|  | /******************************************************************************* | 
|  |  | 
|  | Intel PRO/1000 Linux driver | 
|  | Copyright(c) 1999 - 2007 Intel Corporation. | 
|  |  | 
|  | This program is free software; you can redistribute it and/or modify it | 
|  | under the terms and conditions of the GNU General Public License, | 
|  | version 2, as published by the Free Software Foundation. | 
|  |  | 
|  | This program is distributed in the hope it will be useful, but WITHOUT | 
|  | ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | more details. | 
|  |  | 
|  | You should have received a copy of the GNU General Public License along with | 
|  | this program; if not, write to the Free Software Foundation, Inc., | 
|  | 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA. | 
|  |  | 
|  | The full GNU General Public License is included in this distribution in | 
|  | the file called "COPYING". | 
|  |  | 
|  | Contact Information: | 
|  | Linux NICS <linux.nics@intel.com> | 
|  | e1000-devel Mailing List <e1000-devel@lists.sourceforge.net> | 
|  | Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497 | 
|  |  | 
|  | *******************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * 82571EB Gigabit Ethernet Controller | 
|  | * 82571EB Gigabit Ethernet Controller (Fiber) | 
|  | * 82572EI Gigabit Ethernet Controller (Copper) | 
|  | * 82572EI Gigabit Ethernet Controller (Fiber) | 
|  | * 82572EI Gigabit Ethernet Controller | 
|  | * 82573V Gigabit Ethernet Controller (Copper) | 
|  | * 82573E Gigabit Ethernet Controller (Copper) | 
|  | * 82573L Gigabit Ethernet Controller | 
|  | */ | 
|  |  | 
|  | #include <linux/netdevice.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/pci.h> | 
|  |  | 
|  | #include "e1000.h" | 
|  |  | 
|  | #define ID_LED_RESERVED_F746 0xF746 | 
|  | #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \ | 
|  | (ID_LED_OFF1_ON2  <<  8) | \ | 
|  | (ID_LED_DEF1_DEF2 <<  4) | \ | 
|  | (ID_LED_DEF1_DEF2)) | 
|  |  | 
|  | #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000 | 
|  |  | 
|  | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data); | 
|  | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw); | 
|  | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw); | 
|  | static s32 e1000_setup_link_82571(struct e1000_hw *hw); | 
|  | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw); | 
|  |  | 
|  | /** | 
|  | *  e1000_init_phy_params_82571 - Init PHY func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This is a function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 e1000_init_phy_params_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  |  | 
|  | if (hw->media_type != e1000_media_type_copper) { | 
|  | phy->type = e1000_phy_none; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | phy->addr			 = 1; | 
|  | phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT; | 
|  | phy->reset_delay_us		 = 100; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | phy->type		 = e1000_phy_igp_2; | 
|  | break; | 
|  | case e1000_82573: | 
|  | phy->type		 = e1000_phy_m88; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* This can only be done after all function pointers are setup. */ | 
|  | ret_val = e1000_get_phy_id_82571(hw); | 
|  |  | 
|  | /* Verify phy id */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | if (phy->id != IGP01E1000_I_PHY_ID) | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | case e1000_82573: | 
|  | if (phy->id != M88E1111_I_PHY_ID) | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_nvm_params_82571 - Init NVM func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This is a function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 eecd = er32(EECD); | 
|  | u16 size; | 
|  |  | 
|  | nvm->opcode_bits = 8; | 
|  | nvm->delay_usec = 1; | 
|  | switch (nvm->override) { | 
|  | case e1000_nvm_override_spi_large: | 
|  | nvm->page_size = 32; | 
|  | nvm->address_bits = 16; | 
|  | break; | 
|  | case e1000_nvm_override_spi_small: | 
|  | nvm->page_size = 8; | 
|  | nvm->address_bits = 8; | 
|  | break; | 
|  | default: | 
|  | nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8; | 
|  | nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8; | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | if (((eecd >> 15) & 0x3) == 0x3) { | 
|  | nvm->type = e1000_nvm_flash_hw; | 
|  | nvm->word_size = 2048; | 
|  | /* Autonomous Flash update bit must be cleared due | 
|  | * to Flash update issue. | 
|  | */ | 
|  | eecd &= ~E1000_EECD_AUPDEN; | 
|  | ew32(EECD, eecd); | 
|  | break; | 
|  | } | 
|  | /* Fall Through */ | 
|  | default: | 
|  | nvm->type	= e1000_nvm_eeprom_spi; | 
|  | size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >> | 
|  | E1000_EECD_SIZE_EX_SHIFT); | 
|  | /* Added to a constant, "size" becomes the left-shift value | 
|  | * for setting word_size. | 
|  | */ | 
|  | size += NVM_WORD_SIZE_BASE_SHIFT; | 
|  | nvm->word_size	= 1 << size; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_mac_params_82571 - Init MAC func ptrs. | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This is a function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 e1000_init_mac_params_82571(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | struct e1000_mac_operations *func = &mac->ops; | 
|  |  | 
|  | /* Set media type */ | 
|  | switch (adapter->pdev->device) { | 
|  | case E1000_DEV_ID_82571EB_FIBER: | 
|  | case E1000_DEV_ID_82572EI_FIBER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_FIBER: | 
|  | hw->media_type = e1000_media_type_fiber; | 
|  | break; | 
|  | case E1000_DEV_ID_82571EB_SERDES: | 
|  | case E1000_DEV_ID_82572EI_SERDES: | 
|  | case E1000_DEV_ID_82571EB_SERDES_DUAL: | 
|  | case E1000_DEV_ID_82571EB_SERDES_QUAD: | 
|  | hw->media_type = e1000_media_type_internal_serdes; | 
|  | break; | 
|  | default: | 
|  | hw->media_type = e1000_media_type_copper; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Set mta register count */ | 
|  | mac->mta_reg_count = 128; | 
|  | /* Set rar entry count */ | 
|  | mac->rar_entry_count = E1000_RAR_ENTRIES; | 
|  | /* Set if manageability features are enabled. */ | 
|  | mac->arc_subsystem_valid = | 
|  | (er32(FWSM) & E1000_FWSM_MODE_MASK) ? 1 : 0; | 
|  |  | 
|  | /* check for link */ | 
|  | switch (hw->media_type) { | 
|  | case e1000_media_type_copper: | 
|  | func->setup_physical_interface = e1000_setup_copper_link_82571; | 
|  | func->check_for_link = e1000e_check_for_copper_link; | 
|  | func->get_link_up_info = e1000e_get_speed_and_duplex_copper; | 
|  | break; | 
|  | case e1000_media_type_fiber: | 
|  | func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; | 
|  | func->check_for_link = e1000e_check_for_fiber_link; | 
|  | func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; | 
|  | break; | 
|  | case e1000_media_type_internal_serdes: | 
|  | func->setup_physical_interface = e1000_setup_fiber_serdes_link_82571; | 
|  | func->check_for_link = e1000e_check_for_serdes_link; | 
|  | func->get_link_up_info = e1000e_get_speed_and_duplex_fiber_serdes; | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_CONFIG; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static s32 e1000_get_invariants_82571(struct e1000_adapter *adapter) | 
|  | { | 
|  | struct e1000_hw *hw = &adapter->hw; | 
|  | static int global_quad_port_a; /* global port a indication */ | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | u16 eeprom_data = 0; | 
|  | int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1; | 
|  | s32 rc; | 
|  |  | 
|  | rc = e1000_init_mac_params_82571(adapter); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = e1000_init_nvm_params_82571(hw); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | rc = e1000_init_phy_params_82571(hw); | 
|  | if (rc) | 
|  | return rc; | 
|  |  | 
|  | /* tag quad port adapters first, it's used below */ | 
|  | switch (pdev->device) { | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_FIBER: | 
|  | case E1000_DEV_ID_82571EB_QUAD_COPPER_LP: | 
|  | case E1000_DEV_ID_82571PT_QUAD_COPPER: | 
|  | adapter->flags |= FLAG_IS_QUAD_PORT; | 
|  | /* mark the first port */ | 
|  | if (global_quad_port_a == 0) | 
|  | adapter->flags |= FLAG_IS_QUAD_PORT_A; | 
|  | /* Reset for multiple quad port adapters */ | 
|  | global_quad_port_a++; | 
|  | if (global_quad_port_a == 4) | 
|  | global_quad_port_a = 0; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | switch (adapter->hw.mac.type) { | 
|  | case e1000_82571: | 
|  | /* these dual ports don't have WoL on port B at all */ | 
|  | if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) || | 
|  | (pdev->device == E1000_DEV_ID_82571EB_SERDES) || | 
|  | (pdev->device == E1000_DEV_ID_82571EB_COPPER)) && | 
|  | (is_port_b)) | 
|  | adapter->flags &= ~FLAG_HAS_WOL; | 
|  | /* quad ports only support WoL on port A */ | 
|  | if (adapter->flags & FLAG_IS_QUAD_PORT && | 
|  | (!(adapter->flags & FLAG_IS_QUAD_PORT_A))) | 
|  | adapter->flags &= ~FLAG_HAS_WOL; | 
|  | /* Does not support WoL on any port */ | 
|  | if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD) | 
|  | adapter->flags &= ~FLAG_HAS_WOL; | 
|  | break; | 
|  |  | 
|  | case e1000_82573: | 
|  | if (pdev->device == E1000_DEV_ID_82573L) { | 
|  | e1000_read_nvm(&adapter->hw, NVM_INIT_3GIO_3, 1, | 
|  | &eeprom_data); | 
|  | if (eeprom_data & NVM_WORD1A_ASPM_MASK) | 
|  | adapter->flags &= ~FLAG_HAS_JUMBO_FRAMES; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the PHY registers and stores the PHY ID and possibly the PHY | 
|  | *  revision in the hardware structure. | 
|  | **/ | 
|  | static s32 e1000_get_phy_id_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | /* The 82571 firmware may still be configuring the PHY. | 
|  | * In this case, we cannot access the PHY until the | 
|  | * configuration is done.  So we explicitly set the | 
|  | * PHY ID. */ | 
|  | phy->id = IGP01E1000_I_PHY_ID; | 
|  | break; | 
|  | case e1000_82573: | 
|  | return e1000e_get_phy_id(hw); | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Acquire the HW semaphore to access the PHY or NVM | 
|  | **/ | 
|  | static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  | s32 timeout = hw->nvm.word_size + 1; | 
|  | s32 i = 0; | 
|  |  | 
|  | /* Get the FW semaphore. */ | 
|  | for (i = 0; i < timeout; i++) { | 
|  | swsm = er32(SWSM); | 
|  | ew32(SWSM, swsm | E1000_SWSM_SWESMBI); | 
|  |  | 
|  | /* Semaphore acquired if bit latched */ | 
|  | if (er32(SWSM) & E1000_SWSM_SWESMBI) | 
|  | break; | 
|  |  | 
|  | udelay(50); | 
|  | } | 
|  |  | 
|  | if (i == timeout) { | 
|  | /* Release semaphores */ | 
|  | e1000e_put_hw_semaphore(hw); | 
|  | hw_dbg(hw, "Driver can't access the NVM\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_put_hw_semaphore_82571 - Release hardware semaphore | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Release hardware semaphore used to access the PHY or NVM | 
|  | **/ | 
|  | static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 swsm; | 
|  |  | 
|  | swsm = er32(SWSM); | 
|  |  | 
|  | swsm &= ~E1000_SWSM_SWESMBI; | 
|  |  | 
|  | ew32(SWSM, swsm); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_acquire_nvm_82571 - Request for access to the EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  To gain access to the EEPROM, first we must obtain a hardware semaphore. | 
|  | *  Then for non-82573 hardware, set the EEPROM access request bit and wait | 
|  | *  for EEPROM access grant bit.  If the access grant bit is not set, release | 
|  | *  hardware semaphore. | 
|  | **/ | 
|  | static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000_get_hw_semaphore_82571(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (hw->mac.type != e1000_82573) | 
|  | ret_val = e1000e_acquire_nvm(hw); | 
|  |  | 
|  | if (ret_val) | 
|  | e1000_put_hw_semaphore_82571(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_release_nvm_82571 - Release exclusive access to EEPROM | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Stop any current commands to the EEPROM and clear the EEPROM request bit. | 
|  | **/ | 
|  | static void e1000_release_nvm_82571(struct e1000_hw *hw) | 
|  | { | 
|  | e1000e_release_nvm(hw); | 
|  | e1000_put_hw_semaphore_82571(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  For non-82573 silicon, write data to EEPROM at offset using SPI interface. | 
|  | * | 
|  | *  If e1000e_update_nvm_checksum is not called after this function, the | 
|  | *  EEPROM will most likley contain an invalid checksum. | 
|  | **/ | 
|  | static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words, | 
|  | u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82573: | 
|  | ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data); | 
|  | break; | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | ret_val = e1000e_write_nvm_spi(hw, offset, words, data); | 
|  | break; | 
|  | default: | 
|  | ret_val = -E1000_ERR_NVM; | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Updates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  up to the checksum.  Then calculates the EEPROM checksum and writes the | 
|  | *  value to the EEPROM. | 
|  | **/ | 
|  | static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 eecd; | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  |  | 
|  | ret_val = e1000e_update_nvm_checksum_generic(hw); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* If our nvm is an EEPROM, then we're done | 
|  | * otherwise, commit the checksum to the flash NVM. */ | 
|  | if (hw->nvm.type != e1000_nvm_flash_hw) | 
|  | return ret_val; | 
|  |  | 
|  | /* Check for pending operations. */ | 
|  | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | 
|  | msleep(1); | 
|  | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == E1000_FLASH_UPDATES) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | /* Reset the firmware if using STM opcode. */ | 
|  | if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) { | 
|  | /* The enabling of and the actual reset must be done | 
|  | * in two write cycles. | 
|  | */ | 
|  | ew32(HICR, E1000_HICR_FW_RESET_ENABLE); | 
|  | e1e_flush(); | 
|  | ew32(HICR, E1000_HICR_FW_RESET); | 
|  | } | 
|  |  | 
|  | /* Commit the write to flash */ | 
|  | eecd = er32(EECD) | E1000_EECD_FLUPD; | 
|  | ew32(EECD, eecd); | 
|  |  | 
|  | for (i = 0; i < E1000_FLASH_UPDATES; i++) { | 
|  | msleep(1); | 
|  | if ((er32(EECD) & E1000_EECD_FLUPD) == 0) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (i == E1000_FLASH_UPDATES) | 
|  | return -E1000_ERR_NVM; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM | 
|  | *  and then verifies that the sum of the EEPROM is equal to 0xBABA. | 
|  | **/ | 
|  | static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->nvm.type == e1000_nvm_flash_hw) | 
|  | e1000_fix_nvm_checksum_82571(hw); | 
|  |  | 
|  | return e1000e_validate_nvm_checksum_generic(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @offset: offset within the EEPROM to be written to | 
|  | *  @words: number of words to write | 
|  | *  @data: 16 bit word(s) to be written to the EEPROM | 
|  | * | 
|  | *  After checking for invalid values, poll the EEPROM to ensure the previous | 
|  | *  command has completed before trying to write the next word.  After write | 
|  | *  poll for completion. | 
|  | * | 
|  | *  If e1000e_update_nvm_checksum is not called after this function, the | 
|  | *  EEPROM will most likley contain an invalid checksum. | 
|  | **/ | 
|  | static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset, | 
|  | u16 words, u16 *data) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | u32 i; | 
|  | u32 eewr = 0; | 
|  | s32 ret_val = 0; | 
|  |  | 
|  | /* A check for invalid values:  offset too large, too many words, | 
|  | * and not enough words. */ | 
|  | if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) || | 
|  | (words == 0)) { | 
|  | hw_dbg(hw, "nvm parameter(s) out of bounds\n"); | 
|  | return -E1000_ERR_NVM; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < words; i++) { | 
|  | eewr = (data[i] << E1000_NVM_RW_REG_DATA) | | 
|  | ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) | | 
|  | E1000_NVM_RW_REG_START; | 
|  |  | 
|  | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | 
|  | if (ret_val) | 
|  | break; | 
|  |  | 
|  | ew32(EEWR, eewr); | 
|  |  | 
|  | ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE); | 
|  | if (ret_val) | 
|  | break; | 
|  | } | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_get_cfg_done_82571 - Poll for configuration done | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Reads the management control register for the config done bit to be set. | 
|  | **/ | 
|  | static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw) | 
|  | { | 
|  | s32 timeout = PHY_CFG_TIMEOUT; | 
|  |  | 
|  | while (timeout) { | 
|  | if (er32(EEMNGCTL) & | 
|  | E1000_NVM_CFG_DONE_PORT_0) | 
|  | break; | 
|  | msleep(1); | 
|  | timeout--; | 
|  | } | 
|  | if (!timeout) { | 
|  | hw_dbg(hw, "MNG configuration cycle has not completed.\n"); | 
|  | return -E1000_ERR_RESET; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @active: TRUE to enable LPLU, FALSE to disable | 
|  | * | 
|  | *  Sets the LPLU D0 state according to the active flag.  When activating LPLU | 
|  | *  this function also disables smart speed and vice versa.  LPLU will not be | 
|  | *  activated unless the device autonegotiation advertisement meets standards | 
|  | *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function | 
|  | *  pointer entry point only called by PHY setup routines. | 
|  | **/ | 
|  | static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active) | 
|  | { | 
|  | struct e1000_phy_info *phy = &hw->phy; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (active) { | 
|  | data |= IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | /* When LPLU is enabled, we should disable SmartSpeed */ | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data); | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else { | 
|  | data &= ~IGP02E1000_PM_D0_LPLU; | 
|  | ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data); | 
|  | /* LPLU and SmartSpeed are mutually exclusive.  LPLU is used | 
|  | * during Dx states where the power conservation is most | 
|  | * important.  During driver activity we should enable | 
|  | * SmartSpeed, so performance is maintained. */ | 
|  | if (phy->smart_speed == e1000_smart_speed_on) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data |= IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } else if (phy->smart_speed == e1000_smart_speed_off) { | 
|  | ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | data &= ~IGP01E1000_PSCFR_SMART_SPEED; | 
|  | ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, | 
|  | data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_reset_hw_82571 - Reset hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This resets the hardware into a known state.  This is a | 
|  | *  function pointer entry point called by the api module. | 
|  | **/ | 
|  | static s32 e1000_reset_hw_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 extcnf_ctrl; | 
|  | u32 ctrl_ext; | 
|  | u32 icr; | 
|  | s32 ret_val; | 
|  | u16 i = 0; | 
|  |  | 
|  | /* Prevent the PCI-E bus from sticking if there is no TLP connection | 
|  | * on the last TLP read/write transaction when MAC is reset. | 
|  | */ | 
|  | ret_val = e1000e_disable_pcie_master(hw); | 
|  | if (ret_val) | 
|  | hw_dbg(hw, "PCI-E Master disable polling has failed.\n"); | 
|  |  | 
|  | hw_dbg(hw, "Masking off all interrupts\n"); | 
|  | ew32(IMC, 0xffffffff); | 
|  |  | 
|  | ew32(RCTL, 0); | 
|  | ew32(TCTL, E1000_TCTL_PSP); | 
|  | e1e_flush(); | 
|  |  | 
|  | msleep(10); | 
|  |  | 
|  | /* Must acquire the MDIO ownership before MAC reset. | 
|  | * Ownership defaults to firmware after a reset. */ | 
|  | if (hw->mac.type == e1000_82573) { | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  |  | 
|  | do { | 
|  | ew32(EXTCNF_CTRL, extcnf_ctrl); | 
|  | extcnf_ctrl = er32(EXTCNF_CTRL); | 
|  |  | 
|  | if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP) | 
|  | break; | 
|  |  | 
|  | extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP; | 
|  |  | 
|  | msleep(2); | 
|  | i++; | 
|  | } while (i < MDIO_OWNERSHIP_TIMEOUT); | 
|  | } | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  |  | 
|  | hw_dbg(hw, "Issuing a global reset to MAC\n"); | 
|  | ew32(CTRL, ctrl | E1000_CTRL_RST); | 
|  |  | 
|  | if (hw->nvm.type == e1000_nvm_flash_hw) { | 
|  | udelay(10); | 
|  | ctrl_ext = er32(CTRL_EXT); | 
|  | ctrl_ext |= E1000_CTRL_EXT_EE_RST; | 
|  | ew32(CTRL_EXT, ctrl_ext); | 
|  | e1e_flush(); | 
|  | } | 
|  |  | 
|  | ret_val = e1000e_get_auto_rd_done(hw); | 
|  | if (ret_val) | 
|  | /* We don't want to continue accessing MAC registers. */ | 
|  | return ret_val; | 
|  |  | 
|  | /* Phy configuration from NVM just starts after EECD_AUTO_RD is set. | 
|  | * Need to wait for Phy configuration completion before accessing | 
|  | * NVM and Phy. | 
|  | */ | 
|  | if (hw->mac.type == e1000_82573) | 
|  | msleep(25); | 
|  |  | 
|  | /* Clear any pending interrupt events. */ | 
|  | ew32(IMC, 0xffffffff); | 
|  | icr = er32(ICR); | 
|  |  | 
|  | if (hw->mac.type == e1000_82571 && | 
|  | hw->dev_spec.e82571.alt_mac_addr_is_present) | 
|  | e1000e_set_laa_state_82571(hw, true); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_init_hw_82571 - Initialize hardware | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  This inits the hardware readying it for operation. | 
|  | **/ | 
|  | static s32 e1000_init_hw_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_mac_info *mac = &hw->mac; | 
|  | u32 reg_data; | 
|  | s32 ret_val; | 
|  | u16 i; | 
|  | u16 rar_count = mac->rar_entry_count; | 
|  |  | 
|  | e1000_initialize_hw_bits_82571(hw); | 
|  |  | 
|  | /* Initialize identification LED */ | 
|  | ret_val = e1000e_id_led_init(hw); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "Error initializing identification LED\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /* Disabling VLAN filtering */ | 
|  | hw_dbg(hw, "Initializing the IEEE VLAN\n"); | 
|  | e1000e_clear_vfta(hw); | 
|  |  | 
|  | /* Setup the receive address. */ | 
|  | /* If, however, a locally administered address was assigned to the | 
|  | * 82571, we must reserve a RAR for it to work around an issue where | 
|  | * resetting one port will reload the MAC on the other port. | 
|  | */ | 
|  | if (e1000e_get_laa_state_82571(hw)) | 
|  | rar_count--; | 
|  | e1000e_init_rx_addrs(hw, rar_count); | 
|  |  | 
|  | /* Zero out the Multicast HASH table */ | 
|  | hw_dbg(hw, "Zeroing the MTA\n"); | 
|  | for (i = 0; i < mac->mta_reg_count; i++) | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0); | 
|  |  | 
|  | /* Setup link and flow control */ | 
|  | ret_val = e1000_setup_link_82571(hw); | 
|  |  | 
|  | /* Set the transmit descriptor write-back policy */ | 
|  | reg_data = er32(TXDCTL); | 
|  | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB | | 
|  | E1000_TXDCTL_COUNT_DESC; | 
|  | ew32(TXDCTL, reg_data); | 
|  |  | 
|  | /* ...for both queues. */ | 
|  | if (mac->type != e1000_82573) { | 
|  | reg_data = er32(TXDCTL1); | 
|  | reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) | | 
|  | E1000_TXDCTL_FULL_TX_DESC_WB | | 
|  | E1000_TXDCTL_COUNT_DESC; | 
|  | ew32(TXDCTL1, reg_data); | 
|  | } else { | 
|  | e1000e_enable_tx_pkt_filtering(hw); | 
|  | reg_data = er32(GCR); | 
|  | reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX; | 
|  | ew32(GCR, reg_data); | 
|  | } | 
|  |  | 
|  | /* Clear all of the statistics registers (clear on read).  It is | 
|  | * important that we do this after we have tried to establish link | 
|  | * because the symbol error count will increment wildly if there | 
|  | * is no link. | 
|  | */ | 
|  | e1000_clear_hw_cntrs_82571(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Initializes required hardware-dependent bits needed for normal operation. | 
|  | **/ | 
|  | static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 reg; | 
|  |  | 
|  | /* Transmit Descriptor Control 0 */ | 
|  | reg = er32(TXDCTL); | 
|  | reg |= (1 << 22); | 
|  | ew32(TXDCTL, reg); | 
|  |  | 
|  | /* Transmit Descriptor Control 1 */ | 
|  | reg = er32(TXDCTL1); | 
|  | reg |= (1 << 22); | 
|  | ew32(TXDCTL1, reg); | 
|  |  | 
|  | /* Transmit Arbitration Control 0 */ | 
|  | reg = er32(TARC0); | 
|  | reg &= ~(0xF << 27); /* 30:27 */ | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ew32(TARC0, reg); | 
|  |  | 
|  | /* Transmit Arbitration Control 1 */ | 
|  | reg = er32(TARC1); | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | reg &= ~((1 << 29) | (1 << 30)); | 
|  | reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26); | 
|  | if (er32(TCTL) & E1000_TCTL_MULR) | 
|  | reg &= ~(1 << 28); | 
|  | else | 
|  | reg |= (1 << 28); | 
|  | ew32(TARC1, reg); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Device Control */ | 
|  | if (hw->mac.type == e1000_82573) { | 
|  | reg = er32(CTRL); | 
|  | reg &= ~(1 << 29); | 
|  | ew32(CTRL, reg); | 
|  | } | 
|  |  | 
|  | /* Extended Device Control */ | 
|  | if (hw->mac.type == e1000_82573) { | 
|  | reg = er32(CTRL_EXT); | 
|  | reg &= ~(1 << 23); | 
|  | reg |= (1 << 22); | 
|  | ew32(CTRL_EXT, reg); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_clear_vfta - Clear VLAN filter table | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the register array which contains the VLAN filter table by | 
|  | *  setting all the values to 0. | 
|  | **/ | 
|  | void e1000e_clear_vfta(struct e1000_hw *hw) | 
|  | { | 
|  | u32 offset; | 
|  | u32 vfta_value = 0; | 
|  | u32 vfta_offset = 0; | 
|  | u32 vfta_bit_in_reg = 0; | 
|  |  | 
|  | if (hw->mac.type == e1000_82573) { | 
|  | if (hw->mng_cookie.vlan_id != 0) { | 
|  | /* The VFTA is a 4096b bit-field, each identifying | 
|  | * a single VLAN ID.  The following operations | 
|  | * determine which 32b entry (i.e. offset) into the | 
|  | * array we want to set the VLAN ID (i.e. bit) of | 
|  | * the manageability unit. | 
|  | */ | 
|  | vfta_offset = (hw->mng_cookie.vlan_id >> | 
|  | E1000_VFTA_ENTRY_SHIFT) & | 
|  | E1000_VFTA_ENTRY_MASK; | 
|  | vfta_bit_in_reg = 1 << (hw->mng_cookie.vlan_id & | 
|  | E1000_VFTA_ENTRY_BIT_SHIFT_MASK); | 
|  | } | 
|  | } | 
|  | for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) { | 
|  | /* If the offset we want to clear is the same offset of the | 
|  | * manageability VLAN ID, then clear all bits except that of | 
|  | * the manageability unit. | 
|  | */ | 
|  | vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0; | 
|  | E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value); | 
|  | e1e_flush(); | 
|  | } | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_mc_addr_list_update_82571 - Update Multicast addresses | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @mc_addr_list: array of multicast addresses to program | 
|  | *  @mc_addr_count: number of multicast addresses to program | 
|  | *  @rar_used_count: the first RAR register free to program | 
|  | *  @rar_count: total number of supported Receive Address Registers | 
|  | * | 
|  | *  Updates the Receive Address Registers and Multicast Table Array. | 
|  | *  The caller must have a packed mc_addr_list of multicast addresses. | 
|  | *  The parameter rar_count will usually be hw->mac.rar_entry_count | 
|  | *  unless there are workarounds that change this. | 
|  | **/ | 
|  | static void e1000_mc_addr_list_update_82571(struct e1000_hw *hw, | 
|  | u8 *mc_addr_list, | 
|  | u32 mc_addr_count, | 
|  | u32 rar_used_count, | 
|  | u32 rar_count) | 
|  | { | 
|  | if (e1000e_get_laa_state_82571(hw)) | 
|  | rar_count--; | 
|  |  | 
|  | e1000e_mc_addr_list_update_generic(hw, mc_addr_list, mc_addr_count, | 
|  | rar_used_count, rar_count); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_link_82571 - Setup flow control and link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Determines which flow control settings to use, then configures flow | 
|  | *  control.  Calls the appropriate media-specific link configuration | 
|  | *  function.  Assuming the adapter has a valid link partner, a valid link | 
|  | *  should be established.  Assumes the hardware has previously been reset | 
|  | *  and the transmitter and receiver are not enabled. | 
|  | **/ | 
|  | static s32 e1000_setup_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | /* 82573 does not have a word in the NVM to determine | 
|  | * the default flow control setting, so we explicitly | 
|  | * set it to full. | 
|  | */ | 
|  | if (hw->mac.type == e1000_82573) | 
|  | hw->mac.fc = e1000_fc_full; | 
|  |  | 
|  | return e1000e_setup_link(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_copper_link_82571 - Configure copper link settings | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures the link for auto-neg or forced speed and duplex.  Then we check | 
|  | *  for link, once link is established calls to configure collision distance | 
|  | *  and flow control are called. | 
|  | **/ | 
|  | static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 ctrl; | 
|  | u32 led_ctrl; | 
|  | s32 ret_val; | 
|  |  | 
|  | ctrl = er32(CTRL); | 
|  | ctrl |= E1000_CTRL_SLU; | 
|  | ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX); | 
|  | ew32(CTRL, ctrl); | 
|  |  | 
|  | switch (hw->phy.type) { | 
|  | case e1000_phy_m88: | 
|  | ret_val = e1000e_copper_link_setup_m88(hw); | 
|  | break; | 
|  | case e1000_phy_igp_2: | 
|  | ret_val = e1000e_copper_link_setup_igp(hw); | 
|  | /* Setup activity LED */ | 
|  | led_ctrl = er32(LEDCTL); | 
|  | led_ctrl &= IGP_ACTIVITY_LED_MASK; | 
|  | led_ctrl |= (IGP_ACTIVITY_LED_ENABLE | IGP_LED3_MODE); | 
|  | ew32(LEDCTL, led_ctrl); | 
|  | break; | 
|  | default: | 
|  | return -E1000_ERR_PHY; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | ret_val = e1000e_setup_copper_link(hw); | 
|  |  | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Configures collision distance and flow control for fiber and serdes links. | 
|  | *  Upon successful setup, poll for link. | 
|  | **/ | 
|  | static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw) | 
|  | { | 
|  | switch (hw->mac.type) { | 
|  | case e1000_82571: | 
|  | case e1000_82572: | 
|  | /* If SerDes loopback mode is entered, there is no form | 
|  | * of reset to take the adapter out of that mode.  So we | 
|  | * have to explicitly take the adapter out of loopback | 
|  | * mode.  This prevents drivers from twidling their thumbs | 
|  | * if another tool failed to take it out of loopback mode. | 
|  | */ | 
|  | ew32(SCTL, | 
|  | E1000_SCTL_DISABLE_SERDES_LOOPBACK); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return e1000e_setup_fiber_serdes_link(hw); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_valid_led_default_82571 - Verify a valid default LED config | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @data: pointer to the NVM (EEPROM) | 
|  | * | 
|  | *  Read the EEPROM for the current default LED configuration.  If the | 
|  | *  LED configuration is not valid, set to a valid LED configuration. | 
|  | **/ | 
|  | static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data) | 
|  | { | 
|  | s32 ret_val; | 
|  |  | 
|  | ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data); | 
|  | if (ret_val) { | 
|  | hw_dbg(hw, "NVM Read Error\n"); | 
|  | return ret_val; | 
|  | } | 
|  |  | 
|  | if (hw->mac.type == e1000_82573 && | 
|  | *data == ID_LED_RESERVED_F746) | 
|  | *data = ID_LED_DEFAULT_82573; | 
|  | else if (*data == ID_LED_RESERVED_0000 || | 
|  | *data == ID_LED_RESERVED_FFFF) | 
|  | *data = ID_LED_DEFAULT; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_get_laa_state_82571 - Get locally administered address state | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Retrieve and return the current locally administed address state. | 
|  | **/ | 
|  | bool e1000e_get_laa_state_82571(struct e1000_hw *hw) | 
|  | { | 
|  | if (hw->mac.type != e1000_82571) | 
|  | return 0; | 
|  |  | 
|  | return hw->dev_spec.e82571.laa_is_present; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000e_set_laa_state_82571 - Set locally administered address state | 
|  | *  @hw: pointer to the HW structure | 
|  | *  @state: enable/disable locally administered address | 
|  | * | 
|  | *  Enable/Disable the current locally administed address state. | 
|  | **/ | 
|  | void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state) | 
|  | { | 
|  | if (hw->mac.type != e1000_82571) | 
|  | return; | 
|  |  | 
|  | hw->dev_spec.e82571.laa_is_present = state; | 
|  |  | 
|  | /* If workaround is activated... */ | 
|  | if (state) | 
|  | /* Hold a copy of the LAA in RAR[14] This is done so that | 
|  | * between the time RAR[0] gets clobbered and the time it | 
|  | * gets fixed, the actual LAA is in one of the RARs and no | 
|  | * incoming packets directed to this port are dropped. | 
|  | * Eventually the LAA will be in RAR[0] and RAR[14]. | 
|  | */ | 
|  | e1000e_rar_set(hw, hw->mac.addr, hw->mac.rar_entry_count - 1); | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Verifies that the EEPROM has completed the update.  After updating the | 
|  | *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If | 
|  | *  the checksum fix is not implemented, we need to set the bit and update | 
|  | *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect, | 
|  | *  we need to return bad checksum. | 
|  | **/ | 
|  | static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw) | 
|  | { | 
|  | struct e1000_nvm_info *nvm = &hw->nvm; | 
|  | s32 ret_val; | 
|  | u16 data; | 
|  |  | 
|  | if (nvm->type != e1000_nvm_flash_hw) | 
|  | return 0; | 
|  |  | 
|  | /* Check bit 4 of word 10h.  If it is 0, firmware is done updating | 
|  | * 10h-12h.  Checksum may need to be fixed. | 
|  | */ | 
|  | ret_val = e1000_read_nvm(hw, 0x10, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(data & 0x10)) { | 
|  | /* Read 0x23 and check bit 15.  This bit is a 1 | 
|  | * when the checksum has already been fixed.  If | 
|  | * the checksum is still wrong and this bit is a | 
|  | * 1, we need to return bad checksum.  Otherwise, | 
|  | * we need to set this bit to a 1 and update the | 
|  | * checksum. | 
|  | */ | 
|  | ret_val = e1000_read_nvm(hw, 0x23, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  |  | 
|  | if (!(data & 0x8000)) { | 
|  | data |= 0x8000; | 
|  | ret_val = e1000_write_nvm(hw, 0x23, 1, &data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | ret_val = e1000e_update_nvm_checksum(hw); | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters | 
|  | *  @hw: pointer to the HW structure | 
|  | * | 
|  | *  Clears the hardware counters by reading the counter registers. | 
|  | **/ | 
|  | static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw) | 
|  | { | 
|  | u32 temp; | 
|  |  | 
|  | e1000e_clear_hw_cntrs_base(hw); | 
|  |  | 
|  | temp = er32(PRC64); | 
|  | temp = er32(PRC127); | 
|  | temp = er32(PRC255); | 
|  | temp = er32(PRC511); | 
|  | temp = er32(PRC1023); | 
|  | temp = er32(PRC1522); | 
|  | temp = er32(PTC64); | 
|  | temp = er32(PTC127); | 
|  | temp = er32(PTC255); | 
|  | temp = er32(PTC511); | 
|  | temp = er32(PTC1023); | 
|  | temp = er32(PTC1522); | 
|  |  | 
|  | temp = er32(ALGNERRC); | 
|  | temp = er32(RXERRC); | 
|  | temp = er32(TNCRS); | 
|  | temp = er32(CEXTERR); | 
|  | temp = er32(TSCTC); | 
|  | temp = er32(TSCTFC); | 
|  |  | 
|  | temp = er32(MGTPRC); | 
|  | temp = er32(MGTPDC); | 
|  | temp = er32(MGTPTC); | 
|  |  | 
|  | temp = er32(IAC); | 
|  | temp = er32(ICRXOC); | 
|  |  | 
|  | temp = er32(ICRXPTC); | 
|  | temp = er32(ICRXATC); | 
|  | temp = er32(ICTXPTC); | 
|  | temp = er32(ICTXATC); | 
|  | temp = er32(ICTXQEC); | 
|  | temp = er32(ICTXQMTC); | 
|  | temp = er32(ICRXDMTC); | 
|  | } | 
|  |  | 
|  | static struct e1000_mac_operations e82571_mac_ops = { | 
|  | .mng_mode_enab		= E1000_MNG_IAMT_MODE << E1000_FWSM_MODE_SHIFT, | 
|  | /* .check_for_link: media type dependent */ | 
|  | .cleanup_led		= e1000e_cleanup_led_generic, | 
|  | .clear_hw_cntrs		= e1000_clear_hw_cntrs_82571, | 
|  | .get_bus_info		= e1000e_get_bus_info_pcie, | 
|  | /* .get_link_up_info: media type dependent */ | 
|  | .led_on			= e1000e_led_on_generic, | 
|  | .led_off		= e1000e_led_off_generic, | 
|  | .mc_addr_list_update	= e1000_mc_addr_list_update_82571, | 
|  | .reset_hw		= e1000_reset_hw_82571, | 
|  | .init_hw		= e1000_init_hw_82571, | 
|  | .setup_link		= e1000_setup_link_82571, | 
|  | /* .setup_physical_interface: media type dependent */ | 
|  | }; | 
|  |  | 
|  | static struct e1000_phy_operations e82_phy_ops_igp = { | 
|  | .acquire_phy		= e1000_get_hw_semaphore_82571, | 
|  | .check_reset_block	= e1000e_check_reset_block_generic, | 
|  | .commit_phy		= NULL, | 
|  | .force_speed_duplex	= e1000e_phy_force_speed_duplex_igp, | 
|  | .get_cfg_done		= e1000_get_cfg_done_82571, | 
|  | .get_cable_length	= e1000e_get_cable_length_igp_2, | 
|  | .get_phy_info		= e1000e_get_phy_info_igp, | 
|  | .read_phy_reg		= e1000e_read_phy_reg_igp, | 
|  | .release_phy		= e1000_put_hw_semaphore_82571, | 
|  | .reset_phy		= e1000e_phy_hw_reset_generic, | 
|  | .set_d0_lplu_state	= e1000_set_d0_lplu_state_82571, | 
|  | .set_d3_lplu_state	= e1000e_set_d3_lplu_state, | 
|  | .write_phy_reg		= e1000e_write_phy_reg_igp, | 
|  | }; | 
|  |  | 
|  | static struct e1000_phy_operations e82_phy_ops_m88 = { | 
|  | .acquire_phy		= e1000_get_hw_semaphore_82571, | 
|  | .check_reset_block	= e1000e_check_reset_block_generic, | 
|  | .commit_phy		= e1000e_phy_sw_reset, | 
|  | .force_speed_duplex	= e1000e_phy_force_speed_duplex_m88, | 
|  | .get_cfg_done		= e1000e_get_cfg_done, | 
|  | .get_cable_length	= e1000e_get_cable_length_m88, | 
|  | .get_phy_info		= e1000e_get_phy_info_m88, | 
|  | .read_phy_reg		= e1000e_read_phy_reg_m88, | 
|  | .release_phy		= e1000_put_hw_semaphore_82571, | 
|  | .reset_phy		= e1000e_phy_hw_reset_generic, | 
|  | .set_d0_lplu_state	= e1000_set_d0_lplu_state_82571, | 
|  | .set_d3_lplu_state	= e1000e_set_d3_lplu_state, | 
|  | .write_phy_reg		= e1000e_write_phy_reg_m88, | 
|  | }; | 
|  |  | 
|  | static struct e1000_nvm_operations e82571_nvm_ops = { | 
|  | .acquire_nvm		= e1000_acquire_nvm_82571, | 
|  | .read_nvm		= e1000e_read_nvm_spi, | 
|  | .release_nvm		= e1000_release_nvm_82571, | 
|  | .update_nvm		= e1000_update_nvm_checksum_82571, | 
|  | .valid_led_default	= e1000_valid_led_default_82571, | 
|  | .validate_nvm		= e1000_validate_nvm_checksum_82571, | 
|  | .write_nvm		= e1000_write_nvm_82571, | 
|  | }; | 
|  |  | 
|  | static struct e1000_nvm_operations e82573_nvm_ops = { | 
|  | .acquire_nvm		= e1000_acquire_nvm_82571, | 
|  | .read_nvm		= e1000e_read_nvm_eerd, | 
|  | .release_nvm		= e1000_release_nvm_82571, | 
|  | .update_nvm		= e1000_update_nvm_checksum_82571, | 
|  | .valid_led_default	= e1000_valid_led_default_82571, | 
|  | .validate_nvm		= e1000_validate_nvm_checksum_82571, | 
|  | .write_nvm		= e1000_write_nvm_82571, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_82571_info = { | 
|  | .mac			= e1000_82571, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_STATS_PTC_PRC | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_STATS_ICR_ICT | 
|  | | FLAG_HAS_SMART_POWER_DOWN | 
|  | | FLAG_RESET_OVERWRITES_LAA /* errata */ | 
|  | | FLAG_TARC_SPEED_MODE_BIT /* errata */ | 
|  | | FLAG_APME_CHECK_PORT_B, | 
|  | .pba			= 38, | 
|  | .get_invariants		= e1000_get_invariants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_igp, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_82572_info = { | 
|  | .mac			= e1000_82572, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_STATS_PTC_PRC | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_CTRLEXT_ON_LOAD | 
|  | | FLAG_HAS_STATS_ICR_ICT | 
|  | | FLAG_TARC_SPEED_MODE_BIT, /* errata */ | 
|  | .pba			= 38, | 
|  | .get_invariants		= e1000_get_invariants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_igp, | 
|  | .nvm_ops		= &e82571_nvm_ops, | 
|  | }; | 
|  |  | 
|  | struct e1000_info e1000_82573_info = { | 
|  | .mac			= e1000_82573, | 
|  | .flags			= FLAG_HAS_HW_VLAN_FILTER | 
|  | | FLAG_HAS_JUMBO_FRAMES | 
|  | | FLAG_HAS_STATS_PTC_PRC | 
|  | | FLAG_HAS_WOL | 
|  | | FLAG_APME_IN_CTRL3 | 
|  | | FLAG_RX_CSUM_ENABLED | 
|  | | FLAG_HAS_STATS_ICR_ICT | 
|  | | FLAG_HAS_SMART_POWER_DOWN | 
|  | | FLAG_HAS_AMT | 
|  | | FLAG_HAS_ERT | 
|  | | FLAG_HAS_SWSM_ON_LOAD, | 
|  | .pba			= 20, | 
|  | .get_invariants		= e1000_get_invariants_82571, | 
|  | .mac_ops		= &e82571_mac_ops, | 
|  | .phy_ops		= &e82_phy_ops_m88, | 
|  | .nvm_ops		= &e82573_nvm_ops, | 
|  | }; | 
|  |  |