|  | /* | 
|  | * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_buf_item.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_dir2.h" | 
|  | #include "xfs_dmapi.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dir2_sf.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_rw.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  |  | 
|  | kmem_zone_t	*xfs_ili_zone;		/* inode log item zone */ | 
|  |  | 
|  | /* | 
|  | * This returns the number of iovecs needed to log the given inode item. | 
|  | * | 
|  | * We need one iovec for the inode log format structure, one for the | 
|  | * inode core, and possibly one for the inode data/extents/b-tree root | 
|  | * and one for the inode attribute data/extents/b-tree root. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_inode_item_size( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | uint		nvecs; | 
|  | xfs_inode_t	*ip; | 
|  |  | 
|  | ip = iip->ili_inode; | 
|  | nvecs = 2; | 
|  |  | 
|  | /* | 
|  | * Only log the data/extents/b-tree root if there is something | 
|  | * left to log. | 
|  | */ | 
|  | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; | 
|  |  | 
|  | switch (ip->i_d.di_format) { | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | XFS_ILOG_DEV | XFS_ILOG_UUID); | 
|  | if ((iip->ili_format.ilf_fields & XFS_ILOG_DEXT) && | 
|  | (ip->i_d.di_nextents > 0) && | 
|  | (ip->i_df.if_bytes > 0)) { | 
|  | ASSERT(ip->i_df.if_u1.if_extents != NULL); | 
|  | nvecs++; | 
|  | } else { | 
|  | iip->ili_format.ilf_fields &= ~XFS_ILOG_DEXT; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | ASSERT(ip->i_df.if_ext_max == | 
|  | XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t)); | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_DDATA | XFS_ILOG_DEXT | | 
|  | XFS_ILOG_DEV | XFS_ILOG_UUID); | 
|  | if ((iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) && | 
|  | (ip->i_df.if_broot_bytes > 0)) { | 
|  | ASSERT(ip->i_df.if_broot != NULL); | 
|  | nvecs++; | 
|  | } else { | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | XFS_ILOG_DBROOT)); | 
|  | #ifdef XFS_TRANS_DEBUG | 
|  | if (iip->ili_root_size > 0) { | 
|  | ASSERT(iip->ili_root_size == | 
|  | ip->i_df.if_broot_bytes); | 
|  | ASSERT(memcmp(iip->ili_orig_root, | 
|  | ip->i_df.if_broot, | 
|  | iip->ili_root_size) == 0); | 
|  | } else { | 
|  | ASSERT(ip->i_df.if_broot_bytes == 0); | 
|  | } | 
|  | #endif | 
|  | iip->ili_format.ilf_fields &= ~XFS_ILOG_DBROOT; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_DEXT | XFS_ILOG_DBROOT | | 
|  | XFS_ILOG_DEV | XFS_ILOG_UUID); | 
|  | if ((iip->ili_format.ilf_fields & XFS_ILOG_DDATA) && | 
|  | (ip->i_df.if_bytes > 0)) { | 
|  | ASSERT(ip->i_df.if_u1.if_data != NULL); | 
|  | ASSERT(ip->i_d.di_size > 0); | 
|  | nvecs++; | 
|  | } else { | 
|  | iip->ili_format.ilf_fields &= ~XFS_ILOG_DDATA; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_DEV: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | XFS_ILOG_DEXT | XFS_ILOG_UUID); | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_UUID: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | XFS_ILOG_DEXT | XFS_ILOG_DEV); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ASSERT(0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no attributes associated with this file, | 
|  | * then there cannot be anything more to log. | 
|  | * Clear all attribute-related log flags. | 
|  | */ | 
|  | if (!XFS_IFORK_Q(ip)) { | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT); | 
|  | return nvecs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Log any necessary attribute data. | 
|  | */ | 
|  | switch (ip->i_d.di_aformat) { | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_ADATA | XFS_ILOG_ABROOT); | 
|  | if ((iip->ili_format.ilf_fields & XFS_ILOG_AEXT) && | 
|  | (ip->i_d.di_anextents > 0) && | 
|  | (ip->i_afp->if_bytes > 0)) { | 
|  | ASSERT(ip->i_afp->if_u1.if_extents != NULL); | 
|  | nvecs++; | 
|  | } else { | 
|  | iip->ili_format.ilf_fields &= ~XFS_ILOG_AEXT; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_ADATA | XFS_ILOG_AEXT); | 
|  | if ((iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) && | 
|  | (ip->i_afp->if_broot_bytes > 0)) { | 
|  | ASSERT(ip->i_afp->if_broot != NULL); | 
|  | nvecs++; | 
|  | } else { | 
|  | iip->ili_format.ilf_fields &= ~XFS_ILOG_ABROOT; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | iip->ili_format.ilf_fields &= | 
|  | ~(XFS_ILOG_AEXT | XFS_ILOG_ABROOT); | 
|  | if ((iip->ili_format.ilf_fields & XFS_ILOG_ADATA) && | 
|  | (ip->i_afp->if_bytes > 0)) { | 
|  | ASSERT(ip->i_afp->if_u1.if_data != NULL); | 
|  | nvecs++; | 
|  | } else { | 
|  | iip->ili_format.ilf_fields &= ~XFS_ILOG_ADATA; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ASSERT(0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | return nvecs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to fill in the vector of log iovecs for the | 
|  | * given inode log item.  It fills the first item with an inode | 
|  | * log format structure, the second with the on-disk inode structure, | 
|  | * and a possible third and/or fourth with the inode data/extents/b-tree | 
|  | * root and inode attributes data/extents/b-tree root. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_inode_item_format( | 
|  | xfs_inode_log_item_t	*iip, | 
|  | xfs_log_iovec_t		*log_vector) | 
|  | { | 
|  | uint			nvecs; | 
|  | xfs_log_iovec_t		*vecp; | 
|  | xfs_inode_t		*ip; | 
|  | size_t			data_bytes; | 
|  | xfs_bmbt_rec_t		*ext_buffer; | 
|  | int			nrecs; | 
|  | xfs_mount_t		*mp; | 
|  |  | 
|  | ip = iip->ili_inode; | 
|  | vecp = log_vector; | 
|  |  | 
|  | vecp->i_addr = (xfs_caddr_t)&iip->ili_format; | 
|  | vecp->i_len  = sizeof(xfs_inode_log_format_t); | 
|  | vecp->i_type = XLOG_REG_TYPE_IFORMAT; | 
|  | vecp++; | 
|  | nvecs	     = 1; | 
|  |  | 
|  | /* | 
|  | * Make sure the linux inode is dirty. We do this before | 
|  | * clearing i_update_core as the VFS will call back into | 
|  | * XFS here and set i_update_core, so we need to dirty the | 
|  | * inode first so that the ordering of i_update_core and | 
|  | * unlogged modifications still works as described below. | 
|  | */ | 
|  | xfs_mark_inode_dirty_sync(ip); | 
|  |  | 
|  | /* | 
|  | * Clear i_update_core if the timestamps (or any other | 
|  | * non-transactional modification) need flushing/logging | 
|  | * and we're about to log them with the rest of the core. | 
|  | * | 
|  | * This is the same logic as xfs_iflush() but this code can't | 
|  | * run at the same time as xfs_iflush because we're in commit | 
|  | * processing here and so we have the inode lock held in | 
|  | * exclusive mode.  Although it doesn't really matter | 
|  | * for the timestamps if both routines were to grab the | 
|  | * timestamps or not.  That would be ok. | 
|  | * | 
|  | * We clear i_update_core before copying out the data. | 
|  | * This is for coordination with our timestamp updates | 
|  | * that don't hold the inode lock. They will always | 
|  | * update the timestamps BEFORE setting i_update_core, | 
|  | * so if we clear i_update_core after they set it we | 
|  | * are guaranteed to see their updates to the timestamps | 
|  | * either here.  Likewise, if they set it after we clear it | 
|  | * here, we'll see it either on the next commit of this | 
|  | * inode or the next time the inode gets flushed via | 
|  | * xfs_iflush().  This depends on strongly ordered memory | 
|  | * semantics, but we have that.  We use the SYNCHRONIZE | 
|  | * macro to make sure that the compiler does not reorder | 
|  | * the i_update_core access below the data copy below. | 
|  | */ | 
|  | if (ip->i_update_core)  { | 
|  | ip->i_update_core = 0; | 
|  | SYNCHRONIZE(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make sure to get the latest timestamps from the Linux inode. | 
|  | */ | 
|  | xfs_synchronize_times(ip); | 
|  |  | 
|  | vecp->i_addr = (xfs_caddr_t)&ip->i_d; | 
|  | vecp->i_len  = sizeof(struct xfs_icdinode); | 
|  | vecp->i_type = XLOG_REG_TYPE_ICORE; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | iip->ili_format.ilf_fields |= XFS_ILOG_CORE; | 
|  |  | 
|  | /* | 
|  | * If this is really an old format inode, then we need to | 
|  | * log it as such.  This means that we have to copy the link | 
|  | * count from the new field to the old.  We don't have to worry | 
|  | * about the new fields, because nothing trusts them as long as | 
|  | * the old inode version number is there.  If the superblock already | 
|  | * has a new version number, then we don't bother converting back. | 
|  | */ | 
|  | mp = ip->i_mount; | 
|  | ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb)); | 
|  | if (ip->i_d.di_version == 1) { | 
|  | if (!xfs_sb_version_hasnlink(&mp->m_sb)) { | 
|  | /* | 
|  | * Convert it back. | 
|  | */ | 
|  | ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1); | 
|  | ip->i_d.di_onlink = ip->i_d.di_nlink; | 
|  | } else { | 
|  | /* | 
|  | * The superblock version has already been bumped, | 
|  | * so just make the conversion to the new inode | 
|  | * format permanent. | 
|  | */ | 
|  | ip->i_d.di_version = 2; | 
|  | ip->i_d.di_onlink = 0; | 
|  | memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad)); | 
|  | } | 
|  | } | 
|  |  | 
|  | switch (ip->i_d.di_format) { | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_DDATA | XFS_ILOG_DBROOT | | 
|  | XFS_ILOG_DEV | XFS_ILOG_UUID))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_DEXT) { | 
|  | ASSERT(ip->i_df.if_bytes > 0); | 
|  | ASSERT(ip->i_df.if_u1.if_extents != NULL); | 
|  | ASSERT(ip->i_d.di_nextents > 0); | 
|  | ASSERT(iip->ili_extents_buf == NULL); | 
|  | nrecs = ip->i_df.if_bytes / | 
|  | (uint)sizeof(xfs_bmbt_rec_t); | 
|  | ASSERT(nrecs > 0); | 
|  | #ifdef XFS_NATIVE_HOST | 
|  | if (nrecs == ip->i_d.di_nextents) { | 
|  | /* | 
|  | * There are no delayed allocation | 
|  | * extents, so just point to the | 
|  | * real extents array. | 
|  | */ | 
|  | vecp->i_addr = | 
|  | (char *)(ip->i_df.if_u1.if_extents); | 
|  | vecp->i_len = ip->i_df.if_bytes; | 
|  | vecp->i_type = XLOG_REG_TYPE_IEXT; | 
|  | } else | 
|  | #endif | 
|  | { | 
|  | /* | 
|  | * There are delayed allocation extents | 
|  | * in the inode, or we need to convert | 
|  | * the extents to on disk format. | 
|  | * Use xfs_iextents_copy() | 
|  | * to copy only the real extents into | 
|  | * a separate buffer.  We'll free the | 
|  | * buffer in the unlock routine. | 
|  | */ | 
|  | ext_buffer = kmem_alloc(ip->i_df.if_bytes, | 
|  | KM_SLEEP); | 
|  | iip->ili_extents_buf = ext_buffer; | 
|  | vecp->i_addr = (xfs_caddr_t)ext_buffer; | 
|  | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, | 
|  | XFS_DATA_FORK); | 
|  | vecp->i_type = XLOG_REG_TYPE_IEXT; | 
|  | } | 
|  | ASSERT(vecp->i_len <= ip->i_df.if_bytes); | 
|  | iip->ili_format.ilf_dsize = vecp->i_len; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_DDATA | XFS_ILOG_DEXT | | 
|  | XFS_ILOG_DEV | XFS_ILOG_UUID))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_DBROOT) { | 
|  | ASSERT(ip->i_df.if_broot_bytes > 0); | 
|  | ASSERT(ip->i_df.if_broot != NULL); | 
|  | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_broot; | 
|  | vecp->i_len = ip->i_df.if_broot_bytes; | 
|  | vecp->i_type = XLOG_REG_TYPE_IBROOT; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | iip->ili_format.ilf_dsize = ip->i_df.if_broot_bytes; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | 
|  | XFS_ILOG_DEV | XFS_ILOG_UUID))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_DDATA) { | 
|  | ASSERT(ip->i_df.if_bytes > 0); | 
|  | ASSERT(ip->i_df.if_u1.if_data != NULL); | 
|  | ASSERT(ip->i_d.di_size > 0); | 
|  |  | 
|  | vecp->i_addr = (xfs_caddr_t)ip->i_df.if_u1.if_data; | 
|  | /* | 
|  | * Round i_bytes up to a word boundary. | 
|  | * The underlying memory is guaranteed to | 
|  | * to be there by xfs_idata_realloc(). | 
|  | */ | 
|  | data_bytes = roundup(ip->i_df.if_bytes, 4); | 
|  | ASSERT((ip->i_df.if_real_bytes == 0) || | 
|  | (ip->i_df.if_real_bytes == data_bytes)); | 
|  | vecp->i_len = (int)data_bytes; | 
|  | vecp->i_type = XLOG_REG_TYPE_ILOCAL; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | iip->ili_format.ilf_dsize = (unsigned)data_bytes; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_DEV: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | 
|  | XFS_ILOG_DDATA | XFS_ILOG_UUID))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) { | 
|  | iip->ili_format.ilf_u.ilfu_rdev = | 
|  | ip->i_df.if_u2.if_rdev; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_UUID: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_DBROOT | XFS_ILOG_DEXT | | 
|  | XFS_ILOG_DDATA | XFS_ILOG_DEV))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) { | 
|  | iip->ili_format.ilf_u.ilfu_uuid = | 
|  | ip->i_df.if_u2.if_uuid; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ASSERT(0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no attributes associated with the file, | 
|  | * then we're done. | 
|  | * Assert that no attribute-related log flags are set. | 
|  | */ | 
|  | if (!XFS_IFORK_Q(ip)) { | 
|  | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); | 
|  | iip->ili_format.ilf_size = nvecs; | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); | 
|  | return; | 
|  | } | 
|  |  | 
|  | switch (ip->i_d.di_aformat) { | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_ADATA | XFS_ILOG_ABROOT))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_AEXT) { | 
|  | ASSERT(ip->i_afp->if_bytes > 0); | 
|  | ASSERT(ip->i_afp->if_u1.if_extents != NULL); | 
|  | ASSERT(ip->i_d.di_anextents > 0); | 
|  | #ifdef DEBUG | 
|  | nrecs = ip->i_afp->if_bytes / | 
|  | (uint)sizeof(xfs_bmbt_rec_t); | 
|  | #endif | 
|  | ASSERT(nrecs > 0); | 
|  | ASSERT(nrecs == ip->i_d.di_anextents); | 
|  | #ifdef XFS_NATIVE_HOST | 
|  | /* | 
|  | * There are not delayed allocation extents | 
|  | * for attributes, so just point at the array. | 
|  | */ | 
|  | vecp->i_addr = (char *)(ip->i_afp->if_u1.if_extents); | 
|  | vecp->i_len = ip->i_afp->if_bytes; | 
|  | #else | 
|  | ASSERT(iip->ili_aextents_buf == NULL); | 
|  | /* | 
|  | * Need to endian flip before logging | 
|  | */ | 
|  | ext_buffer = kmem_alloc(ip->i_afp->if_bytes, | 
|  | KM_SLEEP); | 
|  | iip->ili_aextents_buf = ext_buffer; | 
|  | vecp->i_addr = (xfs_caddr_t)ext_buffer; | 
|  | vecp->i_len = xfs_iextents_copy(ip, ext_buffer, | 
|  | XFS_ATTR_FORK); | 
|  | #endif | 
|  | vecp->i_type = XLOG_REG_TYPE_IATTR_EXT; | 
|  | iip->ili_format.ilf_asize = vecp->i_len; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_ADATA | XFS_ILOG_AEXT))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_ABROOT) { | 
|  | ASSERT(ip->i_afp->if_broot_bytes > 0); | 
|  | ASSERT(ip->i_afp->if_broot != NULL); | 
|  | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_broot; | 
|  | vecp->i_len = ip->i_afp->if_broot_bytes; | 
|  | vecp->i_type = XLOG_REG_TYPE_IATTR_BROOT; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | iip->ili_format.ilf_asize = ip->i_afp->if_broot_bytes; | 
|  | } | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_LOCAL: | 
|  | ASSERT(!(iip->ili_format.ilf_fields & | 
|  | (XFS_ILOG_ABROOT | XFS_ILOG_AEXT))); | 
|  | if (iip->ili_format.ilf_fields & XFS_ILOG_ADATA) { | 
|  | ASSERT(ip->i_afp->if_bytes > 0); | 
|  | ASSERT(ip->i_afp->if_u1.if_data != NULL); | 
|  |  | 
|  | vecp->i_addr = (xfs_caddr_t)ip->i_afp->if_u1.if_data; | 
|  | /* | 
|  | * Round i_bytes up to a word boundary. | 
|  | * The underlying memory is guaranteed to | 
|  | * to be there by xfs_idata_realloc(). | 
|  | */ | 
|  | data_bytes = roundup(ip->i_afp->if_bytes, 4); | 
|  | ASSERT((ip->i_afp->if_real_bytes == 0) || | 
|  | (ip->i_afp->if_real_bytes == data_bytes)); | 
|  | vecp->i_len = (int)data_bytes; | 
|  | vecp->i_type = XLOG_REG_TYPE_IATTR_LOCAL; | 
|  | vecp++; | 
|  | nvecs++; | 
|  | iip->ili_format.ilf_asize = (unsigned)data_bytes; | 
|  | } | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ASSERT(0); | 
|  | break; | 
|  | } | 
|  |  | 
|  | ASSERT(nvecs == iip->ili_item.li_desc->lid_size); | 
|  | iip->ili_format.ilf_size = nvecs; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is called to pin the inode associated with the inode log | 
|  | * item in memory so it cannot be written out. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_inode_item_pin( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL)); | 
|  |  | 
|  | trace_xfs_inode_pin(iip->ili_inode, _RET_IP_); | 
|  | atomic_inc(&iip->ili_inode->i_pincount); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is called to unpin the inode associated with the inode log | 
|  | * item which was previously pinned with a call to xfs_inode_item_pin(). | 
|  | * | 
|  | * Also wake up anyone in xfs_iunpin_wait() if the count goes to 0. | 
|  | */ | 
|  | /* ARGSUSED */ | 
|  | STATIC void | 
|  | xfs_inode_item_unpin( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | struct xfs_inode	*ip = iip->ili_inode; | 
|  |  | 
|  | trace_xfs_inode_unpin(ip, _RET_IP_); | 
|  | ASSERT(atomic_read(&ip->i_pincount) > 0); | 
|  | if (atomic_dec_and_test(&ip->i_pincount)) | 
|  | wake_up(&ip->i_ipin_wait); | 
|  | } | 
|  |  | 
|  | /* ARGSUSED */ | 
|  | STATIC void | 
|  | xfs_inode_item_unpin_remove( | 
|  | xfs_inode_log_item_t	*iip, | 
|  | xfs_trans_t		*tp) | 
|  | { | 
|  | xfs_inode_item_unpin(iip); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to attempt to lock the inode associated with this | 
|  | * inode log item, in preparation for the push routine which does the actual | 
|  | * iflush.  Don't sleep on the inode lock or the flush lock. | 
|  | * | 
|  | * If the flush lock is already held, indicating that the inode has | 
|  | * been or is in the process of being flushed, then (ideally) we'd like to | 
|  | * see if the inode's buffer is still incore, and if so give it a nudge. | 
|  | * We delay doing so until the pushbuf routine, though, to avoid holding | 
|  | * the AIL lock across a call to the blackhole which is the buffer cache. | 
|  | * Also we don't want to sleep in any device strategy routines, which can happen | 
|  | * if we do the subsequent bawrite in here. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_inode_item_trylock( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | register xfs_inode_t	*ip; | 
|  |  | 
|  | ip = iip->ili_inode; | 
|  |  | 
|  | if (xfs_ipincount(ip) > 0) { | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
|  | return XFS_ITEM_LOCKED; | 
|  | } | 
|  |  | 
|  | if (!xfs_iflock_nowait(ip)) { | 
|  | /* | 
|  | * inode has already been flushed to the backing buffer, | 
|  | * leave it locked in shared mode, pushbuf routine will | 
|  | * unlock it. | 
|  | */ | 
|  | return XFS_ITEM_PUSHBUF; | 
|  | } | 
|  |  | 
|  | /* Stale items should force out the iclog */ | 
|  | if (ip->i_flags & XFS_ISTALE) { | 
|  | xfs_ifunlock(ip); | 
|  | /* | 
|  | * we hold the AIL lock - notify the unlock routine of this | 
|  | * so it doesn't try to get the lock again. | 
|  | */ | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED|XFS_IUNLOCK_NONOTIFY); | 
|  | return XFS_ITEM_PINNED; | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
|  | ASSERT(iip->ili_format.ilf_fields != 0); | 
|  | ASSERT(iip->ili_logged == 0); | 
|  | ASSERT(iip->ili_item.li_flags & XFS_LI_IN_AIL); | 
|  | } | 
|  | #endif | 
|  | return XFS_ITEM_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock the inode associated with the inode log item. | 
|  | * Clear the fields of the inode and inode log item that | 
|  | * are specific to the current transaction.  If the | 
|  | * hold flags is set, do not unlock the inode. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_inode_item_unlock( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | uint		hold; | 
|  | uint		iolocked; | 
|  | uint		lock_flags; | 
|  | xfs_inode_t	*ip; | 
|  |  | 
|  | ASSERT(iip != NULL); | 
|  | ASSERT(iip->ili_inode->i_itemp != NULL); | 
|  | ASSERT(xfs_isilocked(iip->ili_inode, XFS_ILOCK_EXCL)); | 
|  | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & | 
|  | XFS_ILI_IOLOCKED_EXCL)) || | 
|  | xfs_isilocked(iip->ili_inode, XFS_IOLOCK_EXCL)); | 
|  | ASSERT((!(iip->ili_inode->i_itemp->ili_flags & | 
|  | XFS_ILI_IOLOCKED_SHARED)) || | 
|  | xfs_isilocked(iip->ili_inode, XFS_IOLOCK_SHARED)); | 
|  | /* | 
|  | * Clear the transaction pointer in the inode. | 
|  | */ | 
|  | ip = iip->ili_inode; | 
|  | ip->i_transp = NULL; | 
|  |  | 
|  | /* | 
|  | * If the inode needed a separate buffer with which to log | 
|  | * its extents, then free it now. | 
|  | */ | 
|  | if (iip->ili_extents_buf != NULL) { | 
|  | ASSERT(ip->i_d.di_format == XFS_DINODE_FMT_EXTENTS); | 
|  | ASSERT(ip->i_d.di_nextents > 0); | 
|  | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_DEXT); | 
|  | ASSERT(ip->i_df.if_bytes > 0); | 
|  | kmem_free(iip->ili_extents_buf); | 
|  | iip->ili_extents_buf = NULL; | 
|  | } | 
|  | if (iip->ili_aextents_buf != NULL) { | 
|  | ASSERT(ip->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS); | 
|  | ASSERT(ip->i_d.di_anextents > 0); | 
|  | ASSERT(iip->ili_format.ilf_fields & XFS_ILOG_AEXT); | 
|  | ASSERT(ip->i_afp->if_bytes > 0); | 
|  | kmem_free(iip->ili_aextents_buf); | 
|  | iip->ili_aextents_buf = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out if we should unlock the inode or not. | 
|  | */ | 
|  | hold = iip->ili_flags & XFS_ILI_HOLD; | 
|  |  | 
|  | /* | 
|  | * Before clearing out the flags, remember whether we | 
|  | * are holding the inode's IO lock. | 
|  | */ | 
|  | iolocked = iip->ili_flags & XFS_ILI_IOLOCKED_ANY; | 
|  |  | 
|  | /* | 
|  | * Clear out the fields of the inode log item particular | 
|  | * to the current transaction. | 
|  | */ | 
|  | iip->ili_flags = 0; | 
|  |  | 
|  | /* | 
|  | * Unlock the inode if XFS_ILI_HOLD was not set. | 
|  | */ | 
|  | if (!hold) { | 
|  | lock_flags = XFS_ILOCK_EXCL; | 
|  | if (iolocked & XFS_ILI_IOLOCKED_EXCL) { | 
|  | lock_flags |= XFS_IOLOCK_EXCL; | 
|  | } else if (iolocked & XFS_ILI_IOLOCKED_SHARED) { | 
|  | lock_flags |= XFS_IOLOCK_SHARED; | 
|  | } | 
|  | xfs_iput(iip->ili_inode, lock_flags); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to find out where the oldest active copy of the | 
|  | * inode log item in the on disk log resides now that the last log | 
|  | * write of it completed at the given lsn.  Since we always re-log | 
|  | * all dirty data in an inode, the latest copy in the on disk log | 
|  | * is the only one that matters.  Therefore, simply return the | 
|  | * given lsn. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC xfs_lsn_t | 
|  | xfs_inode_item_committed( | 
|  | xfs_inode_log_item_t	*iip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | return (lsn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This gets called by xfs_trans_push_ail(), when IOP_TRYLOCK | 
|  | * failed to get the inode flush lock but did get the inode locked SHARED. | 
|  | * Here we're trying to see if the inode buffer is incore, and if so whether it's | 
|  | * marked delayed write. If that's the case, we'll promote it and that will | 
|  | * allow the caller to write the buffer by triggering the xfsbufd to run. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_inode_item_pushbuf( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | xfs_inode_t	*ip; | 
|  | xfs_mount_t	*mp; | 
|  | xfs_buf_t	*bp; | 
|  |  | 
|  | ip = iip->ili_inode; | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); | 
|  |  | 
|  | /* | 
|  | * If a flush is not in progress anymore, chances are that the | 
|  | * inode was taken off the AIL. So, just get out. | 
|  | */ | 
|  | if (completion_done(&ip->i_flush) || | 
|  | ((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0)) { | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | return; | 
|  | } | 
|  |  | 
|  | mp = ip->i_mount; | 
|  | bp = xfs_incore(mp->m_ddev_targp, iip->ili_format.ilf_blkno, | 
|  | iip->ili_format.ilf_len, XBF_TRYLOCK); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  | if (!bp) | 
|  | return; | 
|  | if (XFS_BUF_ISDELAYWRITE(bp)) | 
|  | xfs_buf_delwri_promote(bp); | 
|  | xfs_buf_relse(bp); | 
|  | return; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is called to asynchronously write the inode associated with this | 
|  | * inode log item out to disk. The inode will already have been locked by | 
|  | * a successful call to xfs_inode_item_trylock(). | 
|  | */ | 
|  | STATIC void | 
|  | xfs_inode_item_push( | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | xfs_inode_t	*ip; | 
|  |  | 
|  | ip = iip->ili_inode; | 
|  |  | 
|  | ASSERT(xfs_isilocked(ip, XFS_ILOCK_SHARED)); | 
|  | ASSERT(!completion_done(&ip->i_flush)); | 
|  | /* | 
|  | * Since we were able to lock the inode's flush lock and | 
|  | * we found it on the AIL, the inode must be dirty.  This | 
|  | * is because the inode is removed from the AIL while still | 
|  | * holding the flush lock in xfs_iflush_done().  Thus, if | 
|  | * we found it in the AIL and were able to obtain the flush | 
|  | * lock without sleeping, then there must not have been | 
|  | * anyone in the process of flushing the inode. | 
|  | */ | 
|  | ASSERT(XFS_FORCED_SHUTDOWN(ip->i_mount) || | 
|  | iip->ili_format.ilf_fields != 0); | 
|  |  | 
|  | /* | 
|  | * Push the inode to it's backing buffer. This will not remove the | 
|  | * inode from the AIL - a further push will be required to trigger a | 
|  | * buffer push. However, this allows all the dirty inodes to be pushed | 
|  | * to the buffer before it is pushed to disk. THe buffer IO completion | 
|  | * will pull th einode from the AIL, mark it clean and unlock the flush | 
|  | * lock. | 
|  | */ | 
|  | (void) xfs_iflush(ip, 0); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * XXX rcc - this one really has to do something.  Probably needs | 
|  | * to stamp in a new field in the incore inode. | 
|  | */ | 
|  | /* ARGSUSED */ | 
|  | STATIC void | 
|  | xfs_inode_item_committing( | 
|  | xfs_inode_log_item_t	*iip, | 
|  | xfs_lsn_t		lsn) | 
|  | { | 
|  | iip->ili_last_lsn = lsn; | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the ops vector shared by all buf log items. | 
|  | */ | 
|  | static struct xfs_item_ops xfs_inode_item_ops = { | 
|  | .iop_size	= (uint(*)(xfs_log_item_t*))xfs_inode_item_size, | 
|  | .iop_format	= (void(*)(xfs_log_item_t*, xfs_log_iovec_t*)) | 
|  | xfs_inode_item_format, | 
|  | .iop_pin	= (void(*)(xfs_log_item_t*))xfs_inode_item_pin, | 
|  | .iop_unpin	= (void(*)(xfs_log_item_t*))xfs_inode_item_unpin, | 
|  | .iop_unpin_remove = (void(*)(xfs_log_item_t*, xfs_trans_t*)) | 
|  | xfs_inode_item_unpin_remove, | 
|  | .iop_trylock	= (uint(*)(xfs_log_item_t*))xfs_inode_item_trylock, | 
|  | .iop_unlock	= (void(*)(xfs_log_item_t*))xfs_inode_item_unlock, | 
|  | .iop_committed	= (xfs_lsn_t(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | xfs_inode_item_committed, | 
|  | .iop_push	= (void(*)(xfs_log_item_t*))xfs_inode_item_push, | 
|  | .iop_pushbuf	= (void(*)(xfs_log_item_t*))xfs_inode_item_pushbuf, | 
|  | .iop_committing = (void(*)(xfs_log_item_t*, xfs_lsn_t)) | 
|  | xfs_inode_item_committing | 
|  | }; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Initialize the inode log item for a newly allocated (in-core) inode. | 
|  | */ | 
|  | void | 
|  | xfs_inode_item_init( | 
|  | xfs_inode_t	*ip, | 
|  | xfs_mount_t	*mp) | 
|  | { | 
|  | xfs_inode_log_item_t	*iip; | 
|  |  | 
|  | ASSERT(ip->i_itemp == NULL); | 
|  | iip = ip->i_itemp = kmem_zone_zalloc(xfs_ili_zone, KM_SLEEP); | 
|  |  | 
|  | iip->ili_inode = ip; | 
|  | xfs_log_item_init(mp, &iip->ili_item, XFS_LI_INODE, | 
|  | &xfs_inode_item_ops); | 
|  | iip->ili_format.ilf_type = XFS_LI_INODE; | 
|  | iip->ili_format.ilf_ino = ip->i_ino; | 
|  | iip->ili_format.ilf_blkno = ip->i_imap.im_blkno; | 
|  | iip->ili_format.ilf_len = ip->i_imap.im_len; | 
|  | iip->ili_format.ilf_boffset = ip->i_imap.im_boffset; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the inode log item and any memory hanging off of it. | 
|  | */ | 
|  | void | 
|  | xfs_inode_item_destroy( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | #ifdef XFS_TRANS_DEBUG | 
|  | if (ip->i_itemp->ili_root_size != 0) { | 
|  | kmem_free(ip->i_itemp->ili_orig_root); | 
|  | } | 
|  | #endif | 
|  | kmem_zone_free(xfs_ili_zone, ip->i_itemp); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * This is the inode flushing I/O completion routine.  It is called | 
|  | * from interrupt level when the buffer containing the inode is | 
|  | * flushed to disk.  It is responsible for removing the inode item | 
|  | * from the AIL if it has not been re-logged, and unlocking the inode's | 
|  | * flush lock. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | void | 
|  | xfs_iflush_done( | 
|  | xfs_buf_t		*bp, | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | xfs_inode_t		*ip = iip->ili_inode; | 
|  | struct xfs_ail		*ailp = iip->ili_item.li_ailp; | 
|  |  | 
|  | /* | 
|  | * We only want to pull the item from the AIL if it is | 
|  | * actually there and its location in the log has not | 
|  | * changed since we started the flush.  Thus, we only bother | 
|  | * if the ili_logged flag is set and the inode's lsn has not | 
|  | * changed.  First we check the lsn outside | 
|  | * the lock since it's cheaper, and then we recheck while | 
|  | * holding the lock before removing the inode from the AIL. | 
|  | */ | 
|  | if (iip->ili_logged && | 
|  | (iip->ili_item.li_lsn == iip->ili_flush_lsn)) { | 
|  | spin_lock(&ailp->xa_lock); | 
|  | if (iip->ili_item.li_lsn == iip->ili_flush_lsn) { | 
|  | /* xfs_trans_ail_delete() drops the AIL lock. */ | 
|  | xfs_trans_ail_delete(ailp, (xfs_log_item_t*)iip); | 
|  | } else { | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | iip->ili_logged = 0; | 
|  |  | 
|  | /* | 
|  | * Clear the ili_last_fields bits now that we know that the | 
|  | * data corresponding to them is safely on disk. | 
|  | */ | 
|  | iip->ili_last_fields = 0; | 
|  |  | 
|  | /* | 
|  | * Release the inode's flush lock since we're done with it. | 
|  | */ | 
|  | xfs_ifunlock(ip); | 
|  |  | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is the inode flushing abort routine.  It is called | 
|  | * from xfs_iflush when the filesystem is shutting down to clean | 
|  | * up the inode state. | 
|  | * It is responsible for removing the inode item | 
|  | * from the AIL if it has not been re-logged, and unlocking the inode's | 
|  | * flush lock. | 
|  | */ | 
|  | void | 
|  | xfs_iflush_abort( | 
|  | xfs_inode_t		*ip) | 
|  | { | 
|  | xfs_inode_log_item_t	*iip = ip->i_itemp; | 
|  | xfs_mount_t		*mp; | 
|  |  | 
|  | iip = ip->i_itemp; | 
|  | mp = ip->i_mount; | 
|  | if (iip) { | 
|  | struct xfs_ail	*ailp = iip->ili_item.li_ailp; | 
|  | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | 
|  | spin_lock(&ailp->xa_lock); | 
|  | if (iip->ili_item.li_flags & XFS_LI_IN_AIL) { | 
|  | /* xfs_trans_ail_delete() drops the AIL lock. */ | 
|  | xfs_trans_ail_delete(ailp, (xfs_log_item_t *)iip); | 
|  | } else | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | } | 
|  | iip->ili_logged = 0; | 
|  | /* | 
|  | * Clear the ili_last_fields bits now that we know that the | 
|  | * data corresponding to them is safely on disk. | 
|  | */ | 
|  | iip->ili_last_fields = 0; | 
|  | /* | 
|  | * Clear the inode logging fields so no more flushes are | 
|  | * attempted. | 
|  | */ | 
|  | iip->ili_format.ilf_fields = 0; | 
|  | } | 
|  | /* | 
|  | * Release the inode's flush lock since we're done with it. | 
|  | */ | 
|  | xfs_ifunlock(ip); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_istale_done( | 
|  | xfs_buf_t		*bp, | 
|  | xfs_inode_log_item_t	*iip) | 
|  | { | 
|  | xfs_iflush_abort(iip->ili_inode); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * convert an xfs_inode_log_format struct from either 32 or 64 bit versions | 
|  | * (which can have different field alignments) to the native version | 
|  | */ | 
|  | int | 
|  | xfs_inode_item_format_convert( | 
|  | xfs_log_iovec_t		*buf, | 
|  | xfs_inode_log_format_t	*in_f) | 
|  | { | 
|  | if (buf->i_len == sizeof(xfs_inode_log_format_32_t)) { | 
|  | xfs_inode_log_format_32_t *in_f32; | 
|  |  | 
|  | in_f32 = (xfs_inode_log_format_32_t *)buf->i_addr; | 
|  | in_f->ilf_type = in_f32->ilf_type; | 
|  | in_f->ilf_size = in_f32->ilf_size; | 
|  | in_f->ilf_fields = in_f32->ilf_fields; | 
|  | in_f->ilf_asize = in_f32->ilf_asize; | 
|  | in_f->ilf_dsize = in_f32->ilf_dsize; | 
|  | in_f->ilf_ino = in_f32->ilf_ino; | 
|  | /* copy biggest field of ilf_u */ | 
|  | memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, | 
|  | in_f32->ilf_u.ilfu_uuid.__u_bits, | 
|  | sizeof(uuid_t)); | 
|  | in_f->ilf_blkno = in_f32->ilf_blkno; | 
|  | in_f->ilf_len = in_f32->ilf_len; | 
|  | in_f->ilf_boffset = in_f32->ilf_boffset; | 
|  | return 0; | 
|  | } else if (buf->i_len == sizeof(xfs_inode_log_format_64_t)){ | 
|  | xfs_inode_log_format_64_t *in_f64; | 
|  |  | 
|  | in_f64 = (xfs_inode_log_format_64_t *)buf->i_addr; | 
|  | in_f->ilf_type = in_f64->ilf_type; | 
|  | in_f->ilf_size = in_f64->ilf_size; | 
|  | in_f->ilf_fields = in_f64->ilf_fields; | 
|  | in_f->ilf_asize = in_f64->ilf_asize; | 
|  | in_f->ilf_dsize = in_f64->ilf_dsize; | 
|  | in_f->ilf_ino = in_f64->ilf_ino; | 
|  | /* copy biggest field of ilf_u */ | 
|  | memcpy(in_f->ilf_u.ilfu_uuid.__u_bits, | 
|  | in_f64->ilf_u.ilfu_uuid.__u_bits, | 
|  | sizeof(uuid_t)); | 
|  | in_f->ilf_blkno = in_f64->ilf_blkno; | 
|  | in_f->ilf_len = in_f64->ilf_len; | 
|  | in_f->ilf_boffset = in_f64->ilf_boffset; | 
|  | return 0; | 
|  | } | 
|  | return EFSCORRUPTED; | 
|  | } |