|  | /* | 
|  | Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt61pci | 
|  | Abstract: rt61pci device specific routines. | 
|  | Supported chipsets: RT2561, RT2561s, RT2661. | 
|  | */ | 
|  |  | 
|  | #include <linux/crc-itu-t.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/pci.h> | 
|  | #include <linux/eeprom_93cx6.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00pci.h" | 
|  | #include "rt61pci.h" | 
|  |  | 
|  | /* | 
|  | * Allow hardware encryption to be disabled. | 
|  | */ | 
|  | static bool modparam_nohwcrypt = false; | 
|  | module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); | 
|  |  | 
|  | /* | 
|  | * Register access. | 
|  | * BBP and RF register require indirect register access, | 
|  | * and use the CSR registers PHY_CSR3 and PHY_CSR4 to achieve this. | 
|  | * These indirect registers work with busy bits, | 
|  | * and we will try maximal REGISTER_BUSY_COUNT times to access | 
|  | * the register while taking a REGISTER_BUSY_DELAY us delay | 
|  | * between each attempt. When the busy bit is still set at that time, | 
|  | * the access attempt is considered to have failed, | 
|  | * and we will print an error. | 
|  | */ | 
|  | #define WAIT_FOR_BBP(__dev, __reg) \ | 
|  | rt2x00pci_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RF(__dev, __reg) \ | 
|  | rt2x00pci_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) | 
|  | #define WAIT_FOR_MCU(__dev, __reg) \ | 
|  | rt2x00pci_regbusy_read((__dev), H2M_MAILBOX_CSR, \ | 
|  | H2M_MAILBOX_CSR_OWNER, (__reg)) | 
|  |  | 
|  | static void rt61pci_bbp_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PHY_CSR3_VALUE, value); | 
|  | rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); | 
|  | rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); | 
|  | rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt61pci_bbp_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); | 
|  | rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); | 
|  | rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR3, reg); | 
|  |  | 
|  | WAIT_FOR_BBP(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt61pci_rf_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u32 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RF becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RF(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PHY_CSR4_VALUE, value); | 
|  | rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, 21); | 
|  | rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); | 
|  | rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR4, reg); | 
|  | rt2x00_rf_write(rt2x00dev, word, value); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt61pci_mcu_request(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 command, const u8 token, | 
|  | const u8 arg0, const u8 arg1) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the MCU becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_MCU(rt2x00dev, ®)) { | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_OWNER, 1); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_CMD_TOKEN, token); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG0, arg0); | 
|  | rt2x00_set_field32(®, H2M_MAILBOX_CSR_ARG1, arg1); | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, HOST_CMD_CSR, ®); | 
|  | rt2x00_set_field32(®, HOST_CMD_CSR_HOST_COMMAND, command); | 
|  | rt2x00_set_field32(®, HOST_CMD_CSR_INTERRUPT_MCU, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | } | 
|  |  | 
|  | static void rt61pci_eepromregister_read(struct eeprom_93cx6 *eeprom) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = eeprom->data; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); | 
|  |  | 
|  | eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN); | 
|  | eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT); | 
|  | eeprom->reg_data_clock = | 
|  | !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK); | 
|  | eeprom->reg_chip_select = | 
|  | !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT); | 
|  | } | 
|  |  | 
|  | static void rt61pci_eepromregister_write(struct eeprom_93cx6 *eeprom) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = eeprom->data; | 
|  | u32 reg = 0; | 
|  |  | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_DATA_CLOCK, | 
|  | !!eeprom->reg_data_clock); | 
|  | rt2x00_set_field32(®, E2PROM_CSR_CHIP_SELECT, | 
|  | !!eeprom->reg_chip_select); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, E2PROM_CSR, reg); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | static const struct rt2x00debug rt61pci_rt2x00debug = { | 
|  | .owner	= THIS_MODULE, | 
|  | .csr	= { | 
|  | .read		= rt2x00pci_register_read, | 
|  | .write		= rt2x00pci_register_write, | 
|  | .flags		= RT2X00DEBUGFS_OFFSET, | 
|  | .word_base	= CSR_REG_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= CSR_REG_SIZE / sizeof(u32), | 
|  | }, | 
|  | .eeprom	= { | 
|  | .read		= rt2x00_eeprom_read, | 
|  | .write		= rt2x00_eeprom_write, | 
|  | .word_base	= EEPROM_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= EEPROM_SIZE / sizeof(u16), | 
|  | }, | 
|  | .bbp	= { | 
|  | .read		= rt61pci_bbp_read, | 
|  | .write		= rt61pci_bbp_write, | 
|  | .word_base	= BBP_BASE, | 
|  | .word_size	= sizeof(u8), | 
|  | .word_count	= BBP_SIZE / sizeof(u8), | 
|  | }, | 
|  | .rf	= { | 
|  | .read		= rt2x00_rf_read, | 
|  | .write		= rt61pci_rf_write, | 
|  | .word_base	= RF_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= RF_SIZE / sizeof(u32), | 
|  | }, | 
|  | }; | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  |  | 
|  | static int rt61pci_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); | 
|  | return rt2x00_get_field32(reg, MAC_CSR13_BIT5); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | static void rt61pci_brightness_set(struct led_classdev *led_cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | unsigned int enabled = brightness != LED_OFF; | 
|  | unsigned int a_mode = | 
|  | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); | 
|  | unsigned int bg_mode = | 
|  | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
|  |  | 
|  | if (led->type == LED_TYPE_RADIO) { | 
|  | rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
|  | MCU_LEDCS_RADIO_STATUS, enabled); | 
|  |  | 
|  | rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, | 
|  | (led->rt2x00dev->led_mcu_reg & 0xff), | 
|  | ((led->rt2x00dev->led_mcu_reg >> 8))); | 
|  | } else if (led->type == LED_TYPE_ASSOC) { | 
|  | rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
|  | MCU_LEDCS_LINK_BG_STATUS, bg_mode); | 
|  | rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
|  | MCU_LEDCS_LINK_A_STATUS, a_mode); | 
|  |  | 
|  | rt61pci_mcu_request(led->rt2x00dev, MCU_LED, 0xff, | 
|  | (led->rt2x00dev->led_mcu_reg & 0xff), | 
|  | ((led->rt2x00dev->led_mcu_reg >> 8))); | 
|  | } else if (led->type == LED_TYPE_QUALITY) { | 
|  | /* | 
|  | * The brightness is divided into 6 levels (0 - 5), | 
|  | * this means we need to convert the brightness | 
|  | * argument into the matching level within that range. | 
|  | */ | 
|  | rt61pci_mcu_request(led->rt2x00dev, MCU_LED_STRENGTH, 0xff, | 
|  | brightness / (LED_FULL / 6), 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt61pci_blink_set(struct led_classdev *led_cdev, | 
|  | unsigned long *delay_on, | 
|  | unsigned long *delay_off) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(led->rt2x00dev, MAC_CSR14, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); | 
|  | rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); | 
|  | rt2x00pci_register_write(led->rt2x00dev, MAC_CSR14, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt61pci_init_led(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_led *led, | 
|  | enum led_type type) | 
|  | { | 
|  | led->rt2x00dev = rt2x00dev; | 
|  | led->type = type; | 
|  | led->led_dev.brightness_set = rt61pci_brightness_set; | 
|  | led->led_dev.blink_set = rt61pci_blink_set; | 
|  | led->flags = LED_INITIALIZED; | 
|  | } | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Configuration handlers. | 
|  | */ | 
|  | static int rt61pci_config_shared_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_key_entry key_entry; | 
|  | struct rt2x00_field32 field; | 
|  | u32 mask; | 
|  | u32 reg; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | /* | 
|  | * rt2x00lib can't determine the correct free | 
|  | * key_idx for shared keys. We have 1 register | 
|  | * with key valid bits. The goal is simple, read | 
|  | * the register, if that is full we have no slots | 
|  | * left. | 
|  | * Note that each BSS is allowed to have up to 4 | 
|  | * shared keys, so put a mask over the allowed | 
|  | * entries. | 
|  | */ | 
|  | mask = (0xf << crypto->bssidx); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®); | 
|  | reg &= mask; | 
|  |  | 
|  | if (reg && reg == mask) | 
|  | return -ENOSPC; | 
|  |  | 
|  | key->hw_key_idx += reg ? ffz(reg) : 0; | 
|  |  | 
|  | /* | 
|  | * Upload key to hardware | 
|  | */ | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | reg = SHARED_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, reg, | 
|  | &key_entry, sizeof(key_entry)); | 
|  |  | 
|  | /* | 
|  | * The cipher types are stored over 2 registers. | 
|  | * bssidx 0 and 1 keys are stored in SEC_CSR1 and | 
|  | * bssidx 1 and 2 keys are stored in SEC_CSR5. | 
|  | * Using the correct defines correctly will cause overhead, | 
|  | * so just calculate the correct offset. | 
|  | */ | 
|  | if (key->hw_key_idx < 8) { | 
|  | field.bit_offset = (3 * key->hw_key_idx); | 
|  | field.bit_mask = 0x7 << field.bit_offset; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR1, ®); | 
|  | rt2x00_set_field32(®, field, crypto->cipher); | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR1, reg); | 
|  | } else { | 
|  | field.bit_offset = (3 * (key->hw_key_idx - 8)); | 
|  | field.bit_mask = 0x7 << field.bit_offset; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR5, ®); | 
|  | rt2x00_set_field32(®, field, crypto->cipher); | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR5, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The driver does not support the IV/EIV generation | 
|  | * in hardware. However it doesn't support the IV/EIV | 
|  | * inside the ieee80211 frame either, but requires it | 
|  | * to be provided separately for the descriptor. | 
|  | * rt2x00lib will cut the IV/EIV data out of all frames | 
|  | * given to us by mac80211, but we must tell mac80211 | 
|  | * to generate the IV/EIV data. | 
|  | */ | 
|  | key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SEC_CSR0 contains only single-bit fields to indicate | 
|  | * a particular key is valid. Because using the FIELD32() | 
|  | * defines directly will cause a lot of overhead, we use | 
|  | * a calculation to determine the correct bit directly. | 
|  | */ | 
|  | mask = 1 << key->hw_key_idx; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR0, ®); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | reg |= mask; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | reg &= ~mask; | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR0, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt61pci_config_pairwise_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_pairwise_ta_entry addr_entry; | 
|  | struct hw_key_entry key_entry; | 
|  | u32 mask; | 
|  | u32 reg; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | /* | 
|  | * rt2x00lib can't determine the correct free | 
|  | * key_idx for pairwise keys. We have 2 registers | 
|  | * with key valid bits. The goal is simple: read | 
|  | * the first register. If that is full, move to | 
|  | * the next register. | 
|  | * When both registers are full, we drop the key. | 
|  | * Otherwise, we use the first invalid entry. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®); | 
|  | if (reg && reg == ~0) { | 
|  | key->hw_key_idx = 32; | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®); | 
|  | if (reg && reg == ~0) | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | key->hw_key_idx += reg ? ffz(reg) : 0; | 
|  |  | 
|  | /* | 
|  | * Upload key to hardware | 
|  | */ | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | memset(&addr_entry, 0, sizeof(addr_entry)); | 
|  | memcpy(&addr_entry, crypto->address, ETH_ALEN); | 
|  | addr_entry.cipher = crypto->cipher; | 
|  |  | 
|  | reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, reg, | 
|  | &key_entry, sizeof(key_entry)); | 
|  |  | 
|  | reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, reg, | 
|  | &addr_entry, sizeof(addr_entry)); | 
|  |  | 
|  | /* | 
|  | * Enable pairwise lookup table for given BSS idx. | 
|  | * Without this, received frames will not be decrypted | 
|  | * by the hardware. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR4, ®); | 
|  | reg |= (1 << crypto->bssidx); | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR4, reg); | 
|  |  | 
|  | /* | 
|  | * The driver does not support the IV/EIV generation | 
|  | * in hardware. However it doesn't support the IV/EIV | 
|  | * inside the ieee80211 frame either, but requires it | 
|  | * to be provided separately for the descriptor. | 
|  | * rt2x00lib will cut the IV/EIV data out of all frames | 
|  | * given to us by mac80211, but we must tell mac80211 | 
|  | * to generate the IV/EIV data. | 
|  | */ | 
|  | key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate | 
|  | * a particular key is valid. Because using the FIELD32() | 
|  | * defines directly will cause a lot of overhead, we use | 
|  | * a calculation to determine the correct bit directly. | 
|  | */ | 
|  | if (key->hw_key_idx < 32) { | 
|  | mask = 1 << key->hw_key_idx; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR2, ®); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | reg |= mask; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | reg &= ~mask; | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR2, reg); | 
|  | } else { | 
|  | mask = 1 << (key->hw_key_idx - 32); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, SEC_CSR3, ®); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | reg |= mask; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | reg &= ~mask; | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR3, reg); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_filter(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int filter_flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Start configuration steps. | 
|  | * Note that the version error will always be dropped | 
|  | * and broadcast frames will always be accepted since | 
|  | * there is no filter for it at this time. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, | 
|  | !(filter_flags & FIF_FCSFAIL)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, | 
|  | !(filter_flags & FIF_PLCPFAIL)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, | 
|  | !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS) && | 
|  | !rt2x00dev->intf_ap_count); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, | 
|  | !(filter_flags & FIF_ALLMULTI)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_intf(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_intf *intf, | 
|  | struct rt2x00intf_conf *conf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_TYPE) { | 
|  | /* | 
|  | * Enable synchronisation. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_MAC) { | 
|  | reg = le32_to_cpu(conf->mac[1]); | 
|  | rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); | 
|  | conf->mac[1] = cpu_to_le32(reg); | 
|  |  | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR2, | 
|  | conf->mac, sizeof(conf->mac)); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_BSSID) { | 
|  | reg = le32_to_cpu(conf->bssid[1]); | 
|  | rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); | 
|  | conf->bssid[1] = cpu_to_le32(reg); | 
|  |  | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, MAC_CSR4, | 
|  | conf->bssid, sizeof(conf->bssid)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_erp(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_erp *erp, | 
|  | u32 changed) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_PREAMBLE) { | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, | 
|  | !!erp->short_preamble); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_BASIC_RATES) | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR5, | 
|  | erp->basic_rates); | 
|  |  | 
|  | if (changed & BSS_CHANGED_BEACON_INT) { | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, | 
|  | erp->beacon_int * 16); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_SLOT) { | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR8, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); | 
|  | rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); | 
|  | rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR8, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_antenna_5x(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r4; | 
|  | u8 r77; | 
|  |  | 
|  | rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt61pci_bbp_read(rt2x00dev, 4, &r4); | 
|  | rt61pci_bbp_read(rt2x00dev, 77, &r77); | 
|  |  | 
|  | rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF5325)); | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, | 
|  | (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ)); | 
|  | break; | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | else | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | else | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt61pci_bbp_write(rt2x00dev, 77, r77); | 
|  | rt61pci_bbp_write(rt2x00dev, 3, r3); | 
|  | rt61pci_bbp_write(rt2x00dev, 4, r4); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_antenna_2x(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r4; | 
|  | u8 r77; | 
|  |  | 
|  | rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt61pci_bbp_read(rt2x00dev, 4, &r4); | 
|  | rt61pci_bbp_read(rt2x00dev, 77, &r77); | 
|  |  | 
|  | rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, rt2x00_rf(rt2x00dev, RF2529)); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, | 
|  | !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)); | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); | 
|  | break; | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt61pci_bbp_write(rt2x00dev, 77, r77); | 
|  | rt61pci_bbp_write(rt2x00dev, 3, r3); | 
|  | rt61pci_bbp_write(rt2x00dev, 4, r4); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_antenna_2529_rx(struct rt2x00_dev *rt2x00dev, | 
|  | const int p1, const int p2) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); | 
|  |  | 
|  | rt2x00_set_field32(®, MAC_CSR13_BIT4, p1); | 
|  | rt2x00_set_field32(®, MAC_CSR13_BIT12, 0); | 
|  |  | 
|  | rt2x00_set_field32(®, MAC_CSR13_BIT3, !p2); | 
|  | rt2x00_set_field32(®, MAC_CSR13_BIT11, 0); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_antenna_2529(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r4; | 
|  | u8 r77; | 
|  |  | 
|  | rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt61pci_bbp_read(rt2x00dev, 4, &r4); | 
|  | rt61pci_bbp_read(rt2x00dev, 77, &r77); | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | rt61pci_config_antenna_2529_rx(rt2x00dev, 0, 0); | 
|  | break; | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | /* | 
|  | * FIXME: Antenna selection for the rf 2529 is very confusing | 
|  | * in the legacy driver. Just default to antenna B until the | 
|  | * legacy code can be properly translated into rt2x00 code. | 
|  | */ | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | rt61pci_config_antenna_2529_rx(rt2x00dev, 1, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt61pci_bbp_write(rt2x00dev, 77, r77); | 
|  | rt61pci_bbp_write(rt2x00dev, 3, r3); | 
|  | rt61pci_bbp_write(rt2x00dev, 4, r4); | 
|  | } | 
|  |  | 
|  | struct antenna_sel { | 
|  | u8 word; | 
|  | /* | 
|  | * value[0] -> non-LNA | 
|  | * value[1] -> LNA | 
|  | */ | 
|  | u8 value[2]; | 
|  | }; | 
|  |  | 
|  | static const struct antenna_sel antenna_sel_a[] = { | 
|  | { 96,  { 0x58, 0x78 } }, | 
|  | { 104, { 0x38, 0x48 } }, | 
|  | { 75,  { 0xfe, 0x80 } }, | 
|  | { 86,  { 0xfe, 0x80 } }, | 
|  | { 88,  { 0xfe, 0x80 } }, | 
|  | { 35,  { 0x60, 0x60 } }, | 
|  | { 97,  { 0x58, 0x58 } }, | 
|  | { 98,  { 0x58, 0x58 } }, | 
|  | }; | 
|  |  | 
|  | static const struct antenna_sel antenna_sel_bg[] = { | 
|  | { 96,  { 0x48, 0x68 } }, | 
|  | { 104, { 0x2c, 0x3c } }, | 
|  | { 75,  { 0xfe, 0x80 } }, | 
|  | { 86,  { 0xfe, 0x80 } }, | 
|  | { 88,  { 0xfe, 0x80 } }, | 
|  | { 35,  { 0x50, 0x50 } }, | 
|  | { 97,  { 0x48, 0x48 } }, | 
|  | { 98,  { 0x48, 0x48 } }, | 
|  | }; | 
|  |  | 
|  | static void rt61pci_config_ant(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | const struct antenna_sel *sel; | 
|  | unsigned int lna; | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * We should never come here because rt2x00lib is supposed | 
|  | * to catch this and send us the correct antenna explicitely. | 
|  | */ | 
|  | BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || | 
|  | ant->tx == ANTENNA_SW_DIVERSITY); | 
|  |  | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
|  | sel = antenna_sel_a; | 
|  | lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); | 
|  | } else { | 
|  | sel = antenna_sel_bg; | 
|  | lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) | 
|  | rt61pci_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, PHY_CSR0, ®); | 
|  |  | 
|  | rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, | 
|  | rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
|  | rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, | 
|  | rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR0, reg); | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) | 
|  | rt61pci_config_antenna_5x(rt2x00dev, ant); | 
|  | else if (rt2x00_rf(rt2x00dev, RF2527)) | 
|  | rt61pci_config_antenna_2x(rt2x00dev, ant); | 
|  | else if (rt2x00_rf(rt2x00dev, RF2529)) { | 
|  | if (test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) | 
|  | rt61pci_config_antenna_2x(rt2x00dev, ant); | 
|  | else | 
|  | rt61pci_config_antenna_2529(rt2x00dev, ant); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_lna_gain(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u16 eeprom; | 
|  | short lna_gain = 0; | 
|  |  | 
|  | if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) { | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) | 
|  | lna_gain += 14; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); | 
|  | lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); | 
|  | } else { | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) | 
|  | lna_gain += 14; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); | 
|  | lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); | 
|  | } | 
|  |  | 
|  | rt2x00dev->lna_gain = lna_gain; | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_channel(struct rt2x00_dev *rt2x00dev, | 
|  | struct rf_channel *rf, const int txpower) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r94; | 
|  | u8 smart; | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
|  | rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); | 
|  |  | 
|  | smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); | 
|  |  | 
|  | rt61pci_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); | 
|  | rt61pci_bbp_write(rt2x00dev, 3, r3); | 
|  |  | 
|  | r94 = 6; | 
|  | if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) | 
|  | r94 += txpower - MAX_TXPOWER; | 
|  | else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) | 
|  | r94 += txpower; | 
|  | rt61pci_bbp_write(rt2x00dev, 94, r94); | 
|  |  | 
|  | rt61pci_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt61pci_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt61pci_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | rt61pci_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt61pci_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt61pci_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); | 
|  | rt61pci_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(200); | 
|  |  | 
|  | rt61pci_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt61pci_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt61pci_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt61pci_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_txpower(struct rt2x00_dev *rt2x00dev, | 
|  | const int txpower) | 
|  | { | 
|  | struct rf_channel rf; | 
|  |  | 
|  | rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); | 
|  | rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); | 
|  | rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); | 
|  | rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); | 
|  |  | 
|  | rt61pci_config_channel(rt2x00dev, &rf, txpower); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_retry_limit(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR4, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, | 
|  | libconf->conf->long_frame_max_tx_count); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, | 
|  | libconf->conf->short_frame_max_tx_count); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR4, reg); | 
|  | } | 
|  |  | 
|  | static void rt61pci_config_ps(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | enum dev_state state = | 
|  | (libconf->conf->flags & IEEE80211_CONF_PS) ? | 
|  | STATE_SLEEP : STATE_AWAKE; | 
|  | u32 reg; | 
|  |  | 
|  | if (state == STATE_SLEEP) { | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, | 
|  | rt2x00dev->beacon_int - 10); | 
|  | rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, | 
|  | libconf->conf->listen_interval - 1); | 
|  | rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); | 
|  |  | 
|  | /* We must first disable autowake before it can be enabled */ | 
|  | rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg); | 
|  |  | 
|  | rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000005); | 
|  | rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x0000001c); | 
|  | rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000060); | 
|  |  | 
|  | rt61pci_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 0); | 
|  | } else { | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR11, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR11, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); | 
|  | rt2x00pci_register_write(rt2x00dev, IO_CNTL_CSR, 0x00000018); | 
|  | rt2x00pci_register_write(rt2x00dev, PCI_USEC_CSR, 0x00000020); | 
|  |  | 
|  | rt61pci_mcu_request(rt2x00dev, MCU_WAKEUP, 0xff, 0, 0); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_config(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | /* Always recalculate LNA gain before changing configuration */ | 
|  | rt61pci_config_lna_gain(rt2x00dev, libconf); | 
|  |  | 
|  | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) | 
|  | rt61pci_config_channel(rt2x00dev, &libconf->rf, | 
|  | libconf->conf->power_level); | 
|  | if ((flags & IEEE80211_CONF_CHANGE_POWER) && | 
|  | !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) | 
|  | rt61pci_config_txpower(rt2x00dev, libconf->conf->power_level); | 
|  | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) | 
|  | rt61pci_config_retry_limit(rt2x00dev, libconf); | 
|  | if (flags & IEEE80211_CONF_CHANGE_PS) | 
|  | rt61pci_config_ps(rt2x00dev, libconf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link tuning | 
|  | */ | 
|  | static void rt61pci_link_stats(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Update FCS error count from register. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); | 
|  | qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); | 
|  |  | 
|  | /* | 
|  | * Update False CCA count from register. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); | 
|  | qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); | 
|  | } | 
|  |  | 
|  | static inline void rt61pci_set_vgc(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, u8 vgc_level) | 
|  | { | 
|  | if (qual->vgc_level != vgc_level) { | 
|  | rt61pci_bbp_write(rt2x00dev, 17, vgc_level); | 
|  | qual->vgc_level = vgc_level; | 
|  | qual->vgc_level_reg = vgc_level; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_reset_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | rt61pci_set_vgc(rt2x00dev, qual, 0x20); | 
|  | } | 
|  |  | 
|  | static void rt61pci_link_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, const u32 count) | 
|  | { | 
|  | u8 up_bound; | 
|  | u8 low_bound; | 
|  |  | 
|  | /* | 
|  | * Determine r17 bounds. | 
|  | */ | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
|  | low_bound = 0x28; | 
|  | up_bound = 0x48; | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { | 
|  | low_bound += 0x10; | 
|  | up_bound += 0x10; | 
|  | } | 
|  | } else { | 
|  | low_bound = 0x20; | 
|  | up_bound = 0x40; | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) { | 
|  | low_bound += 0x10; | 
|  | up_bound += 0x10; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are not associated, we should go straight to the | 
|  | * dynamic CCA tuning. | 
|  | */ | 
|  | if (!rt2x00dev->intf_associated) | 
|  | goto dynamic_cca_tune; | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for very short distance | 
|  | */ | 
|  | if (qual->rssi >= -35) { | 
|  | rt61pci_set_vgc(rt2x00dev, qual, 0x60); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for short distance | 
|  | */ | 
|  | if (qual->rssi >= -58) { | 
|  | rt61pci_set_vgc(rt2x00dev, qual, up_bound); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for middle-short distance | 
|  | */ | 
|  | if (qual->rssi >= -66) { | 
|  | rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x10); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special mid-R17 for middle distance | 
|  | */ | 
|  | if (qual->rssi >= -74) { | 
|  | rt61pci_set_vgc(rt2x00dev, qual, low_bound + 0x08); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special case: Change up_bound based on the rssi. | 
|  | * Lower up_bound when rssi is weaker then -74 dBm. | 
|  | */ | 
|  | up_bound -= 2 * (-74 - qual->rssi); | 
|  | if (low_bound > up_bound) | 
|  | up_bound = low_bound; | 
|  |  | 
|  | if (qual->vgc_level > up_bound) { | 
|  | rt61pci_set_vgc(rt2x00dev, qual, up_bound); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dynamic_cca_tune: | 
|  |  | 
|  | /* | 
|  | * r17 does not yet exceed upper limit, continue and base | 
|  | * the r17 tuning on the false CCA count. | 
|  | */ | 
|  | if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) | 
|  | rt61pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level); | 
|  | else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) | 
|  | rt61pci_set_vgc(rt2x00dev, qual, --qual->vgc_level); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue handlers. | 
|  | */ | 
|  | static void rt61pci_start_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_kick_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_AC_VO: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC0, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_AC_VI: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC1, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_AC_BE: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC2, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_AC_BK: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_KICK_TX_AC3, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_stop_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_AC_VO: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC0, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_AC_VI: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC1, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_AC_BE: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC2, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_AC_BK: | 
|  | rt2x00pci_register_read(rt2x00dev, TX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_CNTL_CSR_ABORT_TX_AC3, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_CNTL_CSR, reg); | 
|  | break; | 
|  | case QID_RX: | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Wait for possibly running tbtt tasklets. | 
|  | */ | 
|  | tasklet_kill(&rt2x00dev->tbtt_tasklet); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Firmware functions | 
|  | */ | 
|  | static char *rt61pci_get_firmware_name(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 chip; | 
|  | char *fw_name; | 
|  |  | 
|  | pci_read_config_word(to_pci_dev(rt2x00dev->dev), PCI_DEVICE_ID, &chip); | 
|  | switch (chip) { | 
|  | case RT2561_PCI_ID: | 
|  | fw_name = FIRMWARE_RT2561; | 
|  | break; | 
|  | case RT2561s_PCI_ID: | 
|  | fw_name = FIRMWARE_RT2561s; | 
|  | break; | 
|  | case RT2661_PCI_ID: | 
|  | fw_name = FIRMWARE_RT2661; | 
|  | break; | 
|  | default: | 
|  | fw_name = NULL; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return fw_name; | 
|  | } | 
|  |  | 
|  | static int rt61pci_check_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | u16 fw_crc; | 
|  | u16 crc; | 
|  |  | 
|  | /* | 
|  | * Only support 8kb firmware files. | 
|  | */ | 
|  | if (len != 8192) | 
|  | return FW_BAD_LENGTH; | 
|  |  | 
|  | /* | 
|  | * The last 2 bytes in the firmware array are the crc checksum itself. | 
|  | * This means that we should never pass those 2 bytes to the crc | 
|  | * algorithm. | 
|  | */ | 
|  | fw_crc = (data[len - 2] << 8 | data[len - 1]); | 
|  |  | 
|  | /* | 
|  | * Use the crc itu-t algorithm. | 
|  | */ | 
|  | crc = crc_itu_t(0, data, len - 2); | 
|  | crc = crc_itu_t_byte(crc, 0); | 
|  | crc = crc_itu_t_byte(crc, 0); | 
|  |  | 
|  | return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; | 
|  | } | 
|  |  | 
|  | static int rt61pci_load_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | int i; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Wait for stable hardware. | 
|  | */ | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | if (reg) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | if (!reg) { | 
|  | ERROR(rt2x00dev, "Unstable hardware.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare MCU and mailbox for firmware loading. | 
|  | */ | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
|  | rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); | 
|  | rt2x00pci_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, HOST_CMD_CSR, 0); | 
|  |  | 
|  | /* | 
|  | * Write firmware to device. | 
|  | */ | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 1); | 
|  | rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, | 
|  | data, len); | 
|  |  | 
|  | rt2x00_set_field32(®, MCU_CNTL_CSR_SELECT_BANK, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
|  |  | 
|  | rt2x00_set_field32(®, MCU_CNTL_CSR_RESET, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_CNTL_CSR, reg); | 
|  |  | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, MCU_CNTL_CSR, ®); | 
|  | if (rt2x00_get_field32(reg, MCU_CNTL_CSR_READY)) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | if (i == 100) { | 
|  | ERROR(rt2x00dev, "MCU Control register not ready.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Hardware needs another millisecond before it is ready. | 
|  | */ | 
|  | msleep(1); | 
|  |  | 
|  | /* | 
|  | * Reset MAC and BBP registers. | 
|  | */ | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); | 
|  | rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | static bool rt61pci_get_entry_state(struct queue_entry *entry) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | u32 word; | 
|  |  | 
|  | if (entry->queue->qid == QID_RX) { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  |  | 
|  | return rt2x00_get_field32(word, RXD_W0_OWNER_NIC); | 
|  | } else { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  |  | 
|  | return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || | 
|  | rt2x00_get_field32(word, TXD_W0_VALID)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_clear_entry(struct queue_entry *entry) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | u32 word; | 
|  |  | 
|  | if (entry->queue->qid == QID_RX) { | 
|  | rt2x00_desc_read(entry_priv->desc, 5, &word); | 
|  | rt2x00_set_field32(&word, RXD_W5_BUFFER_PHYSICAL_ADDRESS, | 
|  | skbdesc->skb_dma); | 
|  | rt2x00_desc_write(entry_priv->desc, 5, word); | 
|  |  | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  | rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1); | 
|  | rt2x00_desc_write(entry_priv->desc, 0, word); | 
|  | } else { | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  | rt2x00_set_field32(&word, TXD_W0_VALID, 0); | 
|  | rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0); | 
|  | rt2x00_desc_write(entry_priv->desc, 0, word); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt61pci_init_queues(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct queue_entry_priv_pci *entry_priv; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Initialize registers. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TX_RING_CSR0, ®); | 
|  | rt2x00_set_field32(®, TX_RING_CSR0_AC0_RING_SIZE, | 
|  | rt2x00dev->tx[0].limit); | 
|  | rt2x00_set_field32(®, TX_RING_CSR0_AC1_RING_SIZE, | 
|  | rt2x00dev->tx[1].limit); | 
|  | rt2x00_set_field32(®, TX_RING_CSR0_AC2_RING_SIZE, | 
|  | rt2x00dev->tx[2].limit); | 
|  | rt2x00_set_field32(®, TX_RING_CSR0_AC3_RING_SIZE, | 
|  | rt2x00dev->tx[3].limit); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_RING_CSR0, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TX_RING_CSR1, ®); | 
|  | rt2x00_set_field32(®, TX_RING_CSR1_TXD_SIZE, | 
|  | rt2x00dev->tx[0].desc_size / 4); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_RING_CSR1, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[0].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, AC0_BASE_CSR, ®); | 
|  | rt2x00_set_field32(®, AC0_BASE_CSR_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, AC0_BASE_CSR, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[1].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, AC1_BASE_CSR, ®); | 
|  | rt2x00_set_field32(®, AC1_BASE_CSR_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, AC1_BASE_CSR, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[2].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, AC2_BASE_CSR, ®); | 
|  | rt2x00_set_field32(®, AC2_BASE_CSR_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, AC2_BASE_CSR, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->tx[3].entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, AC3_BASE_CSR, ®); | 
|  | rt2x00_set_field32(®, AC3_BASE_CSR_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, AC3_BASE_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, RX_RING_CSR, ®); | 
|  | rt2x00_set_field32(®, RX_RING_CSR_RING_SIZE, rt2x00dev->rx->limit); | 
|  | rt2x00_set_field32(®, RX_RING_CSR_RXD_SIZE, | 
|  | rt2x00dev->rx->desc_size / 4); | 
|  | rt2x00_set_field32(®, RX_RING_CSR_RXD_WRITEBACK_SIZE, 4); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_RING_CSR, reg); | 
|  |  | 
|  | entry_priv = rt2x00dev->rx->entries[0].priv_data; | 
|  | rt2x00pci_register_read(rt2x00dev, RX_BASE_CSR, ®); | 
|  | rt2x00_set_field32(®, RX_BASE_CSR_RING_REGISTER, | 
|  | entry_priv->desc_dma); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_BASE_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TX_DMA_DST_CSR, ®); | 
|  | rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC0, 2); | 
|  | rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC1, 2); | 
|  | rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC2, 2); | 
|  | rt2x00_set_field32(®, TX_DMA_DST_CSR_DEST_AC3, 2); | 
|  | rt2x00pci_register_write(rt2x00dev, TX_DMA_DST_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, LOAD_TX_RING_CSR, ®); | 
|  | rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC0, 1); | 
|  | rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC1, 1); | 
|  | rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC2, 1); | 
|  | rt2x00_set_field32(®, LOAD_TX_RING_CSR_LOAD_TXD_AC3, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, LOAD_TX_RING_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, RX_CNTL_CSR_LOAD_RXD, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt61pci_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR1, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR1, reg); | 
|  |  | 
|  | /* | 
|  | * CCK TXD BBP registers | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR2, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR2, reg); | 
|  |  | 
|  | /* | 
|  | * OFDM TXD BBP registers | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR3, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR3, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR7, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR7, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR8, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR8, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR6, 0x00000fff); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR9, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR9, reg); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x0000071c); | 
|  |  | 
|  | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) | 
|  | return -EBUSY; | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR13, 0x0000e000); | 
|  |  | 
|  | /* | 
|  | * Invalidate all Shared Keys (SEC_CSR0), | 
|  | * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR0, 0x00000000); | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR1, 0x00000000); | 
|  | rt2x00pci_register_write(rt2x00dev, SEC_CSR5, 0x00000000); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR1, 0x000023b0); | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR5, 0x060a100c); | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR6, 0x00080606); | 
|  | rt2x00pci_register_write(rt2x00dev, PHY_CSR7, 0x00000a08); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, PCI_CFG_CSR, 0x28ca4404); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, TEST_MODE_CSR, 0x00000200); | 
|  |  | 
|  | rt2x00pci_register_write(rt2x00dev, M2H_CMD_DONE_CSR, 0xffffffff); | 
|  |  | 
|  | /* | 
|  | * Clear all beacons | 
|  | * For the Beacon base registers we only need to clear | 
|  | * the first byte since that byte contains the VALID and OWNER | 
|  | * bits which (when set to 0) will invalidate the entire beacon. | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE0, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE1, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE2, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, HW_BEACON_BASE3, 0); | 
|  |  | 
|  | /* | 
|  | * We must clear the error counters. | 
|  | * These registers are cleared on read, | 
|  | * so we may pass a useless variable to store the value. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, STA_CSR0, ®); | 
|  | rt2x00pci_register_read(rt2x00dev, STA_CSR1, ®); | 
|  | rt2x00pci_register_read(rt2x00dev, STA_CSR2, ®); | 
|  |  | 
|  | /* | 
|  | * Reset MAC and BBP registers. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); | 
|  | rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt61pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 value; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt61pci_bbp_read(rt2x00dev, 0, &value); | 
|  | if ((value != 0xff) && (value != 0x00)) | 
|  | return 0; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt61pci_init_bbp(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  | u8 reg_id; | 
|  | u8 value; | 
|  |  | 
|  | if (unlikely(rt61pci_wait_bbp_ready(rt2x00dev))) | 
|  | return -EACCES; | 
|  |  | 
|  | rt61pci_bbp_write(rt2x00dev, 3, 0x00); | 
|  | rt61pci_bbp_write(rt2x00dev, 15, 0x30); | 
|  | rt61pci_bbp_write(rt2x00dev, 21, 0xc8); | 
|  | rt61pci_bbp_write(rt2x00dev, 22, 0x38); | 
|  | rt61pci_bbp_write(rt2x00dev, 23, 0x06); | 
|  | rt61pci_bbp_write(rt2x00dev, 24, 0xfe); | 
|  | rt61pci_bbp_write(rt2x00dev, 25, 0x0a); | 
|  | rt61pci_bbp_write(rt2x00dev, 26, 0x0d); | 
|  | rt61pci_bbp_write(rt2x00dev, 34, 0x12); | 
|  | rt61pci_bbp_write(rt2x00dev, 37, 0x07); | 
|  | rt61pci_bbp_write(rt2x00dev, 39, 0xf8); | 
|  | rt61pci_bbp_write(rt2x00dev, 41, 0x60); | 
|  | rt61pci_bbp_write(rt2x00dev, 53, 0x10); | 
|  | rt61pci_bbp_write(rt2x00dev, 54, 0x18); | 
|  | rt61pci_bbp_write(rt2x00dev, 60, 0x10); | 
|  | rt61pci_bbp_write(rt2x00dev, 61, 0x04); | 
|  | rt61pci_bbp_write(rt2x00dev, 62, 0x04); | 
|  | rt61pci_bbp_write(rt2x00dev, 75, 0xfe); | 
|  | rt61pci_bbp_write(rt2x00dev, 86, 0xfe); | 
|  | rt61pci_bbp_write(rt2x00dev, 88, 0xfe); | 
|  | rt61pci_bbp_write(rt2x00dev, 90, 0x0f); | 
|  | rt61pci_bbp_write(rt2x00dev, 99, 0x00); | 
|  | rt61pci_bbp_write(rt2x00dev, 102, 0x16); | 
|  | rt61pci_bbp_write(rt2x00dev, 107, 0x04); | 
|  |  | 
|  | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
|  |  | 
|  | if (eeprom != 0xffff && eeprom != 0x0000) { | 
|  | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
|  | rt61pci_bbp_write(rt2x00dev, reg_id, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device state switch handlers. | 
|  | */ | 
|  | static void rt61pci_toggle_irq(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int mask = (state == STATE_RADIO_IRQ_OFF); | 
|  | u32 reg; | 
|  | unsigned long flags; | 
|  |  | 
|  | /* | 
|  | * When interrupts are being enabled, the interrupt registers | 
|  | * should clear the register to assure a clean state. | 
|  | */ | 
|  | if (state == STATE_RADIO_IRQ_ON) { | 
|  | rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Only toggle the interrupts bits we are going to use. | 
|  | * Non-checked interrupt bits are disabled by default. | 
|  | */ | 
|  | spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_TXDONE, mask); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_RXDONE, mask); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_BEACON_DONE, mask); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_ENABLE_MITIGATION, mask); | 
|  | rt2x00_set_field32(®, INT_MASK_CSR_MITIGATION_PERIOD, 0xff); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_0, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_1, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_2, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_3, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_4, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_5, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_6, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_7, mask); | 
|  | rt2x00_set_field32(®, MCU_INT_MASK_CSR_TWAKEUP, mask); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); | 
|  |  | 
|  | spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags); | 
|  |  | 
|  | if (state == STATE_RADIO_IRQ_OFF) { | 
|  | /* | 
|  | * Ensure that all tasklets are finished. | 
|  | */ | 
|  | tasklet_kill(&rt2x00dev->txstatus_tasklet); | 
|  | tasklet_kill(&rt2x00dev->rxdone_tasklet); | 
|  | tasklet_kill(&rt2x00dev->autowake_tasklet); | 
|  | tasklet_kill(&rt2x00dev->tbtt_tasklet); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt61pci_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Initialize all registers. | 
|  | */ | 
|  | if (unlikely(rt61pci_init_queues(rt2x00dev) || | 
|  | rt61pci_init_registers(rt2x00dev) || | 
|  | rt61pci_init_bbp(rt2x00dev))) | 
|  | return -EIO; | 
|  |  | 
|  | /* | 
|  | * Enable RX. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, RX_CNTL_CSR, ®); | 
|  | rt2x00_set_field32(®, RX_CNTL_CSR_ENABLE_RX_DMA, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, RX_CNTL_CSR, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt61pci_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Disable power | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR10, 0x00001818); | 
|  | } | 
|  |  | 
|  | static int rt61pci_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) | 
|  | { | 
|  | u32 reg, reg2; | 
|  | unsigned int i; | 
|  | char put_to_sleep; | 
|  |  | 
|  | put_to_sleep = (state != STATE_AWAKE); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); | 
|  | rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg); | 
|  |  | 
|  | /* | 
|  | * Device is not guaranteed to be in the requested state yet. | 
|  | * We must wait until the register indicates that the | 
|  | * device has entered the correct state. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR12, ®2); | 
|  | state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); | 
|  | if (state == !put_to_sleep) | 
|  | return 0; | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR12, reg); | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static int rt61pci_set_device_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case STATE_RADIO_ON: | 
|  | retval = rt61pci_enable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_OFF: | 
|  | rt61pci_disable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_IRQ_ON: | 
|  | case STATE_RADIO_IRQ_OFF: | 
|  | rt61pci_toggle_irq(rt2x00dev, state); | 
|  | break; | 
|  | case STATE_DEEP_SLEEP: | 
|  | case STATE_SLEEP: | 
|  | case STATE_STANDBY: | 
|  | case STATE_AWAKE: | 
|  | retval = rt61pci_set_state(rt2x00dev, state); | 
|  | break; | 
|  | default: | 
|  | retval = -ENOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(retval)) | 
|  | ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", | 
|  | state, retval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX descriptor initialization | 
|  | */ | 
|  | static void rt61pci_write_tx_desc(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | __le32 *txd = entry_priv->desc; | 
|  | u32 word; | 
|  |  | 
|  | /* | 
|  | * Start writing the descriptor words. | 
|  | */ | 
|  | rt2x00_desc_read(txd, 1, &word); | 
|  | rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); | 
|  | rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); | 
|  | rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); | 
|  | rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); | 
|  | rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); | 
|  | rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, | 
|  | test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W1_BUFFER_COUNT, 1); | 
|  | rt2x00_desc_write(txd, 1, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 2, &word); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, | 
|  | txdesc->u.plcp.length_low); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, | 
|  | txdesc->u.plcp.length_high); | 
|  | rt2x00_desc_write(txd, 2, word); | 
|  |  | 
|  | if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { | 
|  | _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); | 
|  | _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); | 
|  | } | 
|  |  | 
|  | rt2x00_desc_read(txd, 5, &word); | 
|  | rt2x00_set_field32(&word, TXD_W5_PID_TYPE, entry->queue->qid); | 
|  | rt2x00_set_field32(&word, TXD_W5_PID_SUBTYPE, | 
|  | skbdesc->entry->entry_idx); | 
|  | rt2x00_set_field32(&word, TXD_W5_TX_POWER, | 
|  | TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); | 
|  | rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); | 
|  | rt2x00_desc_write(txd, 5, word); | 
|  |  | 
|  | if (entry->queue->qid != QID_BEACON) { | 
|  | rt2x00_desc_read(txd, 6, &word); | 
|  | rt2x00_set_field32(&word, TXD_W6_BUFFER_PHYSICAL_ADDRESS, | 
|  | skbdesc->skb_dma); | 
|  | rt2x00_desc_write(txd, 6, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 11, &word); | 
|  | rt2x00_set_field32(&word, TXD_W11_BUFFER_LENGTH0, | 
|  | txdesc->length); | 
|  | rt2x00_desc_write(txd, 11, word); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writing TXD word 0 must the last to prevent a race condition with | 
|  | * the device, whereby the device may take hold of the TXD before we | 
|  | * finished updating it. | 
|  | */ | 
|  | rt2x00_desc_read(txd, 0, &word); | 
|  | rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1); | 
|  | rt2x00_set_field32(&word, TXD_W0_VALID, 1); | 
|  | rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, | 
|  | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_ACK, | 
|  | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, | 
|  | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_OFDM, | 
|  | (txdesc->rate_mode == RATE_MODE_OFDM)); | 
|  | rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); | 
|  | rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, | 
|  | test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, | 
|  | test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, | 
|  | test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); | 
|  | rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); | 
|  | rt2x00_set_field32(&word, TXD_W0_BURST, | 
|  | test_bit(ENTRY_TXD_BURST, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); | 
|  | rt2x00_desc_write(txd, 0, word); | 
|  |  | 
|  | /* | 
|  | * Register descriptor details in skb frame descriptor. | 
|  | */ | 
|  | skbdesc->desc = txd; | 
|  | skbdesc->desc_len = (entry->queue->qid == QID_BEACON) ? TXINFO_SIZE : | 
|  | TXD_DESC_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX data initialization | 
|  | */ | 
|  | static void rt61pci_write_beacon(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | unsigned int beacon_base; | 
|  | unsigned int padding_len; | 
|  | u32 orig_reg, reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | orig_reg = reg; | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Write the TX descriptor for the beacon. | 
|  | */ | 
|  | rt61pci_write_tx_desc(entry, txdesc); | 
|  |  | 
|  | /* | 
|  | * Dump beacon to userspace through debugfs. | 
|  | */ | 
|  | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); | 
|  |  | 
|  | /* | 
|  | * Write entire beacon with descriptor and padding to register. | 
|  | */ | 
|  | padding_len = roundup(entry->skb->len, 4) - entry->skb->len; | 
|  | if (padding_len && skb_pad(entry->skb, padding_len)) { | 
|  | ERROR(rt2x00dev, "Failure padding beacon, aborting\n"); | 
|  | /* skb freed by skb_pad() on failure */ | 
|  | entry->skb = NULL; | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, orig_reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | beacon_base = HW_BEACON_OFFSET(entry->entry_idx); | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, beacon_base, | 
|  | entry_priv->desc, TXINFO_SIZE); | 
|  | rt2x00pci_register_multiwrite(rt2x00dev, beacon_base + TXINFO_SIZE, | 
|  | entry->skb->data, | 
|  | entry->skb->len + padding_len); | 
|  |  | 
|  | /* | 
|  | * Enable beaconing again. | 
|  | * | 
|  | * For Wi-Fi faily generated beacons between participating | 
|  | * stations. Set TBTT phase adaptive adjustment step to 8us. | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); | 
|  |  | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Clean up beacon skb. | 
|  | */ | 
|  | dev_kfree_skb_any(entry->skb); | 
|  | entry->skb = NULL; | 
|  | } | 
|  |  | 
|  | static void rt61pci_clear_beacon(struct queue_entry *entry) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Clear beacon. | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, | 
|  | HW_BEACON_OFFSET(entry->entry_idx), 0); | 
|  |  | 
|  | /* | 
|  | * Enable beaconing again. | 
|  | */ | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RX control handlers | 
|  | */ | 
|  | static int rt61pci_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) | 
|  | { | 
|  | u8 offset = rt2x00dev->lna_gain; | 
|  | u8 lna; | 
|  |  | 
|  | lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); | 
|  | switch (lna) { | 
|  | case 3: | 
|  | offset += 90; | 
|  | break; | 
|  | case 2: | 
|  | offset += 74; | 
|  | break; | 
|  | case 1: | 
|  | offset += 64; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
|  | if (lna == 3 || lna == 2) | 
|  | offset += 10; | 
|  | } | 
|  |  | 
|  | return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; | 
|  | } | 
|  |  | 
|  | static void rt61pci_fill_rxdone(struct queue_entry *entry, | 
|  | struct rxdone_entry_desc *rxdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct queue_entry_priv_pci *entry_priv = entry->priv_data; | 
|  | u32 word0; | 
|  | u32 word1; | 
|  |  | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word0); | 
|  | rt2x00_desc_read(entry_priv->desc, 1, &word1); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; | 
|  |  | 
|  | rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); | 
|  | rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); | 
|  |  | 
|  | if (rxdesc->cipher != CIPHER_NONE) { | 
|  | _rt2x00_desc_read(entry_priv->desc, 2, &rxdesc->iv[0]); | 
|  | _rt2x00_desc_read(entry_priv->desc, 3, &rxdesc->iv[1]); | 
|  | rxdesc->dev_flags |= RXDONE_CRYPTO_IV; | 
|  |  | 
|  | _rt2x00_desc_read(entry_priv->desc, 4, &rxdesc->icv); | 
|  | rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; | 
|  |  | 
|  | /* | 
|  | * Hardware has stripped IV/EIV data from 802.11 frame during | 
|  | * decryption. It has provided the data separately but rt2x00lib | 
|  | * should decide if it should be reinserted. | 
|  | */ | 
|  | rxdesc->flags |= RX_FLAG_IV_STRIPPED; | 
|  |  | 
|  | /* | 
|  | * The hardware has already checked the Michael Mic and has | 
|  | * stripped it from the frame. Signal this to mac80211. | 
|  | */ | 
|  | rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; | 
|  |  | 
|  | if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) | 
|  | rxdesc->flags |= RX_FLAG_DECRYPTED; | 
|  | else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) | 
|  | rxdesc->flags |= RX_FLAG_MMIC_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | * When frame was received with an OFDM bitrate, | 
|  | * the signal is the PLCP value. If it was received with | 
|  | * a CCK bitrate the signal is the rate in 100kbit/s. | 
|  | */ | 
|  | rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); | 
|  | rxdesc->rssi = rt61pci_agc_to_rssi(rt2x00dev, word1); | 
|  | rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_OFDM)) | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; | 
|  | else | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; | 
|  | if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) | 
|  | rxdesc->dev_flags |= RXDONE_MY_BSS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Interrupt functions. | 
|  | */ | 
|  | static void rt61pci_txdone(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct data_queue *queue; | 
|  | struct queue_entry *entry; | 
|  | struct queue_entry *entry_done; | 
|  | struct queue_entry_priv_pci *entry_priv; | 
|  | struct txdone_entry_desc txdesc; | 
|  | u32 word; | 
|  | u32 reg; | 
|  | int type; | 
|  | int index; | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * TX_STA_FIFO is a stack of X entries, hence read TX_STA_FIFO | 
|  | * at most X times and also stop processing once the TX_STA_FIFO_VALID | 
|  | * flag is not set anymore. | 
|  | * | 
|  | * The legacy drivers use X=TX_RING_SIZE but state in a comment | 
|  | * that the TX_STA_FIFO stack has a size of 16. We stick to our | 
|  | * tx ring size for now. | 
|  | */ | 
|  | for (i = 0; i < rt2x00dev->ops->tx->entry_num; i++) { | 
|  | rt2x00pci_register_read(rt2x00dev, STA_CSR4, ®); | 
|  | if (!rt2x00_get_field32(reg, STA_CSR4_VALID)) | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Skip this entry when it contains an invalid | 
|  | * queue identication number. | 
|  | */ | 
|  | type = rt2x00_get_field32(reg, STA_CSR4_PID_TYPE); | 
|  | queue = rt2x00queue_get_tx_queue(rt2x00dev, type); | 
|  | if (unlikely(!queue)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * Skip this entry when it contains an invalid | 
|  | * index number. | 
|  | */ | 
|  | index = rt2x00_get_field32(reg, STA_CSR4_PID_SUBTYPE); | 
|  | if (unlikely(index >= queue->limit)) | 
|  | continue; | 
|  |  | 
|  | entry = &queue->entries[index]; | 
|  | entry_priv = entry->priv_data; | 
|  | rt2x00_desc_read(entry_priv->desc, 0, &word); | 
|  |  | 
|  | if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) || | 
|  | !rt2x00_get_field32(word, TXD_W0_VALID)) | 
|  | return; | 
|  |  | 
|  | entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
|  | while (entry != entry_done) { | 
|  | /* Catch up. | 
|  | * Just report any entries we missed as failed. | 
|  | */ | 
|  | WARNING(rt2x00dev, | 
|  | "TX status report missed for entry %d\n", | 
|  | entry_done->entry_idx); | 
|  |  | 
|  | rt2x00lib_txdone_noinfo(entry_done, TXDONE_UNKNOWN); | 
|  | entry_done = rt2x00queue_get_entry(queue, Q_INDEX_DONE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | */ | 
|  | txdesc.flags = 0; | 
|  | switch (rt2x00_get_field32(reg, STA_CSR4_TX_RESULT)) { | 
|  | case 0: /* Success, maybe with retry */ | 
|  | __set_bit(TXDONE_SUCCESS, &txdesc.flags); | 
|  | break; | 
|  | case 6: /* Failure, excessive retries */ | 
|  | __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags); | 
|  | /* Don't break, this is a failed frame! */ | 
|  | default: /* Failure */ | 
|  | __set_bit(TXDONE_FAILURE, &txdesc.flags); | 
|  | } | 
|  | txdesc.retry = rt2x00_get_field32(reg, STA_CSR4_RETRY_COUNT); | 
|  |  | 
|  | /* | 
|  | * the frame was retried at least once | 
|  | * -> hw used fallback rates | 
|  | */ | 
|  | if (txdesc.retry) | 
|  | __set_bit(TXDONE_FALLBACK, &txdesc.flags); | 
|  |  | 
|  | rt2x00lib_txdone(entry, &txdesc); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt61pci_wakeup(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct rt2x00lib_conf libconf = { .conf = &rt2x00dev->hw->conf }; | 
|  |  | 
|  | rt61pci_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS); | 
|  | } | 
|  |  | 
|  | static inline void rt61pci_enable_interrupt(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_field32 irq_field) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Enable a single interrupt. The interrupt mask register | 
|  | * access needs locking. | 
|  | */ | 
|  | spin_lock_irq(&rt2x00dev->irqmask_lock); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); | 
|  | rt2x00_set_field32(®, irq_field, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
|  |  | 
|  | spin_unlock_irq(&rt2x00dev->irqmask_lock); | 
|  | } | 
|  |  | 
|  | static void rt61pci_enable_mcu_interrupt(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_field32 irq_field) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Enable a single MCU interrupt. The interrupt mask register | 
|  | * access needs locking. | 
|  | */ | 
|  | spin_lock_irq(&rt2x00dev->irqmask_lock); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); | 
|  | rt2x00_set_field32(®, irq_field, 0); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); | 
|  |  | 
|  | spin_unlock_irq(&rt2x00dev->irqmask_lock); | 
|  | } | 
|  |  | 
|  | static void rt61pci_txstatus_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | rt61pci_txdone(rt2x00dev); | 
|  | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_TXDONE); | 
|  | } | 
|  |  | 
|  | static void rt61pci_tbtt_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | rt2x00lib_beacondone(rt2x00dev); | 
|  | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_BEACON_DONE); | 
|  | } | 
|  |  | 
|  | static void rt61pci_rxdone_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | if (rt2x00pci_rxdone(rt2x00dev)) | 
|  | tasklet_schedule(&rt2x00dev->rxdone_tasklet); | 
|  | else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt61pci_enable_interrupt(rt2x00dev, INT_MASK_CSR_RXDONE); | 
|  | } | 
|  |  | 
|  | static void rt61pci_autowake_tasklet(unsigned long data) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data; | 
|  | rt61pci_wakeup(rt2x00dev); | 
|  | rt2x00pci_register_write(rt2x00dev, | 
|  | M2H_CMD_DONE_CSR, 0xffffffff); | 
|  | if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | rt61pci_enable_mcu_interrupt(rt2x00dev, MCU_INT_MASK_CSR_TWAKEUP); | 
|  | } | 
|  |  | 
|  | static irqreturn_t rt61pci_interrupt(int irq, void *dev_instance) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = dev_instance; | 
|  | u32 reg_mcu, mask_mcu; | 
|  | u32 reg, mask; | 
|  |  | 
|  | /* | 
|  | * Get the interrupt sources & saved to local variable. | 
|  | * Write register value back to clear pending interrupts. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, MCU_INT_SOURCE_CSR, ®_mcu); | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_INT_SOURCE_CSR, reg_mcu); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, INT_SOURCE_CSR, ®); | 
|  | rt2x00pci_register_write(rt2x00dev, INT_SOURCE_CSR, reg); | 
|  |  | 
|  | if (!reg && !reg_mcu) | 
|  | return IRQ_NONE; | 
|  |  | 
|  | if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) | 
|  | return IRQ_HANDLED; | 
|  |  | 
|  | /* | 
|  | * Schedule tasklets for interrupt handling. | 
|  | */ | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RXDONE)) | 
|  | tasklet_schedule(&rt2x00dev->rxdone_tasklet); | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TXDONE)) | 
|  | tasklet_schedule(&rt2x00dev->txstatus_tasklet); | 
|  |  | 
|  | if (rt2x00_get_field32(reg, INT_SOURCE_CSR_BEACON_DONE)) | 
|  | tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet); | 
|  |  | 
|  | if (rt2x00_get_field32(reg_mcu, MCU_INT_SOURCE_CSR_TWAKEUP)) | 
|  | tasklet_schedule(&rt2x00dev->autowake_tasklet); | 
|  |  | 
|  | /* | 
|  | * Since INT_MASK_CSR and INT_SOURCE_CSR use the same bits | 
|  | * for interrupts and interrupt masks we can just use the value of | 
|  | * INT_SOURCE_CSR to create the interrupt mask. | 
|  | */ | 
|  | mask = reg; | 
|  | mask_mcu = reg_mcu; | 
|  |  | 
|  | /* | 
|  | * Disable all interrupts for which a tasklet was scheduled right now, | 
|  | * the tasklet will reenable the appropriate interrupts. | 
|  | */ | 
|  | spin_lock(&rt2x00dev->irqmask_lock); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, INT_MASK_CSR, ®); | 
|  | reg |= mask; | 
|  | rt2x00pci_register_write(rt2x00dev, INT_MASK_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, MCU_INT_MASK_CSR, ®); | 
|  | reg |= mask_mcu; | 
|  | rt2x00pci_register_write(rt2x00dev, MCU_INT_MASK_CSR, reg); | 
|  |  | 
|  | spin_unlock(&rt2x00dev->irqmask_lock); | 
|  |  | 
|  | return IRQ_HANDLED; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device probe functions. | 
|  | */ | 
|  | static int rt61pci_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct eeprom_93cx6 eeprom; | 
|  | u32 reg; | 
|  | u16 word; | 
|  | u8 *mac; | 
|  | s8 value; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, E2PROM_CSR, ®); | 
|  |  | 
|  | eeprom.data = rt2x00dev; | 
|  | eeprom.register_read = rt61pci_eepromregister_read; | 
|  | eeprom.register_write = rt61pci_eepromregister_write; | 
|  | eeprom.width = rt2x00_get_field32(reg, E2PROM_CSR_TYPE_93C46) ? | 
|  | PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66; | 
|  | eeprom.reg_data_in = 0; | 
|  | eeprom.reg_data_out = 0; | 
|  | eeprom.reg_data_clock = 0; | 
|  | eeprom.reg_chip_select = 0; | 
|  |  | 
|  | eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom, | 
|  | EEPROM_SIZE / sizeof(u16)); | 
|  |  | 
|  | /* | 
|  | * Start validation of the data that has been read. | 
|  | */ | 
|  | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
|  | if (!is_valid_ether_addr(mac)) { | 
|  | random_ether_addr(mac); | 
|  | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, | 
|  | ANTENNA_B); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, | 
|  | ANTENNA_B); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5225); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
|  | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_ENABLE_DIVERSITY, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_TX_DIVERSITY, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_RX_FIXED, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_TX_FIXED, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_BG, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA_A, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | 
|  | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, | 
|  | LED_MODE_DEFAULT); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); | 
|  | EEPROM(rt2x00dev, "Led: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | 
|  | EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); | 
|  | EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); | 
|  | } else { | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); | 
|  | EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); | 
|  | } else { | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt61pci_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 value; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Read EEPROM word for configuration. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Identify RF chipset. | 
|  | */ | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), | 
|  | value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); | 
|  |  | 
|  | if (!rt2x00_rf(rt2x00dev, RF5225) && | 
|  | !rt2x00_rf(rt2x00dev, RF5325) && | 
|  | !rt2x00_rf(rt2x00dev, RF2527) && | 
|  | !rt2x00_rf(rt2x00dev, RF2529)) { | 
|  | ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Determine number of antennas. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_NUM) == 2) | 
|  | __set_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Identify default antenna configuration. | 
|  | */ | 
|  | rt2x00dev->default_ant.tx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); | 
|  | rt2x00dev->default_ant.rx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * Read the Frame type. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) | 
|  | __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Detect if this device has a hardware controlled radio. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) | 
|  | __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Read frequency offset and RF programming sequence. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_FREQ_SEQ)) | 
|  | __set_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags); | 
|  |  | 
|  | rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); | 
|  |  | 
|  | /* | 
|  | * Read external LNA informations. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_A)) | 
|  | __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA_BG)) | 
|  | __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * When working with a RF2529 chip without double antenna, | 
|  | * the antenna settings should be gathered from the NIC | 
|  | * eeprom word. | 
|  | */ | 
|  | if (rt2x00_rf(rt2x00dev, RF2529) && | 
|  | !test_bit(CAPABILITY_DOUBLE_ANTENNA, &rt2x00dev->cap_flags)) { | 
|  | rt2x00dev->default_ant.rx = | 
|  | ANTENNA_A + rt2x00_get_field16(eeprom, EEPROM_NIC_RX_FIXED); | 
|  | rt2x00dev->default_ant.tx = | 
|  | ANTENNA_B - rt2x00_get_field16(eeprom, EEPROM_NIC_TX_FIXED); | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_TX_DIVERSITY)) | 
|  | rt2x00dev->default_ant.tx = ANTENNA_SW_DIVERSITY; | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_ENABLE_DIVERSITY)) | 
|  | rt2x00dev->default_ant.rx = ANTENNA_SW_DIVERSITY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store led settings, for correct led behaviour. | 
|  | * If the eeprom value is invalid, | 
|  | * switch to default led mode. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_LED_LED_MODE); | 
|  |  | 
|  | rt61pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | 
|  | rt61pci_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); | 
|  | if (value == LED_MODE_SIGNAL_STRENGTH) | 
|  | rt61pci_init_led(rt2x00dev, &rt2x00dev->led_qual, | 
|  | LED_TYPE_QUALITY); | 
|  |  | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_0)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_1)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_2)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_3)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_4)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, | 
|  | rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_RDY_G)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_RDY_A)); | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RF value list for RF5225 & RF5325 | 
|  | * Supports: 2.4 GHz & 5.2 GHz, rf_sequence disabled | 
|  | */ | 
|  | static const struct rf_channel rf_vals_noseq[] = { | 
|  | { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, | 
|  | { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, | 
|  | { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, | 
|  | { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, | 
|  | { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, | 
|  | { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, | 
|  | { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, | 
|  | { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, | 
|  | { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, | 
|  | { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, | 
|  | { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, | 
|  | { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, | 
|  | { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, | 
|  | { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, | 
|  | { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, | 
|  | { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, | 
|  | { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, | 
|  | { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, | 
|  | { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, | 
|  | { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, | 
|  | { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, | 
|  | { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, | 
|  | { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, | 
|  | { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, | 
|  | { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, | 
|  | { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, | 
|  | { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, | 
|  | { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, | 
|  | { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, | 
|  | { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, | 
|  | { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, | 
|  | { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, | 
|  | { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, | 
|  | { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, | 
|  | { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, | 
|  |  | 
|  | /* MMAC(Japan)J52 ch 34,38,42,46 */ | 
|  | { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, | 
|  | { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, | 
|  | { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, | 
|  | { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF5225 & RF5325 | 
|  | * Supports: 2.4 GHz & 5.2 GHz, rf_sequence enabled | 
|  | */ | 
|  | static const struct rf_channel rf_vals_seq[] = { | 
|  | { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, | 
|  | { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, | 
|  | { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, | 
|  | { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, | 
|  | { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, | 
|  | { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, | 
|  | { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, | 
|  | { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, | 
|  | { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, | 
|  | { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, | 
|  | { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, | 
|  | { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, | 
|  | { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, | 
|  | { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x00002cd4, 0x0004481a, 0x00098455, 0x000c0a03 }, | 
|  | { 40, 0x00002cd0, 0x00044682, 0x00098455, 0x000c0a03 }, | 
|  | { 44, 0x00002cd0, 0x00044686, 0x00098455, 0x000c0a1b }, | 
|  | { 48, 0x00002cd0, 0x0004468e, 0x00098655, 0x000c0a0b }, | 
|  | { 52, 0x00002cd0, 0x00044692, 0x00098855, 0x000c0a23 }, | 
|  | { 56, 0x00002cd0, 0x0004469a, 0x00098c55, 0x000c0a13 }, | 
|  | { 60, 0x00002cd0, 0x000446a2, 0x00098e55, 0x000c0a03 }, | 
|  | { 64, 0x00002cd0, 0x000446a6, 0x00099255, 0x000c0a1b }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x00002cd4, 0x0004489a, 0x000b9855, 0x000c0a03 }, | 
|  | { 104, 0x00002cd4, 0x000448a2, 0x000b9855, 0x000c0a03 }, | 
|  | { 108, 0x00002cd4, 0x000448aa, 0x000b9855, 0x000c0a03 }, | 
|  | { 112, 0x00002cd4, 0x000448b2, 0x000b9a55, 0x000c0a03 }, | 
|  | { 116, 0x00002cd4, 0x000448ba, 0x000b9a55, 0x000c0a03 }, | 
|  | { 120, 0x00002cd0, 0x00044702, 0x000b9a55, 0x000c0a03 }, | 
|  | { 124, 0x00002cd0, 0x00044706, 0x000b9a55, 0x000c0a1b }, | 
|  | { 128, 0x00002cd0, 0x0004470e, 0x000b9c55, 0x000c0a0b }, | 
|  | { 132, 0x00002cd0, 0x00044712, 0x000b9c55, 0x000c0a23 }, | 
|  | { 136, 0x00002cd0, 0x0004471a, 0x000b9e55, 0x000c0a13 }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 140, 0x00002cd0, 0x00044722, 0x000b9e55, 0x000c0a03 }, | 
|  | { 149, 0x00002cd0, 0x0004472e, 0x000ba255, 0x000c0a1b }, | 
|  | { 153, 0x00002cd0, 0x00044736, 0x000ba255, 0x000c0a0b }, | 
|  | { 157, 0x00002cd4, 0x0004490a, 0x000ba255, 0x000c0a17 }, | 
|  | { 161, 0x00002cd4, 0x00044912, 0x000ba255, 0x000c0a17 }, | 
|  | { 165, 0x00002cd4, 0x0004491a, 0x000ba255, 0x000c0a17 }, | 
|  |  | 
|  | /* MMAC(Japan)J52 ch 34,38,42,46 */ | 
|  | { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000c0a0b }, | 
|  | { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000c0a13 }, | 
|  | { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000c0a1b }, | 
|  | { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000c0a23 }, | 
|  | }; | 
|  |  | 
|  | static int rt61pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | struct channel_info *info; | 
|  | char *tx_power; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Disable powersaving as default. | 
|  | */ | 
|  | rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT; | 
|  |  | 
|  | /* | 
|  | * Initialize all hw fields. | 
|  | */ | 
|  | rt2x00dev->hw->flags = | 
|  | IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING | | 
|  | IEEE80211_HW_SIGNAL_DBM | | 
|  | IEEE80211_HW_SUPPORTS_PS | | 
|  | IEEE80211_HW_PS_NULLFUNC_STACK; | 
|  |  | 
|  | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | 
|  | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
|  | rt2x00_eeprom_addr(rt2x00dev, | 
|  | EEPROM_MAC_ADDR_0)); | 
|  |  | 
|  | /* | 
|  | * As rt61 has a global fallback table we cannot specify | 
|  | * more then one tx rate per frame but since the hw will | 
|  | * try several rates (based on the fallback table) we should | 
|  | * initialize max_report_rates to the maximum number of rates | 
|  | * we are going to try. Otherwise mac80211 will truncate our | 
|  | * reported tx rates and the rc algortihm will end up with | 
|  | * incorrect data. | 
|  | */ | 
|  | rt2x00dev->hw->max_rates = 1; | 
|  | rt2x00dev->hw->max_report_rates = 7; | 
|  | rt2x00dev->hw->max_rate_tries = 1; | 
|  |  | 
|  | /* | 
|  | * Initialize hw_mode information. | 
|  | */ | 
|  | spec->supported_bands = SUPPORT_BAND_2GHZ; | 
|  | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
|  |  | 
|  | if (!test_bit(CAPABILITY_RF_SEQUENCE, &rt2x00dev->cap_flags)) { | 
|  | spec->num_channels = 14; | 
|  | spec->channels = rf_vals_noseq; | 
|  | } else { | 
|  | spec->num_channels = 14; | 
|  | spec->channels = rf_vals_seq; | 
|  | } | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF5325)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_seq); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create channel information array | 
|  | */ | 
|  | info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spec->channels_info = info; | 
|  |  | 
|  | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); | 
|  | for (i = 0; i < 14; i++) { | 
|  | info[i].max_power = MAX_TXPOWER; | 
|  | info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); | 
|  | } | 
|  |  | 
|  | if (spec->num_channels > 14) { | 
|  | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); | 
|  | for (i = 14; i < spec->num_channels; i++) { | 
|  | info[i].max_power = MAX_TXPOWER; | 
|  | info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt61pci_probe_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Disable power saving. | 
|  | */ | 
|  | rt2x00pci_register_write(rt2x00dev, SOFT_RESET_CSR, 0x00000007); | 
|  |  | 
|  | /* | 
|  | * Allocate eeprom data. | 
|  | */ | 
|  | retval = rt61pci_validate_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = rt61pci_init_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Enable rfkill polling by setting GPIO direction of the | 
|  | * rfkill switch GPIO pin correctly. | 
|  | */ | 
|  | rt2x00pci_register_read(rt2x00dev, MAC_CSR13, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR13_BIT13, 1); | 
|  | rt2x00pci_register_write(rt2x00dev, MAC_CSR13, reg); | 
|  |  | 
|  | /* | 
|  | * Initialize hw specifications. | 
|  | */ | 
|  | retval = rt61pci_probe_hw_mode(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * This device has multiple filters for control frames, | 
|  | * but has no a separate filter for PS Poll frames. | 
|  | */ | 
|  | __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * This device requires firmware and DMA mapped skbs. | 
|  | */ | 
|  | __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags); | 
|  | if (!modparam_nohwcrypt) | 
|  | __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); | 
|  | __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Set the rssi offset. | 
|  | */ | 
|  | rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IEEE80211 stack callback functions. | 
|  | */ | 
|  | static int rt61pci_conf_tx(struct ieee80211_hw *hw, | 
|  | struct ieee80211_vif *vif, u16 queue_idx, | 
|  | const struct ieee80211_tx_queue_params *params) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct data_queue *queue; | 
|  | struct rt2x00_field32 field; | 
|  | int retval; | 
|  | u32 reg; | 
|  | u32 offset; | 
|  |  | 
|  | /* | 
|  | * First pass the configuration through rt2x00lib, that will | 
|  | * update the queue settings and validate the input. After that | 
|  | * we are free to update the registers based on the value | 
|  | * in the queue parameter. | 
|  | */ | 
|  | retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * We only need to perform additional register initialization | 
|  | * for WMM queues. | 
|  | */ | 
|  | if (queue_idx >= 4) | 
|  | return 0; | 
|  |  | 
|  | queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); | 
|  |  | 
|  | /* Update WMM TXOP register */ | 
|  | offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); | 
|  | field.bit_offset = (queue_idx & 1) * 16; | 
|  | field.bit_mask = 0xffff << field.bit_offset; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, field, queue->txop); | 
|  | rt2x00pci_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* Update WMM registers */ | 
|  | field.bit_offset = queue_idx * 4; | 
|  | field.bit_mask = 0xf << field.bit_offset; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, AIFSN_CSR, ®); | 
|  | rt2x00_set_field32(®, field, queue->aifs); | 
|  | rt2x00pci_register_write(rt2x00dev, AIFSN_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CWMIN_CSR, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_min); | 
|  | rt2x00pci_register_write(rt2x00dev, CWMIN_CSR, reg); | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, CWMAX_CSR, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_max); | 
|  | rt2x00pci_register_write(rt2x00dev, CWMAX_CSR, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 rt61pci_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u64 tsf; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR13, ®); | 
|  | tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; | 
|  | rt2x00pci_register_read(rt2x00dev, TXRX_CSR12, ®); | 
|  | tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); | 
|  |  | 
|  | return tsf; | 
|  | } | 
|  |  | 
|  | static const struct ieee80211_ops rt61pci_mac80211_ops = { | 
|  | .tx			= rt2x00mac_tx, | 
|  | .start			= rt2x00mac_start, | 
|  | .stop			= rt2x00mac_stop, | 
|  | .add_interface		= rt2x00mac_add_interface, | 
|  | .remove_interface	= rt2x00mac_remove_interface, | 
|  | .config			= rt2x00mac_config, | 
|  | .configure_filter	= rt2x00mac_configure_filter, | 
|  | .set_key		= rt2x00mac_set_key, | 
|  | .sw_scan_start		= rt2x00mac_sw_scan_start, | 
|  | .sw_scan_complete	= rt2x00mac_sw_scan_complete, | 
|  | .get_stats		= rt2x00mac_get_stats, | 
|  | .bss_info_changed	= rt2x00mac_bss_info_changed, | 
|  | .conf_tx		= rt61pci_conf_tx, | 
|  | .get_tsf		= rt61pci_get_tsf, | 
|  | .rfkill_poll		= rt2x00mac_rfkill_poll, | 
|  | .flush			= rt2x00mac_flush, | 
|  | .set_antenna		= rt2x00mac_set_antenna, | 
|  | .get_antenna		= rt2x00mac_get_antenna, | 
|  | .get_ringparam		= rt2x00mac_get_ringparam, | 
|  | .tx_frames_pending	= rt2x00mac_tx_frames_pending, | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00lib_ops rt61pci_rt2x00_ops = { | 
|  | .irq_handler		= rt61pci_interrupt, | 
|  | .txstatus_tasklet	= rt61pci_txstatus_tasklet, | 
|  | .tbtt_tasklet		= rt61pci_tbtt_tasklet, | 
|  | .rxdone_tasklet		= rt61pci_rxdone_tasklet, | 
|  | .autowake_tasklet	= rt61pci_autowake_tasklet, | 
|  | .probe_hw		= rt61pci_probe_hw, | 
|  | .get_firmware_name	= rt61pci_get_firmware_name, | 
|  | .check_firmware		= rt61pci_check_firmware, | 
|  | .load_firmware		= rt61pci_load_firmware, | 
|  | .initialize		= rt2x00pci_initialize, | 
|  | .uninitialize		= rt2x00pci_uninitialize, | 
|  | .get_entry_state	= rt61pci_get_entry_state, | 
|  | .clear_entry		= rt61pci_clear_entry, | 
|  | .set_device_state	= rt61pci_set_device_state, | 
|  | .rfkill_poll		= rt61pci_rfkill_poll, | 
|  | .link_stats		= rt61pci_link_stats, | 
|  | .reset_tuner		= rt61pci_reset_tuner, | 
|  | .link_tuner		= rt61pci_link_tuner, | 
|  | .start_queue		= rt61pci_start_queue, | 
|  | .kick_queue		= rt61pci_kick_queue, | 
|  | .stop_queue		= rt61pci_stop_queue, | 
|  | .flush_queue		= rt2x00pci_flush_queue, | 
|  | .write_tx_desc		= rt61pci_write_tx_desc, | 
|  | .write_beacon		= rt61pci_write_beacon, | 
|  | .clear_beacon		= rt61pci_clear_beacon, | 
|  | .fill_rxdone		= rt61pci_fill_rxdone, | 
|  | .config_shared_key	= rt61pci_config_shared_key, | 
|  | .config_pairwise_key	= rt61pci_config_pairwise_key, | 
|  | .config_filter		= rt61pci_config_filter, | 
|  | .config_intf		= rt61pci_config_intf, | 
|  | .config_erp		= rt61pci_config_erp, | 
|  | .config_ant		= rt61pci_config_ant, | 
|  | .config			= rt61pci_config, | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt61pci_queue_rx = { | 
|  | .entry_num		= 32, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= RXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt61pci_queue_tx = { | 
|  | .entry_num		= 32, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt61pci_queue_bcn = { | 
|  | .entry_num		= 4, | 
|  | .data_size		= 0, /* No DMA required for beacons */ | 
|  | .desc_size		= TXINFO_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_pci), | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00_ops rt61pci_ops = { | 
|  | .name			= KBUILD_MODNAME, | 
|  | .max_sta_intf		= 1, | 
|  | .max_ap_intf		= 4, | 
|  | .eeprom_size		= EEPROM_SIZE, | 
|  | .rf_size		= RF_SIZE, | 
|  | .tx_queues		= NUM_TX_QUEUES, | 
|  | .extra_tx_headroom	= 0, | 
|  | .rx			= &rt61pci_queue_rx, | 
|  | .tx			= &rt61pci_queue_tx, | 
|  | .bcn			= &rt61pci_queue_bcn, | 
|  | .lib			= &rt61pci_rt2x00_ops, | 
|  | .hw			= &rt61pci_mac80211_ops, | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | .debugfs		= &rt61pci_rt2x00debug, | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RT61pci module information. | 
|  | */ | 
|  | static DEFINE_PCI_DEVICE_TABLE(rt61pci_device_table) = { | 
|  | /* RT2561s */ | 
|  | { PCI_DEVICE(0x1814, 0x0301) }, | 
|  | /* RT2561 v2 */ | 
|  | { PCI_DEVICE(0x1814, 0x0302) }, | 
|  | /* RT2661 */ | 
|  | { PCI_DEVICE(0x1814, 0x0401) }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR(DRV_PROJECT); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("Ralink RT61 PCI & PCMCIA Wireless LAN driver."); | 
|  | MODULE_SUPPORTED_DEVICE("Ralink RT2561, RT2561s & RT2661 " | 
|  | "PCI & PCMCIA chipset based cards"); | 
|  | MODULE_DEVICE_TABLE(pci, rt61pci_device_table); | 
|  | MODULE_FIRMWARE(FIRMWARE_RT2561); | 
|  | MODULE_FIRMWARE(FIRMWARE_RT2561s); | 
|  | MODULE_FIRMWARE(FIRMWARE_RT2661); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int rt61pci_probe(struct pci_dev *pci_dev, | 
|  | const struct pci_device_id *id) | 
|  | { | 
|  | return rt2x00pci_probe(pci_dev, &rt61pci_ops); | 
|  | } | 
|  |  | 
|  | static struct pci_driver rt61pci_driver = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .id_table	= rt61pci_device_table, | 
|  | .probe		= rt61pci_probe, | 
|  | .remove		= __devexit_p(rt2x00pci_remove), | 
|  | .suspend	= rt2x00pci_suspend, | 
|  | .resume		= rt2x00pci_resume, | 
|  | }; | 
|  |  | 
|  | static int __init rt61pci_init(void) | 
|  | { | 
|  | return pci_register_driver(&rt61pci_driver); | 
|  | } | 
|  |  | 
|  | static void __exit rt61pci_exit(void) | 
|  | { | 
|  | pci_unregister_driver(&rt61pci_driver); | 
|  | } | 
|  |  | 
|  | module_init(rt61pci_init); | 
|  | module_exit(rt61pci_exit); |