|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_rw.h" | 
|  | #include "xfs_iomap.h" | 
|  | #include "xfs_vnodeops.h" | 
|  | #include "xfs_trace.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include <linux/gfp.h> | 
|  | #include <linux/mpage.h> | 
|  | #include <linux/pagevec.h> | 
|  | #include <linux/writeback.h> | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Prime number of hash buckets since address is used as the key. | 
|  | */ | 
|  | #define NVSYNC		37 | 
|  | #define to_ioend_wq(v)	(&xfs_ioend_wq[((unsigned long)v) % NVSYNC]) | 
|  | static wait_queue_head_t xfs_ioend_wq[NVSYNC]; | 
|  |  | 
|  | void __init | 
|  | xfs_ioend_init(void) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < NVSYNC; i++) | 
|  | init_waitqueue_head(&xfs_ioend_wq[i]); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_ioend_wait( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | wait_queue_head_t *wq = to_ioend_wq(ip); | 
|  |  | 
|  | wait_event(*wq, (atomic_read(&ip->i_iocount) == 0)); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_ioend_wake( | 
|  | xfs_inode_t	*ip) | 
|  | { | 
|  | if (atomic_dec_and_test(&ip->i_iocount)) | 
|  | wake_up(to_ioend_wq(ip)); | 
|  | } | 
|  |  | 
|  | void | 
|  | xfs_count_page_state( | 
|  | struct page		*page, | 
|  | int			*delalloc, | 
|  | int			*unwritten) | 
|  | { | 
|  | struct buffer_head	*bh, *head; | 
|  |  | 
|  | *delalloc = *unwritten = 0; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (buffer_unwritten(bh)) | 
|  | (*unwritten) = 1; | 
|  | else if (buffer_delay(bh)) | 
|  | (*delalloc) = 1; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  | } | 
|  |  | 
|  | STATIC struct block_device * | 
|  | xfs_find_bdev_for_inode( | 
|  | struct inode		*inode) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  |  | 
|  | if (XFS_IS_REALTIME_INODE(ip)) | 
|  | return mp->m_rtdev_targp->bt_bdev; | 
|  | else | 
|  | return mp->m_ddev_targp->bt_bdev; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We're now finished for good with this ioend structure. | 
|  | * Update the page state via the associated buffer_heads, | 
|  | * release holds on the inode and bio, and finally free | 
|  | * up memory.  Do not use the ioend after this. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_destroy_ioend( | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | struct buffer_head	*bh, *next; | 
|  | struct xfs_inode	*ip = XFS_I(ioend->io_inode); | 
|  |  | 
|  | for (bh = ioend->io_buffer_head; bh; bh = next) { | 
|  | next = bh->b_private; | 
|  | bh->b_end_io(bh, !ioend->io_error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Volume managers supporting multiple paths can send back ENODEV | 
|  | * when the final path disappears.  In this case continuing to fill | 
|  | * the page cache with dirty data which cannot be written out is | 
|  | * evil, so prevent that. | 
|  | */ | 
|  | if (unlikely(ioend->io_error == -ENODEV)) { | 
|  | xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ, | 
|  | __FILE__, __LINE__); | 
|  | } | 
|  |  | 
|  | xfs_ioend_wake(ip); | 
|  | mempool_free(ioend, xfs_ioend_pool); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the end of the current ioend is beyond the current EOF, | 
|  | * return the new EOF value, otherwise zero. | 
|  | */ | 
|  | STATIC xfs_fsize_t | 
|  | xfs_ioend_new_eof( | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | xfs_inode_t		*ip = XFS_I(ioend->io_inode); | 
|  | xfs_fsize_t		isize; | 
|  | xfs_fsize_t		bsize; | 
|  |  | 
|  | bsize = ioend->io_offset + ioend->io_size; | 
|  | isize = MAX(ip->i_size, ip->i_new_size); | 
|  | isize = MIN(isize, bsize); | 
|  | return isize > ip->i_d.di_size ? isize : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Update on-disk file size now that data has been written to disk.  The | 
|  | * current in-memory file size is i_size.  If a write is beyond eof i_new_size | 
|  | * will be the intended file size until i_size is updated.  If this write does | 
|  | * not extend all the way to the valid file size then restrict this update to | 
|  | * the end of the write. | 
|  | * | 
|  | * This function does not block as blocking on the inode lock in IO completion | 
|  | * can lead to IO completion order dependency deadlocks.. If it can't get the | 
|  | * inode ilock it will return EAGAIN. Callers must handle this. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_setfilesize( | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | xfs_inode_t		*ip = XFS_I(ioend->io_inode); | 
|  | xfs_fsize_t		isize; | 
|  |  | 
|  | if (unlikely(ioend->io_error)) | 
|  | return 0; | 
|  |  | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) | 
|  | return EAGAIN; | 
|  |  | 
|  | isize = xfs_ioend_new_eof(ioend); | 
|  | if (isize) { | 
|  | ip->i_d.di_size = isize; | 
|  | xfs_mark_inode_dirty(ip); | 
|  | } | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Schedule IO completion handling on the final put of an ioend. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_finish_ioend( | 
|  | struct xfs_ioend	*ioend) | 
|  | { | 
|  | if (atomic_dec_and_test(&ioend->io_remaining)) { | 
|  | if (ioend->io_type == IO_UNWRITTEN) | 
|  | queue_work(xfsconvertd_workqueue, &ioend->io_work); | 
|  | else | 
|  | queue_work(xfsdatad_workqueue, &ioend->io_work); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * IO write completion. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_end_io( | 
|  | struct work_struct *work) | 
|  | { | 
|  | xfs_ioend_t	*ioend = container_of(work, xfs_ioend_t, io_work); | 
|  | struct xfs_inode *ip = XFS_I(ioend->io_inode); | 
|  | int		error = 0; | 
|  |  | 
|  | /* | 
|  | * For unwritten extents we need to issue transactions to convert a | 
|  | * range to normal written extens after the data I/O has finished. | 
|  | */ | 
|  | if (ioend->io_type == IO_UNWRITTEN && | 
|  | likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) { | 
|  |  | 
|  | error = xfs_iomap_write_unwritten(ip, ioend->io_offset, | 
|  | ioend->io_size); | 
|  | if (error) | 
|  | ioend->io_error = error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We might have to update the on-disk file size after extending | 
|  | * writes. | 
|  | */ | 
|  | error = xfs_setfilesize(ioend); | 
|  | ASSERT(!error || error == EAGAIN); | 
|  |  | 
|  | /* | 
|  | * If we didn't complete processing of the ioend, requeue it to the | 
|  | * tail of the workqueue for another attempt later. Otherwise destroy | 
|  | * it. | 
|  | */ | 
|  | if (error == EAGAIN) { | 
|  | atomic_inc(&ioend->io_remaining); | 
|  | xfs_finish_ioend(ioend); | 
|  | /* ensure we don't spin on blocked ioends */ | 
|  | delay(1); | 
|  | } else { | 
|  | if (ioend->io_iocb) | 
|  | aio_complete(ioend->io_iocb, ioend->io_result, 0); | 
|  | xfs_destroy_ioend(ioend); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Call IO completion handling in caller context on the final put of an ioend. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_finish_ioend_sync( | 
|  | struct xfs_ioend	*ioend) | 
|  | { | 
|  | if (atomic_dec_and_test(&ioend->io_remaining)) | 
|  | xfs_end_io(&ioend->io_work); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate and initialise an IO completion structure. | 
|  | * We need to track unwritten extent write completion here initially. | 
|  | * We'll need to extend this for updating the ondisk inode size later | 
|  | * (vs. incore size). | 
|  | */ | 
|  | STATIC xfs_ioend_t * | 
|  | xfs_alloc_ioend( | 
|  | struct inode		*inode, | 
|  | unsigned int		type) | 
|  | { | 
|  | xfs_ioend_t		*ioend; | 
|  |  | 
|  | ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS); | 
|  |  | 
|  | /* | 
|  | * Set the count to 1 initially, which will prevent an I/O | 
|  | * completion callback from happening before we have started | 
|  | * all the I/O from calling the completion routine too early. | 
|  | */ | 
|  | atomic_set(&ioend->io_remaining, 1); | 
|  | ioend->io_error = 0; | 
|  | ioend->io_list = NULL; | 
|  | ioend->io_type = type; | 
|  | ioend->io_inode = inode; | 
|  | ioend->io_buffer_head = NULL; | 
|  | ioend->io_buffer_tail = NULL; | 
|  | atomic_inc(&XFS_I(ioend->io_inode)->i_iocount); | 
|  | ioend->io_offset = 0; | 
|  | ioend->io_size = 0; | 
|  | ioend->io_iocb = NULL; | 
|  | ioend->io_result = 0; | 
|  |  | 
|  | INIT_WORK(&ioend->io_work, xfs_end_io); | 
|  | return ioend; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_map_blocks( | 
|  | struct inode		*inode, | 
|  | loff_t			offset, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | int			type, | 
|  | int			nonblocking) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | ssize_t			count = 1 << inode->i_blkbits; | 
|  | xfs_fileoff_t		offset_fsb, end_fsb; | 
|  | int			error = 0; | 
|  | int			bmapi_flags = XFS_BMAPI_ENTIRE; | 
|  | int			nimaps = 1; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -XFS_ERROR(EIO); | 
|  |  | 
|  | if (type == IO_UNWRITTEN) | 
|  | bmapi_flags |= XFS_BMAPI_IGSTATE; | 
|  |  | 
|  | if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) { | 
|  | if (nonblocking) | 
|  | return -XFS_ERROR(EAGAIN); | 
|  | xfs_ilock(ip, XFS_ILOCK_SHARED); | 
|  | } | 
|  |  | 
|  | ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE || | 
|  | (ip->i_df.if_flags & XFS_IFEXTENTS)); | 
|  | ASSERT(offset <= mp->m_maxioffset); | 
|  |  | 
|  | if (offset + count > mp->m_maxioffset) | 
|  | count = mp->m_maxioffset - offset; | 
|  | end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count); | 
|  | offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  | error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, | 
|  | bmapi_flags,  NULL, 0, imap, &nimaps, NULL); | 
|  | xfs_iunlock(ip, XFS_ILOCK_SHARED); | 
|  |  | 
|  | if (error) | 
|  | return -XFS_ERROR(error); | 
|  |  | 
|  | if (type == IO_DELALLOC && | 
|  | (!nimaps || isnullstartblock(imap->br_startblock))) { | 
|  | error = xfs_iomap_write_allocate(ip, offset, count, imap); | 
|  | if (!error) | 
|  | trace_xfs_map_blocks_alloc(ip, offset, count, type, imap); | 
|  | return -XFS_ERROR(error); | 
|  | } | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (type == IO_UNWRITTEN) { | 
|  | ASSERT(nimaps); | 
|  | ASSERT(imap->br_startblock != HOLESTARTBLOCK); | 
|  | ASSERT(imap->br_startblock != DELAYSTARTBLOCK); | 
|  | } | 
|  | #endif | 
|  | if (nimaps) | 
|  | trace_xfs_map_blocks_found(ip, offset, count, type, imap); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_imap_valid( | 
|  | struct inode		*inode, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_off_t		offset) | 
|  | { | 
|  | offset >>= inode->i_blkbits; | 
|  |  | 
|  | return offset >= imap->br_startoff && | 
|  | offset < imap->br_startoff + imap->br_blockcount; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * BIO completion handler for buffered IO. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_end_bio( | 
|  | struct bio		*bio, | 
|  | int			error) | 
|  | { | 
|  | xfs_ioend_t		*ioend = bio->bi_private; | 
|  |  | 
|  | ASSERT(atomic_read(&bio->bi_cnt) >= 1); | 
|  | ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error; | 
|  |  | 
|  | /* Toss bio and pass work off to an xfsdatad thread */ | 
|  | bio->bi_private = NULL; | 
|  | bio->bi_end_io = NULL; | 
|  | bio_put(bio); | 
|  |  | 
|  | xfs_finish_ioend(ioend); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_submit_ioend_bio( | 
|  | struct writeback_control *wbc, | 
|  | xfs_ioend_t		*ioend, | 
|  | struct bio		*bio) | 
|  | { | 
|  | atomic_inc(&ioend->io_remaining); | 
|  | bio->bi_private = ioend; | 
|  | bio->bi_end_io = xfs_end_bio; | 
|  |  | 
|  | /* | 
|  | * If the I/O is beyond EOF we mark the inode dirty immediately | 
|  | * but don't update the inode size until I/O completion. | 
|  | */ | 
|  | if (xfs_ioend_new_eof(ioend)) | 
|  | xfs_mark_inode_dirty(XFS_I(ioend->io_inode)); | 
|  |  | 
|  | submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio); | 
|  | } | 
|  |  | 
|  | STATIC struct bio * | 
|  | xfs_alloc_ioend_bio( | 
|  | struct buffer_head	*bh) | 
|  | { | 
|  | int			nvecs = bio_get_nr_vecs(bh->b_bdev); | 
|  | struct bio		*bio = bio_alloc(GFP_NOIO, nvecs); | 
|  |  | 
|  | ASSERT(bio->bi_private == NULL); | 
|  | bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); | 
|  | bio->bi_bdev = bh->b_bdev; | 
|  | return bio; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_start_buffer_writeback( | 
|  | struct buffer_head	*bh) | 
|  | { | 
|  | ASSERT(buffer_mapped(bh)); | 
|  | ASSERT(buffer_locked(bh)); | 
|  | ASSERT(!buffer_delay(bh)); | 
|  | ASSERT(!buffer_unwritten(bh)); | 
|  |  | 
|  | mark_buffer_async_write(bh); | 
|  | set_buffer_uptodate(bh); | 
|  | clear_buffer_dirty(bh); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_start_page_writeback( | 
|  | struct page		*page, | 
|  | int			clear_dirty, | 
|  | int			buffers) | 
|  | { | 
|  | ASSERT(PageLocked(page)); | 
|  | ASSERT(!PageWriteback(page)); | 
|  | if (clear_dirty) | 
|  | clear_page_dirty_for_io(page); | 
|  | set_page_writeback(page); | 
|  | unlock_page(page); | 
|  | /* If no buffers on the page are to be written, finish it here */ | 
|  | if (!buffers) | 
|  | end_page_writeback(page); | 
|  | } | 
|  |  | 
|  | static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh) | 
|  | { | 
|  | return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Submit all of the bios for all of the ioends we have saved up, covering the | 
|  | * initial writepage page and also any probed pages. | 
|  | * | 
|  | * Because we may have multiple ioends spanning a page, we need to start | 
|  | * writeback on all the buffers before we submit them for I/O. If we mark the | 
|  | * buffers as we got, then we can end up with a page that only has buffers | 
|  | * marked async write and I/O complete on can occur before we mark the other | 
|  | * buffers async write. | 
|  | * | 
|  | * The end result of this is that we trip a bug in end_page_writeback() because | 
|  | * we call it twice for the one page as the code in end_buffer_async_write() | 
|  | * assumes that all buffers on the page are started at the same time. | 
|  | * | 
|  | * The fix is two passes across the ioend list - one to start writeback on the | 
|  | * buffer_heads, and then submit them for I/O on the second pass. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_submit_ioend( | 
|  | struct writeback_control *wbc, | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | xfs_ioend_t		*head = ioend; | 
|  | xfs_ioend_t		*next; | 
|  | struct buffer_head	*bh; | 
|  | struct bio		*bio; | 
|  | sector_t		lastblock = 0; | 
|  |  | 
|  | /* Pass 1 - start writeback */ | 
|  | do { | 
|  | next = ioend->io_list; | 
|  | for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) | 
|  | xfs_start_buffer_writeback(bh); | 
|  | } while ((ioend = next) != NULL); | 
|  |  | 
|  | /* Pass 2 - submit I/O */ | 
|  | ioend = head; | 
|  | do { | 
|  | next = ioend->io_list; | 
|  | bio = NULL; | 
|  |  | 
|  | for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) { | 
|  |  | 
|  | if (!bio) { | 
|  | retry: | 
|  | bio = xfs_alloc_ioend_bio(bh); | 
|  | } else if (bh->b_blocknr != lastblock + 1) { | 
|  | xfs_submit_ioend_bio(wbc, ioend, bio); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | if (bio_add_buffer(bio, bh) != bh->b_size) { | 
|  | xfs_submit_ioend_bio(wbc, ioend, bio); | 
|  | goto retry; | 
|  | } | 
|  |  | 
|  | lastblock = bh->b_blocknr; | 
|  | } | 
|  | if (bio) | 
|  | xfs_submit_ioend_bio(wbc, ioend, bio); | 
|  | xfs_finish_ioend(ioend); | 
|  | } while ((ioend = next) != NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Cancel submission of all buffer_heads so far in this endio. | 
|  | * Toss the endio too.  Only ever called for the initial page | 
|  | * in a writepage request, so only ever one page. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_cancel_ioend( | 
|  | xfs_ioend_t		*ioend) | 
|  | { | 
|  | xfs_ioend_t		*next; | 
|  | struct buffer_head	*bh, *next_bh; | 
|  |  | 
|  | do { | 
|  | next = ioend->io_list; | 
|  | bh = ioend->io_buffer_head; | 
|  | do { | 
|  | next_bh = bh->b_private; | 
|  | clear_buffer_async_write(bh); | 
|  | unlock_buffer(bh); | 
|  | } while ((bh = next_bh) != NULL); | 
|  |  | 
|  | xfs_ioend_wake(XFS_I(ioend->io_inode)); | 
|  | mempool_free(ioend, xfs_ioend_pool); | 
|  | } while ((ioend = next) != NULL); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test to see if we've been building up a completion structure for | 
|  | * earlier buffers -- if so, we try to append to this ioend if we | 
|  | * can, otherwise we finish off any current ioend and start another. | 
|  | * Return true if we've finished the given ioend. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_add_to_ioend( | 
|  | struct inode		*inode, | 
|  | struct buffer_head	*bh, | 
|  | xfs_off_t		offset, | 
|  | unsigned int		type, | 
|  | xfs_ioend_t		**result, | 
|  | int			need_ioend) | 
|  | { | 
|  | xfs_ioend_t		*ioend = *result; | 
|  |  | 
|  | if (!ioend || need_ioend || type != ioend->io_type) { | 
|  | xfs_ioend_t	*previous = *result; | 
|  |  | 
|  | ioend = xfs_alloc_ioend(inode, type); | 
|  | ioend->io_offset = offset; | 
|  | ioend->io_buffer_head = bh; | 
|  | ioend->io_buffer_tail = bh; | 
|  | if (previous) | 
|  | previous->io_list = ioend; | 
|  | *result = ioend; | 
|  | } else { | 
|  | ioend->io_buffer_tail->b_private = bh; | 
|  | ioend->io_buffer_tail = bh; | 
|  | } | 
|  |  | 
|  | bh->b_private = NULL; | 
|  | ioend->io_size += bh->b_size; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_map_buffer( | 
|  | struct inode		*inode, | 
|  | struct buffer_head	*bh, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_off_t		offset) | 
|  | { | 
|  | sector_t		bn; | 
|  | struct xfs_mount	*m = XFS_I(inode)->i_mount; | 
|  | xfs_off_t		iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff); | 
|  | xfs_daddr_t		iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock); | 
|  |  | 
|  | ASSERT(imap->br_startblock != HOLESTARTBLOCK); | 
|  | ASSERT(imap->br_startblock != DELAYSTARTBLOCK); | 
|  |  | 
|  | bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) + | 
|  | ((offset - iomap_offset) >> inode->i_blkbits); | 
|  |  | 
|  | ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode))); | 
|  |  | 
|  | bh->b_blocknr = bn; | 
|  | set_buffer_mapped(bh); | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_map_at_offset( | 
|  | struct inode		*inode, | 
|  | struct buffer_head	*bh, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_off_t		offset) | 
|  | { | 
|  | ASSERT(imap->br_startblock != HOLESTARTBLOCK); | 
|  | ASSERT(imap->br_startblock != DELAYSTARTBLOCK); | 
|  |  | 
|  | xfs_map_buffer(inode, bh, imap, offset); | 
|  | set_buffer_mapped(bh); | 
|  | clear_buffer_delay(bh); | 
|  | clear_buffer_unwritten(bh); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Test if a given page is suitable for writing as part of an unwritten | 
|  | * or delayed allocate extent. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_is_delayed_page( | 
|  | struct page		*page, | 
|  | unsigned int		type) | 
|  | { | 
|  | if (PageWriteback(page)) | 
|  | return 0; | 
|  |  | 
|  | if (page->mapping && page_has_buffers(page)) { | 
|  | struct buffer_head	*bh, *head; | 
|  | int			acceptable = 0; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (buffer_unwritten(bh)) | 
|  | acceptable = (type == IO_UNWRITTEN); | 
|  | else if (buffer_delay(bh)) | 
|  | acceptable = (type == IO_DELALLOC); | 
|  | else if (buffer_dirty(bh) && buffer_mapped(bh)) | 
|  | acceptable = (type == IO_OVERWRITE); | 
|  | else | 
|  | break; | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (acceptable) | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate & map buffers for page given the extent map. Write it out. | 
|  | * except for the original page of a writepage, this is called on | 
|  | * delalloc/unwritten pages only, for the original page it is possible | 
|  | * that the page has no mapping at all. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_convert_page( | 
|  | struct inode		*inode, | 
|  | struct page		*page, | 
|  | loff_t			tindex, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_ioend_t		**ioendp, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct buffer_head	*bh, *head; | 
|  | xfs_off_t		end_offset; | 
|  | unsigned long		p_offset; | 
|  | unsigned int		type; | 
|  | int			len, page_dirty; | 
|  | int			count = 0, done = 0, uptodate = 1; | 
|  | xfs_off_t		offset = page_offset(page); | 
|  |  | 
|  | if (page->index != tindex) | 
|  | goto fail; | 
|  | if (!trylock_page(page)) | 
|  | goto fail; | 
|  | if (PageWriteback(page)) | 
|  | goto fail_unlock_page; | 
|  | if (page->mapping != inode->i_mapping) | 
|  | goto fail_unlock_page; | 
|  | if (!xfs_is_delayed_page(page, (*ioendp)->io_type)) | 
|  | goto fail_unlock_page; | 
|  |  | 
|  | /* | 
|  | * page_dirty is initially a count of buffers on the page before | 
|  | * EOF and is decremented as we move each into a cleanable state. | 
|  | * | 
|  | * Derivation: | 
|  | * | 
|  | * End offset is the highest offset that this page should represent. | 
|  | * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1)) | 
|  | * will evaluate non-zero and be less than PAGE_CACHE_SIZE and | 
|  | * hence give us the correct page_dirty count. On any other page, | 
|  | * it will be zero and in that case we need page_dirty to be the | 
|  | * count of buffers on the page. | 
|  | */ | 
|  | end_offset = min_t(unsigned long long, | 
|  | (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, | 
|  | i_size_read(inode)); | 
|  |  | 
|  | len = 1 << inode->i_blkbits; | 
|  | p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1), | 
|  | PAGE_CACHE_SIZE); | 
|  | p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE; | 
|  | page_dirty = p_offset / len; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | if (offset >= end_offset) | 
|  | break; | 
|  | if (!buffer_uptodate(bh)) | 
|  | uptodate = 0; | 
|  | if (!(PageUptodate(page) || buffer_uptodate(bh))) { | 
|  | done = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (buffer_unwritten(bh) || buffer_delay(bh) || | 
|  | buffer_mapped(bh)) { | 
|  | if (buffer_unwritten(bh)) | 
|  | type = IO_UNWRITTEN; | 
|  | else if (buffer_delay(bh)) | 
|  | type = IO_DELALLOC; | 
|  | else | 
|  | type = IO_OVERWRITE; | 
|  |  | 
|  | if (!xfs_imap_valid(inode, imap, offset)) { | 
|  | done = 1; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | lock_buffer(bh); | 
|  | if (type != IO_OVERWRITE) | 
|  | xfs_map_at_offset(inode, bh, imap, offset); | 
|  | xfs_add_to_ioend(inode, bh, offset, type, | 
|  | ioendp, done); | 
|  |  | 
|  | page_dirty--; | 
|  | count++; | 
|  | } else { | 
|  | done = 1; | 
|  | } | 
|  | } while (offset += len, (bh = bh->b_this_page) != head); | 
|  |  | 
|  | if (uptodate && bh == head) | 
|  | SetPageUptodate(page); | 
|  |  | 
|  | if (count) { | 
|  | if (--wbc->nr_to_write <= 0 && | 
|  | wbc->sync_mode == WB_SYNC_NONE) | 
|  | done = 1; | 
|  | } | 
|  | xfs_start_page_writeback(page, !page_dirty, count); | 
|  |  | 
|  | return done; | 
|  | fail_unlock_page: | 
|  | unlock_page(page); | 
|  | fail: | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert & write out a cluster of pages in the same extent as defined | 
|  | * by mp and following the start page. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_cluster_write( | 
|  | struct inode		*inode, | 
|  | pgoff_t			tindex, | 
|  | struct xfs_bmbt_irec	*imap, | 
|  | xfs_ioend_t		**ioendp, | 
|  | struct writeback_control *wbc, | 
|  | pgoff_t			tlast) | 
|  | { | 
|  | struct pagevec		pvec; | 
|  | int			done = 0, i; | 
|  |  | 
|  | pagevec_init(&pvec, 0); | 
|  | while (!done && tindex <= tlast) { | 
|  | unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1); | 
|  |  | 
|  | if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len)) | 
|  | break; | 
|  |  | 
|  | for (i = 0; i < pagevec_count(&pvec); i++) { | 
|  | done = xfs_convert_page(inode, pvec.pages[i], tindex++, | 
|  | imap, ioendp, wbc); | 
|  | if (done) | 
|  | break; | 
|  | } | 
|  |  | 
|  | pagevec_release(&pvec); | 
|  | cond_resched(); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_vm_invalidatepage( | 
|  | struct page		*page, | 
|  | unsigned long		offset) | 
|  | { | 
|  | trace_xfs_invalidatepage(page->mapping->host, page, offset); | 
|  | block_invalidatepage(page, offset); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the page has delalloc buffers on it, we need to punch them out before we | 
|  | * invalidate the page. If we don't, we leave a stale delalloc mapping on the | 
|  | * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read | 
|  | * is done on that same region - the delalloc extent is returned when none is | 
|  | * supposed to be there. | 
|  | * | 
|  | * We prevent this by truncating away the delalloc regions on the page before | 
|  | * invalidating it. Because they are delalloc, we can do this without needing a | 
|  | * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this | 
|  | * truncation without a transaction as there is no space left for block | 
|  | * reservation (typically why we see a ENOSPC in writeback). | 
|  | * | 
|  | * This is not a performance critical path, so for now just do the punching a | 
|  | * buffer head at a time. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_aops_discard_page( | 
|  | struct page		*page) | 
|  | { | 
|  | struct inode		*inode = page->mapping->host; | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct buffer_head	*bh, *head; | 
|  | loff_t			offset = page_offset(page); | 
|  |  | 
|  | if (!xfs_is_delayed_page(page, IO_DELALLOC)) | 
|  | goto out_invalidate; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(ip->i_mount)) | 
|  | goto out_invalidate; | 
|  |  | 
|  | xfs_alert(ip->i_mount, | 
|  | "page discard on page %p, inode 0x%llx, offset %llu.", | 
|  | page, ip->i_ino, offset); | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | bh = head = page_buffers(page); | 
|  | do { | 
|  | int		error; | 
|  | xfs_fileoff_t	start_fsb; | 
|  |  | 
|  | if (!buffer_delay(bh)) | 
|  | goto next_buffer; | 
|  |  | 
|  | start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset); | 
|  | error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1); | 
|  | if (error) { | 
|  | /* something screwed, just bail */ | 
|  | if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
|  | xfs_alert(ip->i_mount, | 
|  | "page discard unable to remove delalloc mapping."); | 
|  | } | 
|  | break; | 
|  | } | 
|  | next_buffer: | 
|  | offset += 1 << inode->i_blkbits; | 
|  |  | 
|  | } while ((bh = bh->b_this_page) != head); | 
|  |  | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | out_invalidate: | 
|  | xfs_vm_invalidatepage(page, 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write out a dirty page. | 
|  | * | 
|  | * For delalloc space on the page we need to allocate space and flush it. | 
|  | * For unwritten space on the page we need to start the conversion to | 
|  | * regular allocated space. | 
|  | * For any other dirty buffer heads on the page we should flush them. | 
|  | * | 
|  | * If we detect that a transaction would be required to flush the page, we | 
|  | * have to check the process flags first, if we are already in a transaction | 
|  | * or disk I/O during allocations is off, we need to fail the writepage and | 
|  | * redirty the page. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_vm_writepage( | 
|  | struct page		*page, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | struct inode		*inode = page->mapping->host; | 
|  | int			delalloc, unwritten; | 
|  | struct buffer_head	*bh, *head; | 
|  | struct xfs_bmbt_irec	imap; | 
|  | xfs_ioend_t		*ioend = NULL, *iohead = NULL; | 
|  | loff_t			offset; | 
|  | unsigned int		type; | 
|  | __uint64_t              end_offset; | 
|  | pgoff_t                 end_index, last_index; | 
|  | ssize_t			len; | 
|  | int			err, imap_valid = 0, uptodate = 1; | 
|  | int			count = 0; | 
|  | int			nonblocking = 0; | 
|  |  | 
|  | trace_xfs_writepage(inode, page, 0); | 
|  |  | 
|  | ASSERT(page_has_buffers(page)); | 
|  |  | 
|  | /* | 
|  | * Refuse to write the page out if we are called from reclaim context. | 
|  | * | 
|  | * This avoids stack overflows when called from deeply used stacks in | 
|  | * random callers for direct reclaim or memcg reclaim.  We explicitly | 
|  | * allow reclaim from kswapd as the stack usage there is relatively low. | 
|  | * | 
|  | * This should really be done by the core VM, but until that happens | 
|  | * filesystems like XFS, btrfs and ext4 have to take care of this | 
|  | * by themselves. | 
|  | */ | 
|  | if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC) | 
|  | goto redirty; | 
|  |  | 
|  | /* | 
|  | * We need a transaction if there are delalloc or unwritten buffers | 
|  | * on the page. | 
|  | * | 
|  | * If we need a transaction and the process flags say we are already | 
|  | * in a transaction, or no IO is allowed then mark the page dirty | 
|  | * again and leave the page as is. | 
|  | */ | 
|  | xfs_count_page_state(page, &delalloc, &unwritten); | 
|  | if ((current->flags & PF_FSTRANS) && (delalloc || unwritten)) | 
|  | goto redirty; | 
|  |  | 
|  | /* Is this page beyond the end of the file? */ | 
|  | offset = i_size_read(inode); | 
|  | end_index = offset >> PAGE_CACHE_SHIFT; | 
|  | last_index = (offset - 1) >> PAGE_CACHE_SHIFT; | 
|  | if (page->index >= end_index) { | 
|  | if ((page->index >= end_index + 1) || | 
|  | !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) { | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | end_offset = min_t(unsigned long long, | 
|  | (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT, | 
|  | offset); | 
|  | len = 1 << inode->i_blkbits; | 
|  |  | 
|  | bh = head = page_buffers(page); | 
|  | offset = page_offset(page); | 
|  | type = IO_OVERWRITE; | 
|  |  | 
|  | if (wbc->sync_mode == WB_SYNC_NONE && wbc->nonblocking) | 
|  | nonblocking = 1; | 
|  |  | 
|  | do { | 
|  | int new_ioend = 0; | 
|  |  | 
|  | if (offset >= end_offset) | 
|  | break; | 
|  | if (!buffer_uptodate(bh)) | 
|  | uptodate = 0; | 
|  |  | 
|  | /* | 
|  | * set_page_dirty dirties all buffers in a page, independent | 
|  | * of their state.  The dirty state however is entirely | 
|  | * meaningless for holes (!mapped && uptodate), so skip | 
|  | * buffers covering holes here. | 
|  | */ | 
|  | if (!buffer_mapped(bh) && buffer_uptodate(bh)) { | 
|  | imap_valid = 0; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (buffer_unwritten(bh)) { | 
|  | if (type != IO_UNWRITTEN) { | 
|  | type = IO_UNWRITTEN; | 
|  | imap_valid = 0; | 
|  | } | 
|  | } else if (buffer_delay(bh)) { | 
|  | if (type != IO_DELALLOC) { | 
|  | type = IO_DELALLOC; | 
|  | imap_valid = 0; | 
|  | } | 
|  | } else if (buffer_uptodate(bh)) { | 
|  | if (type != IO_OVERWRITE) { | 
|  | type = IO_OVERWRITE; | 
|  | imap_valid = 0; | 
|  | } | 
|  | } else { | 
|  | if (PageUptodate(page)) { | 
|  | ASSERT(buffer_mapped(bh)); | 
|  | imap_valid = 0; | 
|  | } | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (imap_valid) | 
|  | imap_valid = xfs_imap_valid(inode, &imap, offset); | 
|  | if (!imap_valid) { | 
|  | /* | 
|  | * If we didn't have a valid mapping then we need to | 
|  | * put the new mapping into a separate ioend structure. | 
|  | * This ensures non-contiguous extents always have | 
|  | * separate ioends, which is particularly important | 
|  | * for unwritten extent conversion at I/O completion | 
|  | * time. | 
|  | */ | 
|  | new_ioend = 1; | 
|  | err = xfs_map_blocks(inode, offset, &imap, type, | 
|  | nonblocking); | 
|  | if (err) | 
|  | goto error; | 
|  | imap_valid = xfs_imap_valid(inode, &imap, offset); | 
|  | } | 
|  | if (imap_valid) { | 
|  | lock_buffer(bh); | 
|  | if (type != IO_OVERWRITE) | 
|  | xfs_map_at_offset(inode, bh, &imap, offset); | 
|  | xfs_add_to_ioend(inode, bh, offset, type, &ioend, | 
|  | new_ioend); | 
|  | count++; | 
|  | } | 
|  |  | 
|  | if (!iohead) | 
|  | iohead = ioend; | 
|  |  | 
|  | } while (offset += len, ((bh = bh->b_this_page) != head)); | 
|  |  | 
|  | if (uptodate && bh == head) | 
|  | SetPageUptodate(page); | 
|  |  | 
|  | xfs_start_page_writeback(page, 1, count); | 
|  |  | 
|  | if (ioend && imap_valid) { | 
|  | xfs_off_t		end_index; | 
|  |  | 
|  | end_index = imap.br_startoff + imap.br_blockcount; | 
|  |  | 
|  | /* to bytes */ | 
|  | end_index <<= inode->i_blkbits; | 
|  |  | 
|  | /* to pages */ | 
|  | end_index = (end_index - 1) >> PAGE_CACHE_SHIFT; | 
|  |  | 
|  | /* check against file size */ | 
|  | if (end_index > last_index) | 
|  | end_index = last_index; | 
|  |  | 
|  | xfs_cluster_write(inode, page->index + 1, &imap, &ioend, | 
|  | wbc, end_index); | 
|  | } | 
|  |  | 
|  | if (iohead) | 
|  | xfs_submit_ioend(wbc, iohead); | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | error: | 
|  | if (iohead) | 
|  | xfs_cancel_ioend(iohead); | 
|  |  | 
|  | if (err == -EAGAIN) | 
|  | goto redirty; | 
|  |  | 
|  | xfs_aops_discard_page(page); | 
|  | ClearPageUptodate(page); | 
|  | unlock_page(page); | 
|  | return err; | 
|  |  | 
|  | redirty: | 
|  | redirty_page_for_writepage(wbc, page); | 
|  | unlock_page(page); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_writepages( | 
|  | struct address_space	*mapping, | 
|  | struct writeback_control *wbc) | 
|  | { | 
|  | xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); | 
|  | return generic_writepages(mapping, wbc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called to move a page into cleanable state - and from there | 
|  | * to be released. The page should already be clean. We always | 
|  | * have buffer heads in this call. | 
|  | * | 
|  | * Returns 1 if the page is ok to release, 0 otherwise. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_vm_releasepage( | 
|  | struct page		*page, | 
|  | gfp_t			gfp_mask) | 
|  | { | 
|  | int			delalloc, unwritten; | 
|  |  | 
|  | trace_xfs_releasepage(page->mapping->host, page, 0); | 
|  |  | 
|  | xfs_count_page_state(page, &delalloc, &unwritten); | 
|  |  | 
|  | if (WARN_ON(delalloc)) | 
|  | return 0; | 
|  | if (WARN_ON(unwritten)) | 
|  | return 0; | 
|  |  | 
|  | return try_to_free_buffers(page); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | __xfs_get_blocks( | 
|  | struct inode		*inode, | 
|  | sector_t		iblock, | 
|  | struct buffer_head	*bh_result, | 
|  | int			create, | 
|  | int			direct) | 
|  | { | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | struct xfs_mount	*mp = ip->i_mount; | 
|  | xfs_fileoff_t		offset_fsb, end_fsb; | 
|  | int			error = 0; | 
|  | int			lockmode = 0; | 
|  | struct xfs_bmbt_irec	imap; | 
|  | int			nimaps = 1; | 
|  | xfs_off_t		offset; | 
|  | ssize_t			size; | 
|  | int			new = 0; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) | 
|  | return -XFS_ERROR(EIO); | 
|  |  | 
|  | offset = (xfs_off_t)iblock << inode->i_blkbits; | 
|  | ASSERT(bh_result->b_size >= (1 << inode->i_blkbits)); | 
|  | size = bh_result->b_size; | 
|  |  | 
|  | if (!create && direct && offset >= i_size_read(inode)) | 
|  | return 0; | 
|  |  | 
|  | if (create) { | 
|  | lockmode = XFS_ILOCK_EXCL; | 
|  | xfs_ilock(ip, lockmode); | 
|  | } else { | 
|  | lockmode = xfs_ilock_map_shared(ip); | 
|  | } | 
|  |  | 
|  | ASSERT(offset <= mp->m_maxioffset); | 
|  | if (offset + size > mp->m_maxioffset) | 
|  | size = mp->m_maxioffset - offset; | 
|  | end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size); | 
|  | offset_fsb = XFS_B_TO_FSBT(mp, offset); | 
|  |  | 
|  | error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb, | 
|  | XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL); | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | if (create && | 
|  | (!nimaps || | 
|  | (imap.br_startblock == HOLESTARTBLOCK || | 
|  | imap.br_startblock == DELAYSTARTBLOCK))) { | 
|  | if (direct) { | 
|  | error = xfs_iomap_write_direct(ip, offset, size, | 
|  | &imap, nimaps); | 
|  | } else { | 
|  | error = xfs_iomap_write_delay(ip, offset, size, &imap); | 
|  | } | 
|  | if (error) | 
|  | goto out_unlock; | 
|  |  | 
|  | trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap); | 
|  | } else if (nimaps) { | 
|  | trace_xfs_get_blocks_found(ip, offset, size, 0, &imap); | 
|  | } else { | 
|  | trace_xfs_get_blocks_notfound(ip, offset, size); | 
|  | goto out_unlock; | 
|  | } | 
|  | xfs_iunlock(ip, lockmode); | 
|  |  | 
|  | if (imap.br_startblock != HOLESTARTBLOCK && | 
|  | imap.br_startblock != DELAYSTARTBLOCK) { | 
|  | /* | 
|  | * For unwritten extents do not report a disk address on | 
|  | * the read case (treat as if we're reading into a hole). | 
|  | */ | 
|  | if (create || !ISUNWRITTEN(&imap)) | 
|  | xfs_map_buffer(inode, bh_result, &imap, offset); | 
|  | if (create && ISUNWRITTEN(&imap)) { | 
|  | if (direct) | 
|  | bh_result->b_private = inode; | 
|  | set_buffer_unwritten(bh_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is a realtime file, data may be on a different device. | 
|  | * to that pointed to from the buffer_head b_bdev currently. | 
|  | */ | 
|  | bh_result->b_bdev = xfs_find_bdev_for_inode(inode); | 
|  |  | 
|  | /* | 
|  | * If we previously allocated a block out beyond eof and we are now | 
|  | * coming back to use it then we will need to flag it as new even if it | 
|  | * has a disk address. | 
|  | * | 
|  | * With sub-block writes into unwritten extents we also need to mark | 
|  | * the buffer as new so that the unwritten parts of the buffer gets | 
|  | * correctly zeroed. | 
|  | */ | 
|  | if (create && | 
|  | ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) || | 
|  | (offset >= i_size_read(inode)) || | 
|  | (new || ISUNWRITTEN(&imap)))) | 
|  | set_buffer_new(bh_result); | 
|  |  | 
|  | if (imap.br_startblock == DELAYSTARTBLOCK) { | 
|  | BUG_ON(direct); | 
|  | if (create) { | 
|  | set_buffer_uptodate(bh_result); | 
|  | set_buffer_mapped(bh_result); | 
|  | set_buffer_delay(bh_result); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If this is O_DIRECT or the mpage code calling tell them how large | 
|  | * the mapping is, so that we can avoid repeated get_blocks calls. | 
|  | */ | 
|  | if (direct || size > (1 << inode->i_blkbits)) { | 
|  | xfs_off_t		mapping_size; | 
|  |  | 
|  | mapping_size = imap.br_startoff + imap.br_blockcount - iblock; | 
|  | mapping_size <<= inode->i_blkbits; | 
|  |  | 
|  | ASSERT(mapping_size > 0); | 
|  | if (mapping_size > size) | 
|  | mapping_size = size; | 
|  | if (mapping_size > LONG_MAX) | 
|  | mapping_size = LONG_MAX; | 
|  |  | 
|  | bh_result->b_size = mapping_size; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | out_unlock: | 
|  | xfs_iunlock(ip, lockmode); | 
|  | return -error; | 
|  | } | 
|  |  | 
|  | int | 
|  | xfs_get_blocks( | 
|  | struct inode		*inode, | 
|  | sector_t		iblock, | 
|  | struct buffer_head	*bh_result, | 
|  | int			create) | 
|  | { | 
|  | return __xfs_get_blocks(inode, iblock, bh_result, create, 0); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_get_blocks_direct( | 
|  | struct inode		*inode, | 
|  | sector_t		iblock, | 
|  | struct buffer_head	*bh_result, | 
|  | int			create) | 
|  | { | 
|  | return __xfs_get_blocks(inode, iblock, bh_result, create, 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Complete a direct I/O write request. | 
|  | * | 
|  | * If the private argument is non-NULL __xfs_get_blocks signals us that we | 
|  | * need to issue a transaction to convert the range from unwritten to written | 
|  | * extents.  In case this is regular synchronous I/O we just call xfs_end_io | 
|  | * to do this and we are done.  But in case this was a successful AIO | 
|  | * request this handler is called from interrupt context, from which we | 
|  | * can't start transactions.  In that case offload the I/O completion to | 
|  | * the workqueues we also use for buffered I/O completion. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_end_io_direct_write( | 
|  | struct kiocb		*iocb, | 
|  | loff_t			offset, | 
|  | ssize_t			size, | 
|  | void			*private, | 
|  | int			ret, | 
|  | bool			is_async) | 
|  | { | 
|  | struct xfs_ioend	*ioend = iocb->private; | 
|  |  | 
|  | /* | 
|  | * blockdev_direct_IO can return an error even after the I/O | 
|  | * completion handler was called.  Thus we need to protect | 
|  | * against double-freeing. | 
|  | */ | 
|  | iocb->private = NULL; | 
|  |  | 
|  | ioend->io_offset = offset; | 
|  | ioend->io_size = size; | 
|  | if (private && size > 0) | 
|  | ioend->io_type = IO_UNWRITTEN; | 
|  |  | 
|  | if (is_async) { | 
|  | /* | 
|  | * If we are converting an unwritten extent we need to delay | 
|  | * the AIO completion until after the unwrittent extent | 
|  | * conversion has completed, otherwise do it ASAP. | 
|  | */ | 
|  | if (ioend->io_type == IO_UNWRITTEN) { | 
|  | ioend->io_iocb = iocb; | 
|  | ioend->io_result = ret; | 
|  | } else { | 
|  | aio_complete(iocb, ret, 0); | 
|  | } | 
|  | xfs_finish_ioend(ioend); | 
|  | } else { | 
|  | xfs_finish_ioend_sync(ioend); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC ssize_t | 
|  | xfs_vm_direct_IO( | 
|  | int			rw, | 
|  | struct kiocb		*iocb, | 
|  | const struct iovec	*iov, | 
|  | loff_t			offset, | 
|  | unsigned long		nr_segs) | 
|  | { | 
|  | struct inode		*inode = iocb->ki_filp->f_mapping->host; | 
|  | struct block_device	*bdev = xfs_find_bdev_for_inode(inode); | 
|  | ssize_t			ret; | 
|  |  | 
|  | if (rw & WRITE) { | 
|  | iocb->private = xfs_alloc_ioend(inode, IO_DIRECT); | 
|  |  | 
|  | ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, | 
|  | offset, nr_segs, | 
|  | xfs_get_blocks_direct, | 
|  | xfs_end_io_direct_write, NULL, 0); | 
|  | if (ret != -EIOCBQUEUED && iocb->private) | 
|  | xfs_destroy_ioend(iocb->private); | 
|  | } else { | 
|  | ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov, | 
|  | offset, nr_segs, | 
|  | xfs_get_blocks_direct, | 
|  | NULL, NULL, 0); | 
|  | } | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_vm_write_failed( | 
|  | struct address_space	*mapping, | 
|  | loff_t			to) | 
|  | { | 
|  | struct inode		*inode = mapping->host; | 
|  |  | 
|  | if (to > inode->i_size) { | 
|  | /* | 
|  | * punch out the delalloc blocks we have already allocated. We | 
|  | * don't call xfs_setattr() to do this as we may be in the | 
|  | * middle of a multi-iovec write and so the vfs inode->i_size | 
|  | * will not match the xfs ip->i_size and so it will zero too | 
|  | * much. Hence we jus truncate the page cache to zero what is | 
|  | * necessary and punch the delalloc blocks directly. | 
|  | */ | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  | xfs_fileoff_t		start_fsb; | 
|  | xfs_fileoff_t		end_fsb; | 
|  | int			error; | 
|  |  | 
|  | truncate_pagecache(inode, to, inode->i_size); | 
|  |  | 
|  | /* | 
|  | * Check if there are any blocks that are outside of i_size | 
|  | * that need to be trimmed back. | 
|  | */ | 
|  | start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1; | 
|  | end_fsb = XFS_B_TO_FSB(ip->i_mount, to); | 
|  | if (end_fsb <= start_fsb) | 
|  | return; | 
|  |  | 
|  | xfs_ilock(ip, XFS_ILOCK_EXCL); | 
|  | error = xfs_bmap_punch_delalloc_range(ip, start_fsb, | 
|  | end_fsb - start_fsb); | 
|  | if (error) { | 
|  | /* something screwed, just bail */ | 
|  | if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) { | 
|  | xfs_alert(ip->i_mount, | 
|  | "xfs_vm_write_failed: unable to clean up ino %lld", | 
|  | ip->i_ino); | 
|  | } | 
|  | } | 
|  | xfs_iunlock(ip, XFS_ILOCK_EXCL); | 
|  | } | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_write_begin( | 
|  | struct file		*file, | 
|  | struct address_space	*mapping, | 
|  | loff_t			pos, | 
|  | unsigned		len, | 
|  | unsigned		flags, | 
|  | struct page		**pagep, | 
|  | void			**fsdata) | 
|  | { | 
|  | int			ret; | 
|  |  | 
|  | ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS, | 
|  | pagep, xfs_get_blocks); | 
|  | if (unlikely(ret)) | 
|  | xfs_vm_write_failed(mapping, pos + len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_write_end( | 
|  | struct file		*file, | 
|  | struct address_space	*mapping, | 
|  | loff_t			pos, | 
|  | unsigned		len, | 
|  | unsigned		copied, | 
|  | struct page		*page, | 
|  | void			*fsdata) | 
|  | { | 
|  | int			ret; | 
|  |  | 
|  | ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata); | 
|  | if (unlikely(ret < len)) | 
|  | xfs_vm_write_failed(mapping, pos + len); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | STATIC sector_t | 
|  | xfs_vm_bmap( | 
|  | struct address_space	*mapping, | 
|  | sector_t		block) | 
|  | { | 
|  | struct inode		*inode = (struct inode *)mapping->host; | 
|  | struct xfs_inode	*ip = XFS_I(inode); | 
|  |  | 
|  | trace_xfs_vm_bmap(XFS_I(inode)); | 
|  | xfs_ilock(ip, XFS_IOLOCK_SHARED); | 
|  | xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF); | 
|  | xfs_iunlock(ip, XFS_IOLOCK_SHARED); | 
|  | return generic_block_bmap(mapping, block, xfs_get_blocks); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_readpage( | 
|  | struct file		*unused, | 
|  | struct page		*page) | 
|  | { | 
|  | return mpage_readpage(page, xfs_get_blocks); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_vm_readpages( | 
|  | struct file		*unused, | 
|  | struct address_space	*mapping, | 
|  | struct list_head	*pages, | 
|  | unsigned		nr_pages) | 
|  | { | 
|  | return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks); | 
|  | } | 
|  |  | 
|  | const struct address_space_operations xfs_address_space_operations = { | 
|  | .readpage		= xfs_vm_readpage, | 
|  | .readpages		= xfs_vm_readpages, | 
|  | .writepage		= xfs_vm_writepage, | 
|  | .writepages		= xfs_vm_writepages, | 
|  | .releasepage		= xfs_vm_releasepage, | 
|  | .invalidatepage		= xfs_vm_invalidatepage, | 
|  | .write_begin		= xfs_vm_write_begin, | 
|  | .write_end		= xfs_vm_write_end, | 
|  | .bmap			= xfs_vm_bmap, | 
|  | .direct_IO		= xfs_vm_direct_IO, | 
|  | .migratepage		= buffer_migrate_page, | 
|  | .is_partially_uptodate  = block_is_partially_uptodate, | 
|  | .error_remove_page	= generic_error_remove_page, | 
|  | }; |