> | 
|  | Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com> | 
|  | Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com> | 
|  | Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt2800pci | 
|  | Abstract: rt2800pci device specific routines. | 
|  | Supported chipsets: RT2800E & RT2800ED. | 
|  | */ | 
|  |  | 
|  | #include <linux/delay.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/platform_device.h> | 
|  | #include <linux/eeprom_93cx6.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00pci.h" | 
|  | #include "rt2x00soc.h" | 
|  | #include "rt2800lib.h" | 
|  | #include "rt2800.h" | 
|  | #include "rt2800pci.h" | 
|  |  | 
|  | /* | 
|  | * Allow hardware encryption to be disabled. | 
|  | */ | 
|  | static bool modparam_nohwcrypt = false; | 
|  | module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); | 
|  |  | 
|  | static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token) | 
|  | { | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * SOC devices don't support MCU requests. | 
|  | */ | 
|  | if (rt2x00_is_soc(rt2x00dev)) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < 200; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, H2M_MAILBOX_CID, ®); | 
|  |  | 
|  | if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) || | 
|  | (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) || | 
|  | (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) || | 
|  | (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token)) | 
|  | break; | 
|  |  | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | if (i == 200) | 
|  | ERROR(rt2x00dev, "MCU request failed, no response from hardware\n"); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); | 
|  | } | 
|  |  | 
|  | #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) | 
|  | static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | void __iomem *base_addr = ioremap(0x1F040000, EEPROM_SIZE); | 
|  |  | 
|  | memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE); | 
|  |  | 
|  | iounmap(base_addr); | 
|  | } | 
|  | #else | 
|  | static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */ | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = eeprom->data; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); | 
|  |  | 
|  | eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); | 
|  | eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); | 
|  | eeprom->reg_data_clock = | 
|  | !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); | 
|  | eeprom->reg_chip_select = | 
|  | !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = eeprom->data; | 
|  | u32 reg = 0; | 
|  |  | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, | 
|  | !!eeprom->reg_data_clock); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, | 
|  | !!eeprom->reg_chip_select); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct eeprom_93cx6 eeprom; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); | 
|  |  | 
|  | eeprom.data = rt2x00dev; | 
|  | eeprom.register_read = rt2800pci_eepromregister_read; | 
|  | eeprom.register_write = rt2800pci_eepromregister_write; | 
|  | switch (rt2x00_get_field32(reg, E2PROM_CSR_TYPE)) | 
|  | { | 
|  | case 0: | 
|  | eeprom.width = PCI_EEPROM_WIDTH_93C46; | 
|  | break; | 
|  | case 1: | 
|  | eeprom.width = PCI_EEPROM_WIDTH_93C66; | 
|  | break; | 
|  | default: | 
|  | eeprom.width = PCI_EEPROM_WIDTH_93C86; | 
|  | break; | 
|  | } | 
|  | eeprom.reg_data_in = 0; | 
|  | eeprom.reg_data_out = 0; | 
|  | eeprom.reg_data_clock = 0; | 
|  | eeprom.reg_chip_select = 0; | 
|  |  | 
|  | eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, | 
|  | EEPROM_SIZE / sizeof(u16)); | 
|  | } | 
|  |  | 
|  | static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | return rt2800_efuse_detect(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | rt2800_read_eeprom_efuse(rt2x00dev); | 
|  | } | 
|  | #else | 
|  | static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | } | 
|  |  | 
|  | static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | } | 
|  | #endif /* CONFIG_PCI */ | 
|  |  | 
|  | /* | 
|  | * Queue handlers. | 
|  | */ | 
|  | static void rt2800pci_start_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 1); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 1); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, ®); | 
|  | rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2800pci_kick_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | struct queue_entry *entry; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_AC_VO: | 
|  | case QID_AC_VI: | 
|  | case QID_AC_BE: | 
|  | case QID_AC_BK: | 
|  | entry = rt2x00queue_get_entry(queue, Q_INDEX); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(queue->qid), | 
|  | entry->entry_idx); | 
|  | break; | 
|  | case QID_MGMT: | 
|  | entry = rt2x00queue_get_entry(queue, Q_INDEX); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX(5), | 
|  | entry->entry_idx); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2800pci_stop_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_SYS_CTRL, ®); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_ENABLE_RX, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_GEN, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, INT_TIMER_EN, ®); | 
|  | rt2x00_set_field32(®, INT_TIMER_EN_PRE_TBTT_TIMER, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_TIMER_EN, reg); | 
|  |  | 
|  | /* | 
|  | * Wait for current invocation to finish. The tasklet | 
|  | * won't be scheduled anymore afterwards since we disabled | 
|  | * the TBTT and PRE TBTT timer. | 
|  | */ | 
|  | tasklet_kill(&rt2x00dev->tbtt_tasklet); | 
|  | tasklet_kill(&rt2x00dev->pretbtt_tasklet); | 
|  |  | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Firmware functions | 
|  | */ | 
|  | static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | return FIRMWARE_RT2860; | 
|  | } | 
|  |  | 
|  | static int rt2800pci_write_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * enable Host program ram write selection | 
|  | */ | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PBF_SYS_CTRL_HOST_RAM_WRITE, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, reg); | 
|  |  | 
|  | /* | 
|  | * Write firmware to device. | 
|  | */ | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, | 
|  | data, len); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000); | 
|  | rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_BBP_AGENT, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | static bool rt2800pci_get_entry_state(struct queue_entry *entry) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | u32 word; | 
|  |  | 
|  | if (entry->queue->qid == QID_RX) { | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  |  | 
|  | return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE)); | 
|  | } else { | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  |  | 
|  | return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt2800pci_clear_entry(struct queue_entry *entry) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | u32 word; | 
|  |  | 
|  | if (entry->queue->qid == QID_RX) { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  | rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma); | 
|  | rt2x00_desc_write(entry_priv->desc, 0, word); | 
|  |  | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  | rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0); | 
|  | rt2x00_desc_write(entry_priv->desc, 1, word); | 
|  |  | 
|  | /* | 
|  | * Set RX IDX in register to inform hardware that we have | 
|  | * handled this entry and it is available for reuse again. | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, | 
|  | entry->entry_idx); | 
|  | } else { | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word); | 
|  | rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1); | 
|  | rt2x00_desc_write(entry_priv->desc, 1, word); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Initialize registers. | 
|  | */ | 
|  | entry_priv = rt2x00dev->tx[0].entries[0].priv_data; | 
|  | rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT0, | 
|  | rt2x00dev->tx[0].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX0, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX0, 0); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[1].entries[0].priv_data; | 
|  | rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT1, | 
|  | rt2x00dev->tx[1].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX1, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX1, 0); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[2].entries[0].priv_data; | 
|  | rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT2, | 
|  | rt2x00dev->tx[2].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX2, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX2, 0); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[3].entries[0].priv_data; | 
|  | rt2x00pci_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_MAX_CNT3, | 
|  | rt2x00dev->tx[3].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CTX_IDX3, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_DTX_IDX3, 0); | 
|  |  | 
|  | entry_priv = rt2x00dev->rx->entries[0].priv_data; | 
|  | rt2x00pci_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_MAX_CNT, | 
|  | rt2x00dev->rx[0].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_CRX_IDX, | 
|  | rt2x00dev->rx[0].limit - 1); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_DRX_IDX, 0); | 
|  |  | 
|  | /* | 
|  | * Enable global DMA configuration | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, WPDMA_GLO_CFG, ®); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0); | 
|  | rt2x00_set_field32(®, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, WPDMA_GLO_CFG, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, DELAY_INT_CFG, 0); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device state switch handlers. | 
|  | */ | 
|  | static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | u32 reg; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * When interrupts are being enabled, the interrupt registers | 
|  | * should clear the register to assure a clean state. | 
|  | */ | 
|  | if (state == STATE_RADIO_IRQ_ON) { | 
|  | rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); | 
|  | } | 
|  |  | 
|  | spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); | 
|  | reg = 0; | 
|  | if (state == STATE_RADIO_IRQ_ON) { | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_RX_DONE, 1); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_TBTT, 1); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_PRE_TBTT, 1); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_TX_FIFO_STATUS, 1); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_AUTO_WAKEUP, 1); | 
|  | } | 
|  | rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
|  | spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); | 
|  |  | 
|  | if (state == STATE_RADIO_IRQ_OFF) { | 
|  | /* | 
|  | * Wait for possibly running tasklets to finish. | 
|  | */ | 
|  | tasklet_kill(&rt2x00dev->txstatus_tasklet); | 
|  | tasklet_kill(&rt2x00dev->rxdone_tasklet); | 
|  | tasklet_kill(&rt2x00dev->autowake_tasklet); | 
|  | tasklet_kill(&rt2x00dev->tbtt_tasklet); | 
|  | tasklet_kill(&rt2x00dev->pretbtt_tasklet); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2800pci_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Reset DMA indexes | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, WPDMA_RST_IDX, ®); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX0, 1); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX1, 1); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX2, 1); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX3, 1); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX4, 1); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DTX_IDX5, 1); | 
|  | rt2x00_set_field32(®, WPDMA_RST_IDX_DRX_IDX0, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, WPDMA_RST_IDX, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f); | 
|  | rt2x00pci_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00); | 
|  |  | 
|  | if (rt2x00_is_pcie(rt2x00dev) && | 
|  | (rt2x00_rt(rt2x00dev, RT3572) || | 
|  | rt2x00_rt(rt2x00dev, RT5390) || | 
|  | rt2x00_rt(rt2x00dev, RT5392))) { | 
|  | rt2x00pci_register_read(rt2x00dev, AUX_CTRL, ®); | 
|  | rt2x00_set_field32(®, AUX_CTRL_FORCE_PCIE_CLK, 1); | 
|  | rt2x00_set_field32(®, AUX_CTRL_WAKE_PCIE_EN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, AUX_CTRL, reg); | 
|  | } | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000003); | 
|  |  | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_CSR, 1); | 
|  | rt2x00_set_field32(®, MAC_SYS_CTRL_RESET_BBP, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_SYS_CTRL, 0x00000000); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) || | 
|  | rt2800pci_init_queues(rt2x00dev))) | 
|  | return -EIO; | 
|  |  | 
|  | retval = rt2800_enable_radio(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* After resume MCU_BOOT_SIGNAL will trash these. */ | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0); | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0); | 
|  |  | 
|  | rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_RADIO_OFF, 0xff, 0x02); | 
|  | rt2800pci_mcu_status(rt2x00dev, TOKEN_RADIO_OFF); | 
|  |  | 
|  | rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, 0, 0); | 
|  | rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | if (rt2x00_is_soc(rt2x00dev)) { | 
|  | rt2800_disable_radio(rt2x00dev); | 
|  | rt2x00pci_register_write(rt2x00dev, PWR_PIN_CFG, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_PIN_CFG, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | if (state == STATE_AWAKE) { | 
|  | rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKEUP, | 
|  | 0, 0x02); | 
|  | rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKEUP); | 
|  | } else if (state == STATE_SLEEP) { | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_STATUS, | 
|  | 0xffffffff); | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CID, | 
|  | 0xffffffff); | 
|  | rt2800_mcu_request(rt2x00dev, MCU_SLEEP, TOKEN_SLEEP, | 
|  | 0xff, 0x01); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case STATE_RADIO_ON: | 
|  | retval = rt2800pci_enable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_OFF: | 
|  | /* | 
|  | * After the radio has been disabled, the device should | 
|  | * be put to sleep for powersaving. | 
|  | */ | 
|  | rt2800pci_disable_radio(rt2x00dev); | 
|  | rt2800pci_set_state(rt2x00dev, STATE_SLEEP); | 
|  | break; | 
|  | case STATE_RADIO_IRQ_ON: | 
|  | case STATE_RADIO_IRQ_OFF: | 
|  | rt2800pci_toggle_irq(rt2x00dev, state); | 
|  | break; | 
|  | case STATE_DEEP_SLEEP: | 
|  | case STATE_SLEEP: | 
|  | case STATE_STANDBY: | 
|  | case STATE_AWAKE: | 
|  | retval = rt2800pci_set_state(rt2x00dev, state); | 
|  | break; | 
|  | default: | 
|  | retval = -ENOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(retval)) | 
|  | ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", | 
|  | state, retval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX descriptor initialization | 
|  | */ | 
|  | static __le32 *rt2800pci_get_txwi(struct queue_entry *entry) | 
|  | { | 
|  | return (__le32 *) entry->skb->data; | 
|  | } | 
|  |  | 
|  | static void rt2800pci_write_tx_desc(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | __le32 *txd = entry_priv->desc; | 
|  | u32 word; | 
|  |  | 
|  | /* | 
|  | * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1 | 
|  | * must contains a TXWI structure + 802.11 header + padding + 802.11 | 
|  | * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and | 
|  | * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11 | 
|  | * data. It means that LAST_SEC0 is always 0. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Initialize TX descriptor | 
|  | */ | 
|  | word = 0; | 
|  | rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma); | 
|  | rt2x00_desc_write(txd, 0, word); | 
|  |  | 
|  | word = 0; | 
|  | rt2x00_set_field32(&word, TXD_W1_SD_LEN1, entry->skb->len); | 
|  | rt2x00_set_field32(&word, TXD_W1_LAST_SEC1, | 
|  | !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W1_BURST, | 
|  | test_bit(ENTRY_TXD_BURST, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE); | 
|  | rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0); | 
|  | rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0); | 
|  | rt2x00_desc_write(txd, 1, word); | 
|  |  | 
|  | word = 0; | 
|  | rt2x00_set_field32(&word, TXD_W2_SD_PTR1, | 
|  | skbdesc->skb_dma + TXWI_DESC_SIZE); | 
|  | rt2x00_desc_write(txd, 2, word); | 
|  |  | 
|  | word = 0; | 
|  | rt2x00_set_field32(&word, TXD_W3_WIV, | 
|  | !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W3_QSEL, 2); | 
|  | rt2x00_desc_write(txd, 3, word); | 
|  |  | 
|  | /* | 
|  | * Register descriptor details in skb frame descriptor. | 
|  | */ | 
|  | skbdesc->desc = txd; | 
|  | skbdesc->desc_len = TXD_DESC_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RX control handlers | 
|  | */ | 
|  | static void rt2800pci_fill_rxdone(struct queue_entry *entry, | 
|  | struct rxdone_entry_desc *rxdesc) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | __le32 *rxd = entry_priv->desc; | 
|  | u32 word; | 
|  |  | 
|  | rt2x00_desc_read(rxd, 3, &word); | 
|  |  | 
|  | if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; | 
|  |  | 
|  | /* | 
|  | * Unfortunately we don't know the cipher type used during | 
|  | * decryption. This prevents us from correct providing | 
|  | * correct statistics through debugfs. | 
|  | */ | 
|  | rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR); | 
|  |  | 
|  | if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) { | 
|  | /* | 
|  | * Hardware has stripped IV/EIV data from 802.11 frame during | 
|  | * decryption. Unfortunately the descriptor doesn't contain | 
|  | * any fields with the EIV/IV data either, so they can't | 
|  | * be restored by rt2x00lib. | 
|  | */ | 
|  | rxdesc->flags |= RX_FLAG_IV_STRIPPED; | 
|  |  | 
|  | /* | 
|  | * The hardware has already checked the Michael Mic and has | 
|  | * stripped it from the frame. Signal this to mac80211. | 
|  | */ | 
|  | rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; | 
|  |  | 
|  | if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) | 
|  | rxdesc->flags |= RX_FLAG_DECRYPTED; | 
|  | else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) | 
|  | rxdesc->flags |= RX_FLAG_MMIC_ERROR; | 
|  | } | 
|  |  | 
|  | if (rt2x00_get_field32(word, RXD_W3_MY_BSS)) | 
|  | rxdesc->dev_flags |= RXDONE_MY_BSS; | 
|  |  | 
|  | if (rt2x00_get_field32(word, RXD_W3_L2PAD)) | 
|  | rxdesc->dev_flags |= RXDONE_L2PAD; | 
|  |  | 
|  | /* | 
|  | * Process the RXWI structure that is at the start of the buffer. | 
|  | */ | 
|  | rt2800_process_rxwi(entry, rxdesc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt functions. | 
|  | */ | 
|  | static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct ieee80211_conf conf = { .flags = 0 }; | 
|  | struct rt2x00lib_conf libconf = { .conf = &conf }; | 
|  |  | 
|  | rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); | 
|  | } | 
|  |  | 
|  | static bool rt2800pci_txdone(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  | struct queue_entry *entry; | 
|  | u32 status; | 
|  | u8 qid; | 
|  | int max_tx_done = 16; | 
|  |  | 
|  | while (kfifo_get(&rt2x00dev->txstatus_fifo, &status)) { | 
|  | qid = rt2x00_get_field32(status, TX_STA_FIFO_PID_QUEUE); | 
|  | if (unlikely(qid >= QID_RX)) { | 
|  | /* | 
|  | * Unknown queue, this shouldn't happen. Just drop | 
|  | * this tx status. | 
|  | */ | 
|  | WARNING(rt2x00dev, "Got TX status report with " | 
|  | "unexpected pid %u, dropping\n", qid); | 
|  | break; | 
|  | } | 
|  |  | 
|  | queue = rt2x00queue_get_tx_queue(rt2x00dev, qid); | 
|  | if (unlikely(queue == NULL)) { | 
|  | /* | 
|  | * The queue is NULL, this shouldn't happen. Stop | 
|  | * processing here and drop the tx status | 
|  | */ | 
|  | WARNING(rt2x00dev, "Got TX status for an unavailable " | 
|  | "queue %u, dropping\n", qid); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(rt2x00queue_empty(queue))) { | 
|  | /* | 
|  | * The queue is empty. Stop processing here | 
|  | * and drop the tx status. | 
|  | */ | 
|  | WARNING(rt2x00dev, "Got TX status for an empty " | 
|  | "queue %u, dropping\n", qid); | 
|  | break; | 
|  | } | 
|  |  | 
|  | entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
|  | rt2800_txdone_entry(entry, status, rt2800pci_get_txwi(entry)); | 
|  |  | 
|  | if (--max_tx_done == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return !max_tx_done; | 
|  | } | 
|  |  | 
|  | static inline void rt2800pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_field32 irq_field) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Enable a single interrupt. The interrupt mask register | 
|  | * access needs locking. | 
|  | */ | 
|  | spin_lock_irq(&rt2x00dev->irqmask_lock); | 
|  | rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); | 
|  | rt2x00_set_field32(®, irq_field, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
|  | spin_unlock_irq(&rt2x00dev->irqmask_lock); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_txstatus_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | if (rt2800pci_txdone(rt2x00dev)) | 
|  | tasklet_schedule(&rt2x00dev->txstatus_tasklet); | 
|  |  | 
|  | /* | 
|  | * No need to enable the tx status interrupt here as we always | 
|  | * leave it enabled to minimize the possibility of a tx status | 
|  | * register overflow. See comment in interrupt handler. | 
|  | */ | 
|  | } | 
|  |  | 
|  | static void rt2800pci_pretbtt_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | rt2x00lib_pretbtt(rt2x00dev); | 
|  | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_PRE_TBTT); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_tbtt_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | struct rt2800_drv_data *drv_data = rt2x00dev->drv_data; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00lib_beacondone(rt2x00dev); | 
|  |  | 
|  | if (rt2x00dev->intf_ap_count) { | 
|  | /* | 
|  | * The rt2800pci hardware tbtt timer is off by 1us per tbtt | 
|  | * causing beacon skew and as a result causing problems with | 
|  | * some powersaving clients over time. Shorten the beacon | 
|  | * interval every 64 beacons by 64us to mitigate this effect. | 
|  | */ | 
|  | if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 2)) { | 
|  | rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, | 
|  | (rt2x00dev->beacon_int * 16) - 1); | 
|  | rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  | } else if (drv_data->tbtt_tick == (BCN_TBTT_OFFSET - 1)) { | 
|  | rt2x00pci_register_read(rt2x00dev, BCN_TIME_CFG, ®); | 
|  | rt2x00_set_field32(®, BCN_TIME_CFG_BEACON_INTERVAL, | 
|  | (rt2x00dev->beacon_int * 16)); | 
|  | rt2x00pci_register_write(rt2x00dev, BCN_TIME_CFG, reg); | 
|  | } | 
|  | drv_data->tbtt_tick++; | 
|  | drv_data->tbtt_tick %= BCN_TBTT_OFFSET; | 
|  | } | 
|  |  | 
|  | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TBTT); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_rxdone_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | if (rt2x00pci_rxdone(rt2x00dev)) | 
|  | tasklet_schedule(&rt2x00dev->rxdone_tasklet); | 
|  | else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RX_DONE); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_autowake_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | rt2800pci_wakeup(rt2x00dev); | 
|  | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt2800pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_AUTO_WAKEUP); | 
|  | } | 
|  |  | 
|  | static void rt2800pci_txstatus_interrupt(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 status; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * The TX_FIFO_STATUS interrupt needs special care. We should | 
|  | * read TX_STA_FIFO but we should do it immediately as otherwise | 
|  | * the register can overflow and we would lose status reports. | 
|  | * | 
|  | * Hence, read the TX_STA_FIFO register and copy all tx status | 
|  | * reports into a kernel FIFO which is handled in the txstatus | 
|  | * tasklet. We use a tasklet to process the tx status reports | 
|  | * because we can schedule the tasklet multiple times (when the | 
|  | * interrupt fires again during tx status processing). | 
|  | * | 
|  | * Furthermore we don't disable the TX_FIFO_STATUS | 
|  | * interrupt here but leave it enabled so that the TX_STA_FIFO | 
|  | * can also be read while the tx status tasklet gets executed. | 
|  | * | 
|  | * Since we have only one producer and one consumer we don't | 
|  | * need to lock the kfifo. | 
|  | */ | 
|  | for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, TX_STA_FIFO, &status); | 
|  |  | 
|  | if (!rt2x00_get_field32(status, TX_STA_FIFO_VALID)) | 
|  | break; | 
|  |  | 
|  | if (!kfifo_put(&rt2x00dev->txstatus_fifo, &status)) { | 
|  | WARNING(rt2x00dev, "TX status FIFO overrun," | 
|  | "drop tx status report.\n"); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Schedule the tasklet for processing the tx status. */ | 
|  | tasklet_schedule(&rt2x00dev->txstatus_tasklet); | 
|  | } | 
|  |  | 
|  | static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = dev_instance; | 
|  | u32 reg, mask; | 
|  |  | 
|  | /* Read status and ACK all interrupts */ | 
|  | rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); | 
|  |  | 
|  | if (!reg) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | /* | 
|  | * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits | 
|  | * for interrupts and interrupt masks we can just use the value of | 
|  | * INT_SOURCE_CSR to create the interrupt mask. | 
|  | */ | 
|  | mask = ~reg; | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS)) { | 
|  | rt2800pci_txstatus_interrupt(rt2x00dev); | 
|  | /* | 
|  | * Never disable the TX_FIFO_STATUS interrupt. | 
|  | */ | 
|  | rt2x00_set_field32(&mask, INT_MASK_CSR_TX_FIFO_STATUS, 1); | 
|  | } | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_PRE_TBTT)) | 
|  | tasklet_hi_schedule(&rt2x00dev->pretbtt_tasklet); | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TBTT)) | 
|  | tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE)) | 
|  | tasklet_schedule(&rt2x00dev->rxdone_tasklet); | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP)) | 
|  | tasklet_schedule(&rt2x00dev->autowake_tasklet); | 
|  |  | 
|  | /* | 
|  | * Disable all interrupts for which a tasklet was scheduled right now, | 
|  | * the tasklet will reenable the appropriate interrupts. | 
|  | */ | 
|  | spin_lock(&rt2x00dev->irqmask_lock); | 
|  | rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); | 
|  | reg &= mask; | 
|  | rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
|  | spin_unlock(&rt2x00dev->irqmask_lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device probe functions. | 
|  | */ | 
|  | static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Read EEPROM into buffer | 
|  | */ | 
|  | if (rt2x00_is_soc(rt2x00dev)) | 
|  | rt2800pci_read_eeprom_soc(rt2x00dev); | 
|  | else if (rt2800pci_efuse_detect(rt2x00dev)) | 
|  | rt2800pci_read_eeprom_efuse(rt2x00dev); | 
|  | else | 
|  | rt2800pci_read_eeprom_pci(rt2x00dev); | 
|  |  | 
|  | return rt2800_validate_eeprom(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Allocate eeprom data. | 
|  | */ | 
|  | retval = rt2800pci_validate_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = rt2800_init_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Enable rfkill polling by setting GPIO direction of the | 
|  | * rfkill switch GPIO pin correctly. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, GPIO_CTRL_CFG, ®); | 
|  | rt2x00_set_field32(®, GPIO_CTRL_CFG_GPIOD_BIT2, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, GPIO_CTRL_CFG, reg); | 
|  |  | 
|  | /* | 
|  | * Initialize hw specifications. | 
|  | */ | 
|  | retval = rt2800_probe_hw_mode(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * This device has multiple filters for control frames | 
|  | * and has a separate filter for PS Poll frames. | 
|  | */ | 
|  | __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); | 
|  | __set_bit(CAPABILITY_CONTROL_FILTER_PSPOLL, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * This device has a pre tbtt interrupt and thus fetches | 
|  | * a new beacon directly prior to transmission. | 
|  | */ | 
|  | __set_bit(CAPABILITY_PRE_TBTT_INTERRUPT, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * This device requires firmware. | 
|  | */ | 
|  | if (!rt2x00_is_soc(rt2x00dev)) | 
|  | __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_L2PAD, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_TXSTATUS_FIFO, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_TASKLET_CONTEXT, &rt2x00dev->cap_flags); | 
|  | if (!modparam_nohwcrypt) | 
|  | __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); | 
|  | __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_HT_TX_DESC, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Set the rssi offset. | 
|  | */ | 
|  | rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const struct ieee80211_ops rt2800pci_mac80211_ops = { | 
|  | .tx			= rt2x00mac_tx, | 
|  | .start			= rt2x00mac_start, | 
|  | .stop			= rt2x00mac_stop, | 
|  | .add_interface		= rt2x00mac_add_interface, | 
|  | .remove_interface	= rt2x00mac_remove_interface, | 
|  | .config			= rt2x00mac_config, | 
|  | .configure_filter	= rt2x00mac_configure_filter, | 
|  | .set_key		= rt2x00mac_set_key, | 
|  | .sw_scan_start		= rt2x00mac_sw_scan_start, | 
|  | .sw_scan_complete	= rt2x00mac_sw_scan_complete, | 
|  | .get_stats		= rt2x00mac_get_stats, | 
|  | .get_tkip_seq		= rt2800_get_tkip_seq, | 
|  | .set_rts_threshold	= rt2800_set_rts_threshold, | 
|  | .sta_add		= rt2x00mac_sta_add, | 
|  | .sta_remove		= rt2x00mac_sta_remove, | 
|  | .bss_info_changed	= rt2x00mac_bss_info_changed, | 
|  | .conf_tx		= rt2800_conf_tx, | 
|  | .get_tsf		= rt2800_get_tsf, | 
|  | .rfkill_poll		= rt2x00mac_rfkill_poll, | 
|  | .ampdu_action		= rt2800_ampdu_action, | 
|  | .flush			= rt2x00mac_flush, | 
|  | .get_survey		= rt2800_get_survey, | 
|  | .get_ringparam		= rt2x00mac_get_ringparam, | 
|  | .tx_frames_pending	= rt2x00mac_tx_frames_pending, | 
|  | }; | 
|  |  | 
|  | static const struct rt2800_ops rt2800pci_rt2800_ops = { | 
|  | .register_read		= rt2x00pci_register_read, | 
|  | .register_read_lock	= rt2x00pci_register_read, /* same for PCI */ | 
|  | .register_write		= rt2x00pci_register_write, | 
|  | .register_write_lock	= rt2x00pci_register_write, /* same for PCI */ | 
|  | .register_multiread	= rt2x00pci_register_multiread, | 
|  | .register_multiwrite	= rt2x00pci_register_multiwrite, | 
|  | .regbusy_read		= rt2x00pci_regbusy_read, | 
|  | .drv_write_firmware	= rt2800pci_write_firmware, | 
|  | .drv_init_registers	= rt2800pci_init_registers, | 
|  | .drv_get_txwi		= rt2800pci_get_txwi, | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = { | 
|  | .irq_handler		= rt2800pci_interrupt, | 
|  | .txstatus_tasklet	= rt2800pci_txstatus_tasklet, | 
|  | .pretbtt_tasklet	= rt2800pci_pretbtt_tasklet, | 
|  | .tbtt_tasklet		= rt2800pci_tbtt_tasklet, | 
|  | .rxdone_tasklet		= rt2800pci_rxdone_tasklet, | 
|  | .autowake_tasklet	= rt2800pci_autowake_tasklet, | 
|  | .probe_hw		= rt2800pci_probe_hw, | 
|  | .get_firmware_name	= rt2800pci_get_firmware_name, | 
|  | .check_firmware		= rt2800_check_firmware, | 
|  | .load_firmware		= rt2800_load_firmware, | 
|  | .initialize		= rt2x00pci_initialize, | 
|  | .uninitialize		= rt2x00pci_uninitialize, | 
|  | .get_entry_state	= rt2800pci_get_entry_state, | 
|  | .clear_entry		= rt2800pci_clear_entry, | 
|  | .set_device_state	= rt2800pci_set_device_state, | 
|  | .rfkill_poll		= rt2800_rfkill_poll, | 
|  | .link_stats		= rt2800_link_stats, | 
|  | .reset_tuner		= rt2800_reset_tuner, | 
|  | .link_tuner		= rt2800_link_tuner, | 
|  | .gain_calibration	= rt2800_gain_calibration, | 
|  | .vco_calibration	= rt2800_vco_calibration, | 
|  | .start_queue		= rt2800pci_start_queue, | 
|  | .kick_queue		= rt2800pci_kick_queue, | 
|  | .stop_queue		= rt2800pci_stop_queue, | 
|  | .flush_queue		= rt2x00pci_flush_queue, | 
|  | .write_tx_desc		= rt2800pci_write_tx_desc, | 
|  | .write_tx_data		= rt2800_write_tx_data, | 
|  | .write_beacon		= rt2800_write_beacon, | 
|  | .clear_beacon		= rt2800_clear_beacon, | 
|  | .fill_rxdone		= rt2800pci_fill_rxdone, | 
|  | .config_shared_key	= rt2800_config_shared_key, | 
|  | .config_pairwise_key	= rt2800_config_pairwise_key, | 
|  | .config_filter		= rt2800_config_filter, | 
|  | .config_intf		= rt2800_config_intf, | 
|  | .config_erp		= rt2800_config_erp, | 
|  | .config_ant		= rt2800_config_ant, | 
|  | .config			= rt2800_config, | 
|  | .sta_add		= rt2800_sta_add, | 
|  | .sta_remove		= rt2800_sta_remove, | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2800pci_queue_rx = { | 
|  | .entry_num		= 128, | 
|  | .data_size		= AGGREGATION_SIZE, | 
|  | .desc_size		= RXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2800pci_queue_tx = { | 
|  | .entry_num		= 64, | 
|  | .data_size		= AGGREGATION_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt2800pci_queue_bcn = { | 
|  | .entry_num		= 8, | 
|  | .data_size		= 0, /* No DMA required for beacons */ | 
|  | .desc_size		= TXWI_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00_ops rt2800pci_ops = { | 
|  | .name			= KBUILD_MODNAME, | 
|  | .drv_data_size		= sizeof(struct rt2800_drv_data), | 
|  | .max_sta_intf		= 1, | 
|  | .max_ap_intf		= 8, | 
|  | .eeprom_size		= EEPROM_SIZE, | 
|  | .rf_size		= RF_SIZE, | 
|  | .tx_queues		= NUM_TX_QUEUES, | 
|  | .extra_tx_headroom	= TXWI_DESC_SIZE, | 
|  | .rx			= &rt2800pci_queue_rx, | 
|  | .tx			= &rt2800pci_queue_tx, | 
|  | .bcn			= &rt2800pci_queue_bcn, | 
|  | .lib			= &rt2800pci_rt2x00_ops, | 
|  | .drv			= &rt2800pci_rt2800_ops, | 
|  | .hw			= &rt2800pci_mac80211_ops, | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | .debugfs		= &rt2800_rt2x00debug, | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RT2800pci module information. | 
|  | */ | 
|  | #ifdef CONFIG_PCI | 
|  | static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = { | 
|  | { PCI_DEVICE(0x1814, 0x0601) }, | 
|  | { PCI_DEVICE(0x1814, 0x0681) }, | 
|  | { PCI_DEVICE(0x1814, 0x0701) }, | 
|  | { PCI_DEVICE(0x1814, 0x0781) }, | 
|  | { PCI_DEVICE(0x1814, 0x3090) }, | 
|  | { PCI_DEVICE(0x1814, 0x3091) }, | 
|  | { PCI_DEVICE(0x1814, 0x3092) }, | 
|  | { PCI_DEVICE(0x1432, 0x7708) }, | 
|  | { PCI_DEVICE(0x1432, 0x7727) }, | 
|  | { PCI_DEVICE(0x1432, 0x7728) }, | 
|  | { PCI_DEVICE(0x1432, 0x7738) }, | 
|  | { PCI_DEVICE(0x1432, 0x7748) }, | 
|  | { PCI_DEVICE(0x1432, 0x7758) }, | 
|  | { PCI_DEVICE(0x1432, 0x7768) }, | 
|  | { PCI_DEVICE(0x1462, 0x891a) }, | 
|  | { PCI_DEVICE(0x1a3b, 0x1059) }, | 
|  | #ifdef CONFIG_RT2800PCI_RT33XX | 
|  | { PCI_DEVICE(0x1814, 0x3390) }, | 
|  | #endif | 
|  | #ifdef CONFIG_RT2800PCI_RT35XX | 
|  | { PCI_DEVICE(0x1432, 0x7711) }, | 
|  | { PCI_DEVICE(0x1432, 0x7722) }, | 
|  | { PCI_DEVICE(0x1814, 0x3060) }, | 
|  | { PCI_DEVICE(0x1814, 0x3062) }, | 
|  | { PCI_DEVICE(0x1814, 0x3562) }, | 
|  | { PCI_DEVICE(0x1814, 0x3592) }, | 
|  | { PCI_DEVICE(0x1814, 0x3593) }, | 
|  | #endif | 
|  | #ifdef CONFIG_RT2800PCI_RT53XX | 
|  | { PCI_DEVICE(0x1814, 0x5390) }, | 
|  | { PCI_DEVICE(0x1814, 0x539a) }, | 
|  | { PCI_DEVICE(0x1814, 0x539f) }, | 
|  | #endif | 
|  | { 0, } | 
|  | }; | 
|  | #endif /* CONFIG_PCI */ | 
|  |  | 
|  | MODULE_AUTHOR(DRV_PROJECT); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver."); | 
|  | MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards"); | 
|  | #ifdef CONFIG_PCI | 
|  | MODULE_FIRMWARE(FIRMWARE_RT2860); | 
|  | MODULE_DEVICE_TABLE(pci, rt2800pci_device_table); | 
|  | #endif /* CONFIG_PCI */ | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) | 
|  | static int rt2800soc_probe(struct platform_device *pdev) | 
|  | { | 
|  | return rt2x00soc_probe(pdev, &rt2800pci_ops); | 
|  | } | 
|  |  | 
|  | static struct platform_driver rt2800soc_driver = { | 
|  | .driver		= { | 
|  | .name		= "rt2800_wmac", | 
|  | .owner		= THIS_MODULE, | 
|  | .mod_name	= KBUILD_MODNAME, | 
|  | }, | 
|  | .probe		= rt2800soc_probe, | 
|  | .remove		= __devexit_p(rt2x00soc_remove), | 
|  | .suspend	= rt2x00soc_suspend, | 
|  | .resume		= rt2x00soc_resume, | 
|  | }; | 
|  | #endif /* CONFIG_RALINK_RT288X || CONFIG_RALINK_RT305X */ | 
|  |  | 
|  | #ifdef CONFIG_PCI | 
|  | static int rt2800pci_probe(struct pci_dev *pci_dev, | 
|  | const struct pci_device_id *id) | 
|  | { | 
|  | return rt2x00pci_probe(pci_dev, &rt2800pci_ops); | 
|  | } | 
|  |  | 
|  | static struct pci_driver rt2800pci_driver = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .id_table	= rt2800pci_device_table, | 
|  | .probe		= rt2800pci_probe, | 
|  | .remove		= __devexit_p(rt2x00pci_remove), | 
|  | .suspend	= rt2x00pci_suspend, | 
|  | .resume		= rt2x00pci_resume, | 
|  | }; | 
|  | #endif /* CONFIG_PCI */ | 
|  |  | 
|  | static int __init rt2800pci_init(void) | 
|  | { | 
|  | int ret = 0; | 
|  |  | 
|  | #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) | 
|  | ret = platform_driver_register(&rt2800soc_driver); | 
|  | if (ret) | 
|  | return ret; | 
|  | #endif | 
|  | #ifdef CONFIG_PCI | 
|  | ret = pci_register_driver(&rt2800pci_driver); | 
|  | if (ret) { | 
|  | #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) | 
|  | platform_driver_unregister(&rt2800soc_driver); | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  | #endif | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void __exit rt2800pci_exit(void) | 
|  | { | 
|  | #ifdef CONFIG_PCI | 
|  | pci_unregister_driver(&rt2800pci_driver); | 
|  | #endif | 
|  | #if defined(CONFIG_RALINK_RT288X) || defined(CONFIG_RALINK_RT305X) | 
|  | platform_driver_unregister(&rt2800soc_driver); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | module_init(rt2800pci_init); | 
|  | module_exit(rt2800pci_exit); |