|  | /* | 
|  | *  linux/fs/exec.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * #!-checking implemented by tytso. | 
|  | */ | 
|  | /* | 
|  | * Demand-loading implemented 01.12.91 - no need to read anything but | 
|  | * the header into memory. The inode of the executable is put into | 
|  | * "current->executable", and page faults do the actual loading. Clean. | 
|  | * | 
|  | * Once more I can proudly say that linux stood up to being changed: it | 
|  | * was less than 2 hours work to get demand-loading completely implemented. | 
|  | * | 
|  | * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead, | 
|  | * current->executable is only used by the procfs.  This allows a dispatch | 
|  | * table to check for several different types  of binary formats.  We keep | 
|  | * trying until we recognize the file or we run out of supported binary | 
|  | * formats. | 
|  | */ | 
|  |  | 
|  | #include <linux/slab.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/stat.h> | 
|  | #include <linux/fcntl.h> | 
|  | #include <linux/swap.h> | 
|  | #include <linux/string.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/pagemap.h> | 
|  | #include <linux/perf_event.h> | 
|  | #include <linux/highmem.h> | 
|  | #include <linux/spinlock.h> | 
|  | #include <linux/key.h> | 
|  | #include <linux/personality.h> | 
|  | #include <linux/binfmts.h> | 
|  | #include <linux/utsname.h> | 
|  | #include <linux/pid_namespace.h> | 
|  | #include <linux/module.h> | 
|  | #include <linux/namei.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/tsacct_kern.h> | 
|  | #include <linux/cn_proc.h> | 
|  | #include <linux/audit.h> | 
|  | #include <linux/tracehook.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/fsnotify.h> | 
|  | #include <linux/fs_struct.h> | 
|  | #include <linux/pipe_fs_i.h> | 
|  | #include <linux/oom.h> | 
|  | #include <linux/compat.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/mmu_context.h> | 
|  | #include <asm/tlb.h> | 
|  | #include "internal.h" | 
|  |  | 
|  | int core_uses_pid; | 
|  | char core_pattern[CORENAME_MAX_SIZE] = "core"; | 
|  | unsigned int core_pipe_limit; | 
|  | int suid_dumpable = 0; | 
|  |  | 
|  | struct core_name { | 
|  | char *corename; | 
|  | int used, size; | 
|  | }; | 
|  | static atomic_t call_count = ATOMIC_INIT(1); | 
|  |  | 
|  | /* The maximal length of core_pattern is also specified in sysctl.c */ | 
|  |  | 
|  | static LIST_HEAD(formats); | 
|  | static DEFINE_RWLOCK(binfmt_lock); | 
|  |  | 
|  | int __register_binfmt(struct linux_binfmt * fmt, int insert) | 
|  | { | 
|  | if (!fmt) | 
|  | return -EINVAL; | 
|  | write_lock(&binfmt_lock); | 
|  | insert ? list_add(&fmt->lh, &formats) : | 
|  | list_add_tail(&fmt->lh, &formats); | 
|  | write_unlock(&binfmt_lock); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(__register_binfmt); | 
|  |  | 
|  | void unregister_binfmt(struct linux_binfmt * fmt) | 
|  | { | 
|  | write_lock(&binfmt_lock); | 
|  | list_del(&fmt->lh); | 
|  | write_unlock(&binfmt_lock); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(unregister_binfmt); | 
|  |  | 
|  | static inline void put_binfmt(struct linux_binfmt * fmt) | 
|  | { | 
|  | module_put(fmt->module); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note that a shared library must be both readable and executable due to | 
|  | * security reasons. | 
|  | * | 
|  | * Also note that we take the address to load from from the file itself. | 
|  | */ | 
|  | SYSCALL_DEFINE1(uselib, const char __user *, library) | 
|  | { | 
|  | struct file *file; | 
|  | char *tmp = getname(library); | 
|  | int error = PTR_ERR(tmp); | 
|  | static const struct open_flags uselib_flags = { | 
|  | .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, | 
|  | .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN, | 
|  | .intent = LOOKUP_OPEN | 
|  | }; | 
|  |  | 
|  | if (IS_ERR(tmp)) | 
|  | goto out; | 
|  |  | 
|  | file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW); | 
|  | putname(tmp); | 
|  | error = PTR_ERR(file); | 
|  | if (IS_ERR(file)) | 
|  | goto out; | 
|  |  | 
|  | error = -EINVAL; | 
|  | if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) | 
|  | goto exit; | 
|  |  | 
|  | error = -EACCES; | 
|  | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) | 
|  | goto exit; | 
|  |  | 
|  | fsnotify_open(file); | 
|  |  | 
|  | error = -ENOEXEC; | 
|  | if(file->f_op) { | 
|  | struct linux_binfmt * fmt; | 
|  |  | 
|  | read_lock(&binfmt_lock); | 
|  | list_for_each_entry(fmt, &formats, lh) { | 
|  | if (!fmt->load_shlib) | 
|  | continue; | 
|  | if (!try_module_get(fmt->module)) | 
|  | continue; | 
|  | read_unlock(&binfmt_lock); | 
|  | error = fmt->load_shlib(file); | 
|  | read_lock(&binfmt_lock); | 
|  | put_binfmt(fmt); | 
|  | if (error != -ENOEXEC) | 
|  | break; | 
|  | } | 
|  | read_unlock(&binfmt_lock); | 
|  | } | 
|  | exit: | 
|  | fput(file); | 
|  | out: | 
|  | return error; | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  | /* | 
|  | * The nascent bprm->mm is not visible until exec_mmap() but it can | 
|  | * use a lot of memory, account these pages in current->mm temporary | 
|  | * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we | 
|  | * change the counter back via acct_arg_size(0). | 
|  | */ | 
|  | static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  | long diff = (long)(pages - bprm->vma_pages); | 
|  |  | 
|  | if (!mm || !diff) | 
|  | return; | 
|  |  | 
|  | bprm->vma_pages = pages; | 
|  |  | 
|  | #ifdef SPLIT_RSS_COUNTING | 
|  | add_mm_counter(mm, MM_ANONPAGES, diff); | 
|  | #else | 
|  | spin_lock(&mm->page_table_lock); | 
|  | add_mm_counter(mm, MM_ANONPAGES, diff); | 
|  | spin_unlock(&mm->page_table_lock); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | int write) | 
|  | { | 
|  | struct page *page; | 
|  | int ret; | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | if (write) { | 
|  | ret = expand_downwards(bprm->vma, pos); | 
|  | if (ret < 0) | 
|  | return NULL; | 
|  | } | 
|  | #endif | 
|  | ret = get_user_pages(current, bprm->mm, pos, | 
|  | 1, write, 1, &page, NULL); | 
|  | if (ret <= 0) | 
|  | return NULL; | 
|  |  | 
|  | if (write) { | 
|  | unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; | 
|  | struct rlimit *rlim; | 
|  |  | 
|  | acct_arg_size(bprm, size / PAGE_SIZE); | 
|  |  | 
|  | /* | 
|  | * We've historically supported up to 32 pages (ARG_MAX) | 
|  | * of argument strings even with small stacks | 
|  | */ | 
|  | if (size <= ARG_MAX) | 
|  | return page; | 
|  |  | 
|  | /* | 
|  | * Limit to 1/4-th the stack size for the argv+env strings. | 
|  | * This ensures that: | 
|  | *  - the remaining binfmt code will not run out of stack space, | 
|  | *  - the program will have a reasonable amount of stack left | 
|  | *    to work from. | 
|  | */ | 
|  | rlim = current->signal->rlim; | 
|  | if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) { | 
|  | put_page(page); | 
|  | return NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void put_arg_page(struct page *page) | 
|  | { | 
|  | put_page(page); | 
|  | } | 
|  |  | 
|  | static void free_arg_page(struct linux_binprm *bprm, int i) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void free_arg_pages(struct linux_binprm *bprm) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | struct page *page) | 
|  | { | 
|  | flush_cache_page(bprm->vma, pos, page_to_pfn(page)); | 
|  | } | 
|  |  | 
|  | static int __bprm_mm_init(struct linux_binprm *bprm) | 
|  | { | 
|  | int err; | 
|  | struct vm_area_struct *vma = NULL; | 
|  | struct mm_struct *mm = bprm->mm; | 
|  |  | 
|  | bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); | 
|  | if (!vma) | 
|  | return -ENOMEM; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | vma->vm_mm = mm; | 
|  |  | 
|  | /* | 
|  | * Place the stack at the largest stack address the architecture | 
|  | * supports. Later, we'll move this to an appropriate place. We don't | 
|  | * use STACK_TOP because that can depend on attributes which aren't | 
|  | * configured yet. | 
|  | */ | 
|  | BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); | 
|  | vma->vm_end = STACK_TOP_MAX; | 
|  | vma->vm_start = vma->vm_end - PAGE_SIZE; | 
|  | vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; | 
|  | vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); | 
|  | INIT_LIST_HEAD(&vma->anon_vma_chain); | 
|  |  | 
|  | err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | err = insert_vm_struct(mm, vma); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | mm->stack_vm = mm->total_vm = 1; | 
|  | up_write(&mm->mmap_sem); | 
|  | bprm->p = vma->vm_end - sizeof(void *); | 
|  | return 0; | 
|  | err: | 
|  | up_write(&mm->mmap_sem); | 
|  | bprm->vma = NULL; | 
|  | kmem_cache_free(vm_area_cachep, vma); | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
|  | { | 
|  | return len <= MAX_ARG_STRLEN; | 
|  | } | 
|  |  | 
|  | #else | 
|  |  | 
|  | static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) | 
|  | { | 
|  | } | 
|  |  | 
|  | static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | int write) | 
|  | { | 
|  | struct page *page; | 
|  |  | 
|  | page = bprm->page[pos / PAGE_SIZE]; | 
|  | if (!page && write) { | 
|  | page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); | 
|  | if (!page) | 
|  | return NULL; | 
|  | bprm->page[pos / PAGE_SIZE] = page; | 
|  | } | 
|  |  | 
|  | return page; | 
|  | } | 
|  |  | 
|  | static void put_arg_page(struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | static void free_arg_page(struct linux_binprm *bprm, int i) | 
|  | { | 
|  | if (bprm->page[i]) { | 
|  | __free_page(bprm->page[i]); | 
|  | bprm->page[i] = NULL; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void free_arg_pages(struct linux_binprm *bprm) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < MAX_ARG_PAGES; i++) | 
|  | free_arg_page(bprm, i); | 
|  | } | 
|  |  | 
|  | static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, | 
|  | struct page *page) | 
|  | { | 
|  | } | 
|  |  | 
|  | static int __bprm_mm_init(struct linux_binprm *bprm) | 
|  | { | 
|  | bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool valid_arg_len(struct linux_binprm *bprm, long len) | 
|  | { | 
|  | return len <= bprm->p; | 
|  | } | 
|  |  | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | /* | 
|  | * Create a new mm_struct and populate it with a temporary stack | 
|  | * vm_area_struct.  We don't have enough context at this point to set the stack | 
|  | * flags, permissions, and offset, so we use temporary values.  We'll update | 
|  | * them later in setup_arg_pages(). | 
|  | */ | 
|  | int bprm_mm_init(struct linux_binprm *bprm) | 
|  | { | 
|  | int err; | 
|  | struct mm_struct *mm = NULL; | 
|  |  | 
|  | bprm->mm = mm = mm_alloc(); | 
|  | err = -ENOMEM; | 
|  | if (!mm) | 
|  | goto err; | 
|  |  | 
|  | err = init_new_context(current, mm); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | err = __bprm_mm_init(bprm); | 
|  | if (err) | 
|  | goto err; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | err: | 
|  | if (mm) { | 
|  | bprm->mm = NULL; | 
|  | mmdrop(mm); | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | struct user_arg_ptr { | 
|  | #ifdef CONFIG_COMPAT | 
|  | bool is_compat; | 
|  | #endif | 
|  | union { | 
|  | const char __user *const __user *native; | 
|  | #ifdef CONFIG_COMPAT | 
|  | compat_uptr_t __user *compat; | 
|  | #endif | 
|  | } ptr; | 
|  | }; | 
|  |  | 
|  | static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) | 
|  | { | 
|  | const char __user *native; | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | if (unlikely(argv.is_compat)) { | 
|  | compat_uptr_t compat; | 
|  |  | 
|  | if (get_user(compat, argv.ptr.compat + nr)) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | return compat_ptr(compat); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | if (get_user(native, argv.ptr.native + nr)) | 
|  | return ERR_PTR(-EFAULT); | 
|  |  | 
|  | return native; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * count() counts the number of strings in array ARGV. | 
|  | */ | 
|  | static int count(struct user_arg_ptr argv, int max) | 
|  | { | 
|  | int i = 0; | 
|  |  | 
|  | if (argv.ptr.native != NULL) { | 
|  | for (;;) { | 
|  | const char __user *p = get_user_arg_ptr(argv, i); | 
|  |  | 
|  | if (!p) | 
|  | break; | 
|  |  | 
|  | if (IS_ERR(p)) | 
|  | return -EFAULT; | 
|  |  | 
|  | if (i++ >= max) | 
|  | return -E2BIG; | 
|  |  | 
|  | if (fatal_signal_pending(current)) | 
|  | return -ERESTARTNOHAND; | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * 'copy_strings()' copies argument/environment strings from the old | 
|  | * processes's memory to the new process's stack.  The call to get_user_pages() | 
|  | * ensures the destination page is created and not swapped out. | 
|  | */ | 
|  | static int copy_strings(int argc, struct user_arg_ptr argv, | 
|  | struct linux_binprm *bprm) | 
|  | { | 
|  | struct page *kmapped_page = NULL; | 
|  | char *kaddr = NULL; | 
|  | unsigned long kpos = 0; | 
|  | int ret; | 
|  |  | 
|  | while (argc-- > 0) { | 
|  | const char __user *str; | 
|  | int len; | 
|  | unsigned long pos; | 
|  |  | 
|  | ret = -EFAULT; | 
|  | str = get_user_arg_ptr(argv, argc); | 
|  | if (IS_ERR(str)) | 
|  | goto out; | 
|  |  | 
|  | len = strnlen_user(str, MAX_ARG_STRLEN); | 
|  | if (!len) | 
|  | goto out; | 
|  |  | 
|  | ret = -E2BIG; | 
|  | if (!valid_arg_len(bprm, len)) | 
|  | goto out; | 
|  |  | 
|  | /* We're going to work our way backwords. */ | 
|  | pos = bprm->p; | 
|  | str += len; | 
|  | bprm->p -= len; | 
|  |  | 
|  | while (len > 0) { | 
|  | int offset, bytes_to_copy; | 
|  |  | 
|  | if (fatal_signal_pending(current)) { | 
|  | ret = -ERESTARTNOHAND; | 
|  | goto out; | 
|  | } | 
|  | cond_resched(); | 
|  |  | 
|  | offset = pos % PAGE_SIZE; | 
|  | if (offset == 0) | 
|  | offset = PAGE_SIZE; | 
|  |  | 
|  | bytes_to_copy = offset; | 
|  | if (bytes_to_copy > len) | 
|  | bytes_to_copy = len; | 
|  |  | 
|  | offset -= bytes_to_copy; | 
|  | pos -= bytes_to_copy; | 
|  | str -= bytes_to_copy; | 
|  | len -= bytes_to_copy; | 
|  |  | 
|  | if (!kmapped_page || kpos != (pos & PAGE_MASK)) { | 
|  | struct page *page; | 
|  |  | 
|  | page = get_arg_page(bprm, pos, 1); | 
|  | if (!page) { | 
|  | ret = -E2BIG; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (kmapped_page) { | 
|  | flush_kernel_dcache_page(kmapped_page); | 
|  | kunmap(kmapped_page); | 
|  | put_arg_page(kmapped_page); | 
|  | } | 
|  | kmapped_page = page; | 
|  | kaddr = kmap(kmapped_page); | 
|  | kpos = pos & PAGE_MASK; | 
|  | flush_arg_page(bprm, kpos, kmapped_page); | 
|  | } | 
|  | if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | } | 
|  | } | 
|  | ret = 0; | 
|  | out: | 
|  | if (kmapped_page) { | 
|  | flush_kernel_dcache_page(kmapped_page); | 
|  | kunmap(kmapped_page); | 
|  | put_arg_page(kmapped_page); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Like copy_strings, but get argv and its values from kernel memory. | 
|  | */ | 
|  | int copy_strings_kernel(int argc, const char *const *__argv, | 
|  | struct linux_binprm *bprm) | 
|  | { | 
|  | int r; | 
|  | mm_segment_t oldfs = get_fs(); | 
|  | struct user_arg_ptr argv = { | 
|  | .ptr.native = (const char __user *const  __user *)__argv, | 
|  | }; | 
|  |  | 
|  | set_fs(KERNEL_DS); | 
|  | r = copy_strings(argc, argv, bprm); | 
|  | set_fs(oldfs); | 
|  |  | 
|  | return r; | 
|  | } | 
|  | EXPORT_SYMBOL(copy_strings_kernel); | 
|  |  | 
|  | #ifdef CONFIG_MMU | 
|  |  | 
|  | /* | 
|  | * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once | 
|  | * the binfmt code determines where the new stack should reside, we shift it to | 
|  | * its final location.  The process proceeds as follows: | 
|  | * | 
|  | * 1) Use shift to calculate the new vma endpoints. | 
|  | * 2) Extend vma to cover both the old and new ranges.  This ensures the | 
|  | *    arguments passed to subsequent functions are consistent. | 
|  | * 3) Move vma's page tables to the new range. | 
|  | * 4) Free up any cleared pgd range. | 
|  | * 5) Shrink the vma to cover only the new range. | 
|  | */ | 
|  | static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) | 
|  | { | 
|  | struct mm_struct *mm = vma->vm_mm; | 
|  | unsigned long old_start = vma->vm_start; | 
|  | unsigned long old_end = vma->vm_end; | 
|  | unsigned long length = old_end - old_start; | 
|  | unsigned long new_start = old_start - shift; | 
|  | unsigned long new_end = old_end - shift; | 
|  | struct mmu_gather tlb; | 
|  |  | 
|  | BUG_ON(new_start > new_end); | 
|  |  | 
|  | /* | 
|  | * ensure there are no vmas between where we want to go | 
|  | * and where we are | 
|  | */ | 
|  | if (vma != find_vma(mm, new_start)) | 
|  | return -EFAULT; | 
|  |  | 
|  | /* | 
|  | * cover the whole range: [new_start, old_end) | 
|  | */ | 
|  | if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* | 
|  | * move the page tables downwards, on failure we rely on | 
|  | * process cleanup to remove whatever mess we made. | 
|  | */ | 
|  | if (length != move_page_tables(vma, old_start, | 
|  | vma, new_start, length)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | lru_add_drain(); | 
|  | tlb_gather_mmu(&tlb, mm, 0); | 
|  | if (new_end > old_start) { | 
|  | /* | 
|  | * when the old and new regions overlap clear from new_end. | 
|  | */ | 
|  | free_pgd_range(&tlb, new_end, old_end, new_end, | 
|  | vma->vm_next ? vma->vm_next->vm_start : 0); | 
|  | } else { | 
|  | /* | 
|  | * otherwise, clean from old_start; this is done to not touch | 
|  | * the address space in [new_end, old_start) some architectures | 
|  | * have constraints on va-space that make this illegal (IA64) - | 
|  | * for the others its just a little faster. | 
|  | */ | 
|  | free_pgd_range(&tlb, old_start, old_end, new_end, | 
|  | vma->vm_next ? vma->vm_next->vm_start : 0); | 
|  | } | 
|  | tlb_finish_mmu(&tlb, new_end, old_end); | 
|  |  | 
|  | /* | 
|  | * Shrink the vma to just the new range.  Always succeeds. | 
|  | */ | 
|  | vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Finalizes the stack vm_area_struct. The flags and permissions are updated, | 
|  | * the stack is optionally relocated, and some extra space is added. | 
|  | */ | 
|  | int setup_arg_pages(struct linux_binprm *bprm, | 
|  | unsigned long stack_top, | 
|  | int executable_stack) | 
|  | { | 
|  | unsigned long ret; | 
|  | unsigned long stack_shift; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct vm_area_struct *vma = bprm->vma; | 
|  | struct vm_area_struct *prev = NULL; | 
|  | unsigned long vm_flags; | 
|  | unsigned long stack_base; | 
|  | unsigned long stack_size; | 
|  | unsigned long stack_expand; | 
|  | unsigned long rlim_stack; | 
|  |  | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | /* Limit stack size to 1GB */ | 
|  | stack_base = rlimit_max(RLIMIT_STACK); | 
|  | if (stack_base > (1 << 30)) | 
|  | stack_base = 1 << 30; | 
|  |  | 
|  | /* Make sure we didn't let the argument array grow too large. */ | 
|  | if (vma->vm_end - vma->vm_start > stack_base) | 
|  | return -ENOMEM; | 
|  |  | 
|  | stack_base = PAGE_ALIGN(stack_top - stack_base); | 
|  |  | 
|  | stack_shift = vma->vm_start - stack_base; | 
|  | mm->arg_start = bprm->p - stack_shift; | 
|  | bprm->p = vma->vm_end - stack_shift; | 
|  | #else | 
|  | stack_top = arch_align_stack(stack_top); | 
|  | stack_top = PAGE_ALIGN(stack_top); | 
|  |  | 
|  | if (unlikely(stack_top < mmap_min_addr) || | 
|  | unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) | 
|  | return -ENOMEM; | 
|  |  | 
|  | stack_shift = vma->vm_end - stack_top; | 
|  |  | 
|  | bprm->p -= stack_shift; | 
|  | mm->arg_start = bprm->p; | 
|  | #endif | 
|  |  | 
|  | if (bprm->loader) | 
|  | bprm->loader -= stack_shift; | 
|  | bprm->exec -= stack_shift; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | vm_flags = VM_STACK_FLAGS; | 
|  |  | 
|  | /* | 
|  | * Adjust stack execute permissions; explicitly enable for | 
|  | * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone | 
|  | * (arch default) otherwise. | 
|  | */ | 
|  | if (unlikely(executable_stack == EXSTACK_ENABLE_X)) | 
|  | vm_flags |= VM_EXEC; | 
|  | else if (executable_stack == EXSTACK_DISABLE_X) | 
|  | vm_flags &= ~VM_EXEC; | 
|  | vm_flags |= mm->def_flags; | 
|  | vm_flags |= VM_STACK_INCOMPLETE_SETUP; | 
|  |  | 
|  | ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, | 
|  | vm_flags); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | BUG_ON(prev != vma); | 
|  |  | 
|  | /* Move stack pages down in memory. */ | 
|  | if (stack_shift) { | 
|  | ret = shift_arg_pages(vma, stack_shift); | 
|  | if (ret) | 
|  | goto out_unlock; | 
|  | } | 
|  |  | 
|  | /* mprotect_fixup is overkill to remove the temporary stack flags */ | 
|  | vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; | 
|  |  | 
|  | stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ | 
|  | stack_size = vma->vm_end - vma->vm_start; | 
|  | /* | 
|  | * Align this down to a page boundary as expand_stack | 
|  | * will align it up. | 
|  | */ | 
|  | rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK; | 
|  | #ifdef CONFIG_STACK_GROWSUP | 
|  | if (stack_size + stack_expand > rlim_stack) | 
|  | stack_base = vma->vm_start + rlim_stack; | 
|  | else | 
|  | stack_base = vma->vm_end + stack_expand; | 
|  | #else | 
|  | if (stack_size + stack_expand > rlim_stack) | 
|  | stack_base = vma->vm_end - rlim_stack; | 
|  | else | 
|  | stack_base = vma->vm_start - stack_expand; | 
|  | #endif | 
|  | current->mm->start_stack = bprm->p; | 
|  | ret = expand_stack(vma, stack_base); | 
|  | if (ret) | 
|  | ret = -EFAULT; | 
|  |  | 
|  | out_unlock: | 
|  | up_write(&mm->mmap_sem); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(setup_arg_pages); | 
|  |  | 
|  | #endif /* CONFIG_MMU */ | 
|  |  | 
|  | struct file *open_exec(const char *name) | 
|  | { | 
|  | struct file *file; | 
|  | int err; | 
|  | static const struct open_flags open_exec_flags = { | 
|  | .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, | 
|  | .acc_mode = MAY_EXEC | MAY_OPEN, | 
|  | .intent = LOOKUP_OPEN | 
|  | }; | 
|  |  | 
|  | file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW); | 
|  | if (IS_ERR(file)) | 
|  | goto out; | 
|  |  | 
|  | err = -EACCES; | 
|  | if (!S_ISREG(file->f_path.dentry->d_inode->i_mode)) | 
|  | goto exit; | 
|  |  | 
|  | if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) | 
|  | goto exit; | 
|  |  | 
|  | fsnotify_open(file); | 
|  |  | 
|  | err = deny_write_access(file); | 
|  | if (err) | 
|  | goto exit; | 
|  |  | 
|  | out: | 
|  | return file; | 
|  |  | 
|  | exit: | 
|  | fput(file); | 
|  | return ERR_PTR(err); | 
|  | } | 
|  | EXPORT_SYMBOL(open_exec); | 
|  |  | 
|  | int kernel_read(struct file *file, loff_t offset, | 
|  | char *addr, unsigned long count) | 
|  | { | 
|  | mm_segment_t old_fs; | 
|  | loff_t pos = offset; | 
|  | int result; | 
|  |  | 
|  | old_fs = get_fs(); | 
|  | set_fs(get_ds()); | 
|  | /* The cast to a user pointer is valid due to the set_fs() */ | 
|  | result = vfs_read(file, (void __user *)addr, count, &pos); | 
|  | set_fs(old_fs); | 
|  | return result; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(kernel_read); | 
|  |  | 
|  | static int exec_mmap(struct mm_struct *mm) | 
|  | { | 
|  | struct task_struct *tsk; | 
|  | struct mm_struct * old_mm, *active_mm; | 
|  |  | 
|  | /* Notify parent that we're no longer interested in the old VM */ | 
|  | tsk = current; | 
|  | old_mm = current->mm; | 
|  | sync_mm_rss(tsk, old_mm); | 
|  | mm_release(tsk, old_mm); | 
|  |  | 
|  | if (old_mm) { | 
|  | /* | 
|  | * Make sure that if there is a core dump in progress | 
|  | * for the old mm, we get out and die instead of going | 
|  | * through with the exec.  We must hold mmap_sem around | 
|  | * checking core_state and changing tsk->mm. | 
|  | */ | 
|  | down_read(&old_mm->mmap_sem); | 
|  | if (unlikely(old_mm->core_state)) { | 
|  | up_read(&old_mm->mmap_sem); | 
|  | return -EINTR; | 
|  | } | 
|  | } | 
|  | task_lock(tsk); | 
|  | active_mm = tsk->active_mm; | 
|  | tsk->mm = mm; | 
|  | tsk->active_mm = mm; | 
|  | activate_mm(active_mm, mm); | 
|  | if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) { | 
|  | atomic_dec(&old_mm->oom_disable_count); | 
|  | atomic_inc(&tsk->mm->oom_disable_count); | 
|  | } | 
|  | task_unlock(tsk); | 
|  | arch_pick_mmap_layout(mm); | 
|  | if (old_mm) { | 
|  | up_read(&old_mm->mmap_sem); | 
|  | BUG_ON(active_mm != old_mm); | 
|  | mm_update_next_owner(old_mm); | 
|  | mmput(old_mm); | 
|  | return 0; | 
|  | } | 
|  | mmdrop(active_mm); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function makes sure the current process has its own signal table, | 
|  | * so that flush_signal_handlers can later reset the handlers without | 
|  | * disturbing other processes.  (Other processes might share the signal | 
|  | * table via the CLONE_SIGHAND option to clone().) | 
|  | */ | 
|  | static int de_thread(struct task_struct *tsk) | 
|  | { | 
|  | struct signal_struct *sig = tsk->signal; | 
|  | struct sighand_struct *oldsighand = tsk->sighand; | 
|  | spinlock_t *lock = &oldsighand->siglock; | 
|  |  | 
|  | if (thread_group_empty(tsk)) | 
|  | goto no_thread_group; | 
|  |  | 
|  | /* | 
|  | * Kill all other threads in the thread group. | 
|  | */ | 
|  | spin_lock_irq(lock); | 
|  | if (signal_group_exit(sig)) { | 
|  | /* | 
|  | * Another group action in progress, just | 
|  | * return so that the signal is processed. | 
|  | */ | 
|  | spin_unlock_irq(lock); | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | sig->group_exit_task = tsk; | 
|  | sig->notify_count = zap_other_threads(tsk); | 
|  | if (!thread_group_leader(tsk)) | 
|  | sig->notify_count--; | 
|  |  | 
|  | while (sig->notify_count) { | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | spin_unlock_irq(lock); | 
|  | schedule(); | 
|  | spin_lock_irq(lock); | 
|  | } | 
|  | spin_unlock_irq(lock); | 
|  |  | 
|  | /* | 
|  | * At this point all other threads have exited, all we have to | 
|  | * do is to wait for the thread group leader to become inactive, | 
|  | * and to assume its PID: | 
|  | */ | 
|  | if (!thread_group_leader(tsk)) { | 
|  | struct task_struct *leader = tsk->group_leader; | 
|  |  | 
|  | sig->notify_count = -1;	/* for exit_notify() */ | 
|  | for (;;) { | 
|  | write_lock_irq(&tasklist_lock); | 
|  | if (likely(leader->exit_state)) | 
|  | break; | 
|  | __set_current_state(TASK_UNINTERRUPTIBLE); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  | schedule(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The only record we have of the real-time age of a | 
|  | * process, regardless of execs it's done, is start_time. | 
|  | * All the past CPU time is accumulated in signal_struct | 
|  | * from sister threads now dead.  But in this non-leader | 
|  | * exec, nothing survives from the original leader thread, | 
|  | * whose birth marks the true age of this process now. | 
|  | * When we take on its identity by switching to its PID, we | 
|  | * also take its birthdate (always earlier than our own). | 
|  | */ | 
|  | tsk->start_time = leader->start_time; | 
|  |  | 
|  | BUG_ON(!same_thread_group(leader, tsk)); | 
|  | BUG_ON(has_group_leader_pid(tsk)); | 
|  | /* | 
|  | * An exec() starts a new thread group with the | 
|  | * TGID of the previous thread group. Rehash the | 
|  | * two threads with a switched PID, and release | 
|  | * the former thread group leader: | 
|  | */ | 
|  |  | 
|  | /* Become a process group leader with the old leader's pid. | 
|  | * The old leader becomes a thread of the this thread group. | 
|  | * Note: The old leader also uses this pid until release_task | 
|  | *       is called.  Odd but simple and correct. | 
|  | */ | 
|  | detach_pid(tsk, PIDTYPE_PID); | 
|  | tsk->pid = leader->pid; | 
|  | attach_pid(tsk, PIDTYPE_PID,  task_pid(leader)); | 
|  | transfer_pid(leader, tsk, PIDTYPE_PGID); | 
|  | transfer_pid(leader, tsk, PIDTYPE_SID); | 
|  |  | 
|  | list_replace_rcu(&leader->tasks, &tsk->tasks); | 
|  | list_replace_init(&leader->sibling, &tsk->sibling); | 
|  |  | 
|  | tsk->group_leader = tsk; | 
|  | leader->group_leader = tsk; | 
|  |  | 
|  | tsk->exit_signal = SIGCHLD; | 
|  |  | 
|  | BUG_ON(leader->exit_state != EXIT_ZOMBIE); | 
|  | leader->exit_state = EXIT_DEAD; | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | release_task(leader); | 
|  | } | 
|  |  | 
|  | sig->group_exit_task = NULL; | 
|  | sig->notify_count = 0; | 
|  |  | 
|  | no_thread_group: | 
|  | if (current->mm) | 
|  | setmax_mm_hiwater_rss(&sig->maxrss, current->mm); | 
|  |  | 
|  | exit_itimers(sig); | 
|  | flush_itimer_signals(); | 
|  |  | 
|  | if (atomic_read(&oldsighand->count) != 1) { | 
|  | struct sighand_struct *newsighand; | 
|  | /* | 
|  | * This ->sighand is shared with the CLONE_SIGHAND | 
|  | * but not CLONE_THREAD task, switch to the new one. | 
|  | */ | 
|  | newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); | 
|  | if (!newsighand) | 
|  | return -ENOMEM; | 
|  |  | 
|  | atomic_set(&newsighand->count, 1); | 
|  | memcpy(newsighand->action, oldsighand->action, | 
|  | sizeof(newsighand->action)); | 
|  |  | 
|  | write_lock_irq(&tasklist_lock); | 
|  | spin_lock(&oldsighand->siglock); | 
|  | rcu_assign_pointer(tsk->sighand, newsighand); | 
|  | spin_unlock(&oldsighand->siglock); | 
|  | write_unlock_irq(&tasklist_lock); | 
|  |  | 
|  | __cleanup_sighand(oldsighand); | 
|  | } | 
|  |  | 
|  | BUG_ON(!thread_group_leader(tsk)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * These functions flushes out all traces of the currently running executable | 
|  | * so that a new one can be started | 
|  | */ | 
|  | static void flush_old_files(struct files_struct * files) | 
|  | { | 
|  | long j = -1; | 
|  | struct fdtable *fdt; | 
|  |  | 
|  | spin_lock(&files->file_lock); | 
|  | for (;;) { | 
|  | unsigned long set, i; | 
|  |  | 
|  | j++; | 
|  | i = j * __NFDBITS; | 
|  | fdt = files_fdtable(files); | 
|  | if (i >= fdt->max_fds) | 
|  | break; | 
|  | set = fdt->close_on_exec->fds_bits[j]; | 
|  | if (!set) | 
|  | continue; | 
|  | fdt->close_on_exec->fds_bits[j] = 0; | 
|  | spin_unlock(&files->file_lock); | 
|  | for ( ; set ; i++,set >>= 1) { | 
|  | if (set & 1) { | 
|  | sys_close(i); | 
|  | } | 
|  | } | 
|  | spin_lock(&files->file_lock); | 
|  |  | 
|  | } | 
|  | spin_unlock(&files->file_lock); | 
|  | } | 
|  |  | 
|  | char *get_task_comm(char *buf, struct task_struct *tsk) | 
|  | { | 
|  | /* buf must be at least sizeof(tsk->comm) in size */ | 
|  | task_lock(tsk); | 
|  | strncpy(buf, tsk->comm, sizeof(tsk->comm)); | 
|  | task_unlock(tsk); | 
|  | return buf; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(get_task_comm); | 
|  |  | 
|  | void set_task_comm(struct task_struct *tsk, char *buf) | 
|  | { | 
|  | task_lock(tsk); | 
|  |  | 
|  | /* | 
|  | * Threads may access current->comm without holding | 
|  | * the task lock, so write the string carefully. | 
|  | * Readers without a lock may see incomplete new | 
|  | * names but are safe from non-terminating string reads. | 
|  | */ | 
|  | memset(tsk->comm, 0, TASK_COMM_LEN); | 
|  | wmb(); | 
|  | strlcpy(tsk->comm, buf, sizeof(tsk->comm)); | 
|  | task_unlock(tsk); | 
|  | perf_event_comm(tsk); | 
|  | } | 
|  |  | 
|  | int flush_old_exec(struct linux_binprm * bprm) | 
|  | { | 
|  | int retval; | 
|  |  | 
|  | /* | 
|  | * Make sure we have a private signal table and that | 
|  | * we are unassociated from the previous thread group. | 
|  | */ | 
|  | retval = de_thread(current); | 
|  | if (retval) | 
|  | goto out; | 
|  |  | 
|  | set_mm_exe_file(bprm->mm, bprm->file); | 
|  |  | 
|  | /* | 
|  | * Release all of the old mmap stuff | 
|  | */ | 
|  | acct_arg_size(bprm, 0); | 
|  | retval = exec_mmap(bprm->mm); | 
|  | if (retval) | 
|  | goto out; | 
|  |  | 
|  | bprm->mm = NULL;		/* We're using it now */ | 
|  |  | 
|  | set_fs(USER_DS); | 
|  | current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD); | 
|  | flush_thread(); | 
|  | current->personality &= ~bprm->per_clear; | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out: | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(flush_old_exec); | 
|  |  | 
|  | void setup_new_exec(struct linux_binprm * bprm) | 
|  | { | 
|  | int i, ch; | 
|  | const char *name; | 
|  | char tcomm[sizeof(current->comm)]; | 
|  |  | 
|  | arch_pick_mmap_layout(current->mm); | 
|  |  | 
|  | /* This is the point of no return */ | 
|  | current->sas_ss_sp = current->sas_ss_size = 0; | 
|  |  | 
|  | if (current_euid() == current_uid() && current_egid() == current_gid()) | 
|  | set_dumpable(current->mm, 1); | 
|  | else | 
|  | set_dumpable(current->mm, suid_dumpable); | 
|  |  | 
|  | name = bprm->filename; | 
|  |  | 
|  | /* Copies the binary name from after last slash */ | 
|  | for (i=0; (ch = *(name++)) != '\0';) { | 
|  | if (ch == '/') | 
|  | i = 0; /* overwrite what we wrote */ | 
|  | else | 
|  | if (i < (sizeof(tcomm) - 1)) | 
|  | tcomm[i++] = ch; | 
|  | } | 
|  | tcomm[i] = '\0'; | 
|  | set_task_comm(current, tcomm); | 
|  |  | 
|  | /* Set the new mm task size. We have to do that late because it may | 
|  | * depend on TIF_32BIT which is only updated in flush_thread() on | 
|  | * some architectures like powerpc | 
|  | */ | 
|  | current->mm->task_size = TASK_SIZE; | 
|  |  | 
|  | /* install the new credentials */ | 
|  | if (bprm->cred->uid != current_euid() || | 
|  | bprm->cred->gid != current_egid()) { | 
|  | current->pdeath_signal = 0; | 
|  | } else if (file_permission(bprm->file, MAY_READ) || | 
|  | bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) { | 
|  | set_dumpable(current->mm, suid_dumpable); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Flush performance counters when crossing a | 
|  | * security domain: | 
|  | */ | 
|  | if (!get_dumpable(current->mm)) | 
|  | perf_event_exit_task(current); | 
|  |  | 
|  | /* An exec changes our domain. We are no longer part of the thread | 
|  | group */ | 
|  |  | 
|  | current->self_exec_id++; | 
|  |  | 
|  | flush_signal_handlers(current, 0); | 
|  | flush_old_files(current->files); | 
|  | } | 
|  | EXPORT_SYMBOL(setup_new_exec); | 
|  |  | 
|  | /* | 
|  | * Prepare credentials and lock ->cred_guard_mutex. | 
|  | * install_exec_creds() commits the new creds and drops the lock. | 
|  | * Or, if exec fails before, free_bprm() should release ->cred and | 
|  | * and unlock. | 
|  | */ | 
|  | int prepare_bprm_creds(struct linux_binprm *bprm) | 
|  | { | 
|  | if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) | 
|  | return -ERESTARTNOINTR; | 
|  |  | 
|  | bprm->cred = prepare_exec_creds(); | 
|  | if (likely(bprm->cred)) | 
|  | return 0; | 
|  |  | 
|  | mutex_unlock(¤t->signal->cred_guard_mutex); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | void free_bprm(struct linux_binprm *bprm) | 
|  | { | 
|  | free_arg_pages(bprm); | 
|  | if (bprm->cred) { | 
|  | mutex_unlock(¤t->signal->cred_guard_mutex); | 
|  | abort_creds(bprm->cred); | 
|  | } | 
|  | kfree(bprm); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * install the new credentials for this executable | 
|  | */ | 
|  | void install_exec_creds(struct linux_binprm *bprm) | 
|  | { | 
|  | security_bprm_committing_creds(bprm); | 
|  |  | 
|  | commit_creds(bprm->cred); | 
|  | bprm->cred = NULL; | 
|  | /* | 
|  | * cred_guard_mutex must be held at least to this point to prevent | 
|  | * ptrace_attach() from altering our determination of the task's | 
|  | * credentials; any time after this it may be unlocked. | 
|  | */ | 
|  | security_bprm_committed_creds(bprm); | 
|  | mutex_unlock(¤t->signal->cred_guard_mutex); | 
|  | } | 
|  | EXPORT_SYMBOL(install_exec_creds); | 
|  |  | 
|  | /* | 
|  | * determine how safe it is to execute the proposed program | 
|  | * - the caller must hold ->cred_guard_mutex to protect against | 
|  | *   PTRACE_ATTACH | 
|  | */ | 
|  | int check_unsafe_exec(struct linux_binprm *bprm) | 
|  | { | 
|  | struct task_struct *p = current, *t; | 
|  | unsigned n_fs; | 
|  | int res = 0; | 
|  |  | 
|  | bprm->unsafe = tracehook_unsafe_exec(p); | 
|  |  | 
|  | n_fs = 1; | 
|  | spin_lock(&p->fs->lock); | 
|  | rcu_read_lock(); | 
|  | for (t = next_thread(p); t != p; t = next_thread(t)) { | 
|  | if (t->fs == p->fs) | 
|  | n_fs++; | 
|  | } | 
|  | rcu_read_unlock(); | 
|  |  | 
|  | if (p->fs->users > n_fs) { | 
|  | bprm->unsafe |= LSM_UNSAFE_SHARE; | 
|  | } else { | 
|  | res = -EAGAIN; | 
|  | if (!p->fs->in_exec) { | 
|  | p->fs->in_exec = 1; | 
|  | res = 1; | 
|  | } | 
|  | } | 
|  | spin_unlock(&p->fs->lock); | 
|  |  | 
|  | return res; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill the binprm structure from the inode. | 
|  | * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes | 
|  | * | 
|  | * This may be called multiple times for binary chains (scripts for example). | 
|  | */ | 
|  | int prepare_binprm(struct linux_binprm *bprm) | 
|  | { | 
|  | umode_t mode; | 
|  | struct inode * inode = bprm->file->f_path.dentry->d_inode; | 
|  | int retval; | 
|  |  | 
|  | mode = inode->i_mode; | 
|  | if (bprm->file->f_op == NULL) | 
|  | return -EACCES; | 
|  |  | 
|  | /* clear any previous set[ug]id data from a previous binary */ | 
|  | bprm->cred->euid = current_euid(); | 
|  | bprm->cred->egid = current_egid(); | 
|  |  | 
|  | if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { | 
|  | /* Set-uid? */ | 
|  | if (mode & S_ISUID) { | 
|  | bprm->per_clear |= PER_CLEAR_ON_SETID; | 
|  | bprm->cred->euid = inode->i_uid; | 
|  | } | 
|  |  | 
|  | /* Set-gid? */ | 
|  | /* | 
|  | * If setgid is set but no group execute bit then this | 
|  | * is a candidate for mandatory locking, not a setgid | 
|  | * executable. | 
|  | */ | 
|  | if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { | 
|  | bprm->per_clear |= PER_CLEAR_ON_SETID; | 
|  | bprm->cred->egid = inode->i_gid; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* fill in binprm security blob */ | 
|  | retval = security_bprm_set_creds(bprm); | 
|  | if (retval) | 
|  | return retval; | 
|  | bprm->cred_prepared = 1; | 
|  |  | 
|  | memset(bprm->buf, 0, BINPRM_BUF_SIZE); | 
|  | return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(prepare_binprm); | 
|  |  | 
|  | /* | 
|  | * Arguments are '\0' separated strings found at the location bprm->p | 
|  | * points to; chop off the first by relocating brpm->p to right after | 
|  | * the first '\0' encountered. | 
|  | */ | 
|  | int remove_arg_zero(struct linux_binprm *bprm) | 
|  | { | 
|  | int ret = 0; | 
|  | unsigned long offset; | 
|  | char *kaddr; | 
|  | struct page *page; | 
|  |  | 
|  | if (!bprm->argc) | 
|  | return 0; | 
|  |  | 
|  | do { | 
|  | offset = bprm->p & ~PAGE_MASK; | 
|  | page = get_arg_page(bprm, bprm->p, 0); | 
|  | if (!page) { | 
|  | ret = -EFAULT; | 
|  | goto out; | 
|  | } | 
|  | kaddr = kmap_atomic(page, KM_USER0); | 
|  |  | 
|  | for (; offset < PAGE_SIZE && kaddr[offset]; | 
|  | offset++, bprm->p++) | 
|  | ; | 
|  |  | 
|  | kunmap_atomic(kaddr, KM_USER0); | 
|  | put_arg_page(page); | 
|  |  | 
|  | if (offset == PAGE_SIZE) | 
|  | free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); | 
|  | } while (offset == PAGE_SIZE); | 
|  |  | 
|  | bprm->p++; | 
|  | bprm->argc--; | 
|  | ret = 0; | 
|  |  | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(remove_arg_zero); | 
|  |  | 
|  | /* | 
|  | * cycle the list of binary formats handler, until one recognizes the image | 
|  | */ | 
|  | int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) | 
|  | { | 
|  | unsigned int depth = bprm->recursion_depth; | 
|  | int try,retval; | 
|  | struct linux_binfmt *fmt; | 
|  |  | 
|  | retval = security_bprm_check(bprm); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = audit_bprm(bprm); | 
|  | if (retval) | 
|  | return retval; | 
|  |  | 
|  | retval = -ENOENT; | 
|  | for (try=0; try<2; try++) { | 
|  | read_lock(&binfmt_lock); | 
|  | list_for_each_entry(fmt, &formats, lh) { | 
|  | int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; | 
|  | if (!fn) | 
|  | continue; | 
|  | if (!try_module_get(fmt->module)) | 
|  | continue; | 
|  | read_unlock(&binfmt_lock); | 
|  | retval = fn(bprm, regs); | 
|  | /* | 
|  | * Restore the depth counter to its starting value | 
|  | * in this call, so we don't have to rely on every | 
|  | * load_binary function to restore it on return. | 
|  | */ | 
|  | bprm->recursion_depth = depth; | 
|  | if (retval >= 0) { | 
|  | if (depth == 0) | 
|  | tracehook_report_exec(fmt, bprm, regs); | 
|  | put_binfmt(fmt); | 
|  | allow_write_access(bprm->file); | 
|  | if (bprm->file) | 
|  | fput(bprm->file); | 
|  | bprm->file = NULL; | 
|  | current->did_exec = 1; | 
|  | proc_exec_connector(current); | 
|  | return retval; | 
|  | } | 
|  | read_lock(&binfmt_lock); | 
|  | put_binfmt(fmt); | 
|  | if (retval != -ENOEXEC || bprm->mm == NULL) | 
|  | break; | 
|  | if (!bprm->file) { | 
|  | read_unlock(&binfmt_lock); | 
|  | return retval; | 
|  | } | 
|  | } | 
|  | read_unlock(&binfmt_lock); | 
|  | if (retval != -ENOEXEC || bprm->mm == NULL) { | 
|  | break; | 
|  | #ifdef CONFIG_MODULES | 
|  | } else { | 
|  | #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) | 
|  | if (printable(bprm->buf[0]) && | 
|  | printable(bprm->buf[1]) && | 
|  | printable(bprm->buf[2]) && | 
|  | printable(bprm->buf[3])) | 
|  | break; /* -ENOEXEC */ | 
|  | if (try) | 
|  | break; /* -ENOEXEC */ | 
|  | request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); | 
|  | #endif | 
|  | } | 
|  | } | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(search_binary_handler); | 
|  |  | 
|  | /* | 
|  | * sys_execve() executes a new program. | 
|  | */ | 
|  | static int do_execve_common(const char *filename, | 
|  | struct user_arg_ptr argv, | 
|  | struct user_arg_ptr envp, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct linux_binprm *bprm; | 
|  | struct file *file; | 
|  | struct files_struct *displaced; | 
|  | bool clear_in_exec; | 
|  | int retval; | 
|  |  | 
|  | retval = unshare_files(&displaced); | 
|  | if (retval) | 
|  | goto out_ret; | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); | 
|  | if (!bprm) | 
|  | goto out_files; | 
|  |  | 
|  | retval = prepare_bprm_creds(bprm); | 
|  | if (retval) | 
|  | goto out_free; | 
|  |  | 
|  | retval = check_unsafe_exec(bprm); | 
|  | if (retval < 0) | 
|  | goto out_free; | 
|  | clear_in_exec = retval; | 
|  | current->in_execve = 1; | 
|  |  | 
|  | file = open_exec(filename); | 
|  | retval = PTR_ERR(file); | 
|  | if (IS_ERR(file)) | 
|  | goto out_unmark; | 
|  |  | 
|  | sched_exec(); | 
|  |  | 
|  | bprm->file = file; | 
|  | bprm->filename = filename; | 
|  | bprm->interp = filename; | 
|  |  | 
|  | retval = bprm_mm_init(bprm); | 
|  | if (retval) | 
|  | goto out_file; | 
|  |  | 
|  | bprm->argc = count(argv, MAX_ARG_STRINGS); | 
|  | if ((retval = bprm->argc) < 0) | 
|  | goto out; | 
|  |  | 
|  | bprm->envc = count(envp, MAX_ARG_STRINGS); | 
|  | if ((retval = bprm->envc) < 0) | 
|  | goto out; | 
|  |  | 
|  | retval = prepare_binprm(bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | retval = copy_strings_kernel(1, &bprm->filename, bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | bprm->exec = bprm->p; | 
|  | retval = copy_strings(bprm->envc, envp, bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | retval = copy_strings(bprm->argc, argv, bprm); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | retval = search_binary_handler(bprm,regs); | 
|  | if (retval < 0) | 
|  | goto out; | 
|  |  | 
|  | /* execve succeeded */ | 
|  | current->fs->in_exec = 0; | 
|  | current->in_execve = 0; | 
|  | acct_update_integrals(current); | 
|  | free_bprm(bprm); | 
|  | if (displaced) | 
|  | put_files_struct(displaced); | 
|  | return retval; | 
|  |  | 
|  | out: | 
|  | if (bprm->mm) { | 
|  | acct_arg_size(bprm, 0); | 
|  | mmput(bprm->mm); | 
|  | } | 
|  |  | 
|  | out_file: | 
|  | if (bprm->file) { | 
|  | allow_write_access(bprm->file); | 
|  | fput(bprm->file); | 
|  | } | 
|  |  | 
|  | out_unmark: | 
|  | if (clear_in_exec) | 
|  | current->fs->in_exec = 0; | 
|  | current->in_execve = 0; | 
|  |  | 
|  | out_free: | 
|  | free_bprm(bprm); | 
|  |  | 
|  | out_files: | 
|  | if (displaced) | 
|  | reset_files_struct(displaced); | 
|  | out_ret: | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | int do_execve(const char *filename, | 
|  | const char __user *const __user *__argv, | 
|  | const char __user *const __user *__envp, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct user_arg_ptr argv = { .ptr.native = __argv }; | 
|  | struct user_arg_ptr envp = { .ptr.native = __envp }; | 
|  | return do_execve_common(filename, argv, envp, regs); | 
|  | } | 
|  |  | 
|  | #ifdef CONFIG_COMPAT | 
|  | int compat_do_execve(char *filename, | 
|  | compat_uptr_t __user *__argv, | 
|  | compat_uptr_t __user *__envp, | 
|  | struct pt_regs *regs) | 
|  | { | 
|  | struct user_arg_ptr argv = { | 
|  | .is_compat = true, | 
|  | .ptr.compat = __argv, | 
|  | }; | 
|  | struct user_arg_ptr envp = { | 
|  | .is_compat = true, | 
|  | .ptr.compat = __envp, | 
|  | }; | 
|  | return do_execve_common(filename, argv, envp, regs); | 
|  | } | 
|  | #endif | 
|  |  | 
|  | void set_binfmt(struct linux_binfmt *new) | 
|  | { | 
|  | struct mm_struct *mm = current->mm; | 
|  |  | 
|  | if (mm->binfmt) | 
|  | module_put(mm->binfmt->module); | 
|  |  | 
|  | mm->binfmt = new; | 
|  | if (new) | 
|  | __module_get(new->module); | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(set_binfmt); | 
|  |  | 
|  | static int expand_corename(struct core_name *cn) | 
|  | { | 
|  | char *old_corename = cn->corename; | 
|  |  | 
|  | cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count); | 
|  | cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL); | 
|  |  | 
|  | if (!cn->corename) { | 
|  | kfree(old_corename); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int cn_printf(struct core_name *cn, const char *fmt, ...) | 
|  | { | 
|  | char *cur; | 
|  | int need; | 
|  | int ret; | 
|  | va_list arg; | 
|  |  | 
|  | va_start(arg, fmt); | 
|  | need = vsnprintf(NULL, 0, fmt, arg); | 
|  | va_end(arg); | 
|  |  | 
|  | if (likely(need < cn->size - cn->used - 1)) | 
|  | goto out_printf; | 
|  |  | 
|  | ret = expand_corename(cn); | 
|  | if (ret) | 
|  | goto expand_fail; | 
|  |  | 
|  | out_printf: | 
|  | cur = cn->corename + cn->used; | 
|  | va_start(arg, fmt); | 
|  | vsnprintf(cur, need + 1, fmt, arg); | 
|  | va_end(arg); | 
|  | cn->used += need; | 
|  | return 0; | 
|  |  | 
|  | expand_fail: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int cn_print_exe_file(struct core_name *cn) | 
|  | { | 
|  | struct file *exe_file; | 
|  | char *pathbuf, *path, *p; | 
|  | int ret; | 
|  |  | 
|  | exe_file = get_mm_exe_file(current->mm); | 
|  | if (!exe_file) | 
|  | return cn_printf(cn, "(unknown)"); | 
|  |  | 
|  | pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY); | 
|  | if (!pathbuf) { | 
|  | ret = -ENOMEM; | 
|  | goto put_exe_file; | 
|  | } | 
|  |  | 
|  | path = d_path(&exe_file->f_path, pathbuf, PATH_MAX); | 
|  | if (IS_ERR(path)) { | 
|  | ret = PTR_ERR(path); | 
|  | goto free_buf; | 
|  | } | 
|  |  | 
|  | for (p = path; *p; p++) | 
|  | if (*p == '/') | 
|  | *p = '!'; | 
|  |  | 
|  | ret = cn_printf(cn, "%s", path); | 
|  |  | 
|  | free_buf: | 
|  | kfree(pathbuf); | 
|  | put_exe_file: | 
|  | fput(exe_file); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* format_corename will inspect the pattern parameter, and output a | 
|  | * name into corename, which must have space for at least | 
|  | * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. | 
|  | */ | 
|  | static int format_corename(struct core_name *cn, long signr) | 
|  | { | 
|  | const struct cred *cred = current_cred(); | 
|  | const char *pat_ptr = core_pattern; | 
|  | int ispipe = (*pat_ptr == '|'); | 
|  | int pid_in_pattern = 0; | 
|  | int err = 0; | 
|  |  | 
|  | cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count); | 
|  | cn->corename = kmalloc(cn->size, GFP_KERNEL); | 
|  | cn->used = 0; | 
|  |  | 
|  | if (!cn->corename) | 
|  | return -ENOMEM; | 
|  |  | 
|  | /* Repeat as long as we have more pattern to process and more output | 
|  | space */ | 
|  | while (*pat_ptr) { | 
|  | if (*pat_ptr != '%') { | 
|  | if (*pat_ptr == 0) | 
|  | goto out; | 
|  | err = cn_printf(cn, "%c", *pat_ptr++); | 
|  | } else { | 
|  | switch (*++pat_ptr) { | 
|  | /* single % at the end, drop that */ | 
|  | case 0: | 
|  | goto out; | 
|  | /* Double percent, output one percent */ | 
|  | case '%': | 
|  | err = cn_printf(cn, "%c", '%'); | 
|  | break; | 
|  | /* pid */ | 
|  | case 'p': | 
|  | pid_in_pattern = 1; | 
|  | err = cn_printf(cn, "%d", | 
|  | task_tgid_vnr(current)); | 
|  | break; | 
|  | /* uid */ | 
|  | case 'u': | 
|  | err = cn_printf(cn, "%d", cred->uid); | 
|  | break; | 
|  | /* gid */ | 
|  | case 'g': | 
|  | err = cn_printf(cn, "%d", cred->gid); | 
|  | break; | 
|  | /* signal that caused the coredump */ | 
|  | case 's': | 
|  | err = cn_printf(cn, "%ld", signr); | 
|  | break; | 
|  | /* UNIX time of coredump */ | 
|  | case 't': { | 
|  | struct timeval tv; | 
|  | do_gettimeofday(&tv); | 
|  | err = cn_printf(cn, "%lu", tv.tv_sec); | 
|  | break; | 
|  | } | 
|  | /* hostname */ | 
|  | case 'h': | 
|  | down_read(&uts_sem); | 
|  | err = cn_printf(cn, "%s", | 
|  | utsname()->nodename); | 
|  | up_read(&uts_sem); | 
|  | break; | 
|  | /* executable */ | 
|  | case 'e': | 
|  | err = cn_printf(cn, "%s", current->comm); | 
|  | break; | 
|  | case 'E': | 
|  | err = cn_print_exe_file(cn); | 
|  | break; | 
|  | /* core limit size */ | 
|  | case 'c': | 
|  | err = cn_printf(cn, "%lu", | 
|  | rlimit(RLIMIT_CORE)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  | ++pat_ptr; | 
|  | } | 
|  |  | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* Backward compatibility with core_uses_pid: | 
|  | * | 
|  | * If core_pattern does not include a %p (as is the default) | 
|  | * and core_uses_pid is set, then .%pid will be appended to | 
|  | * the filename. Do not do this for piped commands. */ | 
|  | if (!ispipe && !pid_in_pattern && core_uses_pid) { | 
|  | err = cn_printf(cn, ".%d", task_tgid_vnr(current)); | 
|  | if (err) | 
|  | return err; | 
|  | } | 
|  | out: | 
|  | return ispipe; | 
|  | } | 
|  |  | 
|  | static int zap_process(struct task_struct *start, int exit_code) | 
|  | { | 
|  | struct task_struct *t; | 
|  | int nr = 0; | 
|  |  | 
|  | start->signal->flags = SIGNAL_GROUP_EXIT; | 
|  | start->signal->group_exit_code = exit_code; | 
|  | start->signal->group_stop_count = 0; | 
|  |  | 
|  | t = start; | 
|  | do { | 
|  | task_clear_group_stop_pending(t); | 
|  | if (t != current && t->mm) { | 
|  | sigaddset(&t->pending.signal, SIGKILL); | 
|  | signal_wake_up(t, 1); | 
|  | nr++; | 
|  | } | 
|  | } while_each_thread(start, t); | 
|  |  | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, | 
|  | struct core_state *core_state, int exit_code) | 
|  | { | 
|  | struct task_struct *g, *p; | 
|  | unsigned long flags; | 
|  | int nr = -EAGAIN; | 
|  |  | 
|  | spin_lock_irq(&tsk->sighand->siglock); | 
|  | if (!signal_group_exit(tsk->signal)) { | 
|  | mm->core_state = core_state; | 
|  | nr = zap_process(tsk, exit_code); | 
|  | } | 
|  | spin_unlock_irq(&tsk->sighand->siglock); | 
|  | if (unlikely(nr < 0)) | 
|  | return nr; | 
|  |  | 
|  | if (atomic_read(&mm->mm_users) == nr + 1) | 
|  | goto done; | 
|  | /* | 
|  | * We should find and kill all tasks which use this mm, and we should | 
|  | * count them correctly into ->nr_threads. We don't take tasklist | 
|  | * lock, but this is safe wrt: | 
|  | * | 
|  | * fork: | 
|  | *	None of sub-threads can fork after zap_process(leader). All | 
|  | *	processes which were created before this point should be | 
|  | *	visible to zap_threads() because copy_process() adds the new | 
|  | *	process to the tail of init_task.tasks list, and lock/unlock | 
|  | *	of ->siglock provides a memory barrier. | 
|  | * | 
|  | * do_exit: | 
|  | *	The caller holds mm->mmap_sem. This means that the task which | 
|  | *	uses this mm can't pass exit_mm(), so it can't exit or clear | 
|  | *	its ->mm. | 
|  | * | 
|  | * de_thread: | 
|  | *	It does list_replace_rcu(&leader->tasks, ¤t->tasks), | 
|  | *	we must see either old or new leader, this does not matter. | 
|  | *	However, it can change p->sighand, so lock_task_sighand(p) | 
|  | *	must be used. Since p->mm != NULL and we hold ->mmap_sem | 
|  | *	it can't fail. | 
|  | * | 
|  | *	Note also that "g" can be the old leader with ->mm == NULL | 
|  | *	and already unhashed and thus removed from ->thread_group. | 
|  | *	This is OK, __unhash_process()->list_del_rcu() does not | 
|  | *	clear the ->next pointer, we will find the new leader via | 
|  | *	next_thread(). | 
|  | */ | 
|  | rcu_read_lock(); | 
|  | for_each_process(g) { | 
|  | if (g == tsk->group_leader) | 
|  | continue; | 
|  | if (g->flags & PF_KTHREAD) | 
|  | continue; | 
|  | p = g; | 
|  | do { | 
|  | if (p->mm) { | 
|  | if (unlikely(p->mm == mm)) { | 
|  | lock_task_sighand(p, &flags); | 
|  | nr += zap_process(p, exit_code); | 
|  | unlock_task_sighand(p, &flags); | 
|  | } | 
|  | break; | 
|  | } | 
|  | } while_each_thread(g, p); | 
|  | } | 
|  | rcu_read_unlock(); | 
|  | done: | 
|  | atomic_set(&core_state->nr_threads, nr); | 
|  | return nr; | 
|  | } | 
|  |  | 
|  | static int coredump_wait(int exit_code, struct core_state *core_state) | 
|  | { | 
|  | struct task_struct *tsk = current; | 
|  | struct mm_struct *mm = tsk->mm; | 
|  | struct completion *vfork_done; | 
|  | int core_waiters = -EBUSY; | 
|  |  | 
|  | init_completion(&core_state->startup); | 
|  | core_state->dumper.task = tsk; | 
|  | core_state->dumper.next = NULL; | 
|  |  | 
|  | down_write(&mm->mmap_sem); | 
|  | if (!mm->core_state) | 
|  | core_waiters = zap_threads(tsk, mm, core_state, exit_code); | 
|  | up_write(&mm->mmap_sem); | 
|  |  | 
|  | if (unlikely(core_waiters < 0)) | 
|  | goto fail; | 
|  |  | 
|  | /* | 
|  | * Make sure nobody is waiting for us to release the VM, | 
|  | * otherwise we can deadlock when we wait on each other | 
|  | */ | 
|  | vfork_done = tsk->vfork_done; | 
|  | if (vfork_done) { | 
|  | tsk->vfork_done = NULL; | 
|  | complete(vfork_done); | 
|  | } | 
|  |  | 
|  | if (core_waiters) | 
|  | wait_for_completion(&core_state->startup); | 
|  | fail: | 
|  | return core_waiters; | 
|  | } | 
|  |  | 
|  | static void coredump_finish(struct mm_struct *mm) | 
|  | { | 
|  | struct core_thread *curr, *next; | 
|  | struct task_struct *task; | 
|  |  | 
|  | next = mm->core_state->dumper.next; | 
|  | while ((curr = next) != NULL) { | 
|  | next = curr->next; | 
|  | task = curr->task; | 
|  | /* | 
|  | * see exit_mm(), curr->task must not see | 
|  | * ->task == NULL before we read ->next. | 
|  | */ | 
|  | smp_mb(); | 
|  | curr->task = NULL; | 
|  | wake_up_process(task); | 
|  | } | 
|  |  | 
|  | mm->core_state = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * set_dumpable converts traditional three-value dumpable to two flags and | 
|  | * stores them into mm->flags.  It modifies lower two bits of mm->flags, but | 
|  | * these bits are not changed atomically.  So get_dumpable can observe the | 
|  | * intermediate state.  To avoid doing unexpected behavior, get get_dumpable | 
|  | * return either old dumpable or new one by paying attention to the order of | 
|  | * modifying the bits. | 
|  | * | 
|  | * dumpable |   mm->flags (binary) | 
|  | * old  new | initial interim  final | 
|  | * ---------+----------------------- | 
|  | *  0    1  |   00      01      01 | 
|  | *  0    2  |   00      10(*)   11 | 
|  | *  1    0  |   01      00      00 | 
|  | *  1    2  |   01      11      11 | 
|  | *  2    0  |   11      10(*)   00 | 
|  | *  2    1  |   11      11      01 | 
|  | * | 
|  | * (*) get_dumpable regards interim value of 10 as 11. | 
|  | */ | 
|  | void set_dumpable(struct mm_struct *mm, int value) | 
|  | { | 
|  | switch (value) { | 
|  | case 0: | 
|  | clear_bit(MMF_DUMPABLE, &mm->flags); | 
|  | smp_wmb(); | 
|  | clear_bit(MMF_DUMP_SECURELY, &mm->flags); | 
|  | break; | 
|  | case 1: | 
|  | set_bit(MMF_DUMPABLE, &mm->flags); | 
|  | smp_wmb(); | 
|  | clear_bit(MMF_DUMP_SECURELY, &mm->flags); | 
|  | break; | 
|  | case 2: | 
|  | set_bit(MMF_DUMP_SECURELY, &mm->flags); | 
|  | smp_wmb(); | 
|  | set_bit(MMF_DUMPABLE, &mm->flags); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int __get_dumpable(unsigned long mm_flags) | 
|  | { | 
|  | int ret; | 
|  |  | 
|  | ret = mm_flags & MMF_DUMPABLE_MASK; | 
|  | return (ret >= 2) ? 2 : ret; | 
|  | } | 
|  |  | 
|  | int get_dumpable(struct mm_struct *mm) | 
|  | { | 
|  | return __get_dumpable(mm->flags); | 
|  | } | 
|  |  | 
|  | static void wait_for_dump_helpers(struct file *file) | 
|  | { | 
|  | struct pipe_inode_info *pipe; | 
|  |  | 
|  | pipe = file->f_path.dentry->d_inode->i_pipe; | 
|  |  | 
|  | pipe_lock(pipe); | 
|  | pipe->readers++; | 
|  | pipe->writers--; | 
|  |  | 
|  | while ((pipe->readers > 1) && (!signal_pending(current))) { | 
|  | wake_up_interruptible_sync(&pipe->wait); | 
|  | kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN); | 
|  | pipe_wait(pipe); | 
|  | } | 
|  |  | 
|  | pipe->readers--; | 
|  | pipe->writers++; | 
|  | pipe_unlock(pipe); | 
|  |  | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * umh_pipe_setup | 
|  | * helper function to customize the process used | 
|  | * to collect the core in userspace.  Specifically | 
|  | * it sets up a pipe and installs it as fd 0 (stdin) | 
|  | * for the process.  Returns 0 on success, or | 
|  | * PTR_ERR on failure. | 
|  | * Note that it also sets the core limit to 1.  This | 
|  | * is a special value that we use to trap recursive | 
|  | * core dumps | 
|  | */ | 
|  | static int umh_pipe_setup(struct subprocess_info *info, struct cred *new) | 
|  | { | 
|  | struct file *rp, *wp; | 
|  | struct fdtable *fdt; | 
|  | struct coredump_params *cp = (struct coredump_params *)info->data; | 
|  | struct files_struct *cf = current->files; | 
|  |  | 
|  | wp = create_write_pipe(0); | 
|  | if (IS_ERR(wp)) | 
|  | return PTR_ERR(wp); | 
|  |  | 
|  | rp = create_read_pipe(wp, 0); | 
|  | if (IS_ERR(rp)) { | 
|  | free_write_pipe(wp); | 
|  | return PTR_ERR(rp); | 
|  | } | 
|  |  | 
|  | cp->file = wp; | 
|  |  | 
|  | sys_close(0); | 
|  | fd_install(0, rp); | 
|  | spin_lock(&cf->file_lock); | 
|  | fdt = files_fdtable(cf); | 
|  | FD_SET(0, fdt->open_fds); | 
|  | FD_CLR(0, fdt->close_on_exec); | 
|  | spin_unlock(&cf->file_lock); | 
|  |  | 
|  | /* and disallow core files too */ | 
|  | current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1}; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void do_coredump(long signr, int exit_code, struct pt_regs *regs) | 
|  | { | 
|  | struct core_state core_state; | 
|  | struct core_name cn; | 
|  | struct mm_struct *mm = current->mm; | 
|  | struct linux_binfmt * binfmt; | 
|  | const struct cred *old_cred; | 
|  | struct cred *cred; | 
|  | int retval = 0; | 
|  | int flag = 0; | 
|  | int ispipe; | 
|  | static atomic_t core_dump_count = ATOMIC_INIT(0); | 
|  | struct coredump_params cprm = { | 
|  | .signr = signr, | 
|  | .regs = regs, | 
|  | .limit = rlimit(RLIMIT_CORE), | 
|  | /* | 
|  | * We must use the same mm->flags while dumping core to avoid | 
|  | * inconsistency of bit flags, since this flag is not protected | 
|  | * by any locks. | 
|  | */ | 
|  | .mm_flags = mm->flags, | 
|  | }; | 
|  |  | 
|  | audit_core_dumps(signr); | 
|  |  | 
|  | binfmt = mm->binfmt; | 
|  | if (!binfmt || !binfmt->core_dump) | 
|  | goto fail; | 
|  | if (!__get_dumpable(cprm.mm_flags)) | 
|  | goto fail; | 
|  |  | 
|  | cred = prepare_creds(); | 
|  | if (!cred) | 
|  | goto fail; | 
|  | /* | 
|  | *	We cannot trust fsuid as being the "true" uid of the | 
|  | *	process nor do we know its entire history. We only know it | 
|  | *	was tainted so we dump it as root in mode 2. | 
|  | */ | 
|  | if (__get_dumpable(cprm.mm_flags) == 2) { | 
|  | /* Setuid core dump mode */ | 
|  | flag = O_EXCL;		/* Stop rewrite attacks */ | 
|  | cred->fsuid = 0;	/* Dump root private */ | 
|  | } | 
|  |  | 
|  | retval = coredump_wait(exit_code, &core_state); | 
|  | if (retval < 0) | 
|  | goto fail_creds; | 
|  |  | 
|  | old_cred = override_creds(cred); | 
|  |  | 
|  | /* | 
|  | * Clear any false indication of pending signals that might | 
|  | * be seen by the filesystem code called to write the core file. | 
|  | */ | 
|  | clear_thread_flag(TIF_SIGPENDING); | 
|  |  | 
|  | ispipe = format_corename(&cn, signr); | 
|  |  | 
|  | if (ispipe == -ENOMEM) { | 
|  | printk(KERN_WARNING "format_corename failed\n"); | 
|  | printk(KERN_WARNING "Aborting core\n"); | 
|  | goto fail_corename; | 
|  | } | 
|  |  | 
|  | if (ispipe) { | 
|  | int dump_count; | 
|  | char **helper_argv; | 
|  |  | 
|  | if (cprm.limit == 1) { | 
|  | /* | 
|  | * Normally core limits are irrelevant to pipes, since | 
|  | * we're not writing to the file system, but we use | 
|  | * cprm.limit of 1 here as a speacial value. Any | 
|  | * non-1 limit gets set to RLIM_INFINITY below, but | 
|  | * a limit of 0 skips the dump.  This is a consistent | 
|  | * way to catch recursive crashes.  We can still crash | 
|  | * if the core_pattern binary sets RLIM_CORE =  !1 | 
|  | * but it runs as root, and can do lots of stupid things | 
|  | * Note that we use task_tgid_vnr here to grab the pid | 
|  | * of the process group leader.  That way we get the | 
|  | * right pid if a thread in a multi-threaded | 
|  | * core_pattern process dies. | 
|  | */ | 
|  | printk(KERN_WARNING | 
|  | "Process %d(%s) has RLIMIT_CORE set to 1\n", | 
|  | task_tgid_vnr(current), current->comm); | 
|  | printk(KERN_WARNING "Aborting core\n"); | 
|  | goto fail_unlock; | 
|  | } | 
|  | cprm.limit = RLIM_INFINITY; | 
|  |  | 
|  | dump_count = atomic_inc_return(&core_dump_count); | 
|  | if (core_pipe_limit && (core_pipe_limit < dump_count)) { | 
|  | printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n", | 
|  | task_tgid_vnr(current), current->comm); | 
|  | printk(KERN_WARNING "Skipping core dump\n"); | 
|  | goto fail_dropcount; | 
|  | } | 
|  |  | 
|  | helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL); | 
|  | if (!helper_argv) { | 
|  | printk(KERN_WARNING "%s failed to allocate memory\n", | 
|  | __func__); | 
|  | goto fail_dropcount; | 
|  | } | 
|  |  | 
|  | retval = call_usermodehelper_fns(helper_argv[0], helper_argv, | 
|  | NULL, UMH_WAIT_EXEC, umh_pipe_setup, | 
|  | NULL, &cprm); | 
|  | argv_free(helper_argv); | 
|  | if (retval) { | 
|  | printk(KERN_INFO "Core dump to %s pipe failed\n", | 
|  | cn.corename); | 
|  | goto close_fail; | 
|  | } | 
|  | } else { | 
|  | struct inode *inode; | 
|  |  | 
|  | if (cprm.limit < binfmt->min_coredump) | 
|  | goto fail_unlock; | 
|  |  | 
|  | cprm.file = filp_open(cn.corename, | 
|  | O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, | 
|  | 0600); | 
|  | if (IS_ERR(cprm.file)) | 
|  | goto fail_unlock; | 
|  |  | 
|  | inode = cprm.file->f_path.dentry->d_inode; | 
|  | if (inode->i_nlink > 1) | 
|  | goto close_fail; | 
|  | if (d_unhashed(cprm.file->f_path.dentry)) | 
|  | goto close_fail; | 
|  | /* | 
|  | * AK: actually i see no reason to not allow this for named | 
|  | * pipes etc, but keep the previous behaviour for now. | 
|  | */ | 
|  | if (!S_ISREG(inode->i_mode)) | 
|  | goto close_fail; | 
|  | /* | 
|  | * Dont allow local users get cute and trick others to coredump | 
|  | * into their pre-created files. | 
|  | */ | 
|  | if (inode->i_uid != current_fsuid()) | 
|  | goto close_fail; | 
|  | if (!cprm.file->f_op || !cprm.file->f_op->write) | 
|  | goto close_fail; | 
|  | if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file)) | 
|  | goto close_fail; | 
|  | } | 
|  |  | 
|  | retval = binfmt->core_dump(&cprm); | 
|  | if (retval) | 
|  | current->signal->group_exit_code |= 0x80; | 
|  |  | 
|  | if (ispipe && core_pipe_limit) | 
|  | wait_for_dump_helpers(cprm.file); | 
|  | close_fail: | 
|  | if (cprm.file) | 
|  | filp_close(cprm.file, NULL); | 
|  | fail_dropcount: | 
|  | if (ispipe) | 
|  | atomic_dec(&core_dump_count); | 
|  | fail_unlock: | 
|  | kfree(cn.corename); | 
|  | fail_corename: | 
|  | coredump_finish(mm); | 
|  | revert_creds(old_cred); | 
|  | fail_creds: | 
|  | put_cred(cred); | 
|  | fail: | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Core dumping helper functions.  These are the only things you should | 
|  | * do on a core-file: use only these functions to write out all the | 
|  | * necessary info. | 
|  | */ | 
|  | int dump_write(struct file *file, const void *addr, int nr) | 
|  | { | 
|  | return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_write); | 
|  |  | 
|  | int dump_seek(struct file *file, loff_t off) | 
|  | { | 
|  | int ret = 1; | 
|  |  | 
|  | if (file->f_op->llseek && file->f_op->llseek != no_llseek) { | 
|  | if (file->f_op->llseek(file, off, SEEK_CUR) < 0) | 
|  | return 0; | 
|  | } else { | 
|  | char *buf = (char *)get_zeroed_page(GFP_KERNEL); | 
|  |  | 
|  | if (!buf) | 
|  | return 0; | 
|  | while (off > 0) { | 
|  | unsigned long n = off; | 
|  |  | 
|  | if (n > PAGE_SIZE) | 
|  | n = PAGE_SIZE; | 
|  | if (!dump_write(file, buf, n)) { | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | off -= n; | 
|  | } | 
|  | free_page((unsigned long)buf); | 
|  | } | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(dump_seek); |