|  | /* | 
|  | Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com> | 
|  | <http://rt2x00.serialmonkey.com> | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify | 
|  | it under the terms of the GNU General Public License as published by | 
|  | the Free Software Foundation; either version 2 of the License, or | 
|  | (at your option) any later version. | 
|  |  | 
|  | This program is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | 
|  | GNU General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License | 
|  | along with this program; if not, write to the | 
|  | Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | Module: rt73usb | 
|  | Abstract: rt73usb device specific routines. | 
|  | Supported chipsets: rt2571W & rt2671. | 
|  | */ | 
|  |  | 
|  | #include <linux/crc-itu-t.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/etherdevice.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/usb.h> | 
|  |  | 
|  | #include "rt2x00.h" | 
|  | #include "rt2x00usb.h" | 
|  | #include "rt73usb.h" | 
|  |  | 
|  | /* | 
|  | * Allow hardware encryption to be disabled. | 
|  | */ | 
|  | static bool modparam_nohwcrypt; | 
|  | module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO); | 
|  | MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption."); | 
|  |  | 
|  | /* | 
|  | * Register access. | 
|  | * All access to the CSR registers will go through the methods | 
|  | * rt2x00usb_register_read and rt2x00usb_register_write. | 
|  | * BBP and RF register require indirect register access, | 
|  | * and use the CSR registers BBPCSR and RFCSR to achieve this. | 
|  | * These indirect registers work with busy bits, | 
|  | * and we will try maximal REGISTER_BUSY_COUNT times to access | 
|  | * the register while taking a REGISTER_BUSY_DELAY us delay | 
|  | * between each attampt. When the busy bit is still set at that time, | 
|  | * the access attempt is considered to have failed, | 
|  | * and we will print an error. | 
|  | * The _lock versions must be used if you already hold the csr_mutex | 
|  | */ | 
|  | #define WAIT_FOR_BBP(__dev, __reg) \ | 
|  | rt2x00usb_regbusy_read((__dev), PHY_CSR3, PHY_CSR3_BUSY, (__reg)) | 
|  | #define WAIT_FOR_RF(__dev, __reg) \ | 
|  | rt2x00usb_regbusy_read((__dev), PHY_CSR4, PHY_CSR4_BUSY, (__reg)) | 
|  |  | 
|  | static void rt73usb_bbp_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u8 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PHY_CSR3_VALUE, value); | 
|  | rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); | 
|  | rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); | 
|  | rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 0); | 
|  |  | 
|  | rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt73usb_bbp_read(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, u8 *value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the BBP becomes available, afterwards we | 
|  | * can safely write the read request into the register. | 
|  | * After the data has been written, we wait until hardware | 
|  | * returns the correct value, if at any time the register | 
|  | * doesn't become available in time, reg will be 0xffffffff | 
|  | * which means we return 0xff to the caller. | 
|  | */ | 
|  | if (WAIT_FOR_BBP(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PHY_CSR3_REGNUM, word); | 
|  | rt2x00_set_field32(®, PHY_CSR3_BUSY, 1); | 
|  | rt2x00_set_field32(®, PHY_CSR3_READ_CONTROL, 1); | 
|  |  | 
|  | rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR3, reg); | 
|  |  | 
|  | WAIT_FOR_BBP(rt2x00dev, ®); | 
|  | } | 
|  |  | 
|  | *value = rt2x00_get_field32(reg, PHY_CSR3_VALUE); | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | static void rt73usb_rf_write(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int word, const u32 value) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | mutex_lock(&rt2x00dev->csr_mutex); | 
|  |  | 
|  | /* | 
|  | * Wait until the RF becomes available, afterwards we | 
|  | * can safely write the new data into the register. | 
|  | */ | 
|  | if (WAIT_FOR_RF(rt2x00dev, ®)) { | 
|  | reg = 0; | 
|  | rt2x00_set_field32(®, PHY_CSR4_VALUE, value); | 
|  | /* | 
|  | * RF5225 and RF2527 contain 21 bits per RF register value, | 
|  | * all others contain 20 bits. | 
|  | */ | 
|  | rt2x00_set_field32(®, PHY_CSR4_NUMBER_OF_BITS, | 
|  | 20 + (rt2x00_rf(rt2x00dev, RF5225) || | 
|  | rt2x00_rf(rt2x00dev, RF2527))); | 
|  | rt2x00_set_field32(®, PHY_CSR4_IF_SELECT, 0); | 
|  | rt2x00_set_field32(®, PHY_CSR4_BUSY, 1); | 
|  |  | 
|  | rt2x00usb_register_write_lock(rt2x00dev, PHY_CSR4, reg); | 
|  | rt2x00_rf_write(rt2x00dev, word, value); | 
|  | } | 
|  |  | 
|  | mutex_unlock(&rt2x00dev->csr_mutex); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | static const struct rt2x00debug rt73usb_rt2x00debug = { | 
|  | .owner	= THIS_MODULE, | 
|  | .csr	= { | 
|  | .read		= rt2x00usb_register_read, | 
|  | .write		= rt2x00usb_register_write, | 
|  | .flags		= RT2X00DEBUGFS_OFFSET, | 
|  | .word_base	= CSR_REG_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= CSR_REG_SIZE / sizeof(u32), | 
|  | }, | 
|  | .eeprom	= { | 
|  | .read		= rt2x00_eeprom_read, | 
|  | .write		= rt2x00_eeprom_write, | 
|  | .word_base	= EEPROM_BASE, | 
|  | .word_size	= sizeof(u16), | 
|  | .word_count	= EEPROM_SIZE / sizeof(u16), | 
|  | }, | 
|  | .bbp	= { | 
|  | .read		= rt73usb_bbp_read, | 
|  | .write		= rt73usb_bbp_write, | 
|  | .word_base	= BBP_BASE, | 
|  | .word_size	= sizeof(u8), | 
|  | .word_count	= BBP_SIZE / sizeof(u8), | 
|  | }, | 
|  | .rf	= { | 
|  | .read		= rt2x00_rf_read, | 
|  | .write		= rt73usb_rf_write, | 
|  | .word_base	= RF_BASE, | 
|  | .word_size	= sizeof(u32), | 
|  | .word_count	= RF_SIZE / sizeof(u32), | 
|  | }, | 
|  | }; | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  |  | 
|  | static int rt73usb_rfkill_poll(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®); | 
|  | return rt2x00_get_field32(reg, MAC_CSR13_BIT7); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | static void rt73usb_brightness_set(struct led_classdev *led_cdev, | 
|  | enum led_brightness brightness) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | unsigned int enabled = brightness != LED_OFF; | 
|  | unsigned int a_mode = | 
|  | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_5GHZ); | 
|  | unsigned int bg_mode = | 
|  | (enabled && led->rt2x00dev->curr_band == IEEE80211_BAND_2GHZ); | 
|  |  | 
|  | if (led->type == LED_TYPE_RADIO) { | 
|  | rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
|  | MCU_LEDCS_RADIO_STATUS, enabled); | 
|  |  | 
|  | rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, | 
|  | 0, led->rt2x00dev->led_mcu_reg, | 
|  | REGISTER_TIMEOUT); | 
|  | } else if (led->type == LED_TYPE_ASSOC) { | 
|  | rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
|  | MCU_LEDCS_LINK_BG_STATUS, bg_mode); | 
|  | rt2x00_set_field16(&led->rt2x00dev->led_mcu_reg, | 
|  | MCU_LEDCS_LINK_A_STATUS, a_mode); | 
|  |  | 
|  | rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, | 
|  | 0, led->rt2x00dev->led_mcu_reg, | 
|  | REGISTER_TIMEOUT); | 
|  | } else if (led->type == LED_TYPE_QUALITY) { | 
|  | /* | 
|  | * The brightness is divided into 6 levels (0 - 5), | 
|  | * this means we need to convert the brightness | 
|  | * argument into the matching level within that range. | 
|  | */ | 
|  | rt2x00usb_vendor_request_sw(led->rt2x00dev, USB_LED_CONTROL, | 
|  | brightness / (LED_FULL / 6), | 
|  | led->rt2x00dev->led_mcu_reg, | 
|  | REGISTER_TIMEOUT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static int rt73usb_blink_set(struct led_classdev *led_cdev, | 
|  | unsigned long *delay_on, | 
|  | unsigned long *delay_off) | 
|  | { | 
|  | struct rt2x00_led *led = | 
|  | container_of(led_cdev, struct rt2x00_led, led_dev); | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00usb_register_read(led->rt2x00dev, MAC_CSR14, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR14_ON_PERIOD, *delay_on); | 
|  | rt2x00_set_field32(®, MAC_CSR14_OFF_PERIOD, *delay_off); | 
|  | rt2x00usb_register_write(led->rt2x00dev, MAC_CSR14, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt73usb_init_led(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_led *led, | 
|  | enum led_type type) | 
|  | { | 
|  | led->rt2x00dev = rt2x00dev; | 
|  | led->type = type; | 
|  | led->led_dev.brightness_set = rt73usb_brightness_set; | 
|  | led->led_dev.blink_set = rt73usb_blink_set; | 
|  | led->flags = LED_INITIALIZED; | 
|  | } | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | /* | 
|  | * Configuration handlers. | 
|  | */ | 
|  | static int rt73usb_config_shared_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_key_entry key_entry; | 
|  | struct rt2x00_field32 field; | 
|  | u32 mask; | 
|  | u32 reg; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | /* | 
|  | * rt2x00lib can't determine the correct free | 
|  | * key_idx for shared keys. We have 1 register | 
|  | * with key valid bits. The goal is simple, read | 
|  | * the register, if that is full we have no slots | 
|  | * left. | 
|  | * Note that each BSS is allowed to have up to 4 | 
|  | * shared keys, so put a mask over the allowed | 
|  | * entries. | 
|  | */ | 
|  | mask = (0xf << crypto->bssidx); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); | 
|  | reg &= mask; | 
|  |  | 
|  | if (reg && reg == mask) | 
|  | return -ENOSPC; | 
|  |  | 
|  | key->hw_key_idx += reg ? ffz(reg) : 0; | 
|  |  | 
|  | /* | 
|  | * Upload key to hardware | 
|  | */ | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | reg = SHARED_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, reg, | 
|  | &key_entry, sizeof(key_entry)); | 
|  |  | 
|  | /* | 
|  | * The cipher types are stored over 2 registers. | 
|  | * bssidx 0 and 1 keys are stored in SEC_CSR1 and | 
|  | * bssidx 1 and 2 keys are stored in SEC_CSR5. | 
|  | * Using the correct defines correctly will cause overhead, | 
|  | * so just calculate the correct offset. | 
|  | */ | 
|  | if (key->hw_key_idx < 8) { | 
|  | field.bit_offset = (3 * key->hw_key_idx); | 
|  | field.bit_mask = 0x7 << field.bit_offset; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR1, ®); | 
|  | rt2x00_set_field32(®, field, crypto->cipher); | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR1, reg); | 
|  | } else { | 
|  | field.bit_offset = (3 * (key->hw_key_idx - 8)); | 
|  | field.bit_mask = 0x7 << field.bit_offset; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR5, ®); | 
|  | rt2x00_set_field32(®, field, crypto->cipher); | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR5, reg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The driver does not support the IV/EIV generation | 
|  | * in hardware. However it doesn't support the IV/EIV | 
|  | * inside the ieee80211 frame either, but requires it | 
|  | * to be provided separately for the descriptor. | 
|  | * rt2x00lib will cut the IV/EIV data out of all frames | 
|  | * given to us by mac80211, but we must tell mac80211 | 
|  | * to generate the IV/EIV data. | 
|  | */ | 
|  | key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SEC_CSR0 contains only single-bit fields to indicate | 
|  | * a particular key is valid. Because using the FIELD32() | 
|  | * defines directly will cause a lot of overhead we use | 
|  | * a calculation to determine the correct bit directly. | 
|  | */ | 
|  | mask = 1 << key->hw_key_idx; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR0, ®); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | reg |= mask; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | reg &= ~mask; | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR0, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt73usb_config_pairwise_key(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_crypto *crypto, | 
|  | struct ieee80211_key_conf *key) | 
|  | { | 
|  | struct hw_pairwise_ta_entry addr_entry; | 
|  | struct hw_key_entry key_entry; | 
|  | u32 mask; | 
|  | u32 reg; | 
|  |  | 
|  | if (crypto->cmd == SET_KEY) { | 
|  | /* | 
|  | * rt2x00lib can't determine the correct free | 
|  | * key_idx for pairwise keys. We have 2 registers | 
|  | * with key valid bits. The goal is simple, read | 
|  | * the first register, if that is full move to | 
|  | * the next register. | 
|  | * When both registers are full, we drop the key, | 
|  | * otherwise we use the first invalid entry. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); | 
|  | if (reg && reg == ~0) { | 
|  | key->hw_key_idx = 32; | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); | 
|  | if (reg && reg == ~0) | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | key->hw_key_idx += reg ? ffz(reg) : 0; | 
|  |  | 
|  | /* | 
|  | * Upload key to hardware | 
|  | */ | 
|  | memcpy(key_entry.key, crypto->key, | 
|  | sizeof(key_entry.key)); | 
|  | memcpy(key_entry.tx_mic, crypto->tx_mic, | 
|  | sizeof(key_entry.tx_mic)); | 
|  | memcpy(key_entry.rx_mic, crypto->rx_mic, | 
|  | sizeof(key_entry.rx_mic)); | 
|  |  | 
|  | reg = PAIRWISE_KEY_ENTRY(key->hw_key_idx); | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, reg, | 
|  | &key_entry, sizeof(key_entry)); | 
|  |  | 
|  | /* | 
|  | * Send the address and cipher type to the hardware register. | 
|  | */ | 
|  | memset(&addr_entry, 0, sizeof(addr_entry)); | 
|  | memcpy(&addr_entry, crypto->address, ETH_ALEN); | 
|  | addr_entry.cipher = crypto->cipher; | 
|  |  | 
|  | reg = PAIRWISE_TA_ENTRY(key->hw_key_idx); | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, reg, | 
|  | &addr_entry, sizeof(addr_entry)); | 
|  |  | 
|  | /* | 
|  | * Enable pairwise lookup table for given BSS idx, | 
|  | * without this received frames will not be decrypted | 
|  | * by the hardware. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR4, ®); | 
|  | reg |= (1 << crypto->bssidx); | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR4, reg); | 
|  |  | 
|  | /* | 
|  | * The driver does not support the IV/EIV generation | 
|  | * in hardware. However it doesn't support the IV/EIV | 
|  | * inside the ieee80211 frame either, but requires it | 
|  | * to be provided separately for the descriptor. | 
|  | * rt2x00lib will cut the IV/EIV data out of all frames | 
|  | * given to us by mac80211, but we must tell mac80211 | 
|  | * to generate the IV/EIV data. | 
|  | */ | 
|  | key->flags |= IEEE80211_KEY_FLAG_GENERATE_IV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SEC_CSR2 and SEC_CSR3 contain only single-bit fields to indicate | 
|  | * a particular key is valid. Because using the FIELD32() | 
|  | * defines directly will cause a lot of overhead we use | 
|  | * a calculation to determine the correct bit directly. | 
|  | */ | 
|  | if (key->hw_key_idx < 32) { | 
|  | mask = 1 << key->hw_key_idx; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR2, ®); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | reg |= mask; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | reg &= ~mask; | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR2, reg); | 
|  | } else { | 
|  | mask = 1 << (key->hw_key_idx - 32); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, SEC_CSR3, ®); | 
|  | if (crypto->cmd == SET_KEY) | 
|  | reg |= mask; | 
|  | else if (crypto->cmd == DISABLE_KEY) | 
|  | reg &= ~mask; | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR3, reg); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_filter(struct rt2x00_dev *rt2x00dev, | 
|  | const unsigned int filter_flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Start configuration steps. | 
|  | * Note that the version error will always be dropped | 
|  | * and broadcast frames will always be accepted since | 
|  | * there is no filter for it at this time. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_CRC, | 
|  | !(filter_flags & FIF_FCSFAIL)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_PHYSICAL, | 
|  | !(filter_flags & FIF_PLCPFAIL)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_CONTROL, | 
|  | !(filter_flags & (FIF_CONTROL | FIF_PSPOLL))); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_NOT_TO_ME, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_TO_DS, | 
|  | !(filter_flags & FIF_PROMISC_IN_BSS) && | 
|  | !rt2x00dev->intf_ap_count); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_VERSION_ERROR, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_MULTICAST, | 
|  | !(filter_flags & FIF_ALLMULTI)); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_BROADCAST, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DROP_ACK_CTS, | 
|  | !(filter_flags & FIF_CONTROL)); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_intf(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00_intf *intf, | 
|  | struct rt2x00intf_conf *conf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_TYPE) { | 
|  | /* | 
|  | * Enable synchronisation. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, conf->sync); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_MAC) { | 
|  | reg = le32_to_cpu(conf->mac[1]); | 
|  | rt2x00_set_field32(®, MAC_CSR3_UNICAST_TO_ME_MASK, 0xff); | 
|  | conf->mac[1] = cpu_to_le32(reg); | 
|  |  | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR2, | 
|  | conf->mac, sizeof(conf->mac)); | 
|  | } | 
|  |  | 
|  | if (flags & CONFIG_UPDATE_BSSID) { | 
|  | reg = le32_to_cpu(conf->bssid[1]); | 
|  | rt2x00_set_field32(®, MAC_CSR5_BSS_ID_MASK, 3); | 
|  | conf->bssid[1] = cpu_to_le32(reg); | 
|  |  | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, MAC_CSR4, | 
|  | conf->bssid, sizeof(conf->bssid)); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_erp(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_erp *erp, | 
|  | u32 changed) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_RX_ACK_TIMEOUT, 0x32); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_TSF_OFFSET, IEEE80211_HEADER); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_PREAMBLE) { | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_ENABLE, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_AUTORESPOND_PREAMBLE, | 
|  | !!erp->short_preamble); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_BASIC_RATES) | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR5, | 
|  | erp->basic_rates); | 
|  |  | 
|  | if (changed & BSS_CHANGED_BEACON_INT) { | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, | 
|  | erp->beacon_int * 16); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | } | 
|  |  | 
|  | if (changed & BSS_CHANGED_ERP_SLOT) { | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR9_SLOT_TIME, erp->slot_time); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR8, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR8_SIFS, erp->sifs); | 
|  | rt2x00_set_field32(®, MAC_CSR8_SIFS_AFTER_RX_OFDM, 3); | 
|  | rt2x00_set_field32(®, MAC_CSR8_EIFS, erp->eifs); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR8, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_antenna_5x(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r4; | 
|  | u8 r77; | 
|  | u8 temp; | 
|  |  | 
|  | rt73usb_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt73usb_bbp_read(rt2x00dev, 4, &r4); | 
|  | rt73usb_bbp_read(rt2x00dev, 77, &r77); | 
|  |  | 
|  | rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); | 
|  | temp = !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags) | 
|  | && (rt2x00dev->curr_band != IEEE80211_BAND_5GHZ); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, temp); | 
|  | break; | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | else | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, 0); | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | else | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt73usb_bbp_write(rt2x00dev, 77, r77); | 
|  | rt73usb_bbp_write(rt2x00dev, 3, r3); | 
|  | rt73usb_bbp_write(rt2x00dev, 4, r4); | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_antenna_2x(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r4; | 
|  | u8 r77; | 
|  |  | 
|  | rt73usb_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt73usb_bbp_read(rt2x00dev, 4, &r4); | 
|  | rt73usb_bbp_read(rt2x00dev, 77, &r77); | 
|  |  | 
|  | rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, 0); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_FRAME_END, | 
|  | !test_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags)); | 
|  |  | 
|  | /* | 
|  | * Configure the RX antenna. | 
|  | */ | 
|  | switch (ant->rx) { | 
|  | case ANTENNA_HW_DIVERSITY: | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 2); | 
|  | break; | 
|  | case ANTENNA_A: | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 3); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | break; | 
|  | case ANTENNA_B: | 
|  | default: | 
|  | rt2x00_set_field8(&r77, BBP_R77_RX_ANTENNA, 0); | 
|  | rt2x00_set_field8(&r4, BBP_R4_RX_ANTENNA_CONTROL, 1); | 
|  | break; | 
|  | } | 
|  |  | 
|  | rt73usb_bbp_write(rt2x00dev, 77, r77); | 
|  | rt73usb_bbp_write(rt2x00dev, 3, r3); | 
|  | rt73usb_bbp_write(rt2x00dev, 4, r4); | 
|  | } | 
|  |  | 
|  | struct antenna_sel { | 
|  | u8 word; | 
|  | /* | 
|  | * value[0] -> non-LNA | 
|  | * value[1] -> LNA | 
|  | */ | 
|  | u8 value[2]; | 
|  | }; | 
|  |  | 
|  | static const struct antenna_sel antenna_sel_a[] = { | 
|  | { 96,  { 0x58, 0x78 } }, | 
|  | { 104, { 0x38, 0x48 } }, | 
|  | { 75,  { 0xfe, 0x80 } }, | 
|  | { 86,  { 0xfe, 0x80 } }, | 
|  | { 88,  { 0xfe, 0x80 } }, | 
|  | { 35,  { 0x60, 0x60 } }, | 
|  | { 97,  { 0x58, 0x58 } }, | 
|  | { 98,  { 0x58, 0x58 } }, | 
|  | }; | 
|  |  | 
|  | static const struct antenna_sel antenna_sel_bg[] = { | 
|  | { 96,  { 0x48, 0x68 } }, | 
|  | { 104, { 0x2c, 0x3c } }, | 
|  | { 75,  { 0xfe, 0x80 } }, | 
|  | { 86,  { 0xfe, 0x80 } }, | 
|  | { 88,  { 0xfe, 0x80 } }, | 
|  | { 35,  { 0x50, 0x50 } }, | 
|  | { 97,  { 0x48, 0x48 } }, | 
|  | { 98,  { 0x48, 0x48 } }, | 
|  | }; | 
|  |  | 
|  | static void rt73usb_config_ant(struct rt2x00_dev *rt2x00dev, | 
|  | struct antenna_setup *ant) | 
|  | { | 
|  | const struct antenna_sel *sel; | 
|  | unsigned int lna; | 
|  | unsigned int i; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * We should never come here because rt2x00lib is supposed | 
|  | * to catch this and send us the correct antenna explicitely. | 
|  | */ | 
|  | BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY || | 
|  | ant->tx == ANTENNA_SW_DIVERSITY); | 
|  |  | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
|  | sel = antenna_sel_a; | 
|  | lna = test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); | 
|  | } else { | 
|  | sel = antenna_sel_bg; | 
|  | lna = test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); | 
|  | } | 
|  |  | 
|  | for (i = 0; i < ARRAY_SIZE(antenna_sel_a); i++) | 
|  | rt73usb_bbp_write(rt2x00dev, sel[i].word, sel[i].value[lna]); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, PHY_CSR0, ®); | 
|  |  | 
|  | rt2x00_set_field32(®, PHY_CSR0_PA_PE_BG, | 
|  | (rt2x00dev->curr_band == IEEE80211_BAND_2GHZ)); | 
|  | rt2x00_set_field32(®, PHY_CSR0_PA_PE_A, | 
|  | (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ)); | 
|  |  | 
|  | rt2x00usb_register_write(rt2x00dev, PHY_CSR0, reg); | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF5226) || rt2x00_rf(rt2x00dev, RF5225)) | 
|  | rt73usb_config_antenna_5x(rt2x00dev, ant); | 
|  | else if (rt2x00_rf(rt2x00dev, RF2528) || rt2x00_rf(rt2x00dev, RF2527)) | 
|  | rt73usb_config_antenna_2x(rt2x00dev, ant); | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_lna_gain(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u16 eeprom; | 
|  | short lna_gain = 0; | 
|  |  | 
|  | if (libconf->conf->channel->band == IEEE80211_BAND_2GHZ) { | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) | 
|  | lna_gain += 14; | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &eeprom); | 
|  | lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_BG_1); | 
|  | } else { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &eeprom); | 
|  | lna_gain -= rt2x00_get_field16(eeprom, EEPROM_RSSI_OFFSET_A_1); | 
|  | } | 
|  |  | 
|  | rt2x00dev->lna_gain = lna_gain; | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_channel(struct rt2x00_dev *rt2x00dev, | 
|  | struct rf_channel *rf, const int txpower) | 
|  | { | 
|  | u8 r3; | 
|  | u8 r94; | 
|  | u8 smart; | 
|  |  | 
|  | rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower)); | 
|  | rt2x00_set_field32(&rf->rf4, RF4_FREQ_OFFSET, rt2x00dev->freq_offset); | 
|  |  | 
|  | smart = !(rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)); | 
|  |  | 
|  | rt73usb_bbp_read(rt2x00dev, 3, &r3); | 
|  | rt2x00_set_field8(&r3, BBP_R3_SMART_MODE, smart); | 
|  | rt73usb_bbp_write(rt2x00dev, 3, r3); | 
|  |  | 
|  | r94 = 6; | 
|  | if (txpower > MAX_TXPOWER && txpower <= (MAX_TXPOWER + r94)) | 
|  | r94 += txpower - MAX_TXPOWER; | 
|  | else if (txpower < MIN_TXPOWER && txpower >= (MIN_TXPOWER - r94)) | 
|  | r94 += txpower; | 
|  | rt73usb_bbp_write(rt2x00dev, 94, r94); | 
|  |  | 
|  | rt73usb_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt73usb_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt73usb_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | rt73usb_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt73usb_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt73usb_rf_write(rt2x00dev, 3, rf->rf3 | 0x00000004); | 
|  | rt73usb_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | rt73usb_rf_write(rt2x00dev, 1, rf->rf1); | 
|  | rt73usb_rf_write(rt2x00dev, 2, rf->rf2); | 
|  | rt73usb_rf_write(rt2x00dev, 3, rf->rf3 & ~0x00000004); | 
|  | rt73usb_rf_write(rt2x00dev, 4, rf->rf4); | 
|  |  | 
|  | udelay(10); | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_txpower(struct rt2x00_dev *rt2x00dev, | 
|  | const int txpower) | 
|  | { | 
|  | struct rf_channel rf; | 
|  |  | 
|  | rt2x00_rf_read(rt2x00dev, 1, &rf.rf1); | 
|  | rt2x00_rf_read(rt2x00dev, 2, &rf.rf2); | 
|  | rt2x00_rf_read(rt2x00dev, 3, &rf.rf3); | 
|  | rt2x00_rf_read(rt2x00dev, 4, &rf.rf4); | 
|  |  | 
|  | rt73usb_config_channel(rt2x00dev, &rf, txpower); | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_retry_limit(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR4, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_DOWN, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_RATE_STEP, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_OFDM_TX_FALLBACK_CCK, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_LONG_RETRY_LIMIT, | 
|  | libconf->conf->long_frame_max_tx_count); | 
|  | rt2x00_set_field32(®, TXRX_CSR4_SHORT_RETRY_LIMIT, | 
|  | libconf->conf->short_frame_max_tx_count); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR4, reg); | 
|  | } | 
|  |  | 
|  | static void rt73usb_config_ps(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf) | 
|  | { | 
|  | enum dev_state state = | 
|  | (libconf->conf->flags & IEEE80211_CONF_PS) ? | 
|  | STATE_SLEEP : STATE_AWAKE; | 
|  | u32 reg; | 
|  |  | 
|  | if (state == STATE_SLEEP) { | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, | 
|  | rt2x00dev->beacon_int - 10); | 
|  | rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, | 
|  | libconf->conf->listen_interval - 1); | 
|  | rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 5); | 
|  |  | 
|  | /* We must first disable autowake before it can be enabled */ | 
|  | rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); | 
|  |  | 
|  | rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); | 
|  |  | 
|  | rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, | 
|  | USB_MODE_SLEEP, REGISTER_TIMEOUT); | 
|  | } else { | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR11, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR11_DELAY_AFTER_TBCN, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR11_TBCN_BEFORE_WAKEUP, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR11_AUTOWAKE, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR11_WAKEUP_LATENCY, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR11, reg); | 
|  |  | 
|  | rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, 0, | 
|  | USB_MODE_WAKEUP, REGISTER_TIMEOUT); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt73usb_config(struct rt2x00_dev *rt2x00dev, | 
|  | struct rt2x00lib_conf *libconf, | 
|  | const unsigned int flags) | 
|  | { | 
|  | /* Always recalculate LNA gain before changing configuration */ | 
|  | rt73usb_config_lna_gain(rt2x00dev, libconf); | 
|  |  | 
|  | if (flags & IEEE80211_CONF_CHANGE_CHANNEL) | 
|  | rt73usb_config_channel(rt2x00dev, &libconf->rf, | 
|  | libconf->conf->power_level); | 
|  | if ((flags & IEEE80211_CONF_CHANGE_POWER) && | 
|  | !(flags & IEEE80211_CONF_CHANGE_CHANNEL)) | 
|  | rt73usb_config_txpower(rt2x00dev, libconf->conf->power_level); | 
|  | if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS) | 
|  | rt73usb_config_retry_limit(rt2x00dev, libconf); | 
|  | if (flags & IEEE80211_CONF_CHANGE_PS) | 
|  | rt73usb_config_ps(rt2x00dev, libconf); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Link tuning | 
|  | */ | 
|  | static void rt73usb_link_stats(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Update FCS error count from register. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); | 
|  | qual->rx_failed = rt2x00_get_field32(reg, STA_CSR0_FCS_ERROR); | 
|  |  | 
|  | /* | 
|  | * Update False CCA count from register. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); | 
|  | qual->false_cca = rt2x00_get_field32(reg, STA_CSR1_FALSE_CCA_ERROR); | 
|  | } | 
|  |  | 
|  | static inline void rt73usb_set_vgc(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, u8 vgc_level) | 
|  | { | 
|  | if (qual->vgc_level != vgc_level) { | 
|  | rt73usb_bbp_write(rt2x00dev, 17, vgc_level); | 
|  | qual->vgc_level = vgc_level; | 
|  | qual->vgc_level_reg = vgc_level; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt73usb_reset_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual) | 
|  | { | 
|  | rt73usb_set_vgc(rt2x00dev, qual, 0x20); | 
|  | } | 
|  |  | 
|  | static void rt73usb_link_tuner(struct rt2x00_dev *rt2x00dev, | 
|  | struct link_qual *qual, const u32 count) | 
|  | { | 
|  | u8 up_bound; | 
|  | u8 low_bound; | 
|  |  | 
|  | /* | 
|  | * Determine r17 bounds. | 
|  | */ | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
|  | low_bound = 0x28; | 
|  | up_bound = 0x48; | 
|  |  | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { | 
|  | low_bound += 0x10; | 
|  | up_bound += 0x10; | 
|  | } | 
|  | } else { | 
|  | if (qual->rssi > -82) { | 
|  | low_bound = 0x1c; | 
|  | up_bound = 0x40; | 
|  | } else if (qual->rssi > -84) { | 
|  | low_bound = 0x1c; | 
|  | up_bound = 0x20; | 
|  | } else { | 
|  | low_bound = 0x1c; | 
|  | up_bound = 0x1c; | 
|  | } | 
|  |  | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags)) { | 
|  | low_bound += 0x14; | 
|  | up_bound += 0x10; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we are not associated, we should go straight to the | 
|  | * dynamic CCA tuning. | 
|  | */ | 
|  | if (!rt2x00dev->intf_associated) | 
|  | goto dynamic_cca_tune; | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for very short distance | 
|  | */ | 
|  | if (qual->rssi > -35) { | 
|  | rt73usb_set_vgc(rt2x00dev, qual, 0x60); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for short distance | 
|  | */ | 
|  | if (qual->rssi >= -58) { | 
|  | rt73usb_set_vgc(rt2x00dev, qual, up_bound); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special big-R17 for middle-short distance | 
|  | */ | 
|  | if (qual->rssi >= -66) { | 
|  | rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x10); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special mid-R17 for middle distance | 
|  | */ | 
|  | if (qual->rssi >= -74) { | 
|  | rt73usb_set_vgc(rt2x00dev, qual, low_bound + 0x08); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Special case: Change up_bound based on the rssi. | 
|  | * Lower up_bound when rssi is weaker then -74 dBm. | 
|  | */ | 
|  | up_bound -= 2 * (-74 - qual->rssi); | 
|  | if (low_bound > up_bound) | 
|  | up_bound = low_bound; | 
|  |  | 
|  | if (qual->vgc_level > up_bound) { | 
|  | rt73usb_set_vgc(rt2x00dev, qual, up_bound); | 
|  | return; | 
|  | } | 
|  |  | 
|  | dynamic_cca_tune: | 
|  |  | 
|  | /* | 
|  | * r17 does not yet exceed upper limit, continue and base | 
|  | * the r17 tuning on the false CCA count. | 
|  | */ | 
|  | if ((qual->false_cca > 512) && (qual->vgc_level < up_bound)) | 
|  | rt73usb_set_vgc(rt2x00dev, qual, | 
|  | min_t(u8, qual->vgc_level + 4, up_bound)); | 
|  | else if ((qual->false_cca < 100) && (qual->vgc_level > low_bound)) | 
|  | rt73usb_set_vgc(rt2x00dev, qual, | 
|  | max_t(u8, qual->vgc_level - 4, low_bound)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue handlers. | 
|  | */ | 
|  | static void rt73usb_start_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void rt73usb_stop_queue(struct data_queue *queue) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = queue->rt2x00dev; | 
|  | u32 reg; | 
|  |  | 
|  | switch (queue->qid) { | 
|  | case QID_RX: | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  | break; | 
|  | case QID_BEACON: | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Firmware functions | 
|  | */ | 
|  | static char *rt73usb_get_firmware_name(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | return FIRMWARE_RT2571; | 
|  | } | 
|  |  | 
|  | static int rt73usb_check_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | u16 fw_crc; | 
|  | u16 crc; | 
|  |  | 
|  | /* | 
|  | * Only support 2kb firmware files. | 
|  | */ | 
|  | if (len != 2048) | 
|  | return FW_BAD_LENGTH; | 
|  |  | 
|  | /* | 
|  | * The last 2 bytes in the firmware array are the crc checksum itself, | 
|  | * this means that we should never pass those 2 bytes to the crc | 
|  | * algorithm. | 
|  | */ | 
|  | fw_crc = (data[len - 2] << 8 | data[len - 1]); | 
|  |  | 
|  | /* | 
|  | * Use the crc itu-t algorithm. | 
|  | */ | 
|  | crc = crc_itu_t(0, data, len - 2); | 
|  | crc = crc_itu_t_byte(crc, 0); | 
|  | crc = crc_itu_t_byte(crc, 0); | 
|  |  | 
|  | return (fw_crc == crc) ? FW_OK : FW_BAD_CRC; | 
|  | } | 
|  |  | 
|  | static int rt73usb_load_firmware(struct rt2x00_dev *rt2x00dev, | 
|  | const u8 *data, const size_t len) | 
|  | { | 
|  | unsigned int i; | 
|  | int status; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Wait for stable hardware. | 
|  | */ | 
|  | for (i = 0; i < 100; i++) { | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | if (reg) | 
|  | break; | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | if (!reg) { | 
|  | ERROR(rt2x00dev, "Unstable hardware.\n"); | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write firmware to device. | 
|  | */ | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE, data, len); | 
|  |  | 
|  | /* | 
|  | * Send firmware request to device to load firmware, | 
|  | * we need to specify a long timeout time. | 
|  | */ | 
|  | status = rt2x00usb_vendor_request_sw(rt2x00dev, USB_DEVICE_MODE, | 
|  | 0, USB_MODE_FIRMWARE, | 
|  | REGISTER_TIMEOUT_FIRMWARE); | 
|  | if (status < 0) { | 
|  | ERROR(rt2x00dev, "Failed to write Firmware to device.\n"); | 
|  | return status; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialization functions. | 
|  | */ | 
|  | static int rt73usb_init_registers(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR0, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_AUTO_TX_SEQ, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_DISABLE_RX, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR0_TX_WITHOUT_WAITING, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR0, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR1, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0, 47); /* CCK Signal */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1, 30); /* Rssi */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2, 42); /* OFDM Rate */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID2_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3, 30); /* Rssi */ | 
|  | rt2x00_set_field32(®, TXRX_CSR1_BBP_ID3_VALID, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR1, reg); | 
|  |  | 
|  | /* | 
|  | * CCK TXD BBP registers | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR2, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0, 13); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1, 12); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2, 11); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID2_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3, 10); | 
|  | rt2x00_set_field32(®, TXRX_CSR2_BBP_ID3_VALID, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR2, reg); | 
|  |  | 
|  | /* | 
|  | * OFDM TXD BBP registers | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR3, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0, 7); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID0_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1, 6); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID1_VALID, 1); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2, 5); | 
|  | rt2x00_set_field32(®, TXRX_CSR3_BBP_ID2_VALID, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR3, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR7, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_6MBS, 59); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_9MBS, 53); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_12MBS, 49); | 
|  | rt2x00_set_field32(®, TXRX_CSR7_ACK_CTS_18MBS, 46); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR7, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR8, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_24MBS, 44); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_36MBS, 42); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_48MBS, 42); | 
|  | rt2x00_set_field32(®, TXRX_CSR8_ACK_CTS_54MBS, 42); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR8, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_INTERVAL, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_TICKING, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TSF_SYNC, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TBTT_ENABLE, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_TIMESTAMP_COMPENSATE, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR15, 0x0000000f); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR6, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR6_MAX_FRAME_UNIT, 0xfff); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR6, reg); | 
|  |  | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00000718); | 
|  |  | 
|  | if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE)) | 
|  | return -EBUSY; | 
|  |  | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR13, 0x00007f00); | 
|  |  | 
|  | /* | 
|  | * Invalidate all Shared Keys (SEC_CSR0), | 
|  | * and clear the Shared key Cipher algorithms (SEC_CSR1 & SEC_CSR5) | 
|  | */ | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR0, 0x00000000); | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR1, 0x00000000); | 
|  | rt2x00usb_register_write(rt2x00dev, SEC_CSR5, 0x00000000); | 
|  |  | 
|  | reg = 0x000023b0; | 
|  | if (rt2x00_rf(rt2x00dev, RF5225) || rt2x00_rf(rt2x00dev, RF2527)) | 
|  | rt2x00_set_field32(®, PHY_CSR1_RF_RPI, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, PHY_CSR1, reg); | 
|  |  | 
|  | rt2x00usb_register_write(rt2x00dev, PHY_CSR5, 0x00040a06); | 
|  | rt2x00usb_register_write(rt2x00dev, PHY_CSR6, 0x00080606); | 
|  | rt2x00usb_register_write(rt2x00dev, PHY_CSR7, 0x00000408); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR9, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR9_CW_SELECT, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Clear all beacons | 
|  | * For the Beacon base registers we only need to clear | 
|  | * the first byte since that byte contains the VALID and OWNER | 
|  | * bits which (when set to 0) will invalidate the entire beacon. | 
|  | */ | 
|  | rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE0, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE1, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE2, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, HW_BEACON_BASE3, 0); | 
|  |  | 
|  | /* | 
|  | * We must clear the error counters. | 
|  | * These registers are cleared on read, | 
|  | * so we may pass a useless variable to store the value. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, STA_CSR0, ®); | 
|  | rt2x00usb_register_read(rt2x00dev, STA_CSR1, ®); | 
|  | rt2x00usb_register_read(rt2x00dev, STA_CSR2, ®); | 
|  |  | 
|  | /* | 
|  | * Reset MAC and BBP registers. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 1); | 
|  | rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_SOFT_RESET, 0); | 
|  | rt2x00_set_field32(®, MAC_CSR1_BBP_RESET, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR1, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR1_HOST_READY, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR1, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt73usb_wait_bbp_ready(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u8 value; | 
|  |  | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt73usb_bbp_read(rt2x00dev, 0, &value); | 
|  | if ((value != 0xff) && (value != 0x00)) | 
|  | return 0; | 
|  | udelay(REGISTER_BUSY_DELAY); | 
|  | } | 
|  |  | 
|  | ERROR(rt2x00dev, "BBP register access failed, aborting.\n"); | 
|  | return -EACCES; | 
|  | } | 
|  |  | 
|  | static int rt73usb_init_bbp(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | unsigned int i; | 
|  | u16 eeprom; | 
|  | u8 reg_id; | 
|  | u8 value; | 
|  |  | 
|  | if (unlikely(rt73usb_wait_bbp_ready(rt2x00dev))) | 
|  | return -EACCES; | 
|  |  | 
|  | rt73usb_bbp_write(rt2x00dev, 3, 0x80); | 
|  | rt73usb_bbp_write(rt2x00dev, 15, 0x30); | 
|  | rt73usb_bbp_write(rt2x00dev, 21, 0xc8); | 
|  | rt73usb_bbp_write(rt2x00dev, 22, 0x38); | 
|  | rt73usb_bbp_write(rt2x00dev, 23, 0x06); | 
|  | rt73usb_bbp_write(rt2x00dev, 24, 0xfe); | 
|  | rt73usb_bbp_write(rt2x00dev, 25, 0x0a); | 
|  | rt73usb_bbp_write(rt2x00dev, 26, 0x0d); | 
|  | rt73usb_bbp_write(rt2x00dev, 32, 0x0b); | 
|  | rt73usb_bbp_write(rt2x00dev, 34, 0x12); | 
|  | rt73usb_bbp_write(rt2x00dev, 37, 0x07); | 
|  | rt73usb_bbp_write(rt2x00dev, 39, 0xf8); | 
|  | rt73usb_bbp_write(rt2x00dev, 41, 0x60); | 
|  | rt73usb_bbp_write(rt2x00dev, 53, 0x10); | 
|  | rt73usb_bbp_write(rt2x00dev, 54, 0x18); | 
|  | rt73usb_bbp_write(rt2x00dev, 60, 0x10); | 
|  | rt73usb_bbp_write(rt2x00dev, 61, 0x04); | 
|  | rt73usb_bbp_write(rt2x00dev, 62, 0x04); | 
|  | rt73usb_bbp_write(rt2x00dev, 75, 0xfe); | 
|  | rt73usb_bbp_write(rt2x00dev, 86, 0xfe); | 
|  | rt73usb_bbp_write(rt2x00dev, 88, 0xfe); | 
|  | rt73usb_bbp_write(rt2x00dev, 90, 0x0f); | 
|  | rt73usb_bbp_write(rt2x00dev, 99, 0x00); | 
|  | rt73usb_bbp_write(rt2x00dev, 102, 0x16); | 
|  | rt73usb_bbp_write(rt2x00dev, 107, 0x04); | 
|  |  | 
|  | for (i = 0; i < EEPROM_BBP_SIZE; i++) { | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom); | 
|  |  | 
|  | if (eeprom != 0xffff && eeprom != 0x0000) { | 
|  | reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID); | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE); | 
|  | rt73usb_bbp_write(rt2x00dev, reg_id, value); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device state switch handlers. | 
|  | */ | 
|  | static int rt73usb_enable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | /* | 
|  | * Initialize all registers. | 
|  | */ | 
|  | if (unlikely(rt73usb_init_registers(rt2x00dev) || | 
|  | rt73usb_init_bbp(rt2x00dev))) | 
|  | return -EIO; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void rt73usb_disable_radio(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR10, 0x00001818); | 
|  |  | 
|  | /* | 
|  | * Disable synchronisation. | 
|  | */ | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, 0); | 
|  |  | 
|  | rt2x00usb_disable_radio(rt2x00dev); | 
|  | } | 
|  |  | 
|  | static int rt73usb_set_state(struct rt2x00_dev *rt2x00dev, enum dev_state state) | 
|  | { | 
|  | u32 reg, reg2; | 
|  | unsigned int i; | 
|  | char put_to_sleep; | 
|  |  | 
|  | put_to_sleep = (state != STATE_AWAKE); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR12_FORCE_WAKEUP, !put_to_sleep); | 
|  | rt2x00_set_field32(®, MAC_CSR12_PUT_TO_SLEEP, put_to_sleep); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); | 
|  |  | 
|  | /* | 
|  | * Device is not guaranteed to be in the requested state yet. | 
|  | * We must wait until the register indicates that the | 
|  | * device has entered the correct state. | 
|  | */ | 
|  | for (i = 0; i < REGISTER_BUSY_COUNT; i++) { | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR12, ®2); | 
|  | state = rt2x00_get_field32(reg2, MAC_CSR12_BBP_CURRENT_STATE); | 
|  | if (state == !put_to_sleep) | 
|  | return 0; | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR12, reg); | 
|  | msleep(10); | 
|  | } | 
|  |  | 
|  | return -EBUSY; | 
|  | } | 
|  |  | 
|  | static int rt73usb_set_device_state(struct rt2x00_dev *rt2x00dev, | 
|  | enum dev_state state) | 
|  | { | 
|  | int retval = 0; | 
|  |  | 
|  | switch (state) { | 
|  | case STATE_RADIO_ON: | 
|  | retval = rt73usb_enable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_OFF: | 
|  | rt73usb_disable_radio(rt2x00dev); | 
|  | break; | 
|  | case STATE_RADIO_IRQ_ON: | 
|  | case STATE_RADIO_IRQ_OFF: | 
|  | /* No support, but no error either */ | 
|  | break; | 
|  | case STATE_DEEP_SLEEP: | 
|  | case STATE_SLEEP: | 
|  | case STATE_STANDBY: | 
|  | case STATE_AWAKE: | 
|  | retval = rt73usb_set_state(rt2x00dev, state); | 
|  | break; | 
|  | default: | 
|  | retval = -ENOTSUPP; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (unlikely(retval)) | 
|  | ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n", | 
|  | state, retval); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX descriptor initialization | 
|  | */ | 
|  | static void rt73usb_write_tx_desc(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | __le32 *txd = (__le32 *) entry->skb->data; | 
|  | u32 word; | 
|  |  | 
|  | /* | 
|  | * Start writing the descriptor words. | 
|  | */ | 
|  | rt2x00_desc_read(txd, 0, &word); | 
|  | rt2x00_set_field32(&word, TXD_W0_BURST, | 
|  | test_bit(ENTRY_TXD_BURST, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_VALID, 1); | 
|  | rt2x00_set_field32(&word, TXD_W0_MORE_FRAG, | 
|  | test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_ACK, | 
|  | test_bit(ENTRY_TXD_ACK, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_TIMESTAMP, | 
|  | test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_OFDM, | 
|  | (txdesc->rate_mode == RATE_MODE_OFDM)); | 
|  | rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs); | 
|  | rt2x00_set_field32(&word, TXD_W0_RETRY_MODE, | 
|  | test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_TKIP_MIC, | 
|  | test_bit(ENTRY_TXD_ENCRYPT_MMIC, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_KEY_TABLE, | 
|  | test_bit(ENTRY_TXD_ENCRYPT_PAIRWISE, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_KEY_INDEX, txdesc->key_idx); | 
|  | rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length); | 
|  | rt2x00_set_field32(&word, TXD_W0_BURST2, | 
|  | test_bit(ENTRY_TXD_BURST, &txdesc->flags)); | 
|  | rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, txdesc->cipher); | 
|  | rt2x00_desc_write(txd, 0, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 1, &word); | 
|  | rt2x00_set_field32(&word, TXD_W1_HOST_Q_ID, entry->queue->qid); | 
|  | rt2x00_set_field32(&word, TXD_W1_AIFSN, entry->queue->aifs); | 
|  | rt2x00_set_field32(&word, TXD_W1_CWMIN, entry->queue->cw_min); | 
|  | rt2x00_set_field32(&word, TXD_W1_CWMAX, entry->queue->cw_max); | 
|  | rt2x00_set_field32(&word, TXD_W1_IV_OFFSET, txdesc->iv_offset); | 
|  | rt2x00_set_field32(&word, TXD_W1_HW_SEQUENCE, | 
|  | test_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags)); | 
|  | rt2x00_desc_write(txd, 1, word); | 
|  |  | 
|  | rt2x00_desc_read(txd, 2, &word); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_SIGNAL, txdesc->u.plcp.signal); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_SERVICE, txdesc->u.plcp.service); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_LOW, | 
|  | txdesc->u.plcp.length_low); | 
|  | rt2x00_set_field32(&word, TXD_W2_PLCP_LENGTH_HIGH, | 
|  | txdesc->u.plcp.length_high); | 
|  | rt2x00_desc_write(txd, 2, word); | 
|  |  | 
|  | if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc->flags)) { | 
|  | _rt2x00_desc_write(txd, 3, skbdesc->iv[0]); | 
|  | _rt2x00_desc_write(txd, 4, skbdesc->iv[1]); | 
|  | } | 
|  |  | 
|  | rt2x00_desc_read(txd, 5, &word); | 
|  | rt2x00_set_field32(&word, TXD_W5_TX_POWER, | 
|  | TXPOWER_TO_DEV(entry->queue->rt2x00dev->tx_power)); | 
|  | rt2x00_set_field32(&word, TXD_W5_WAITING_DMA_DONE_INT, 1); | 
|  | rt2x00_desc_write(txd, 5, word); | 
|  |  | 
|  | /* | 
|  | * Register descriptor details in skb frame descriptor. | 
|  | */ | 
|  | skbdesc->flags |= SKBDESC_DESC_IN_SKB; | 
|  | skbdesc->desc = txd; | 
|  | skbdesc->desc_len = TXD_DESC_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * TX data initialization | 
|  | */ | 
|  | static void rt73usb_write_beacon(struct queue_entry *entry, | 
|  | struct txentry_desc *txdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | unsigned int beacon_base; | 
|  | unsigned int padding_len; | 
|  | u32 orig_reg, reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | orig_reg = reg; | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Add space for the descriptor in front of the skb. | 
|  | */ | 
|  | skb_push(entry->skb, TXD_DESC_SIZE); | 
|  | memset(entry->skb->data, 0, TXD_DESC_SIZE); | 
|  |  | 
|  | /* | 
|  | * Write the TX descriptor for the beacon. | 
|  | */ | 
|  | rt73usb_write_tx_desc(entry, txdesc); | 
|  |  | 
|  | /* | 
|  | * Dump beacon to userspace through debugfs. | 
|  | */ | 
|  | rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb); | 
|  |  | 
|  | /* | 
|  | * Write entire beacon with descriptor and padding to register. | 
|  | */ | 
|  | padding_len = roundup(entry->skb->len, 4) - entry->skb->len; | 
|  | if (padding_len && skb_pad(entry->skb, padding_len)) { | 
|  | ERROR(rt2x00dev, "Failure padding beacon, aborting\n"); | 
|  | /* skb freed by skb_pad() on failure */ | 
|  | entry->skb = NULL; | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, orig_reg); | 
|  | return; | 
|  | } | 
|  |  | 
|  | beacon_base = HW_BEACON_OFFSET(entry->entry_idx); | 
|  | rt2x00usb_register_multiwrite(rt2x00dev, beacon_base, entry->skb->data, | 
|  | entry->skb->len + padding_len); | 
|  |  | 
|  | /* | 
|  | * Enable beaconing again. | 
|  | * | 
|  | * For Wi-Fi faily generated beacons between participating stations. | 
|  | * Set TBTT phase adaptive adjustment step to 8us (default 16us) | 
|  | */ | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR10, 0x00001008); | 
|  |  | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Clean up the beacon skb. | 
|  | */ | 
|  | dev_kfree_skb(entry->skb); | 
|  | entry->skb = NULL; | 
|  | } | 
|  |  | 
|  | static void rt73usb_clear_beacon(struct queue_entry *entry) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | unsigned int beacon_base; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Disable beaconing while we are reloading the beacon data, | 
|  | * otherwise we might be sending out invalid data. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR9, ®); | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  |  | 
|  | /* | 
|  | * Clear beacon. | 
|  | */ | 
|  | beacon_base = HW_BEACON_OFFSET(entry->entry_idx); | 
|  | rt2x00usb_register_write(rt2x00dev, beacon_base, 0); | 
|  |  | 
|  | /* | 
|  | * Enable beaconing again. | 
|  | */ | 
|  | rt2x00_set_field32(®, TXRX_CSR9_BEACON_GEN, 1); | 
|  | rt2x00usb_register_write(rt2x00dev, TXRX_CSR9, reg); | 
|  | } | 
|  |  | 
|  | static int rt73usb_get_tx_data_len(struct queue_entry *entry) | 
|  | { | 
|  | int length; | 
|  |  | 
|  | /* | 
|  | * The length _must_ be a multiple of 4, | 
|  | * but it must _not_ be a multiple of the USB packet size. | 
|  | */ | 
|  | length = roundup(entry->skb->len, 4); | 
|  | length += (4 * !(length % entry->queue->usb_maxpacket)); | 
|  |  | 
|  | return length; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RX control handlers | 
|  | */ | 
|  | static int rt73usb_agc_to_rssi(struct rt2x00_dev *rt2x00dev, int rxd_w1) | 
|  | { | 
|  | u8 offset = rt2x00dev->lna_gain; | 
|  | u8 lna; | 
|  |  | 
|  | lna = rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_LNA); | 
|  | switch (lna) { | 
|  | case 3: | 
|  | offset += 90; | 
|  | break; | 
|  | case 2: | 
|  | offset += 74; | 
|  | break; | 
|  | case 1: | 
|  | offset += 64; | 
|  | break; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (rt2x00dev->curr_band == IEEE80211_BAND_5GHZ) { | 
|  | if (test_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags)) { | 
|  | if (lna == 3 || lna == 2) | 
|  | offset += 10; | 
|  | } else { | 
|  | if (lna == 3) | 
|  | offset += 6; | 
|  | else if (lna == 2) | 
|  | offset += 8; | 
|  | } | 
|  | } | 
|  |  | 
|  | return rt2x00_get_field32(rxd_w1, RXD_W1_RSSI_AGC) * 2 - offset; | 
|  | } | 
|  |  | 
|  | static void rt73usb_fill_rxdone(struct queue_entry *entry, | 
|  | struct rxdone_entry_desc *rxdesc) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev; | 
|  | struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb); | 
|  | __le32 *rxd = (__le32 *)entry->skb->data; | 
|  | u32 word0; | 
|  | u32 word1; | 
|  |  | 
|  | /* | 
|  | * Copy descriptor to the skbdesc->desc buffer, making it safe from moving of | 
|  | * frame data in rt2x00usb. | 
|  | */ | 
|  | memcpy(skbdesc->desc, rxd, skbdesc->desc_len); | 
|  | rxd = (__le32 *)skbdesc->desc; | 
|  |  | 
|  | /* | 
|  | * It is now safe to read the descriptor on all architectures. | 
|  | */ | 
|  | rt2x00_desc_read(rxd, 0, &word0); | 
|  | rt2x00_desc_read(rxd, 1, &word1); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR)) | 
|  | rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC; | 
|  |  | 
|  | rxdesc->cipher = rt2x00_get_field32(word0, RXD_W0_CIPHER_ALG); | 
|  | rxdesc->cipher_status = rt2x00_get_field32(word0, RXD_W0_CIPHER_ERROR); | 
|  |  | 
|  | if (rxdesc->cipher != CIPHER_NONE) { | 
|  | _rt2x00_desc_read(rxd, 2, &rxdesc->iv[0]); | 
|  | _rt2x00_desc_read(rxd, 3, &rxdesc->iv[1]); | 
|  | rxdesc->dev_flags |= RXDONE_CRYPTO_IV; | 
|  |  | 
|  | _rt2x00_desc_read(rxd, 4, &rxdesc->icv); | 
|  | rxdesc->dev_flags |= RXDONE_CRYPTO_ICV; | 
|  |  | 
|  | /* | 
|  | * Hardware has stripped IV/EIV data from 802.11 frame during | 
|  | * decryption. It has provided the data separately but rt2x00lib | 
|  | * should decide if it should be reinserted. | 
|  | */ | 
|  | rxdesc->flags |= RX_FLAG_IV_STRIPPED; | 
|  |  | 
|  | /* | 
|  | * The hardware has already checked the Michael Mic and has | 
|  | * stripped it from the frame. Signal this to mac80211. | 
|  | */ | 
|  | rxdesc->flags |= RX_FLAG_MMIC_STRIPPED; | 
|  |  | 
|  | if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS) | 
|  | rxdesc->flags |= RX_FLAG_DECRYPTED; | 
|  | else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC) | 
|  | rxdesc->flags |= RX_FLAG_MMIC_ERROR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Obtain the status about this packet. | 
|  | * When frame was received with an OFDM bitrate, | 
|  | * the signal is the PLCP value. If it was received with | 
|  | * a CCK bitrate the signal is the rate in 100kbit/s. | 
|  | */ | 
|  | rxdesc->signal = rt2x00_get_field32(word1, RXD_W1_SIGNAL); | 
|  | rxdesc->rssi = rt73usb_agc_to_rssi(rt2x00dev, word1); | 
|  | rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT); | 
|  |  | 
|  | if (rt2x00_get_field32(word0, RXD_W0_OFDM)) | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP; | 
|  | else | 
|  | rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE; | 
|  | if (rt2x00_get_field32(word0, RXD_W0_MY_BSS)) | 
|  | rxdesc->dev_flags |= RXDONE_MY_BSS; | 
|  |  | 
|  | /* | 
|  | * Set skb pointers, and update frame information. | 
|  | */ | 
|  | skb_pull(entry->skb, entry->queue->desc_size); | 
|  | skb_trim(entry->skb, rxdesc->size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Device probe functions. | 
|  | */ | 
|  | static int rt73usb_validate_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u16 word; | 
|  | u8 *mac; | 
|  | s8 value; | 
|  |  | 
|  | rt2x00usb_eeprom_read(rt2x00dev, rt2x00dev->eeprom, EEPROM_SIZE); | 
|  |  | 
|  | /* | 
|  | * Start validation of the data that has been read. | 
|  | */ | 
|  | mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0); | 
|  | if (!is_valid_ether_addr(mac)) { | 
|  | random_ether_addr(mac); | 
|  | EEPROM(rt2x00dev, "MAC: %pM\n", mac); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT, | 
|  | ANTENNA_B); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT, | 
|  | ANTENNA_B); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_FRAME_TYPE, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF5226); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word); | 
|  | EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_NIC_EXTERNAL_LNA, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word); | 
|  | EEPROM(rt2x00dev, "NIC: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_G, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_RDY_A, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_ACT, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_0, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_1, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_2, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_3, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_POLARITY_GPIO_4, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_LED_LED_MODE, | 
|  | LED_MODE_DEFAULT); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_LED, word); | 
|  | EEPROM(rt2x00dev, "Led: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_OFFSET, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_FREQ_SEQ, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_FREQ, word); | 
|  | EEPROM(rt2x00dev, "Freq: 0x%04x\n", word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_BG, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); | 
|  | EEPROM(rt2x00dev, "RSSI OFFSET BG: 0x%04x\n", word); | 
|  | } else { | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_1); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_1, 0); | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_BG_2); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_BG_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_BG, word); | 
|  | } | 
|  |  | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_RSSI_OFFSET_A, &word); | 
|  | if (word == 0xffff) { | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); | 
|  | EEPROM(rt2x00dev, "RSSI OFFSET A: 0x%04x\n", word); | 
|  | } else { | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_1); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_1, 0); | 
|  | value = rt2x00_get_field16(word, EEPROM_RSSI_OFFSET_A_2); | 
|  | if (value < -10 || value > 10) | 
|  | rt2x00_set_field16(&word, EEPROM_RSSI_OFFSET_A_2, 0); | 
|  | rt2x00_eeprom_write(rt2x00dev, EEPROM_RSSI_OFFSET_A, word); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt73usb_init_eeprom(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | u32 reg; | 
|  | u16 value; | 
|  | u16 eeprom; | 
|  |  | 
|  | /* | 
|  | * Read EEPROM word for configuration. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom); | 
|  |  | 
|  | /* | 
|  | * Identify RF chipset. | 
|  | */ | 
|  | value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE); | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR0, ®); | 
|  | rt2x00_set_chip(rt2x00dev, rt2x00_get_field32(reg, MAC_CSR0_CHIPSET), | 
|  | value, rt2x00_get_field32(reg, MAC_CSR0_REVISION)); | 
|  |  | 
|  | if (!rt2x00_rt(rt2x00dev, RT2573) || (rt2x00_rev(rt2x00dev) == 0)) { | 
|  | ERROR(rt2x00dev, "Invalid RT chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | if (!rt2x00_rf(rt2x00dev, RF5226) && | 
|  | !rt2x00_rf(rt2x00dev, RF2528) && | 
|  | !rt2x00_rf(rt2x00dev, RF5225) && | 
|  | !rt2x00_rf(rt2x00dev, RF2527)) { | 
|  | ERROR(rt2x00dev, "Invalid RF chipset detected.\n"); | 
|  | return -ENODEV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Identify default antenna configuration. | 
|  | */ | 
|  | rt2x00dev->default_ant.tx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT); | 
|  | rt2x00dev->default_ant.rx = | 
|  | rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT); | 
|  |  | 
|  | /* | 
|  | * Read the Frame type. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_FRAME_TYPE)) | 
|  | __set_bit(CAPABILITY_FRAME_TYPE, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Detect if this device has an hardware controlled radio. | 
|  | */ | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) | 
|  | __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Read frequency offset. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_FREQ, &eeprom); | 
|  | rt2x00dev->freq_offset = rt2x00_get_field16(eeprom, EEPROM_FREQ_OFFSET); | 
|  |  | 
|  | /* | 
|  | * Read external LNA informations. | 
|  | */ | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom); | 
|  |  | 
|  | if (rt2x00_get_field16(eeprom, EEPROM_NIC_EXTERNAL_LNA)) { | 
|  | __set_bit(CAPABILITY_EXTERNAL_LNA_A, &rt2x00dev->cap_flags); | 
|  | __set_bit(CAPABILITY_EXTERNAL_LNA_BG, &rt2x00dev->cap_flags); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Store led settings, for correct led behaviour. | 
|  | */ | 
|  | #ifdef CONFIG_RT2X00_LIB_LEDS | 
|  | rt2x00_eeprom_read(rt2x00dev, EEPROM_LED, &eeprom); | 
|  |  | 
|  | rt73usb_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO); | 
|  | rt73usb_init_led(rt2x00dev, &rt2x00dev->led_assoc, LED_TYPE_ASSOC); | 
|  | if (value == LED_MODE_SIGNAL_STRENGTH) | 
|  | rt73usb_init_led(rt2x00dev, &rt2x00dev->led_qual, | 
|  | LED_TYPE_QUALITY); | 
|  |  | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_LED_MODE, value); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_0, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_0)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_1, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_1)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_2, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_2)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_3, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_3)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_GPIO_4, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_GPIO_4)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_ACT, | 
|  | rt2x00_get_field16(eeprom, EEPROM_LED_POLARITY_ACT)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_BG, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_RDY_G)); | 
|  | rt2x00_set_field16(&rt2x00dev->led_mcu_reg, MCU_LEDCS_POLARITY_READY_A, | 
|  | rt2x00_get_field16(eeprom, | 
|  | EEPROM_LED_POLARITY_RDY_A)); | 
|  | #endif /* CONFIG_RT2X00_LIB_LEDS */ | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RF value list for RF2528 | 
|  | * Supports: 2.4 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_bg_2528[] = { | 
|  | { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, | 
|  | { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, | 
|  | { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, | 
|  | { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, | 
|  | { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, | 
|  | { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, | 
|  | { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, | 
|  | { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, | 
|  | { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, | 
|  | { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, | 
|  | { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, | 
|  | { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, | 
|  | { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, | 
|  | { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF5226 | 
|  | * Supports: 2.4 GHz & 5.2 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_5226[] = { | 
|  | { 1,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea0b }, | 
|  | { 2,  0x00002c0c, 0x00000786, 0x00068255, 0x000fea1f }, | 
|  | { 3,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea0b }, | 
|  | { 4,  0x00002c0c, 0x0000078a, 0x00068255, 0x000fea1f }, | 
|  | { 5,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea0b }, | 
|  | { 6,  0x00002c0c, 0x0000078e, 0x00068255, 0x000fea1f }, | 
|  | { 7,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea0b }, | 
|  | { 8,  0x00002c0c, 0x00000792, 0x00068255, 0x000fea1f }, | 
|  | { 9,  0x00002c0c, 0x00000796, 0x00068255, 0x000fea0b }, | 
|  | { 10, 0x00002c0c, 0x00000796, 0x00068255, 0x000fea1f }, | 
|  | { 11, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea0b }, | 
|  | { 12, 0x00002c0c, 0x0000079a, 0x00068255, 0x000fea1f }, | 
|  | { 13, 0x00002c0c, 0x0000079e, 0x00068255, 0x000fea0b }, | 
|  | { 14, 0x00002c0c, 0x000007a2, 0x00068255, 0x000fea13 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x00002c0c, 0x0000099a, 0x00098255, 0x000fea23 }, | 
|  | { 40, 0x00002c0c, 0x000009a2, 0x00098255, 0x000fea03 }, | 
|  | { 44, 0x00002c0c, 0x000009a6, 0x00098255, 0x000fea0b }, | 
|  | { 48, 0x00002c0c, 0x000009aa, 0x00098255, 0x000fea13 }, | 
|  | { 52, 0x00002c0c, 0x000009ae, 0x00098255, 0x000fea1b }, | 
|  | { 56, 0x00002c0c, 0x000009b2, 0x00098255, 0x000fea23 }, | 
|  | { 60, 0x00002c0c, 0x000009ba, 0x00098255, 0x000fea03 }, | 
|  | { 64, 0x00002c0c, 0x000009be, 0x00098255, 0x000fea0b }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x00002c0c, 0x00000a2a, 0x000b8255, 0x000fea03 }, | 
|  | { 104, 0x00002c0c, 0x00000a2e, 0x000b8255, 0x000fea0b }, | 
|  | { 108, 0x00002c0c, 0x00000a32, 0x000b8255, 0x000fea13 }, | 
|  | { 112, 0x00002c0c, 0x00000a36, 0x000b8255, 0x000fea1b }, | 
|  | { 116, 0x00002c0c, 0x00000a3a, 0x000b8255, 0x000fea23 }, | 
|  | { 120, 0x00002c0c, 0x00000a82, 0x000b8255, 0x000fea03 }, | 
|  | { 124, 0x00002c0c, 0x00000a86, 0x000b8255, 0x000fea0b }, | 
|  | { 128, 0x00002c0c, 0x00000a8a, 0x000b8255, 0x000fea13 }, | 
|  | { 132, 0x00002c0c, 0x00000a8e, 0x000b8255, 0x000fea1b }, | 
|  | { 136, 0x00002c0c, 0x00000a92, 0x000b8255, 0x000fea23 }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 140, 0x00002c0c, 0x00000a9a, 0x000b8255, 0x000fea03 }, | 
|  | { 149, 0x00002c0c, 0x00000aa2, 0x000b8255, 0x000fea1f }, | 
|  | { 153, 0x00002c0c, 0x00000aa6, 0x000b8255, 0x000fea27 }, | 
|  | { 157, 0x00002c0c, 0x00000aae, 0x000b8255, 0x000fea07 }, | 
|  | { 161, 0x00002c0c, 0x00000ab2, 0x000b8255, 0x000fea0f }, | 
|  | { 165, 0x00002c0c, 0x00000ab6, 0x000b8255, 0x000fea17 }, | 
|  |  | 
|  | /* MMAC(Japan)J52 ch 34,38,42,46 */ | 
|  | { 34, 0x00002c0c, 0x0008099a, 0x000da255, 0x000d3a0b }, | 
|  | { 38, 0x00002c0c, 0x0008099e, 0x000da255, 0x000d3a13 }, | 
|  | { 42, 0x00002c0c, 0x000809a2, 0x000da255, 0x000d3a1b }, | 
|  | { 46, 0x00002c0c, 0x000809a6, 0x000da255, 0x000d3a23 }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * RF value list for RF5225 & RF2527 | 
|  | * Supports: 2.4 GHz & 5.2 GHz | 
|  | */ | 
|  | static const struct rf_channel rf_vals_5225_2527[] = { | 
|  | { 1,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa0b }, | 
|  | { 2,  0x00002ccc, 0x00004786, 0x00068455, 0x000ffa1f }, | 
|  | { 3,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa0b }, | 
|  | { 4,  0x00002ccc, 0x0000478a, 0x00068455, 0x000ffa1f }, | 
|  | { 5,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa0b }, | 
|  | { 6,  0x00002ccc, 0x0000478e, 0x00068455, 0x000ffa1f }, | 
|  | { 7,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa0b }, | 
|  | { 8,  0x00002ccc, 0x00004792, 0x00068455, 0x000ffa1f }, | 
|  | { 9,  0x00002ccc, 0x00004796, 0x00068455, 0x000ffa0b }, | 
|  | { 10, 0x00002ccc, 0x00004796, 0x00068455, 0x000ffa1f }, | 
|  | { 11, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa0b }, | 
|  | { 12, 0x00002ccc, 0x0000479a, 0x00068455, 0x000ffa1f }, | 
|  | { 13, 0x00002ccc, 0x0000479e, 0x00068455, 0x000ffa0b }, | 
|  | { 14, 0x00002ccc, 0x000047a2, 0x00068455, 0x000ffa13 }, | 
|  |  | 
|  | /* 802.11 UNI / HyperLan 2 */ | 
|  | { 36, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa23 }, | 
|  | { 40, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa03 }, | 
|  | { 44, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa0b }, | 
|  | { 48, 0x00002ccc, 0x000049aa, 0x0009be55, 0x000ffa13 }, | 
|  | { 52, 0x00002ccc, 0x000049ae, 0x0009ae55, 0x000ffa1b }, | 
|  | { 56, 0x00002ccc, 0x000049b2, 0x0009ae55, 0x000ffa23 }, | 
|  | { 60, 0x00002ccc, 0x000049ba, 0x0009ae55, 0x000ffa03 }, | 
|  | { 64, 0x00002ccc, 0x000049be, 0x0009ae55, 0x000ffa0b }, | 
|  |  | 
|  | /* 802.11 HyperLan 2 */ | 
|  | { 100, 0x00002ccc, 0x00004a2a, 0x000bae55, 0x000ffa03 }, | 
|  | { 104, 0x00002ccc, 0x00004a2e, 0x000bae55, 0x000ffa0b }, | 
|  | { 108, 0x00002ccc, 0x00004a32, 0x000bae55, 0x000ffa13 }, | 
|  | { 112, 0x00002ccc, 0x00004a36, 0x000bae55, 0x000ffa1b }, | 
|  | { 116, 0x00002ccc, 0x00004a3a, 0x000bbe55, 0x000ffa23 }, | 
|  | { 120, 0x00002ccc, 0x00004a82, 0x000bbe55, 0x000ffa03 }, | 
|  | { 124, 0x00002ccc, 0x00004a86, 0x000bbe55, 0x000ffa0b }, | 
|  | { 128, 0x00002ccc, 0x00004a8a, 0x000bbe55, 0x000ffa13 }, | 
|  | { 132, 0x00002ccc, 0x00004a8e, 0x000bbe55, 0x000ffa1b }, | 
|  | { 136, 0x00002ccc, 0x00004a92, 0x000bbe55, 0x000ffa23 }, | 
|  |  | 
|  | /* 802.11 UNII */ | 
|  | { 140, 0x00002ccc, 0x00004a9a, 0x000bbe55, 0x000ffa03 }, | 
|  | { 149, 0x00002ccc, 0x00004aa2, 0x000bbe55, 0x000ffa1f }, | 
|  | { 153, 0x00002ccc, 0x00004aa6, 0x000bbe55, 0x000ffa27 }, | 
|  | { 157, 0x00002ccc, 0x00004aae, 0x000bbe55, 0x000ffa07 }, | 
|  | { 161, 0x00002ccc, 0x00004ab2, 0x000bbe55, 0x000ffa0f }, | 
|  | { 165, 0x00002ccc, 0x00004ab6, 0x000bbe55, 0x000ffa17 }, | 
|  |  | 
|  | /* MMAC(Japan)J52 ch 34,38,42,46 */ | 
|  | { 34, 0x00002ccc, 0x0000499a, 0x0009be55, 0x000ffa0b }, | 
|  | { 38, 0x00002ccc, 0x0000499e, 0x0009be55, 0x000ffa13 }, | 
|  | { 42, 0x00002ccc, 0x000049a2, 0x0009be55, 0x000ffa1b }, | 
|  | { 46, 0x00002ccc, 0x000049a6, 0x0009be55, 0x000ffa23 }, | 
|  | }; | 
|  |  | 
|  |  | 
|  | static int rt73usb_probe_hw_mode(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | struct hw_mode_spec *spec = &rt2x00dev->spec; | 
|  | struct channel_info *info; | 
|  | char *tx_power; | 
|  | unsigned int i; | 
|  |  | 
|  | /* | 
|  | * Initialize all hw fields. | 
|  | * | 
|  | * Don't set IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING unless we are | 
|  | * capable of sending the buffered frames out after the DTIM | 
|  | * transmission using rt2x00lib_beacondone. This will send out | 
|  | * multicast and broadcast traffic immediately instead of buffering it | 
|  | * infinitly and thus dropping it after some time. | 
|  | */ | 
|  | rt2x00dev->hw->flags = | 
|  | IEEE80211_HW_SIGNAL_DBM | | 
|  | IEEE80211_HW_SUPPORTS_PS | | 
|  | IEEE80211_HW_PS_NULLFUNC_STACK; | 
|  |  | 
|  | SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev); | 
|  | SET_IEEE80211_PERM_ADDR(rt2x00dev->hw, | 
|  | rt2x00_eeprom_addr(rt2x00dev, | 
|  | EEPROM_MAC_ADDR_0)); | 
|  |  | 
|  | /* | 
|  | * Initialize hw_mode information. | 
|  | */ | 
|  | spec->supported_bands = SUPPORT_BAND_2GHZ; | 
|  | spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM; | 
|  |  | 
|  | if (rt2x00_rf(rt2x00dev, RF2528)) { | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_bg_2528); | 
|  | spec->channels = rf_vals_bg_2528; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF5226)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_5226); | 
|  | spec->channels = rf_vals_5226; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF2527)) { | 
|  | spec->num_channels = 14; | 
|  | spec->channels = rf_vals_5225_2527; | 
|  | } else if (rt2x00_rf(rt2x00dev, RF5225)) { | 
|  | spec->supported_bands |= SUPPORT_BAND_5GHZ; | 
|  | spec->num_channels = ARRAY_SIZE(rf_vals_5225_2527); | 
|  | spec->channels = rf_vals_5225_2527; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create channel information array | 
|  | */ | 
|  | info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL); | 
|  | if (!info) | 
|  | return -ENOMEM; | 
|  |  | 
|  | spec->channels_info = info; | 
|  |  | 
|  | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_G_START); | 
|  | for (i = 0; i < 14; i++) { | 
|  | info[i].max_power = MAX_TXPOWER; | 
|  | info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); | 
|  | } | 
|  |  | 
|  | if (spec->num_channels > 14) { | 
|  | tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_A_START); | 
|  | for (i = 14; i < spec->num_channels; i++) { | 
|  | info[i].max_power = MAX_TXPOWER; | 
|  | info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int rt73usb_probe_hw(struct rt2x00_dev *rt2x00dev) | 
|  | { | 
|  | int retval; | 
|  | u32 reg; | 
|  |  | 
|  | /* | 
|  | * Allocate eeprom data. | 
|  | */ | 
|  | retval = rt73usb_validate_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = rt73usb_init_eeprom(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * Enable rfkill polling by setting GPIO direction of the | 
|  | * rfkill switch GPIO pin correctly. | 
|  | */ | 
|  | rt2x00usb_register_read(rt2x00dev, MAC_CSR13, ®); | 
|  | rt2x00_set_field32(®, MAC_CSR13_BIT15, 0); | 
|  | rt2x00usb_register_write(rt2x00dev, MAC_CSR13, reg); | 
|  |  | 
|  | /* | 
|  | * Initialize hw specifications. | 
|  | */ | 
|  | retval = rt73usb_probe_hw_mode(rt2x00dev); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * This device has multiple filters for control frames, | 
|  | * but has no a separate filter for PS Poll frames. | 
|  | */ | 
|  | __set_bit(CAPABILITY_CONTROL_FILTERS, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * This device requires firmware. | 
|  | */ | 
|  | __set_bit(REQUIRE_FIRMWARE, &rt2x00dev->cap_flags); | 
|  | if (!modparam_nohwcrypt) | 
|  | __set_bit(CAPABILITY_HW_CRYPTO, &rt2x00dev->cap_flags); | 
|  | __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags); | 
|  | __set_bit(REQUIRE_PS_AUTOWAKE, &rt2x00dev->cap_flags); | 
|  |  | 
|  | /* | 
|  | * Set the rssi offset. | 
|  | */ | 
|  | rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IEEE80211 stack callback functions. | 
|  | */ | 
|  | static int rt73usb_conf_tx(struct ieee80211_hw *hw, | 
|  | struct ieee80211_vif *vif, u16 queue_idx, | 
|  | const struct ieee80211_tx_queue_params *params) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | struct data_queue *queue; | 
|  | struct rt2x00_field32 field; | 
|  | int retval; | 
|  | u32 reg; | 
|  | u32 offset; | 
|  |  | 
|  | /* | 
|  | * First pass the configuration through rt2x00lib, that will | 
|  | * update the queue settings and validate the input. After that | 
|  | * we are free to update the registers based on the value | 
|  | * in the queue parameter. | 
|  | */ | 
|  | retval = rt2x00mac_conf_tx(hw, vif, queue_idx, params); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | /* | 
|  | * We only need to perform additional register initialization | 
|  | * for WMM queues/ | 
|  | */ | 
|  | if (queue_idx >= 4) | 
|  | return 0; | 
|  |  | 
|  | queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx); | 
|  |  | 
|  | /* Update WMM TXOP register */ | 
|  | offset = AC_TXOP_CSR0 + (sizeof(u32) * (!!(queue_idx & 2))); | 
|  | field.bit_offset = (queue_idx & 1) * 16; | 
|  | field.bit_mask = 0xffff << field.bit_offset; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, offset, ®); | 
|  | rt2x00_set_field32(®, field, queue->txop); | 
|  | rt2x00usb_register_write(rt2x00dev, offset, reg); | 
|  |  | 
|  | /* Update WMM registers */ | 
|  | field.bit_offset = queue_idx * 4; | 
|  | field.bit_mask = 0xf << field.bit_offset; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, AIFSN_CSR, ®); | 
|  | rt2x00_set_field32(®, field, queue->aifs); | 
|  | rt2x00usb_register_write(rt2x00dev, AIFSN_CSR, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, CWMIN_CSR, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_min); | 
|  | rt2x00usb_register_write(rt2x00dev, CWMIN_CSR, reg); | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, CWMAX_CSR, ®); | 
|  | rt2x00_set_field32(®, field, queue->cw_max); | 
|  | rt2x00usb_register_write(rt2x00dev, CWMAX_CSR, reg); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static u64 rt73usb_get_tsf(struct ieee80211_hw *hw, struct ieee80211_vif *vif) | 
|  | { | 
|  | struct rt2x00_dev *rt2x00dev = hw->priv; | 
|  | u64 tsf; | 
|  | u32 reg; | 
|  |  | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR13, ®); | 
|  | tsf = (u64) rt2x00_get_field32(reg, TXRX_CSR13_HIGH_TSFTIMER) << 32; | 
|  | rt2x00usb_register_read(rt2x00dev, TXRX_CSR12, ®); | 
|  | tsf |= rt2x00_get_field32(reg, TXRX_CSR12_LOW_TSFTIMER); | 
|  |  | 
|  | return tsf; | 
|  | } | 
|  |  | 
|  | static const struct ieee80211_ops rt73usb_mac80211_ops = { | 
|  | .tx			= rt2x00mac_tx, | 
|  | .start			= rt2x00mac_start, | 
|  | .stop			= rt2x00mac_stop, | 
|  | .add_interface		= rt2x00mac_add_interface, | 
|  | .remove_interface	= rt2x00mac_remove_interface, | 
|  | .config			= rt2x00mac_config, | 
|  | .configure_filter	= rt2x00mac_configure_filter, | 
|  | .set_tim		= rt2x00mac_set_tim, | 
|  | .set_key		= rt2x00mac_set_key, | 
|  | .sw_scan_start		= rt2x00mac_sw_scan_start, | 
|  | .sw_scan_complete	= rt2x00mac_sw_scan_complete, | 
|  | .get_stats		= rt2x00mac_get_stats, | 
|  | .bss_info_changed	= rt2x00mac_bss_info_changed, | 
|  | .conf_tx		= rt73usb_conf_tx, | 
|  | .get_tsf		= rt73usb_get_tsf, | 
|  | .rfkill_poll		= rt2x00mac_rfkill_poll, | 
|  | .flush			= rt2x00mac_flush, | 
|  | .set_antenna		= rt2x00mac_set_antenna, | 
|  | .get_antenna		= rt2x00mac_get_antenna, | 
|  | .get_ringparam		= rt2x00mac_get_ringparam, | 
|  | .tx_frames_pending	= rt2x00mac_tx_frames_pending, | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00lib_ops rt73usb_rt2x00_ops = { | 
|  | .probe_hw		= rt73usb_probe_hw, | 
|  | .get_firmware_name	= rt73usb_get_firmware_name, | 
|  | .check_firmware		= rt73usb_check_firmware, | 
|  | .load_firmware		= rt73usb_load_firmware, | 
|  | .initialize		= rt2x00usb_initialize, | 
|  | .uninitialize		= rt2x00usb_uninitialize, | 
|  | .clear_entry		= rt2x00usb_clear_entry, | 
|  | .set_device_state	= rt73usb_set_device_state, | 
|  | .rfkill_poll		= rt73usb_rfkill_poll, | 
|  | .link_stats		= rt73usb_link_stats, | 
|  | .reset_tuner		= rt73usb_reset_tuner, | 
|  | .link_tuner		= rt73usb_link_tuner, | 
|  | .watchdog		= rt2x00usb_watchdog, | 
|  | .start_queue		= rt73usb_start_queue, | 
|  | .kick_queue		= rt2x00usb_kick_queue, | 
|  | .stop_queue		= rt73usb_stop_queue, | 
|  | .flush_queue		= rt2x00usb_flush_queue, | 
|  | .write_tx_desc		= rt73usb_write_tx_desc, | 
|  | .write_beacon		= rt73usb_write_beacon, | 
|  | .clear_beacon		= rt73usb_clear_beacon, | 
|  | .get_tx_data_len	= rt73usb_get_tx_data_len, | 
|  | .fill_rxdone		= rt73usb_fill_rxdone, | 
|  | .config_shared_key	= rt73usb_config_shared_key, | 
|  | .config_pairwise_key	= rt73usb_config_pairwise_key, | 
|  | .config_filter		= rt73usb_config_filter, | 
|  | .config_intf		= rt73usb_config_intf, | 
|  | .config_erp		= rt73usb_config_erp, | 
|  | .config_ant		= rt73usb_config_ant, | 
|  | .config			= rt73usb_config, | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt73usb_queue_rx = { | 
|  | .entry_num		= 32, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= RXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt73usb_queue_tx = { | 
|  | .entry_num		= 32, | 
|  | .data_size		= DATA_FRAME_SIZE, | 
|  | .desc_size		= TXD_DESC_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb), | 
|  | }; | 
|  |  | 
|  | static const struct data_queue_desc rt73usb_queue_bcn = { | 
|  | .entry_num		= 4, | 
|  | .data_size		= MGMT_FRAME_SIZE, | 
|  | .desc_size		= TXINFO_SIZE, | 
|  | .priv_size		= sizeof(struct queue_entry_priv_usb), | 
|  | }; | 
|  |  | 
|  | static const struct rt2x00_ops rt73usb_ops = { | 
|  | .name			= KBUILD_MODNAME, | 
|  | .max_sta_intf		= 1, | 
|  | .max_ap_intf		= 4, | 
|  | .eeprom_size		= EEPROM_SIZE, | 
|  | .rf_size		= RF_SIZE, | 
|  | .tx_queues		= NUM_TX_QUEUES, | 
|  | .extra_tx_headroom	= TXD_DESC_SIZE, | 
|  | .rx			= &rt73usb_queue_rx, | 
|  | .tx			= &rt73usb_queue_tx, | 
|  | .bcn			= &rt73usb_queue_bcn, | 
|  | .lib			= &rt73usb_rt2x00_ops, | 
|  | .hw			= &rt73usb_mac80211_ops, | 
|  | #ifdef CONFIG_RT2X00_LIB_DEBUGFS | 
|  | .debugfs		= &rt73usb_rt2x00debug, | 
|  | #endif /* CONFIG_RT2X00_LIB_DEBUGFS */ | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * rt73usb module information. | 
|  | */ | 
|  | static struct usb_device_id rt73usb_device_table[] = { | 
|  | /* AboCom */ | 
|  | { USB_DEVICE(0x07b8, 0xb21b) }, | 
|  | { USB_DEVICE(0x07b8, 0xb21c) }, | 
|  | { USB_DEVICE(0x07b8, 0xb21d) }, | 
|  | { USB_DEVICE(0x07b8, 0xb21e) }, | 
|  | { USB_DEVICE(0x07b8, 0xb21f) }, | 
|  | /* AL */ | 
|  | { USB_DEVICE(0x14b2, 0x3c10) }, | 
|  | /* Amigo */ | 
|  | { USB_DEVICE(0x148f, 0x9021) }, | 
|  | { USB_DEVICE(0x0eb0, 0x9021) }, | 
|  | /* AMIT  */ | 
|  | { USB_DEVICE(0x18c5, 0x0002) }, | 
|  | /* Askey */ | 
|  | { USB_DEVICE(0x1690, 0x0722) }, | 
|  | /* ASUS */ | 
|  | { USB_DEVICE(0x0b05, 0x1723) }, | 
|  | { USB_DEVICE(0x0b05, 0x1724) }, | 
|  | /* Belkin */ | 
|  | { USB_DEVICE(0x050d, 0x705a) }, | 
|  | { USB_DEVICE(0x050d, 0x905b) }, | 
|  | { USB_DEVICE(0x050d, 0x905c) }, | 
|  | /* Billionton */ | 
|  | { USB_DEVICE(0x1631, 0xc019) }, | 
|  | { USB_DEVICE(0x08dd, 0x0120) }, | 
|  | /* Buffalo */ | 
|  | { USB_DEVICE(0x0411, 0x00d8) }, | 
|  | { USB_DEVICE(0x0411, 0x00d9) }, | 
|  | { USB_DEVICE(0x0411, 0x00e6) }, | 
|  | { USB_DEVICE(0x0411, 0x00f4) }, | 
|  | { USB_DEVICE(0x0411, 0x0116) }, | 
|  | { USB_DEVICE(0x0411, 0x0119) }, | 
|  | { USB_DEVICE(0x0411, 0x0137) }, | 
|  | /* CEIVA */ | 
|  | { USB_DEVICE(0x178d, 0x02be) }, | 
|  | /* CNet */ | 
|  | { USB_DEVICE(0x1371, 0x9022) }, | 
|  | { USB_DEVICE(0x1371, 0x9032) }, | 
|  | /* Conceptronic */ | 
|  | { USB_DEVICE(0x14b2, 0x3c22) }, | 
|  | /* Corega */ | 
|  | { USB_DEVICE(0x07aa, 0x002e) }, | 
|  | /* D-Link */ | 
|  | { USB_DEVICE(0x07d1, 0x3c03) }, | 
|  | { USB_DEVICE(0x07d1, 0x3c04) }, | 
|  | { USB_DEVICE(0x07d1, 0x3c06) }, | 
|  | { USB_DEVICE(0x07d1, 0x3c07) }, | 
|  | /* Edimax */ | 
|  | { USB_DEVICE(0x7392, 0x7318) }, | 
|  | { USB_DEVICE(0x7392, 0x7618) }, | 
|  | /* EnGenius */ | 
|  | { USB_DEVICE(0x1740, 0x3701) }, | 
|  | /* Gemtek */ | 
|  | { USB_DEVICE(0x15a9, 0x0004) }, | 
|  | /* Gigabyte */ | 
|  | { USB_DEVICE(0x1044, 0x8008) }, | 
|  | { USB_DEVICE(0x1044, 0x800a) }, | 
|  | /* Huawei-3Com */ | 
|  | { USB_DEVICE(0x1472, 0x0009) }, | 
|  | /* Hercules */ | 
|  | { USB_DEVICE(0x06f8, 0xe002) }, | 
|  | { USB_DEVICE(0x06f8, 0xe010) }, | 
|  | { USB_DEVICE(0x06f8, 0xe020) }, | 
|  | /* Linksys */ | 
|  | { USB_DEVICE(0x13b1, 0x0020) }, | 
|  | { USB_DEVICE(0x13b1, 0x0023) }, | 
|  | { USB_DEVICE(0x13b1, 0x0028) }, | 
|  | /* MSI */ | 
|  | { USB_DEVICE(0x0db0, 0x4600) }, | 
|  | { USB_DEVICE(0x0db0, 0x6877) }, | 
|  | { USB_DEVICE(0x0db0, 0x6874) }, | 
|  | { USB_DEVICE(0x0db0, 0xa861) }, | 
|  | { USB_DEVICE(0x0db0, 0xa874) }, | 
|  | /* Ovislink */ | 
|  | { USB_DEVICE(0x1b75, 0x7318) }, | 
|  | /* Ralink */ | 
|  | { USB_DEVICE(0x04bb, 0x093d) }, | 
|  | { USB_DEVICE(0x148f, 0x2573) }, | 
|  | { USB_DEVICE(0x148f, 0x2671) }, | 
|  | { USB_DEVICE(0x0812, 0x3101) }, | 
|  | /* Qcom */ | 
|  | { USB_DEVICE(0x18e8, 0x6196) }, | 
|  | { USB_DEVICE(0x18e8, 0x6229) }, | 
|  | { USB_DEVICE(0x18e8, 0x6238) }, | 
|  | /* Samsung */ | 
|  | { USB_DEVICE(0x04e8, 0x4471) }, | 
|  | /* Senao */ | 
|  | { USB_DEVICE(0x1740, 0x7100) }, | 
|  | /* Sitecom */ | 
|  | { USB_DEVICE(0x0df6, 0x0024) }, | 
|  | { USB_DEVICE(0x0df6, 0x0027) }, | 
|  | { USB_DEVICE(0x0df6, 0x002f) }, | 
|  | { USB_DEVICE(0x0df6, 0x90ac) }, | 
|  | { USB_DEVICE(0x0df6, 0x9712) }, | 
|  | /* Surecom */ | 
|  | { USB_DEVICE(0x0769, 0x31f3) }, | 
|  | /* Tilgin */ | 
|  | { USB_DEVICE(0x6933, 0x5001) }, | 
|  | /* Philips */ | 
|  | { USB_DEVICE(0x0471, 0x200a) }, | 
|  | /* Planex */ | 
|  | { USB_DEVICE(0x2019, 0xab01) }, | 
|  | { USB_DEVICE(0x2019, 0xab50) }, | 
|  | /* WideTell */ | 
|  | { USB_DEVICE(0x7167, 0x3840) }, | 
|  | /* Zcom */ | 
|  | { USB_DEVICE(0x0cde, 0x001c) }, | 
|  | /* ZyXEL */ | 
|  | { USB_DEVICE(0x0586, 0x3415) }, | 
|  | { 0, } | 
|  | }; | 
|  |  | 
|  | MODULE_AUTHOR(DRV_PROJECT); | 
|  | MODULE_VERSION(DRV_VERSION); | 
|  | MODULE_DESCRIPTION("Ralink RT73 USB Wireless LAN driver."); | 
|  | MODULE_SUPPORTED_DEVICE("Ralink RT2571W & RT2671 USB chipset based cards"); | 
|  | MODULE_DEVICE_TABLE(usb, rt73usb_device_table); | 
|  | MODULE_FIRMWARE(FIRMWARE_RT2571); | 
|  | MODULE_LICENSE("GPL"); | 
|  |  | 
|  | static int rt73usb_probe(struct usb_interface *usb_intf, | 
|  | const struct usb_device_id *id) | 
|  | { | 
|  | return rt2x00usb_probe(usb_intf, &rt73usb_ops); | 
|  | } | 
|  |  | 
|  | static struct usb_driver rt73usb_driver = { | 
|  | .name		= KBUILD_MODNAME, | 
|  | .id_table	= rt73usb_device_table, | 
|  | .probe		= rt73usb_probe, | 
|  | .disconnect	= rt2x00usb_disconnect, | 
|  | .suspend	= rt2x00usb_suspend, | 
|  | .resume		= rt2x00usb_resume, | 
|  | }; | 
|  |  | 
|  | module_usb_driver(rt73usb_driver); |