|  | /* | 
|  | * Squashfs - a compressed read only filesystem for Linux | 
|  | * | 
|  | * Copyright (c) 2002, 2003, 2004, 2005, 2006, 2007, 2008 | 
|  | * Phillip Lougher <phillip@lougher.demon.co.uk> | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License | 
|  | * as published by the Free Software Foundation; either version 2, | 
|  | * or (at your option) any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write to the Free Software | 
|  | * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. | 
|  | * | 
|  | * cache.c | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Blocks in Squashfs are compressed.  To avoid repeatedly decompressing | 
|  | * recently accessed data Squashfs uses two small metadata and fragment caches. | 
|  | * | 
|  | * This file implements a generic cache implementation used for both caches, | 
|  | * plus functions layered ontop of the generic cache implementation to | 
|  | * access the metadata and fragment caches. | 
|  | * | 
|  | * To avoid out of memory and fragmentation isssues with vmalloc the cache | 
|  | * uses sequences of kmalloced PAGE_CACHE_SIZE buffers. | 
|  | * | 
|  | * It should be noted that the cache is not used for file datablocks, these | 
|  | * are decompressed and cached in the page-cache in the normal way.  The | 
|  | * cache is only used to temporarily cache fragment and metadata blocks | 
|  | * which have been read as as a result of a metadata (i.e. inode or | 
|  | * directory) or fragment access.  Because metadata and fragments are packed | 
|  | * together into blocks (to gain greater compression) the read of a particular | 
|  | * piece of metadata or fragment will retrieve other metadata/fragments which | 
|  | * have been packed with it, these because of locality-of-reference may be read | 
|  | * in the near future. Temporarily caching them ensures they are available for | 
|  | * near future access without requiring an additional read and decompress. | 
|  | */ | 
|  |  | 
|  | #include <linux/fs.h> | 
|  | #include <linux/vfs.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/vmalloc.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/wait.h> | 
|  | #include <linux/pagemap.h> | 
|  |  | 
|  | #include "squashfs_fs.h" | 
|  | #include "squashfs_fs_sb.h" | 
|  | #include "squashfs_fs_i.h" | 
|  | #include "squashfs.h" | 
|  |  | 
|  | /* | 
|  | * Look-up block in cache, and increment usage count.  If not in cache, read | 
|  | * and decompress it from disk. | 
|  | */ | 
|  | struct squashfs_cache_entry *squashfs_cache_get(struct super_block *sb, | 
|  | struct squashfs_cache *cache, u64 block, int length) | 
|  | { | 
|  | int i, n; | 
|  | struct squashfs_cache_entry *entry; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | while (1) { | 
|  | for (i = 0; i < cache->entries; i++) | 
|  | if (cache->entry[i].block == block) | 
|  | break; | 
|  |  | 
|  | if (i == cache->entries) { | 
|  | /* | 
|  | * Block not in cache, if all cache entries are used | 
|  | * go to sleep waiting for one to become available. | 
|  | */ | 
|  | if (cache->unused == 0) { | 
|  | cache->num_waiters++; | 
|  | spin_unlock(&cache->lock); | 
|  | wait_event(cache->wait_queue, cache->unused); | 
|  | spin_lock(&cache->lock); | 
|  | cache->num_waiters--; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * At least one unused cache entry.  A simple | 
|  | * round-robin strategy is used to choose the entry to | 
|  | * be evicted from the cache. | 
|  | */ | 
|  | i = cache->next_blk; | 
|  | for (n = 0; n < cache->entries; n++) { | 
|  | if (cache->entry[i].refcount == 0) | 
|  | break; | 
|  | i = (i + 1) % cache->entries; | 
|  | } | 
|  |  | 
|  | cache->next_blk = (i + 1) % cache->entries; | 
|  | entry = &cache->entry[i]; | 
|  |  | 
|  | /* | 
|  | * Initialise choosen cache entry, and fill it in from | 
|  | * disk. | 
|  | */ | 
|  | cache->unused--; | 
|  | entry->block = block; | 
|  | entry->refcount = 1; | 
|  | entry->pending = 1; | 
|  | entry->num_waiters = 0; | 
|  | entry->error = 0; | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | entry->length = squashfs_read_data(sb, entry->data, | 
|  | block, length, &entry->next_index, | 
|  | cache->block_size, cache->pages); | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  |  | 
|  | if (entry->length < 0) | 
|  | entry->error = entry->length; | 
|  |  | 
|  | entry->pending = 0; | 
|  |  | 
|  | /* | 
|  | * While filling this entry one or more other processes | 
|  | * have looked it up in the cache, and have slept | 
|  | * waiting for it to become available. | 
|  | */ | 
|  | if (entry->num_waiters) { | 
|  | spin_unlock(&cache->lock); | 
|  | wake_up_all(&entry->wait_queue); | 
|  | } else | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Block already in cache.  Increment refcount so it doesn't | 
|  | * get reused until we're finished with it, if it was | 
|  | * previously unused there's one less cache entry available | 
|  | * for reuse. | 
|  | */ | 
|  | entry = &cache->entry[i]; | 
|  | if (entry->refcount == 0) | 
|  | cache->unused--; | 
|  | entry->refcount++; | 
|  |  | 
|  | /* | 
|  | * If the entry is currently being filled in by another process | 
|  | * go to sleep waiting for it to become available. | 
|  | */ | 
|  | if (entry->pending) { | 
|  | entry->num_waiters++; | 
|  | spin_unlock(&cache->lock); | 
|  | wait_event(entry->wait_queue, !entry->pending); | 
|  | } else | 
|  | spin_unlock(&cache->lock); | 
|  |  | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | out: | 
|  | TRACE("Got %s %d, start block %lld, refcount %d, error %d\n", | 
|  | cache->name, i, entry->block, entry->refcount, entry->error); | 
|  |  | 
|  | if (entry->error) | 
|  | ERROR("Unable to read %s cache entry [%llx]\n", cache->name, | 
|  | block); | 
|  | return entry; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Release cache entry, once usage count is zero it can be reused. | 
|  | */ | 
|  | void squashfs_cache_put(struct squashfs_cache_entry *entry) | 
|  | { | 
|  | struct squashfs_cache *cache = entry->cache; | 
|  |  | 
|  | spin_lock(&cache->lock); | 
|  | entry->refcount--; | 
|  | if (entry->refcount == 0) { | 
|  | cache->unused++; | 
|  | /* | 
|  | * If there's any processes waiting for a block to become | 
|  | * available, wake one up. | 
|  | */ | 
|  | if (cache->num_waiters) { | 
|  | spin_unlock(&cache->lock); | 
|  | wake_up(&cache->wait_queue); | 
|  | return; | 
|  | } | 
|  | } | 
|  | spin_unlock(&cache->lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Delete cache reclaiming all kmalloced buffers. | 
|  | */ | 
|  | void squashfs_cache_delete(struct squashfs_cache *cache) | 
|  | { | 
|  | int i, j; | 
|  |  | 
|  | if (cache == NULL) | 
|  | return; | 
|  |  | 
|  | for (i = 0; i < cache->entries; i++) { | 
|  | if (cache->entry[i].data) { | 
|  | for (j = 0; j < cache->pages; j++) | 
|  | kfree(cache->entry[i].data[j]); | 
|  | kfree(cache->entry[i].data); | 
|  | } | 
|  | } | 
|  |  | 
|  | kfree(cache->entry); | 
|  | kfree(cache); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialise cache allocating the specified number of entries, each of | 
|  | * size block_size.  To avoid vmalloc fragmentation issues each entry | 
|  | * is allocated as a sequence of kmalloced PAGE_CACHE_SIZE buffers. | 
|  | */ | 
|  | struct squashfs_cache *squashfs_cache_init(char *name, int entries, | 
|  | int block_size) | 
|  | { | 
|  | int i, j; | 
|  | struct squashfs_cache *cache = kzalloc(sizeof(*cache), GFP_KERNEL); | 
|  |  | 
|  | if (cache == NULL) { | 
|  | ERROR("Failed to allocate %s cache\n", name); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | cache->entry = kcalloc(entries, sizeof(*(cache->entry)), GFP_KERNEL); | 
|  | if (cache->entry == NULL) { | 
|  | ERROR("Failed to allocate %s cache\n", name); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | cache->next_blk = 0; | 
|  | cache->unused = entries; | 
|  | cache->entries = entries; | 
|  | cache->block_size = block_size; | 
|  | cache->pages = block_size >> PAGE_CACHE_SHIFT; | 
|  | cache->pages = cache->pages ? cache->pages : 1; | 
|  | cache->name = name; | 
|  | cache->num_waiters = 0; | 
|  | spin_lock_init(&cache->lock); | 
|  | init_waitqueue_head(&cache->wait_queue); | 
|  |  | 
|  | for (i = 0; i < entries; i++) { | 
|  | struct squashfs_cache_entry *entry = &cache->entry[i]; | 
|  |  | 
|  | init_waitqueue_head(&cache->entry[i].wait_queue); | 
|  | entry->cache = cache; | 
|  | entry->block = SQUASHFS_INVALID_BLK; | 
|  | entry->data = kcalloc(cache->pages, sizeof(void *), GFP_KERNEL); | 
|  | if (entry->data == NULL) { | 
|  | ERROR("Failed to allocate %s cache entry\n", name); | 
|  | goto cleanup; | 
|  | } | 
|  |  | 
|  | for (j = 0; j < cache->pages; j++) { | 
|  | entry->data[j] = kmalloc(PAGE_CACHE_SIZE, GFP_KERNEL); | 
|  | if (entry->data[j] == NULL) { | 
|  | ERROR("Failed to allocate %s buffer\n", name); | 
|  | goto cleanup; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return cache; | 
|  |  | 
|  | cleanup: | 
|  | squashfs_cache_delete(cache); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Copy upto length bytes from cache entry to buffer starting at offset bytes | 
|  | * into the cache entry.  If there's not length bytes then copy the number of | 
|  | * bytes available.  In all cases return the number of bytes copied. | 
|  | */ | 
|  | int squashfs_copy_data(void *buffer, struct squashfs_cache_entry *entry, | 
|  | int offset, int length) | 
|  | { | 
|  | int remaining = length; | 
|  |  | 
|  | if (length == 0) | 
|  | return 0; | 
|  | else if (buffer == NULL) | 
|  | return min(length, entry->length - offset); | 
|  |  | 
|  | while (offset < entry->length) { | 
|  | void *buff = entry->data[offset / PAGE_CACHE_SIZE] | 
|  | + (offset % PAGE_CACHE_SIZE); | 
|  | int bytes = min_t(int, entry->length - offset, | 
|  | PAGE_CACHE_SIZE - (offset % PAGE_CACHE_SIZE)); | 
|  |  | 
|  | if (bytes >= remaining) { | 
|  | memcpy(buffer, buff, remaining); | 
|  | remaining = 0; | 
|  | break; | 
|  | } | 
|  |  | 
|  | memcpy(buffer, buff, bytes); | 
|  | buffer += bytes; | 
|  | remaining -= bytes; | 
|  | offset += bytes; | 
|  | } | 
|  |  | 
|  | return length - remaining; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read length bytes from metadata position <block, offset> (block is the | 
|  | * start of the compressed block on disk, and offset is the offset into | 
|  | * the block once decompressed).  Data is packed into consecutive blocks, | 
|  | * and length bytes may require reading more than one block. | 
|  | */ | 
|  | int squashfs_read_metadata(struct super_block *sb, void *buffer, | 
|  | u64 *block, int *offset, int length) | 
|  | { | 
|  | struct squashfs_sb_info *msblk = sb->s_fs_info; | 
|  | int bytes, copied = length; | 
|  | struct squashfs_cache_entry *entry; | 
|  |  | 
|  | TRACE("Entered squashfs_read_metadata [%llx:%x]\n", *block, *offset); | 
|  |  | 
|  | while (length) { | 
|  | entry = squashfs_cache_get(sb, msblk->block_cache, *block, 0); | 
|  | if (entry->error) | 
|  | return entry->error; | 
|  | else if (*offset >= entry->length) | 
|  | return -EIO; | 
|  |  | 
|  | bytes = squashfs_copy_data(buffer, entry, *offset, length); | 
|  | if (buffer) | 
|  | buffer += bytes; | 
|  | length -= bytes; | 
|  | *offset += bytes; | 
|  |  | 
|  | if (*offset == entry->length) { | 
|  | *block = entry->next_index; | 
|  | *offset = 0; | 
|  | } | 
|  |  | 
|  | squashfs_cache_put(entry); | 
|  | } | 
|  |  | 
|  | return copied; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Look-up in the fragmment cache the fragment located at <start_block> in the | 
|  | * filesystem.  If necessary read and decompress it from disk. | 
|  | */ | 
|  | struct squashfs_cache_entry *squashfs_get_fragment(struct super_block *sb, | 
|  | u64 start_block, int length) | 
|  | { | 
|  | struct squashfs_sb_info *msblk = sb->s_fs_info; | 
|  |  | 
|  | return squashfs_cache_get(sb, msblk->fragment_cache, start_block, | 
|  | length); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read and decompress the datablock located at <start_block> in the | 
|  | * filesystem.  The cache is used here to avoid duplicating locking and | 
|  | * read/decompress code. | 
|  | */ | 
|  | struct squashfs_cache_entry *squashfs_get_datablock(struct super_block *sb, | 
|  | u64 start_block, int length) | 
|  | { | 
|  | struct squashfs_sb_info *msblk = sb->s_fs_info; | 
|  |  | 
|  | return squashfs_cache_get(sb, msblk->read_page, start_block, length); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Read a filesystem table (uncompressed sequence of bytes) from disk | 
|  | */ | 
|  | int squashfs_read_table(struct super_block *sb, void *buffer, u64 block, | 
|  | int length) | 
|  | { | 
|  | int pages = (length + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; | 
|  | int i, res; | 
|  | void **data = kcalloc(pages, sizeof(void *), GFP_KERNEL); | 
|  | if (data == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | for (i = 0; i < pages; i++, buffer += PAGE_CACHE_SIZE) | 
|  | data[i] = buffer; | 
|  | res = squashfs_read_data(sb, data, block, length | | 
|  | SQUASHFS_COMPRESSED_BIT_BLOCK, NULL, length, pages); | 
|  | kfree(data); | 
|  | return res; | 
|  | } |