|  | /* | 
|  | * Copyright (c) 2000-2005 Silicon Graphics, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_da_btree.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_attr_sf.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_attr.h" | 
|  | #include "xfs_attr_leaf.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  | /* | 
|  | * xfs_attr_leaf.c | 
|  | * | 
|  | * Routines to implement leaf blocks of attributes as Btrees of hashed names. | 
|  | */ | 
|  |  | 
|  | /*======================================================================== | 
|  | * Function prototypes for the kernel. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Routines used for growing the Btree. | 
|  | */ | 
|  | STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block, | 
|  | xfs_dabuf_t **bpp); | 
|  | STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args, | 
|  | int freemap_index); | 
|  | STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer); | 
|  | STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state, | 
|  | xfs_da_state_blk_t *blk1, | 
|  | xfs_da_state_blk_t *blk2); | 
|  | STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state, | 
|  | xfs_da_state_blk_t *leaf_blk_1, | 
|  | xfs_da_state_blk_t *leaf_blk_2, | 
|  | int *number_entries_in_blk1, | 
|  | int *number_usedbytes_in_blk1); | 
|  |  | 
|  | /* | 
|  | * Routines used for shrinking the Btree. | 
|  | */ | 
|  | STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, | 
|  | xfs_dabuf_t *bp, int level); | 
|  | STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, | 
|  | xfs_dabuf_t *bp); | 
|  | STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, | 
|  | xfs_dablk_t blkno, int blkcnt); | 
|  |  | 
|  | /* | 
|  | * Utility routines. | 
|  | */ | 
|  | STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf, | 
|  | int src_start, | 
|  | xfs_attr_leafblock_t *dst_leaf, | 
|  | int dst_start, int move_count, | 
|  | xfs_mount_t *mp); | 
|  | STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index); | 
|  |  | 
|  | /*======================================================================== | 
|  | * Namespace helper routines | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * If namespace bits don't match return 0. | 
|  | * If all match then return 1. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_namesp_match(int arg_flags, int ondisk_flags) | 
|  | { | 
|  | return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*======================================================================== | 
|  | * External routines when attribute fork size < XFS_LITINO(mp). | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Query whether the requested number of additional bytes of extended | 
|  | * attribute space will be able to fit inline. | 
|  | * Returns zero if not, else the di_forkoff fork offset to be used in the | 
|  | * literal area for attribute data once the new bytes have been added. | 
|  | * | 
|  | * di_forkoff must be 8 byte aligned, hence is stored as a >>3 value; | 
|  | * special case for dev/uuid inodes, they have fixed size data forks. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes) | 
|  | { | 
|  | int offset; | 
|  | int minforkoff;	/* lower limit on valid forkoff locations */ | 
|  | int maxforkoff;	/* upper limit on valid forkoff locations */ | 
|  | int dsize; | 
|  | xfs_mount_t *mp = dp->i_mount; | 
|  |  | 
|  | offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */ | 
|  |  | 
|  | switch (dp->i_d.di_format) { | 
|  | case XFS_DINODE_FMT_DEV: | 
|  | minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3; | 
|  | return (offset >= minforkoff) ? minforkoff : 0; | 
|  | case XFS_DINODE_FMT_UUID: | 
|  | minforkoff = roundup(sizeof(uuid_t), 8) >> 3; | 
|  | return (offset >= minforkoff) ? minforkoff : 0; | 
|  | } | 
|  |  | 
|  | if (!(mp->m_flags & XFS_MOUNT_ATTR2)) { | 
|  | if (bytes <= XFS_IFORK_ASIZE(dp)) | 
|  | return dp->i_d.di_forkoff; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | dsize = dp->i_df.if_bytes; | 
|  |  | 
|  | switch (dp->i_d.di_format) { | 
|  | case XFS_DINODE_FMT_EXTENTS: | 
|  | /* | 
|  | * If there is no attr fork and the data fork is extents, | 
|  | * determine if creating the default attr fork will result | 
|  | * in the extents form migrating to btree. If so, the | 
|  | * minimum offset only needs to be the space required for | 
|  | * the btree root. | 
|  | */ | 
|  | if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > | 
|  | xfs_default_attroffset(dp)) | 
|  | dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS); | 
|  | break; | 
|  |  | 
|  | case XFS_DINODE_FMT_BTREE: | 
|  | /* | 
|  | * If have data btree then keep forkoff if we have one, | 
|  | * otherwise we are adding a new attr, so then we set | 
|  | * minforkoff to where the btree root can finish so we have | 
|  | * plenty of room for attrs | 
|  | */ | 
|  | if (dp->i_d.di_forkoff) { | 
|  | if (offset < dp->i_d.di_forkoff) | 
|  | return 0; | 
|  | else | 
|  | return dp->i_d.di_forkoff; | 
|  | } else | 
|  | dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * A data fork btree root must have space for at least | 
|  | * MINDBTPTRS key/ptr pairs if the data fork is small or empty. | 
|  | */ | 
|  | minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS)); | 
|  | minforkoff = roundup(minforkoff, 8) >> 3; | 
|  |  | 
|  | /* attr fork btree root can have at least this many key/ptr pairs */ | 
|  | maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS); | 
|  | maxforkoff = maxforkoff >> 3;	/* rounded down */ | 
|  |  | 
|  | if (offset >= minforkoff && offset < maxforkoff) | 
|  | return offset; | 
|  | if (offset >= maxforkoff) | 
|  | return maxforkoff; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Switch on the ATTR2 superblock bit (implies also FEATURES2) | 
|  | */ | 
|  | STATIC void | 
|  | xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp) | 
|  | { | 
|  | if ((mp->m_flags & XFS_MOUNT_ATTR2) && | 
|  | !(xfs_sb_version_hasattr2(&mp->m_sb))) { | 
|  | spin_lock(&mp->m_sb_lock); | 
|  | if (!xfs_sb_version_hasattr2(&mp->m_sb)) { | 
|  | xfs_sb_version_addattr2(&mp->m_sb); | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2); | 
|  | } else | 
|  | spin_unlock(&mp->m_sb_lock); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Create the initial contents of a shortform attribute list. | 
|  | */ | 
|  | void | 
|  | xfs_attr_shortform_create(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_sf_hdr_t *hdr; | 
|  | xfs_inode_t *dp; | 
|  | xfs_ifork_t *ifp; | 
|  |  | 
|  | dp = args->dp; | 
|  | ASSERT(dp != NULL); | 
|  | ifp = dp->i_afp; | 
|  | ASSERT(ifp != NULL); | 
|  | ASSERT(ifp->if_bytes == 0); | 
|  | if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) { | 
|  | ifp->if_flags &= ~XFS_IFEXTENTS;	/* just in case */ | 
|  | dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL; | 
|  | ifp->if_flags |= XFS_IFINLINE; | 
|  | } else { | 
|  | ASSERT(ifp->if_flags & XFS_IFINLINE); | 
|  | } | 
|  | xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK); | 
|  | hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data; | 
|  | hdr->count = 0; | 
|  | hdr->totsize = cpu_to_be16(sizeof(*hdr)); | 
|  | xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a name/value pair to the shortform attribute list. | 
|  | * Overflow from the inode has already been checked for. | 
|  | */ | 
|  | void | 
|  | xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int i, offset, size; | 
|  | xfs_mount_t *mp; | 
|  | xfs_inode_t *dp; | 
|  | xfs_ifork_t *ifp; | 
|  |  | 
|  | dp = args->dp; | 
|  | mp = dp->i_mount; | 
|  | dp->i_d.di_forkoff = forkoff; | 
|  | dp->i_df.if_ext_max = | 
|  | XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | dp->i_afp->if_ext_max = | 
|  | XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  |  | 
|  | ifp = dp->i_afp; | 
|  | ASSERT(ifp->if_flags & XFS_IFINLINE); | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { | 
|  | #ifdef DEBUG | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, sfe->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | ASSERT(0); | 
|  | #endif | 
|  | } | 
|  |  | 
|  | offset = (char *)sfe - (char *)sf; | 
|  | size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen); | 
|  | xfs_idata_realloc(dp, size, XFS_ATTR_FORK); | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset); | 
|  |  | 
|  | sfe->namelen = args->namelen; | 
|  | sfe->valuelen = args->valuelen; | 
|  | sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); | 
|  | memcpy(sfe->nameval, args->name, args->namelen); | 
|  | memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen); | 
|  | sf->hdr.count++; | 
|  | be16_add_cpu(&sf->hdr.totsize, size); | 
|  | xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA); | 
|  |  | 
|  | xfs_sbversion_add_attr2(mp, args->trans); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * After the last attribute is removed revert to original inode format, | 
|  | * making all literal area available to the data fork once more. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_attr_fork_reset( | 
|  | struct xfs_inode	*ip, | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | xfs_idestroy_fork(ip, XFS_ATTR_FORK); | 
|  | ip->i_d.di_forkoff = 0; | 
|  | ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS; | 
|  |  | 
|  | ASSERT(ip->i_d.di_anextents == 0); | 
|  | ASSERT(ip->i_afp == NULL); | 
|  |  | 
|  | ip->i_df.if_ext_max = XFS_IFORK_DSIZE(ip) / sizeof(xfs_bmbt_rec_t); | 
|  | xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove an attribute from the shortform attribute list structure. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_remove(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int base, size=0, end, totsize, i; | 
|  | xfs_mount_t *mp; | 
|  | xfs_inode_t *dp; | 
|  |  | 
|  | dp = args->dp; | 
|  | mp = dp->i_mount; | 
|  | base = sizeof(xfs_attr_sf_hdr_t); | 
|  | sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | end = sf->hdr.count; | 
|  | for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), | 
|  | base += size, i++) { | 
|  | size = XFS_ATTR_SF_ENTSIZE(sfe); | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(sfe->nameval, args->name, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | break; | 
|  | } | 
|  | if (i == end) | 
|  | return(XFS_ERROR(ENOATTR)); | 
|  |  | 
|  | /* | 
|  | * Fix up the attribute fork data, covering the hole | 
|  | */ | 
|  | end = base + size; | 
|  | totsize = be16_to_cpu(sf->hdr.totsize); | 
|  | if (end != totsize) | 
|  | memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end); | 
|  | sf->hdr.count--; | 
|  | be16_add_cpu(&sf->hdr.totsize, -size); | 
|  |  | 
|  | /* | 
|  | * Fix up the start offset of the attribute fork | 
|  | */ | 
|  | totsize -= size; | 
|  | if (totsize == sizeof(xfs_attr_sf_hdr_t) && | 
|  | (mp->m_flags & XFS_MOUNT_ATTR2) && | 
|  | (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
|  | !(args->op_flags & XFS_DA_OP_ADDNAME)) { | 
|  | xfs_attr_fork_reset(dp, args->trans); | 
|  | } else { | 
|  | xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); | 
|  | dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize); | 
|  | ASSERT(dp->i_d.di_forkoff); | 
|  | ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || | 
|  | (args->op_flags & XFS_DA_OP_ADDNAME) || | 
|  | !(mp->m_flags & XFS_MOUNT_ATTR2) || | 
|  | dp->i_d.di_format == XFS_DINODE_FMT_BTREE); | 
|  | dp->i_afp->if_ext_max = | 
|  | XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | dp->i_df.if_ext_max = | 
|  | XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t); | 
|  | xfs_trans_log_inode(args->trans, dp, | 
|  | XFS_ILOG_CORE | XFS_ILOG_ADATA); | 
|  | } | 
|  |  | 
|  | xfs_sbversion_add_attr2(mp, args->trans); | 
|  |  | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up a name in a shortform attribute list structure. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | int | 
|  | xfs_attr_shortform_lookup(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int i; | 
|  | xfs_ifork_t *ifp; | 
|  |  | 
|  | ifp = args->dp->i_afp; | 
|  | ASSERT(ifp->if_flags & XFS_IFINLINE); | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, sfe->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | return(XFS_ERROR(EEXIST)); | 
|  | } | 
|  | return(XFS_ERROR(ENOATTR)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look up a name in a shortform attribute list structure. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | int | 
|  | xfs_attr_shortform_getvalue(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | int i; | 
|  |  | 
|  | ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE); | 
|  | sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data; | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) { | 
|  | if (sfe->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, sfe->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, sfe->flags)) | 
|  | continue; | 
|  | if (args->flags & ATTR_KERNOVAL) { | 
|  | args->valuelen = sfe->valuelen; | 
|  | return(XFS_ERROR(EEXIST)); | 
|  | } | 
|  | if (args->valuelen < sfe->valuelen) { | 
|  | args->valuelen = sfe->valuelen; | 
|  | return(XFS_ERROR(ERANGE)); | 
|  | } | 
|  | args->valuelen = sfe->valuelen; | 
|  | memcpy(args->value, &sfe->nameval[args->namelen], | 
|  | args->valuelen); | 
|  | return(XFS_ERROR(EEXIST)); | 
|  | } | 
|  | return(XFS_ERROR(ENOATTR)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert from using the shortform to the leaf. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_to_leaf(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_inode_t *dp; | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | xfs_da_args_t nargs; | 
|  | char *tmpbuffer; | 
|  | int error, i, size; | 
|  | xfs_dablk_t blkno; | 
|  | xfs_dabuf_t *bp; | 
|  | xfs_ifork_t *ifp; | 
|  |  | 
|  | dp = args->dp; | 
|  | ifp = dp->i_afp; | 
|  | sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data; | 
|  | size = be16_to_cpu(sf->hdr.totsize); | 
|  | tmpbuffer = kmem_alloc(size, KM_SLEEP); | 
|  | ASSERT(tmpbuffer != NULL); | 
|  | memcpy(tmpbuffer, ifp->if_u1.if_data, size); | 
|  | sf = (xfs_attr_shortform_t *)tmpbuffer; | 
|  |  | 
|  | xfs_idata_realloc(dp, -size, XFS_ATTR_FORK); | 
|  | bp = NULL; | 
|  | error = xfs_da_grow_inode(args, &blkno); | 
|  | if (error) { | 
|  | /* | 
|  | * If we hit an IO error middle of the transaction inside | 
|  | * grow_inode(), we may have inconsistent data. Bail out. | 
|  | */ | 
|  | if (error == EIO) | 
|  | goto out; | 
|  | xfs_idata_realloc(dp, size, XFS_ATTR_FORK);	/* try to put */ | 
|  | memcpy(ifp->if_u1.if_data, tmpbuffer, size);	/* it back */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ASSERT(blkno == 0); | 
|  | error = xfs_attr_leaf_create(args, blkno, &bp); | 
|  | if (error) { | 
|  | error = xfs_da_shrink_inode(args, 0, bp); | 
|  | bp = NULL; | 
|  | if (error) | 
|  | goto out; | 
|  | xfs_idata_realloc(dp, size, XFS_ATTR_FORK);	/* try to put */ | 
|  | memcpy(ifp->if_u1.if_data, tmpbuffer, size);	/* it back */ | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | memset((char *)&nargs, 0, sizeof(nargs)); | 
|  | nargs.dp = dp; | 
|  | nargs.firstblock = args->firstblock; | 
|  | nargs.flist = args->flist; | 
|  | nargs.total = args->total; | 
|  | nargs.whichfork = XFS_ATTR_FORK; | 
|  | nargs.trans = args->trans; | 
|  | nargs.op_flags = XFS_DA_OP_OKNOENT; | 
|  |  | 
|  | sfe = &sf->list[0]; | 
|  | for (i = 0; i < sf->hdr.count; i++) { | 
|  | nargs.name = sfe->nameval; | 
|  | nargs.namelen = sfe->namelen; | 
|  | nargs.value = &sfe->nameval[nargs.namelen]; | 
|  | nargs.valuelen = sfe->valuelen; | 
|  | nargs.hashval = xfs_da_hashname(sfe->nameval, | 
|  | sfe->namelen); | 
|  | nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags); | 
|  | error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */ | 
|  | ASSERT(error == ENOATTR); | 
|  | error = xfs_attr_leaf_add(bp, &nargs); | 
|  | ASSERT(error != ENOSPC); | 
|  | if (error) | 
|  | goto out; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe); | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | out: | 
|  | if(bp) | 
|  | xfs_da_buf_done(bp); | 
|  | kmem_free(tmpbuffer); | 
|  | return(error); | 
|  | } | 
|  |  | 
|  | STATIC int | 
|  | xfs_attr_shortform_compare(const void *a, const void *b) | 
|  | { | 
|  | xfs_attr_sf_sort_t *sa, *sb; | 
|  |  | 
|  | sa = (xfs_attr_sf_sort_t *)a; | 
|  | sb = (xfs_attr_sf_sort_t *)b; | 
|  | if (sa->hash < sb->hash) { | 
|  | return(-1); | 
|  | } else if (sa->hash > sb->hash) { | 
|  | return(1); | 
|  | } else { | 
|  | return(sa->entno - sb->entno); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | #define XFS_ISRESET_CURSOR(cursor) \ | 
|  | (!((cursor)->initted) && !((cursor)->hashval) && \ | 
|  | !((cursor)->blkno) && !((cursor)->offset)) | 
|  | /* | 
|  | * Copy out entries of shortform attribute lists for attr_list(). | 
|  | * Shortform attribute lists are not stored in hashval sorted order. | 
|  | * If the output buffer is not large enough to hold them all, then we | 
|  | * we have to calculate each entries' hashvalue and sort them before | 
|  | * we can begin returning them to the user. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | int | 
|  | xfs_attr_shortform_list(xfs_attr_list_context_t *context) | 
|  | { | 
|  | attrlist_cursor_kern_t *cursor; | 
|  | xfs_attr_sf_sort_t *sbuf, *sbp; | 
|  | xfs_attr_shortform_t *sf; | 
|  | xfs_attr_sf_entry_t *sfe; | 
|  | xfs_inode_t *dp; | 
|  | int sbsize, nsbuf, count, i; | 
|  | int error; | 
|  |  | 
|  | ASSERT(context != NULL); | 
|  | dp = context->dp; | 
|  | ASSERT(dp != NULL); | 
|  | ASSERT(dp->i_afp != NULL); | 
|  | sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data; | 
|  | ASSERT(sf != NULL); | 
|  | if (!sf->hdr.count) | 
|  | return(0); | 
|  | cursor = context->cursor; | 
|  | ASSERT(cursor != NULL); | 
|  |  | 
|  | trace_xfs_attr_list_sf(context); | 
|  |  | 
|  | /* | 
|  | * If the buffer is large enough and the cursor is at the start, | 
|  | * do not bother with sorting since we will return everything in | 
|  | * one buffer and another call using the cursor won't need to be | 
|  | * made. | 
|  | * Note the generous fudge factor of 16 overhead bytes per entry. | 
|  | * If bufsize is zero then put_listent must be a search function | 
|  | * and can just scan through what we have. | 
|  | */ | 
|  | if (context->bufsize == 0 || | 
|  | (XFS_ISRESET_CURSOR(cursor) && | 
|  | (dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) { | 
|  | for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) { | 
|  | error = context->put_listent(context, | 
|  | sfe->flags, | 
|  | sfe->nameval, | 
|  | (int)sfe->namelen, | 
|  | (int)sfe->valuelen, | 
|  | &sfe->nameval[sfe->namelen]); | 
|  |  | 
|  | /* | 
|  | * Either search callback finished early or | 
|  | * didn't fit it all in the buffer after all. | 
|  | */ | 
|  | if (context->seen_enough) | 
|  | break; | 
|  |  | 
|  | if (error) | 
|  | return error; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe); | 
|  | } | 
|  | trace_xfs_attr_list_sf_all(context); | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* do no more for a search callback */ | 
|  | if (context->bufsize == 0) | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * It didn't all fit, so we have to sort everything on hashval. | 
|  | */ | 
|  | sbsize = sf->hdr.count * sizeof(*sbuf); | 
|  | sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP | KM_NOFS); | 
|  |  | 
|  | /* | 
|  | * Scan the attribute list for the rest of the entries, storing | 
|  | * the relevant info from only those that match into a buffer. | 
|  | */ | 
|  | nsbuf = 0; | 
|  | for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) { | 
|  | if (unlikely( | 
|  | ((char *)sfe < (char *)sf) || | 
|  | ((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) { | 
|  | XFS_CORRUPTION_ERROR("xfs_attr_shortform_list", | 
|  | XFS_ERRLEVEL_LOW, | 
|  | context->dp->i_mount, sfe); | 
|  | kmem_free(sbuf); | 
|  | return XFS_ERROR(EFSCORRUPTED); | 
|  | } | 
|  |  | 
|  | sbp->entno = i; | 
|  | sbp->hash = xfs_da_hashname(sfe->nameval, sfe->namelen); | 
|  | sbp->name = sfe->nameval; | 
|  | sbp->namelen = sfe->namelen; | 
|  | /* These are bytes, and both on-disk, don't endian-flip */ | 
|  | sbp->valuelen = sfe->valuelen; | 
|  | sbp->flags = sfe->flags; | 
|  | sfe = XFS_ATTR_SF_NEXTENTRY(sfe); | 
|  | sbp++; | 
|  | nsbuf++; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sort the entries on hash then entno. | 
|  | */ | 
|  | xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare); | 
|  |  | 
|  | /* | 
|  | * Re-find our place IN THE SORTED LIST. | 
|  | */ | 
|  | count = 0; | 
|  | cursor->initted = 1; | 
|  | cursor->blkno = 0; | 
|  | for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) { | 
|  | if (sbp->hash == cursor->hashval) { | 
|  | if (cursor->offset == count) { | 
|  | break; | 
|  | } | 
|  | count++; | 
|  | } else if (sbp->hash > cursor->hashval) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == nsbuf) { | 
|  | kmem_free(sbuf); | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Loop putting entries into the user buffer. | 
|  | */ | 
|  | for ( ; i < nsbuf; i++, sbp++) { | 
|  | if (cursor->hashval != sbp->hash) { | 
|  | cursor->hashval = sbp->hash; | 
|  | cursor->offset = 0; | 
|  | } | 
|  | error = context->put_listent(context, | 
|  | sbp->flags, | 
|  | sbp->name, | 
|  | sbp->namelen, | 
|  | sbp->valuelen, | 
|  | &sbp->name[sbp->namelen]); | 
|  | if (error) | 
|  | return error; | 
|  | if (context->seen_enough) | 
|  | break; | 
|  | cursor->offset++; | 
|  | } | 
|  |  | 
|  | kmem_free(sbuf); | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check a leaf attribute block to see if all the entries would fit into | 
|  | * a shortform attribute list. | 
|  | */ | 
|  | int | 
|  | xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | int bytes, i; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  |  | 
|  | entry = &leaf->entries[0]; | 
|  | bytes = sizeof(struct xfs_attr_sf_hdr); | 
|  | for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { | 
|  | if (entry->flags & XFS_ATTR_INCOMPLETE) | 
|  | continue;		/* don't copy partial entries */ | 
|  | if (!(entry->flags & XFS_ATTR_LOCAL)) | 
|  | return(0); | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, i); | 
|  | if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX) | 
|  | return(0); | 
|  | if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX) | 
|  | return(0); | 
|  | bytes += sizeof(struct xfs_attr_sf_entry)-1 | 
|  | + name_loc->namelen | 
|  | + be16_to_cpu(name_loc->valuelen); | 
|  | } | 
|  | if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) && | 
|  | (dp->i_d.di_format != XFS_DINODE_FMT_BTREE) && | 
|  | (bytes == sizeof(struct xfs_attr_sf_hdr))) | 
|  | return(-1); | 
|  | return(xfs_attr_shortform_bytesfit(dp, bytes)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert a leaf attribute list to shortform attribute list | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args, int forkoff) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | xfs_da_args_t nargs; | 
|  | xfs_inode_t *dp; | 
|  | char *tmpbuffer; | 
|  | int error, i; | 
|  |  | 
|  | dp = args->dp; | 
|  | tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP); | 
|  | ASSERT(tmpbuffer != NULL); | 
|  |  | 
|  | ASSERT(bp != NULL); | 
|  | memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount)); | 
|  | leaf = (xfs_attr_leafblock_t *)tmpbuffer; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | memset(bp->data, 0, XFS_LBSIZE(dp->i_mount)); | 
|  |  | 
|  | /* | 
|  | * Clean out the prior contents of the attribute list. | 
|  | */ | 
|  | error = xfs_da_shrink_inode(args, 0, bp); | 
|  | if (error) | 
|  | goto out; | 
|  |  | 
|  | if (forkoff == -1) { | 
|  | ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2); | 
|  | ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE); | 
|  | xfs_attr_fork_reset(dp, args->trans); | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | xfs_attr_shortform_create(args); | 
|  |  | 
|  | /* | 
|  | * Copy the attributes | 
|  | */ | 
|  | memset((char *)&nargs, 0, sizeof(nargs)); | 
|  | nargs.dp = dp; | 
|  | nargs.firstblock = args->firstblock; | 
|  | nargs.flist = args->flist; | 
|  | nargs.total = args->total; | 
|  | nargs.whichfork = XFS_ATTR_FORK; | 
|  | nargs.trans = args->trans; | 
|  | nargs.op_flags = XFS_DA_OP_OKNOENT; | 
|  | entry = &leaf->entries[0]; | 
|  | for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { | 
|  | if (entry->flags & XFS_ATTR_INCOMPLETE) | 
|  | continue;	/* don't copy partial entries */ | 
|  | if (!entry->nameidx) | 
|  | continue; | 
|  | ASSERT(entry->flags & XFS_ATTR_LOCAL); | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, i); | 
|  | nargs.name = name_loc->nameval; | 
|  | nargs.namelen = name_loc->namelen; | 
|  | nargs.value = &name_loc->nameval[nargs.namelen]; | 
|  | nargs.valuelen = be16_to_cpu(name_loc->valuelen); | 
|  | nargs.hashval = be32_to_cpu(entry->hashval); | 
|  | nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags); | 
|  | xfs_attr_shortform_add(&nargs, forkoff); | 
|  | } | 
|  | error = 0; | 
|  |  | 
|  | out: | 
|  | kmem_free(tmpbuffer); | 
|  | return(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Convert from using a single leaf to a root node and a leaf. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_to_node(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_da_intnode_t *node; | 
|  | xfs_inode_t *dp; | 
|  | xfs_dabuf_t *bp1, *bp2; | 
|  | xfs_dablk_t blkno; | 
|  | int error; | 
|  |  | 
|  | dp = args->dp; | 
|  | bp1 = bp2 = NULL; | 
|  | error = xfs_da_grow_inode(args, &blkno); | 
|  | if (error) | 
|  | goto out; | 
|  | error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) | 
|  | goto out; | 
|  | ASSERT(bp1 != NULL); | 
|  | bp2 = NULL; | 
|  | error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) | 
|  | goto out; | 
|  | ASSERT(bp2 != NULL); | 
|  | memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount)); | 
|  | xfs_da_buf_done(bp1); | 
|  | bp1 = NULL; | 
|  | xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1); | 
|  |  | 
|  | /* | 
|  | * Set up the new root node. | 
|  | */ | 
|  | error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | goto out; | 
|  | node = bp1->data; | 
|  | leaf = bp2->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | /* both on-disk, don't endian-flip twice */ | 
|  | node->btree[0].hashval = | 
|  | leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval; | 
|  | node->btree[0].before = cpu_to_be32(blkno); | 
|  | node->hdr.count = cpu_to_be16(1); | 
|  | xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1); | 
|  | error = 0; | 
|  | out: | 
|  | if (bp1) | 
|  | xfs_da_buf_done(bp1); | 
|  | if (bp2) | 
|  | xfs_da_buf_done(bp2); | 
|  | return(error); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*======================================================================== | 
|  | * Routines used for growing the Btree. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Create the initial contents of a leaf attribute list | 
|  | * or a leaf in a node attribute list. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_hdr_t *hdr; | 
|  | xfs_inode_t *dp; | 
|  | xfs_dabuf_t *bp; | 
|  | int error; | 
|  |  | 
|  | dp = args->dp; | 
|  | ASSERT(dp != NULL); | 
|  | error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | ASSERT(bp != NULL); | 
|  | leaf = bp->data; | 
|  | memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount)); | 
|  | hdr = &leaf->hdr; | 
|  | hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC); | 
|  | hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount)); | 
|  | if (!hdr->firstused) { | 
|  | hdr->firstused = cpu_to_be16( | 
|  | XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN); | 
|  | } | 
|  |  | 
|  | hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); | 
|  | hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) - | 
|  | sizeof(xfs_attr_leaf_hdr_t)); | 
|  |  | 
|  | xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1); | 
|  |  | 
|  | *bpp = bp; | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Split the leaf node, rebalance, then add the new entry. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk, | 
|  | xfs_da_state_blk_t *newblk) | 
|  | { | 
|  | xfs_dablk_t blkno; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * Allocate space for a new leaf node. | 
|  | */ | 
|  | ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | error = xfs_da_grow_inode(state->args, &blkno); | 
|  | if (error) | 
|  | return(error); | 
|  | error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp); | 
|  | if (error) | 
|  | return(error); | 
|  | newblk->blkno = blkno; | 
|  | newblk->magic = XFS_ATTR_LEAF_MAGIC; | 
|  |  | 
|  | /* | 
|  | * Rebalance the entries across the two leaves. | 
|  | * NOTE: rebalance() currently depends on the 2nd block being empty. | 
|  | */ | 
|  | xfs_attr_leaf_rebalance(state, oldblk, newblk); | 
|  | error = xfs_da_blk_link(state, oldblk, newblk); | 
|  | if (error) | 
|  | return(error); | 
|  |  | 
|  | /* | 
|  | * Save info on "old" attribute for "atomic rename" ops, leaf_add() | 
|  | * modifies the index/blkno/rmtblk/rmtblkcnt fields to show the | 
|  | * "new" attrs info.  Will need the "old" info to remove it later. | 
|  | * | 
|  | * Insert the "new" entry in the correct block. | 
|  | */ | 
|  | if (state->inleaf) | 
|  | error = xfs_attr_leaf_add(oldblk->bp, state->args); | 
|  | else | 
|  | error = xfs_attr_leaf_add(newblk->bp, state->args); | 
|  |  | 
|  | /* | 
|  | * Update last hashval in each block since we added the name. | 
|  | */ | 
|  | oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL); | 
|  | newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL); | 
|  | return(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a name to the leaf attribute list structure. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_hdr_t *hdr; | 
|  | xfs_attr_leaf_map_t *map; | 
|  | int tablesize, entsize, sum, tmp, i; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT((args->index >= 0) | 
|  | && (args->index <= be16_to_cpu(leaf->hdr.count))); | 
|  | hdr = &leaf->hdr; | 
|  | entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen, | 
|  | args->trans->t_mountp->m_sb.sb_blocksize, NULL); | 
|  |  | 
|  | /* | 
|  | * Search through freemap for first-fit on new name length. | 
|  | * (may need to figure in size of entry struct too) | 
|  | */ | 
|  | tablesize = (be16_to_cpu(hdr->count) + 1) | 
|  | * sizeof(xfs_attr_leaf_entry_t) | 
|  | + sizeof(xfs_attr_leaf_hdr_t); | 
|  | map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1]; | 
|  | for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) { | 
|  | if (tablesize > be16_to_cpu(hdr->firstused)) { | 
|  | sum += be16_to_cpu(map->size); | 
|  | continue; | 
|  | } | 
|  | if (!map->size) | 
|  | continue;	/* no space in this map */ | 
|  | tmp = entsize; | 
|  | if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused)) | 
|  | tmp += sizeof(xfs_attr_leaf_entry_t); | 
|  | if (be16_to_cpu(map->size) >= tmp) { | 
|  | tmp = xfs_attr_leaf_add_work(bp, args, i); | 
|  | return(tmp); | 
|  | } | 
|  | sum += be16_to_cpu(map->size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no holes in the address space of the block, | 
|  | * and we don't have enough freespace, then compaction will do us | 
|  | * no good and we should just give up. | 
|  | */ | 
|  | if (!hdr->holes && (sum < entsize)) | 
|  | return(XFS_ERROR(ENOSPC)); | 
|  |  | 
|  | /* | 
|  | * Compact the entries to coalesce free space. | 
|  | * This may change the hdr->count via dropping INCOMPLETE entries. | 
|  | */ | 
|  | xfs_attr_leaf_compact(args->trans, bp); | 
|  |  | 
|  | /* | 
|  | * After compaction, the block is guaranteed to have only one | 
|  | * free region, in freemap[0].  If it is not big enough, give up. | 
|  | */ | 
|  | if (be16_to_cpu(hdr->freemap[0].size) | 
|  | < (entsize + sizeof(xfs_attr_leaf_entry_t))) | 
|  | return(XFS_ERROR(ENOSPC)); | 
|  |  | 
|  | return(xfs_attr_leaf_add_work(bp, args, 0)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add a name to a leaf attribute list structure. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_hdr_t *hdr; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | xfs_attr_leaf_map_t *map; | 
|  | xfs_mount_t *mp; | 
|  | int tmp, i; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | hdr = &leaf->hdr; | 
|  | ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE)); | 
|  | ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count))); | 
|  |  | 
|  | /* | 
|  | * Force open some space in the entry array and fill it in. | 
|  | */ | 
|  | entry = &leaf->entries[args->index]; | 
|  | if (args->index < be16_to_cpu(hdr->count)) { | 
|  | tmp  = be16_to_cpu(hdr->count) - args->index; | 
|  | tmp *= sizeof(xfs_attr_leaf_entry_t); | 
|  | memmove((char *)(entry+1), (char *)entry, tmp); | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); | 
|  | } | 
|  | be16_add_cpu(&hdr->count, 1); | 
|  |  | 
|  | /* | 
|  | * Allocate space for the new string (at the end of the run). | 
|  | */ | 
|  | map = &hdr->freemap[mapindex]; | 
|  | mp = args->trans->t_mountp; | 
|  | ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp)); | 
|  | ASSERT((be16_to_cpu(map->base) & 0x3) == 0); | 
|  | ASSERT(be16_to_cpu(map->size) >= | 
|  | xfs_attr_leaf_newentsize(args->namelen, args->valuelen, | 
|  | mp->m_sb.sb_blocksize, NULL)); | 
|  | ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp)); | 
|  | ASSERT((be16_to_cpu(map->size) & 0x3) == 0); | 
|  | be16_add_cpu(&map->size, | 
|  | -xfs_attr_leaf_newentsize(args->namelen, args->valuelen, | 
|  | mp->m_sb.sb_blocksize, &tmp)); | 
|  | entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) + | 
|  | be16_to_cpu(map->size)); | 
|  | entry->hashval = cpu_to_be32(args->hashval); | 
|  | entry->flags = tmp ? XFS_ATTR_LOCAL : 0; | 
|  | entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags); | 
|  | if (args->op_flags & XFS_DA_OP_RENAME) { | 
|  | entry->flags |= XFS_ATTR_INCOMPLETE; | 
|  | if ((args->blkno2 == args->blkno) && | 
|  | (args->index2 <= args->index)) { | 
|  | args->index2++; | 
|  | } | 
|  | } | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); | 
|  | ASSERT((args->index == 0) || | 
|  | (be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval))); | 
|  | ASSERT((args->index == be16_to_cpu(hdr->count)-1) || | 
|  | (be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval))); | 
|  |  | 
|  | /* | 
|  | * Copy the attribute name and value into the new space. | 
|  | * | 
|  | * For "remote" attribute values, simply note that we need to | 
|  | * allocate space for the "remote" value.  We can't actually | 
|  | * allocate the extents in this transaction, and we can't decide | 
|  | * which blocks they should be as we might allocate more blocks | 
|  | * as part of this transaction (a split operation for example). | 
|  | */ | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, args->index); | 
|  | name_loc->namelen = args->namelen; | 
|  | name_loc->valuelen = cpu_to_be16(args->valuelen); | 
|  | memcpy((char *)name_loc->nameval, args->name, args->namelen); | 
|  | memcpy((char *)&name_loc->nameval[args->namelen], args->value, | 
|  | be16_to_cpu(name_loc->valuelen)); | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); | 
|  | name_rmt->namelen = args->namelen; | 
|  | memcpy((char *)name_rmt->name, args->name, args->namelen); | 
|  | entry->flags |= XFS_ATTR_INCOMPLETE; | 
|  | /* just in case */ | 
|  | name_rmt->valuelen = 0; | 
|  | name_rmt->valueblk = 0; | 
|  | args->rmtblkno = 1; | 
|  | args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen); | 
|  | } | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index), | 
|  | xfs_attr_leaf_entsize(leaf, args->index))); | 
|  |  | 
|  | /* | 
|  | * Update the control info for this leaf node | 
|  | */ | 
|  | if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) { | 
|  | /* both on-disk, don't endian-flip twice */ | 
|  | hdr->firstused = entry->nameidx; | 
|  | } | 
|  | ASSERT(be16_to_cpu(hdr->firstused) >= | 
|  | ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr))); | 
|  | tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t) | 
|  | + sizeof(xfs_attr_leaf_hdr_t); | 
|  | map = &hdr->freemap[0]; | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { | 
|  | if (be16_to_cpu(map->base) == tmp) { | 
|  | be16_add_cpu(&map->base, sizeof(xfs_attr_leaf_entry_t)); | 
|  | be16_add_cpu(&map->size, | 
|  | -((int)sizeof(xfs_attr_leaf_entry_t))); | 
|  | } | 
|  | } | 
|  | be16_add_cpu(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index)); | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Garbage collect a leaf attribute list block by copying it to a new buffer. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf_s, *leaf_d; | 
|  | xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; | 
|  | xfs_mount_t *mp; | 
|  | char *tmpbuffer; | 
|  |  | 
|  | mp = trans->t_mountp; | 
|  | tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP); | 
|  | ASSERT(tmpbuffer != NULL); | 
|  | memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp)); | 
|  | memset(bp->data, 0, XFS_LBSIZE(mp)); | 
|  |  | 
|  | /* | 
|  | * Copy basic information | 
|  | */ | 
|  | leaf_s = (xfs_attr_leafblock_t *)tmpbuffer; | 
|  | leaf_d = bp->data; | 
|  | hdr_s = &leaf_s->hdr; | 
|  | hdr_d = &leaf_d->hdr; | 
|  | hdr_d->info = hdr_s->info;	/* struct copy */ | 
|  | hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp)); | 
|  | /* handle truncation gracefully */ | 
|  | if (!hdr_d->firstused) { | 
|  | hdr_d->firstused = cpu_to_be16( | 
|  | XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN); | 
|  | } | 
|  | hdr_d->usedbytes = 0; | 
|  | hdr_d->count = 0; | 
|  | hdr_d->holes = 0; | 
|  | hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); | 
|  | hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) - | 
|  | sizeof(xfs_attr_leaf_hdr_t)); | 
|  |  | 
|  | /* | 
|  | * Copy all entry's in the same (sorted) order, | 
|  | * but allocate name/value pairs packed and in sequence. | 
|  | */ | 
|  | xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0, | 
|  | be16_to_cpu(hdr_s->count), mp); | 
|  | xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1); | 
|  |  | 
|  | kmem_free(tmpbuffer); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Redistribute the attribute list entries between two leaf nodes, | 
|  | * taking into account the size of the new entry. | 
|  | * | 
|  | * NOTE: if new block is empty, then it will get the upper half of the | 
|  | * old block.  At present, all (one) callers pass in an empty second block. | 
|  | * | 
|  | * This code adjusts the args->index/blkno and args->index2/blkno2 fields | 
|  | * to match what it is doing in splitting the attribute leaf block.  Those | 
|  | * values are used in "atomic rename" operations on attributes.  Note that | 
|  | * the "new" and "old" values can end up in different blocks. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1, | 
|  | xfs_da_state_blk_t *blk2) | 
|  | { | 
|  | xfs_da_args_t *args; | 
|  | xfs_da_state_blk_t *tmp_blk; | 
|  | xfs_attr_leafblock_t *leaf1, *leaf2; | 
|  | xfs_attr_leaf_hdr_t *hdr1, *hdr2; | 
|  | int count, totallen, max, space, swap; | 
|  |  | 
|  | /* | 
|  | * Set up environment. | 
|  | */ | 
|  | ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | leaf1 = blk1->bp->data; | 
|  | leaf2 = blk2->bp->data; | 
|  | ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | args = state->args; | 
|  |  | 
|  | /* | 
|  | * Check ordering of blocks, reverse if it makes things simpler. | 
|  | * | 
|  | * NOTE: Given that all (current) callers pass in an empty | 
|  | * second block, this code should never set "swap". | 
|  | */ | 
|  | swap = 0; | 
|  | if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) { | 
|  | tmp_blk = blk1; | 
|  | blk1 = blk2; | 
|  | blk2 = tmp_blk; | 
|  | leaf1 = blk1->bp->data; | 
|  | leaf2 = blk2->bp->data; | 
|  | swap = 1; | 
|  | } | 
|  | hdr1 = &leaf1->hdr; | 
|  | hdr2 = &leaf2->hdr; | 
|  |  | 
|  | /* | 
|  | * Examine entries until we reduce the absolute difference in | 
|  | * byte usage between the two blocks to a minimum.  Then get | 
|  | * the direction to copy and the number of elements to move. | 
|  | * | 
|  | * "inleaf" is true if the new entry should be inserted into blk1. | 
|  | * If "swap" is also true, then reverse the sense of "inleaf". | 
|  | */ | 
|  | state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2, | 
|  | &count, &totallen); | 
|  | if (swap) | 
|  | state->inleaf = !state->inleaf; | 
|  |  | 
|  | /* | 
|  | * Move any entries required from leaf to leaf: | 
|  | */ | 
|  | if (count < be16_to_cpu(hdr1->count)) { | 
|  | /* | 
|  | * Figure the total bytes to be added to the destination leaf. | 
|  | */ | 
|  | /* number entries being moved */ | 
|  | count = be16_to_cpu(hdr1->count) - count; | 
|  | space  = be16_to_cpu(hdr1->usedbytes) - totallen; | 
|  | space += count * sizeof(xfs_attr_leaf_entry_t); | 
|  |  | 
|  | /* | 
|  | * leaf2 is the destination, compact it if it looks tight. | 
|  | */ | 
|  | max  = be16_to_cpu(hdr2->firstused) | 
|  | - sizeof(xfs_attr_leaf_hdr_t); | 
|  | max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t); | 
|  | if (space > max) { | 
|  | xfs_attr_leaf_compact(args->trans, blk2->bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move high entries from leaf1 to low end of leaf2. | 
|  | */ | 
|  | xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count, | 
|  | leaf2, 0, count, state->mp); | 
|  |  | 
|  | xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); | 
|  | xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); | 
|  | } else if (count > be16_to_cpu(hdr1->count)) { | 
|  | /* | 
|  | * I assert that since all callers pass in an empty | 
|  | * second buffer, this code should never execute. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Figure the total bytes to be added to the destination leaf. | 
|  | */ | 
|  | /* number entries being moved */ | 
|  | count -= be16_to_cpu(hdr1->count); | 
|  | space  = totallen - be16_to_cpu(hdr1->usedbytes); | 
|  | space += count * sizeof(xfs_attr_leaf_entry_t); | 
|  |  | 
|  | /* | 
|  | * leaf1 is the destination, compact it if it looks tight. | 
|  | */ | 
|  | max  = be16_to_cpu(hdr1->firstused) | 
|  | - sizeof(xfs_attr_leaf_hdr_t); | 
|  | max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t); | 
|  | if (space > max) { | 
|  | xfs_attr_leaf_compact(args->trans, blk1->bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move low entries from leaf2 to high end of leaf1. | 
|  | */ | 
|  | xfs_attr_leaf_moveents(leaf2, 0, leaf1, | 
|  | be16_to_cpu(hdr1->count), count, state->mp); | 
|  |  | 
|  | xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1); | 
|  | xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy out last hashval in each block for B-tree code. | 
|  | */ | 
|  | blk1->hashval = be32_to_cpu( | 
|  | leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval); | 
|  | blk2->hashval = be32_to_cpu( | 
|  | leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval); | 
|  |  | 
|  | /* | 
|  | * Adjust the expected index for insertion. | 
|  | * NOTE: this code depends on the (current) situation that the | 
|  | * second block was originally empty. | 
|  | * | 
|  | * If the insertion point moved to the 2nd block, we must adjust | 
|  | * the index.  We must also track the entry just following the | 
|  | * new entry for use in an "atomic rename" operation, that entry | 
|  | * is always the "old" entry and the "new" entry is what we are | 
|  | * inserting.  The index/blkno fields refer to the "old" entry, | 
|  | * while the index2/blkno2 fields refer to the "new" entry. | 
|  | */ | 
|  | if (blk1->index > be16_to_cpu(leaf1->hdr.count)) { | 
|  | ASSERT(state->inleaf == 0); | 
|  | blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count); | 
|  | args->index = args->index2 = blk2->index; | 
|  | args->blkno = args->blkno2 = blk2->blkno; | 
|  | } else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) { | 
|  | if (state->inleaf) { | 
|  | args->index = blk1->index; | 
|  | args->blkno = blk1->blkno; | 
|  | args->index2 = 0; | 
|  | args->blkno2 = blk2->blkno; | 
|  | } else { | 
|  | blk2->index = blk1->index | 
|  | - be16_to_cpu(leaf1->hdr.count); | 
|  | args->index = args->index2 = blk2->index; | 
|  | args->blkno = args->blkno2 = blk2->blkno; | 
|  | } | 
|  | } else { | 
|  | ASSERT(state->inleaf == 1); | 
|  | args->index = args->index2 = blk1->index; | 
|  | args->blkno = args->blkno2 = blk1->blkno; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine entries until we reduce the absolute difference in | 
|  | * byte usage between the two blocks to a minimum. | 
|  | * GROT: Is this really necessary?  With other than a 512 byte blocksize, | 
|  | * GROT: there will always be enough room in either block for a new entry. | 
|  | * GROT: Do a double-split for this case? | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_figure_balance(xfs_da_state_t *state, | 
|  | xfs_da_state_blk_t *blk1, | 
|  | xfs_da_state_blk_t *blk2, | 
|  | int *countarg, int *usedbytesarg) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf1, *leaf2; | 
|  | xfs_attr_leaf_hdr_t *hdr1, *hdr2; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | int count, max, index, totallen, half; | 
|  | int lastdelta, foundit, tmp; | 
|  |  | 
|  | /* | 
|  | * Set up environment. | 
|  | */ | 
|  | leaf1 = blk1->bp->data; | 
|  | leaf2 = blk2->bp->data; | 
|  | hdr1 = &leaf1->hdr; | 
|  | hdr2 = &leaf2->hdr; | 
|  | foundit = 0; | 
|  | totallen = 0; | 
|  |  | 
|  | /* | 
|  | * Examine entries until we reduce the absolute difference in | 
|  | * byte usage between the two blocks to a minimum. | 
|  | */ | 
|  | max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count); | 
|  | half  = (max+1) * sizeof(*entry); | 
|  | half += be16_to_cpu(hdr1->usedbytes) + | 
|  | be16_to_cpu(hdr2->usedbytes) + | 
|  | xfs_attr_leaf_newentsize( | 
|  | state->args->namelen, | 
|  | state->args->valuelen, | 
|  | state->blocksize, NULL); | 
|  | half /= 2; | 
|  | lastdelta = state->blocksize; | 
|  | entry = &leaf1->entries[0]; | 
|  | for (count = index = 0; count < max; entry++, index++, count++) { | 
|  |  | 
|  | #define XFS_ATTR_ABS(A)	(((A) < 0) ? -(A) : (A)) | 
|  | /* | 
|  | * The new entry is in the first block, account for it. | 
|  | */ | 
|  | if (count == blk1->index) { | 
|  | tmp = totallen + sizeof(*entry) + | 
|  | xfs_attr_leaf_newentsize( | 
|  | state->args->namelen, | 
|  | state->args->valuelen, | 
|  | state->blocksize, NULL); | 
|  | if (XFS_ATTR_ABS(half - tmp) > lastdelta) | 
|  | break; | 
|  | lastdelta = XFS_ATTR_ABS(half - tmp); | 
|  | totallen = tmp; | 
|  | foundit = 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrap around into the second block if necessary. | 
|  | */ | 
|  | if (count == be16_to_cpu(hdr1->count)) { | 
|  | leaf1 = leaf2; | 
|  | entry = &leaf1->entries[0]; | 
|  | index = 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Figure out if next leaf entry would be too much. | 
|  | */ | 
|  | tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1, | 
|  | index); | 
|  | if (XFS_ATTR_ABS(half - tmp) > lastdelta) | 
|  | break; | 
|  | lastdelta = XFS_ATTR_ABS(half - tmp); | 
|  | totallen = tmp; | 
|  | #undef XFS_ATTR_ABS | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of usedbytes that will end up in lower block. | 
|  | * If new entry not in lower block, fix up the count. | 
|  | */ | 
|  | totallen -= count * sizeof(*entry); | 
|  | if (foundit) { | 
|  | totallen -= sizeof(*entry) + | 
|  | xfs_attr_leaf_newentsize( | 
|  | state->args->namelen, | 
|  | state->args->valuelen, | 
|  | state->blocksize, NULL); | 
|  | } | 
|  |  | 
|  | *countarg = count; | 
|  | *usedbytesarg = totallen; | 
|  | return(foundit); | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Routines used for shrinking the Btree. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Check a leaf block and its neighbors to see if the block should be | 
|  | * collapsed into one or the other neighbor.  Always keep the block | 
|  | * with the smaller block number. | 
|  | * If the current block is over 50% full, don't try to join it, return 0. | 
|  | * If the block is empty, fill in the state structure and return 2. | 
|  | * If it can be collapsed, fill in the state structure and return 1. | 
|  | * If nothing can be done, return 0. | 
|  | * | 
|  | * GROT: allow for INCOMPLETE entries in calculation. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_da_state_blk_t *blk; | 
|  | xfs_da_blkinfo_t *info; | 
|  | int count, bytes, forward, error, retval, i; | 
|  | xfs_dablk_t blkno; | 
|  | xfs_dabuf_t *bp; | 
|  |  | 
|  | /* | 
|  | * Check for the degenerate case of the block being over 50% full. | 
|  | * If so, it's not worth even looking to see if we might be able | 
|  | * to coalesce with a sibling. | 
|  | */ | 
|  | blk = &state->path.blk[ state->path.active-1 ]; | 
|  | info = blk->bp->data; | 
|  | ASSERT(be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | leaf = (xfs_attr_leafblock_t *)info; | 
|  | count = be16_to_cpu(leaf->hdr.count); | 
|  | bytes = sizeof(xfs_attr_leaf_hdr_t) + | 
|  | count * sizeof(xfs_attr_leaf_entry_t) + | 
|  | be16_to_cpu(leaf->hdr.usedbytes); | 
|  | if (bytes > (state->blocksize >> 1)) { | 
|  | *action = 0;	/* blk over 50%, don't try to join */ | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Check for the degenerate case of the block being empty. | 
|  | * If the block is empty, we'll simply delete it, no need to | 
|  | * coalesce it with a sibling block.  We choose (arbitrarily) | 
|  | * to merge with the forward block unless it is NULL. | 
|  | */ | 
|  | if (count == 0) { | 
|  | /* | 
|  | * Make altpath point to the block we want to keep and | 
|  | * path point to the block we want to drop (this one). | 
|  | */ | 
|  | forward = (info->forw != 0); | 
|  | memcpy(&state->altpath, &state->path, sizeof(state->path)); | 
|  | error = xfs_da_path_shift(state, &state->altpath, forward, | 
|  | 0, &retval); | 
|  | if (error) | 
|  | return(error); | 
|  | if (retval) { | 
|  | *action = 0; | 
|  | } else { | 
|  | *action = 2; | 
|  | } | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Examine each sibling block to see if we can coalesce with | 
|  | * at least 25% free space to spare.  We need to figure out | 
|  | * whether to merge with the forward or the backward block. | 
|  | * We prefer coalescing with the lower numbered sibling so as | 
|  | * to shrink an attribute list over time. | 
|  | */ | 
|  | /* start with smaller blk num */ | 
|  | forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back)); | 
|  | for (i = 0; i < 2; forward = !forward, i++) { | 
|  | if (forward) | 
|  | blkno = be32_to_cpu(info->forw); | 
|  | else | 
|  | blkno = be32_to_cpu(info->back); | 
|  | if (blkno == 0) | 
|  | continue; | 
|  | error = xfs_da_read_buf(state->args->trans, state->args->dp, | 
|  | blkno, -1, &bp, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | ASSERT(bp != NULL); | 
|  |  | 
|  | leaf = (xfs_attr_leafblock_t *)info; | 
|  | count  = be16_to_cpu(leaf->hdr.count); | 
|  | bytes  = state->blocksize - (state->blocksize>>2); | 
|  | bytes -= be16_to_cpu(leaf->hdr.usedbytes); | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | count += be16_to_cpu(leaf->hdr.count); | 
|  | bytes -= be16_to_cpu(leaf->hdr.usedbytes); | 
|  | bytes -= count * sizeof(xfs_attr_leaf_entry_t); | 
|  | bytes -= sizeof(xfs_attr_leaf_hdr_t); | 
|  | xfs_da_brelse(state->args->trans, bp); | 
|  | if (bytes >= 0) | 
|  | break;	/* fits with at least 25% to spare */ | 
|  | } | 
|  | if (i >= 2) { | 
|  | *action = 0; | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Make altpath point to the block we want to keep (the lower | 
|  | * numbered block) and path point to the block we want to drop. | 
|  | */ | 
|  | memcpy(&state->altpath, &state->path, sizeof(state->path)); | 
|  | if (blkno < blk->blkno) { | 
|  | error = xfs_da_path_shift(state, &state->altpath, forward, | 
|  | 0, &retval); | 
|  | } else { | 
|  | error = xfs_da_path_shift(state, &state->path, forward, | 
|  | 0, &retval); | 
|  | } | 
|  | if (error) | 
|  | return(error); | 
|  | if (retval) { | 
|  | *action = 0; | 
|  | } else { | 
|  | *action = 1; | 
|  | } | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Remove a name from the leaf attribute list structure. | 
|  | * | 
|  | * Return 1 if leaf is less than 37% full, 0 if >= 37% full. | 
|  | * If two leaves are 37% full, when combined they will leave 25% free. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_remove(xfs_dabuf_t *bp, xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_hdr_t *hdr; | 
|  | xfs_attr_leaf_map_t *map; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | int before, after, smallest, entsize; | 
|  | int tablesize, tmp, i; | 
|  | xfs_mount_t *mp; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | hdr = &leaf->hdr; | 
|  | mp = args->trans->t_mountp; | 
|  | ASSERT((be16_to_cpu(hdr->count) > 0) | 
|  | && (be16_to_cpu(hdr->count) < (XFS_LBSIZE(mp)/8))); | 
|  | ASSERT((args->index >= 0) | 
|  | && (args->index < be16_to_cpu(hdr->count))); | 
|  | ASSERT(be16_to_cpu(hdr->firstused) >= | 
|  | ((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr))); | 
|  | entry = &leaf->entries[args->index]; | 
|  | ASSERT(be16_to_cpu(entry->nameidx) >= be16_to_cpu(hdr->firstused)); | 
|  | ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp)); | 
|  |  | 
|  | /* | 
|  | * Scan through free region table: | 
|  | *    check for adjacency of free'd entry with an existing one, | 
|  | *    find smallest free region in case we need to replace it, | 
|  | *    adjust any map that borders the entry table, | 
|  | */ | 
|  | tablesize = be16_to_cpu(hdr->count) * sizeof(xfs_attr_leaf_entry_t) | 
|  | + sizeof(xfs_attr_leaf_hdr_t); | 
|  | map = &hdr->freemap[0]; | 
|  | tmp = be16_to_cpu(map->size); | 
|  | before = after = -1; | 
|  | smallest = XFS_ATTR_LEAF_MAPSIZE - 1; | 
|  | entsize = xfs_attr_leaf_entsize(leaf, args->index); | 
|  | for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) { | 
|  | ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp)); | 
|  | ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp)); | 
|  | if (be16_to_cpu(map->base) == tablesize) { | 
|  | be16_add_cpu(&map->base, | 
|  | -((int)sizeof(xfs_attr_leaf_entry_t))); | 
|  | be16_add_cpu(&map->size, sizeof(xfs_attr_leaf_entry_t)); | 
|  | } | 
|  |  | 
|  | if ((be16_to_cpu(map->base) + be16_to_cpu(map->size)) | 
|  | == be16_to_cpu(entry->nameidx)) { | 
|  | before = i; | 
|  | } else if (be16_to_cpu(map->base) | 
|  | == (be16_to_cpu(entry->nameidx) + entsize)) { | 
|  | after = i; | 
|  | } else if (be16_to_cpu(map->size) < tmp) { | 
|  | tmp = be16_to_cpu(map->size); | 
|  | smallest = i; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Coalesce adjacent freemap regions, | 
|  | * or replace the smallest region. | 
|  | */ | 
|  | if ((before >= 0) || (after >= 0)) { | 
|  | if ((before >= 0) && (after >= 0)) { | 
|  | map = &hdr->freemap[before]; | 
|  | be16_add_cpu(&map->size, entsize); | 
|  | be16_add_cpu(&map->size, | 
|  | be16_to_cpu(hdr->freemap[after].size)); | 
|  | hdr->freemap[after].base = 0; | 
|  | hdr->freemap[after].size = 0; | 
|  | } else if (before >= 0) { | 
|  | map = &hdr->freemap[before]; | 
|  | be16_add_cpu(&map->size, entsize); | 
|  | } else { | 
|  | map = &hdr->freemap[after]; | 
|  | /* both on-disk, don't endian flip twice */ | 
|  | map->base = entry->nameidx; | 
|  | be16_add_cpu(&map->size, entsize); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Replace smallest region (if it is smaller than free'd entry) | 
|  | */ | 
|  | map = &hdr->freemap[smallest]; | 
|  | if (be16_to_cpu(map->size) < entsize) { | 
|  | map->base = cpu_to_be16(be16_to_cpu(entry->nameidx)); | 
|  | map->size = cpu_to_be16(entsize); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Did we remove the first entry? | 
|  | */ | 
|  | if (be16_to_cpu(entry->nameidx) == be16_to_cpu(hdr->firstused)) | 
|  | smallest = 1; | 
|  | else | 
|  | smallest = 0; | 
|  |  | 
|  | /* | 
|  | * Compress the remaining entries and zero out the removed stuff. | 
|  | */ | 
|  | memset(xfs_attr_leaf_name(leaf, args->index), 0, entsize); | 
|  | be16_add_cpu(&hdr->usedbytes, -entsize); | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, xfs_attr_leaf_name(leaf, args->index), | 
|  | entsize)); | 
|  |  | 
|  | tmp = (be16_to_cpu(hdr->count) - args->index) | 
|  | * sizeof(xfs_attr_leaf_entry_t); | 
|  | memmove((char *)entry, (char *)(entry+1), tmp); | 
|  | be16_add_cpu(&hdr->count, -1); | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry))); | 
|  | entry = &leaf->entries[be16_to_cpu(hdr->count)]; | 
|  | memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t)); | 
|  |  | 
|  | /* | 
|  | * If we removed the first entry, re-find the first used byte | 
|  | * in the name area.  Note that if the entry was the "firstused", | 
|  | * then we don't have a "hole" in our block resulting from | 
|  | * removing the name. | 
|  | */ | 
|  | if (smallest) { | 
|  | tmp = XFS_LBSIZE(mp); | 
|  | entry = &leaf->entries[0]; | 
|  | for (i = be16_to_cpu(hdr->count)-1; i >= 0; entry++, i--) { | 
|  | ASSERT(be16_to_cpu(entry->nameidx) >= | 
|  | be16_to_cpu(hdr->firstused)); | 
|  | ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp)); | 
|  |  | 
|  | if (be16_to_cpu(entry->nameidx) < tmp) | 
|  | tmp = be16_to_cpu(entry->nameidx); | 
|  | } | 
|  | hdr->firstused = cpu_to_be16(tmp); | 
|  | if (!hdr->firstused) { | 
|  | hdr->firstused = cpu_to_be16( | 
|  | tmp - XFS_ATTR_LEAF_NAME_ALIGN); | 
|  | } | 
|  | } else { | 
|  | hdr->holes = 1;		/* mark as needing compaction */ | 
|  | } | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr))); | 
|  |  | 
|  | /* | 
|  | * Check if leaf is less than 50% full, caller may want to | 
|  | * "join" the leaf with a sibling if so. | 
|  | */ | 
|  | tmp  = sizeof(xfs_attr_leaf_hdr_t); | 
|  | tmp += be16_to_cpu(leaf->hdr.count) * sizeof(xfs_attr_leaf_entry_t); | 
|  | tmp += be16_to_cpu(leaf->hdr.usedbytes); | 
|  | return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Move all the attribute list entries from drop_leaf into save_leaf. | 
|  | */ | 
|  | void | 
|  | xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk, | 
|  | xfs_da_state_blk_t *save_blk) | 
|  | { | 
|  | xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf; | 
|  | xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr; | 
|  | xfs_mount_t *mp; | 
|  | char *tmpbuffer; | 
|  |  | 
|  | /* | 
|  | * Set up environment. | 
|  | */ | 
|  | mp = state->mp; | 
|  | ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC); | 
|  | drop_leaf = drop_blk->bp->data; | 
|  | save_leaf = save_blk->bp->data; | 
|  | ASSERT(be16_to_cpu(drop_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(be16_to_cpu(save_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | drop_hdr = &drop_leaf->hdr; | 
|  | save_hdr = &save_leaf->hdr; | 
|  |  | 
|  | /* | 
|  | * Save last hashval from dying block for later Btree fixup. | 
|  | */ | 
|  | drop_blk->hashval = be32_to_cpu( | 
|  | drop_leaf->entries[be16_to_cpu(drop_leaf->hdr.count)-1].hashval); | 
|  |  | 
|  | /* | 
|  | * Check if we need a temp buffer, or can we do it in place. | 
|  | * Note that we don't check "leaf" for holes because we will | 
|  | * always be dropping it, toosmall() decided that for us already. | 
|  | */ | 
|  | if (save_hdr->holes == 0) { | 
|  | /* | 
|  | * dest leaf has no holes, so we add there.  May need | 
|  | * to make some room in the entry array. | 
|  | */ | 
|  | if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) { | 
|  | xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0, | 
|  | be16_to_cpu(drop_hdr->count), mp); | 
|  | } else { | 
|  | xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, | 
|  | be16_to_cpu(save_hdr->count), | 
|  | be16_to_cpu(drop_hdr->count), mp); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * Destination has holes, so we make a temporary copy | 
|  | * of the leaf and add them both to that. | 
|  | */ | 
|  | tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP); | 
|  | ASSERT(tmpbuffer != NULL); | 
|  | memset(tmpbuffer, 0, state->blocksize); | 
|  | tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer; | 
|  | tmp_hdr = &tmp_leaf->hdr; | 
|  | tmp_hdr->info = save_hdr->info;	/* struct copy */ | 
|  | tmp_hdr->count = 0; | 
|  | tmp_hdr->firstused = cpu_to_be16(state->blocksize); | 
|  | if (!tmp_hdr->firstused) { | 
|  | tmp_hdr->firstused = cpu_to_be16( | 
|  | state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN); | 
|  | } | 
|  | tmp_hdr->usedbytes = 0; | 
|  | if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) { | 
|  | xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0, | 
|  | be16_to_cpu(drop_hdr->count), mp); | 
|  | xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, | 
|  | be16_to_cpu(tmp_leaf->hdr.count), | 
|  | be16_to_cpu(save_hdr->count), mp); | 
|  | } else { | 
|  | xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0, | 
|  | be16_to_cpu(save_hdr->count), mp); | 
|  | xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, | 
|  | be16_to_cpu(tmp_leaf->hdr.count), | 
|  | be16_to_cpu(drop_hdr->count), mp); | 
|  | } | 
|  | memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize); | 
|  | kmem_free(tmpbuffer); | 
|  | } | 
|  |  | 
|  | xfs_da_log_buf(state->args->trans, save_blk->bp, 0, | 
|  | state->blocksize - 1); | 
|  |  | 
|  | /* | 
|  | * Copy out last hashval in each block for B-tree code. | 
|  | */ | 
|  | save_blk->hashval = be32_to_cpu( | 
|  | save_leaf->entries[be16_to_cpu(save_leaf->hdr.count)-1].hashval); | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Routines used for finding things in the Btree. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Look up a name in a leaf attribute list structure. | 
|  | * This is the internal routine, it uses the caller's buffer. | 
|  | * | 
|  | * Note that duplicate keys are allowed, but only check within the | 
|  | * current leaf node.  The Btree code must check in adjacent leaf nodes. | 
|  | * | 
|  | * Return in args->index the index into the entry[] array of either | 
|  | * the found entry, or where the entry should have been (insert before | 
|  | * that entry). | 
|  | * | 
|  | * Don't change the args->value unless we find the attribute. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | int probe, span; | 
|  | xfs_dahash_t hashval; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(be16_to_cpu(leaf->hdr.count) | 
|  | < (XFS_LBSIZE(args->dp->i_mount)/8)); | 
|  |  | 
|  | /* | 
|  | * Binary search.  (note: small blocks will skip this loop) | 
|  | */ | 
|  | hashval = args->hashval; | 
|  | probe = span = be16_to_cpu(leaf->hdr.count) / 2; | 
|  | for (entry = &leaf->entries[probe]; span > 4; | 
|  | entry = &leaf->entries[probe]) { | 
|  | span /= 2; | 
|  | if (be32_to_cpu(entry->hashval) < hashval) | 
|  | probe += span; | 
|  | else if (be32_to_cpu(entry->hashval) > hashval) | 
|  | probe -= span; | 
|  | else | 
|  | break; | 
|  | } | 
|  | ASSERT((probe >= 0) && | 
|  | (!leaf->hdr.count | 
|  | || (probe < be16_to_cpu(leaf->hdr.count)))); | 
|  | ASSERT((span <= 4) || (be32_to_cpu(entry->hashval) == hashval)); | 
|  |  | 
|  | /* | 
|  | * Since we may have duplicate hashval's, find the first matching | 
|  | * hashval in the leaf. | 
|  | */ | 
|  | while ((probe > 0) && (be32_to_cpu(entry->hashval) >= hashval)) { | 
|  | entry--; | 
|  | probe--; | 
|  | } | 
|  | while ((probe < be16_to_cpu(leaf->hdr.count)) && | 
|  | (be32_to_cpu(entry->hashval) < hashval)) { | 
|  | entry++; | 
|  | probe++; | 
|  | } | 
|  | if ((probe == be16_to_cpu(leaf->hdr.count)) || | 
|  | (be32_to_cpu(entry->hashval) != hashval)) { | 
|  | args->index = probe; | 
|  | return(XFS_ERROR(ENOATTR)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Duplicate keys may be present, so search all of them for a match. | 
|  | */ | 
|  | for (  ; (probe < be16_to_cpu(leaf->hdr.count)) && | 
|  | (be32_to_cpu(entry->hashval) == hashval); | 
|  | entry++, probe++) { | 
|  | /* | 
|  | * GROT: Add code to remove incomplete entries. | 
|  | */ | 
|  | /* | 
|  | * If we are looking for INCOMPLETE entries, show only those. | 
|  | * If we are looking for complete entries, show only those. | 
|  | */ | 
|  | if ((args->flags & XFS_ATTR_INCOMPLETE) != | 
|  | (entry->flags & XFS_ATTR_INCOMPLETE)) { | 
|  | continue; | 
|  | } | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, probe); | 
|  | if (name_loc->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, (char *)name_loc->nameval, args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, entry->flags)) | 
|  | continue; | 
|  | args->index = probe; | 
|  | return(XFS_ERROR(EEXIST)); | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, probe); | 
|  | if (name_rmt->namelen != args->namelen) | 
|  | continue; | 
|  | if (memcmp(args->name, (char *)name_rmt->name, | 
|  | args->namelen) != 0) | 
|  | continue; | 
|  | if (!xfs_attr_namesp_match(args->flags, entry->flags)) | 
|  | continue; | 
|  | args->index = probe; | 
|  | args->rmtblkno = be32_to_cpu(name_rmt->valueblk); | 
|  | args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, | 
|  | be32_to_cpu(name_rmt->valuelen)); | 
|  | return(XFS_ERROR(EEXIST)); | 
|  | } | 
|  | } | 
|  | args->index = probe; | 
|  | return(XFS_ERROR(ENOATTR)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get the value associated with an attribute name from a leaf attribute | 
|  | * list structure. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_getvalue(xfs_dabuf_t *bp, xfs_da_args_t *args) | 
|  | { | 
|  | int valuelen; | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(be16_to_cpu(leaf->hdr.count) | 
|  | < (XFS_LBSIZE(args->dp->i_mount)/8)); | 
|  | ASSERT(args->index < be16_to_cpu(leaf->hdr.count)); | 
|  |  | 
|  | entry = &leaf->entries[args->index]; | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, args->index); | 
|  | ASSERT(name_loc->namelen == args->namelen); | 
|  | ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0); | 
|  | valuelen = be16_to_cpu(name_loc->valuelen); | 
|  | if (args->flags & ATTR_KERNOVAL) { | 
|  | args->valuelen = valuelen; | 
|  | return(0); | 
|  | } | 
|  | if (args->valuelen < valuelen) { | 
|  | args->valuelen = valuelen; | 
|  | return(XFS_ERROR(ERANGE)); | 
|  | } | 
|  | args->valuelen = valuelen; | 
|  | memcpy(args->value, &name_loc->nameval[args->namelen], valuelen); | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); | 
|  | ASSERT(name_rmt->namelen == args->namelen); | 
|  | ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0); | 
|  | valuelen = be32_to_cpu(name_rmt->valuelen); | 
|  | args->rmtblkno = be32_to_cpu(name_rmt->valueblk); | 
|  | args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen); | 
|  | if (args->flags & ATTR_KERNOVAL) { | 
|  | args->valuelen = valuelen; | 
|  | return(0); | 
|  | } | 
|  | if (args->valuelen < valuelen) { | 
|  | args->valuelen = valuelen; | 
|  | return(XFS_ERROR(ERANGE)); | 
|  | } | 
|  | args->valuelen = valuelen; | 
|  | } | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Utility routines. | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Move the indicated entries from one leaf to another. | 
|  | * NOTE: this routine modifies both source and destination leaves. | 
|  | */ | 
|  | /*ARGSUSED*/ | 
|  | STATIC void | 
|  | xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s, | 
|  | xfs_attr_leafblock_t *leaf_d, int start_d, | 
|  | int count, xfs_mount_t *mp) | 
|  | { | 
|  | xfs_attr_leaf_hdr_t *hdr_s, *hdr_d; | 
|  | xfs_attr_leaf_entry_t *entry_s, *entry_d; | 
|  | int desti, tmp, i; | 
|  |  | 
|  | /* | 
|  | * Check for nothing to do. | 
|  | */ | 
|  | if (count == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * Set up environment. | 
|  | */ | 
|  | ASSERT(be16_to_cpu(leaf_s->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(be16_to_cpu(leaf_d->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | hdr_s = &leaf_s->hdr; | 
|  | hdr_d = &leaf_d->hdr; | 
|  | ASSERT((be16_to_cpu(hdr_s->count) > 0) && | 
|  | (be16_to_cpu(hdr_s->count) < (XFS_LBSIZE(mp)/8))); | 
|  | ASSERT(be16_to_cpu(hdr_s->firstused) >= | 
|  | ((be16_to_cpu(hdr_s->count) | 
|  | * sizeof(*entry_s))+sizeof(*hdr_s))); | 
|  | ASSERT(be16_to_cpu(hdr_d->count) < (XFS_LBSIZE(mp)/8)); | 
|  | ASSERT(be16_to_cpu(hdr_d->firstused) >= | 
|  | ((be16_to_cpu(hdr_d->count) | 
|  | * sizeof(*entry_d))+sizeof(*hdr_d))); | 
|  |  | 
|  | ASSERT(start_s < be16_to_cpu(hdr_s->count)); | 
|  | ASSERT(start_d <= be16_to_cpu(hdr_d->count)); | 
|  | ASSERT(count <= be16_to_cpu(hdr_s->count)); | 
|  |  | 
|  | /* | 
|  | * Move the entries in the destination leaf up to make a hole? | 
|  | */ | 
|  | if (start_d < be16_to_cpu(hdr_d->count)) { | 
|  | tmp  = be16_to_cpu(hdr_d->count) - start_d; | 
|  | tmp *= sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &leaf_d->entries[start_d]; | 
|  | entry_d = &leaf_d->entries[start_d + count]; | 
|  | memmove((char *)entry_d, (char *)entry_s, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy all entry's in the same (sorted) order, | 
|  | * but allocate attribute info packed and in sequence. | 
|  | */ | 
|  | entry_s = &leaf_s->entries[start_s]; | 
|  | entry_d = &leaf_d->entries[start_d]; | 
|  | desti = start_d; | 
|  | for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) { | 
|  | ASSERT(be16_to_cpu(entry_s->nameidx) | 
|  | >= be16_to_cpu(hdr_s->firstused)); | 
|  | tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i); | 
|  | #ifdef GROT | 
|  | /* | 
|  | * Code to drop INCOMPLETE entries.  Difficult to use as we | 
|  | * may also need to change the insertion index.  Code turned | 
|  | * off for 6.2, should be revisited later. | 
|  | */ | 
|  | if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */ | 
|  | memset(xfs_attr_leaf_name(leaf_s, start_s + i), 0, tmp); | 
|  | be16_add_cpu(&hdr_s->usedbytes, -tmp); | 
|  | be16_add_cpu(&hdr_s->count, -1); | 
|  | entry_d--;	/* to compensate for ++ in loop hdr */ | 
|  | desti--; | 
|  | if ((start_s + i) < offset) | 
|  | result++;	/* insertion index adjustment */ | 
|  | } else { | 
|  | #endif /* GROT */ | 
|  | be16_add_cpu(&hdr_d->firstused, -tmp); | 
|  | /* both on-disk, don't endian flip twice */ | 
|  | entry_d->hashval = entry_s->hashval; | 
|  | /* both on-disk, don't endian flip twice */ | 
|  | entry_d->nameidx = hdr_d->firstused; | 
|  | entry_d->flags = entry_s->flags; | 
|  | ASSERT(be16_to_cpu(entry_d->nameidx) + tmp | 
|  | <= XFS_LBSIZE(mp)); | 
|  | memmove(xfs_attr_leaf_name(leaf_d, desti), | 
|  | xfs_attr_leaf_name(leaf_s, start_s + i), tmp); | 
|  | ASSERT(be16_to_cpu(entry_s->nameidx) + tmp | 
|  | <= XFS_LBSIZE(mp)); | 
|  | memset(xfs_attr_leaf_name(leaf_s, start_s + i), 0, tmp); | 
|  | be16_add_cpu(&hdr_s->usedbytes, -tmp); | 
|  | be16_add_cpu(&hdr_d->usedbytes, tmp); | 
|  | be16_add_cpu(&hdr_s->count, -1); | 
|  | be16_add_cpu(&hdr_d->count, 1); | 
|  | tmp = be16_to_cpu(hdr_d->count) | 
|  | * sizeof(xfs_attr_leaf_entry_t) | 
|  | + sizeof(xfs_attr_leaf_hdr_t); | 
|  | ASSERT(be16_to_cpu(hdr_d->firstused) >= tmp); | 
|  | #ifdef GROT | 
|  | } | 
|  | #endif /* GROT */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Zero out the entries we just copied. | 
|  | */ | 
|  | if (start_s == be16_to_cpu(hdr_s->count)) { | 
|  | tmp = count * sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &leaf_s->entries[start_s]; | 
|  | ASSERT(((char *)entry_s + tmp) <= | 
|  | ((char *)leaf_s + XFS_LBSIZE(mp))); | 
|  | memset((char *)entry_s, 0, tmp); | 
|  | } else { | 
|  | /* | 
|  | * Move the remaining entries down to fill the hole, | 
|  | * then zero the entries at the top. | 
|  | */ | 
|  | tmp  = be16_to_cpu(hdr_s->count) - count; | 
|  | tmp *= sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &leaf_s->entries[start_s + count]; | 
|  | entry_d = &leaf_s->entries[start_s]; | 
|  | memmove((char *)entry_d, (char *)entry_s, tmp); | 
|  |  | 
|  | tmp = count * sizeof(xfs_attr_leaf_entry_t); | 
|  | entry_s = &leaf_s->entries[be16_to_cpu(hdr_s->count)]; | 
|  | ASSERT(((char *)entry_s + tmp) <= | 
|  | ((char *)leaf_s + XFS_LBSIZE(mp))); | 
|  | memset((char *)entry_s, 0, tmp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the freemap information | 
|  | */ | 
|  | hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t)); | 
|  | be16_add_cpu(&hdr_d->freemap[0].base, be16_to_cpu(hdr_d->count) * | 
|  | sizeof(xfs_attr_leaf_entry_t)); | 
|  | hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) | 
|  | - be16_to_cpu(hdr_d->freemap[0].base)); | 
|  | hdr_d->freemap[1].base = 0; | 
|  | hdr_d->freemap[2].base = 0; | 
|  | hdr_d->freemap[1].size = 0; | 
|  | hdr_d->freemap[2].size = 0; | 
|  | hdr_s->holes = 1;	/* leaf may not be compact */ | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare two leaf blocks "order". | 
|  | * Return 0 unless leaf2 should go before leaf1. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf1, *leaf2; | 
|  |  | 
|  | leaf1 = leaf1_bp->data; | 
|  | leaf2 = leaf2_bp->data; | 
|  | ASSERT((be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC) && | 
|  | (be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC)); | 
|  | if ((be16_to_cpu(leaf1->hdr.count) > 0) && | 
|  | (be16_to_cpu(leaf2->hdr.count) > 0) && | 
|  | ((be32_to_cpu(leaf2->entries[0].hashval) < | 
|  | be32_to_cpu(leaf1->entries[0].hashval)) || | 
|  | (be32_to_cpu(leaf2->entries[ | 
|  | be16_to_cpu(leaf2->hdr.count)-1].hashval) < | 
|  | be32_to_cpu(leaf1->entries[ | 
|  | be16_to_cpu(leaf1->hdr.count)-1].hashval)))) { | 
|  | return(1); | 
|  | } | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Pick up the last hashvalue from a leaf block. | 
|  | */ | 
|  | xfs_dahash_t | 
|  | xfs_attr_leaf_lasthash(xfs_dabuf_t *bp, int *count) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | if (count) | 
|  | *count = be16_to_cpu(leaf->hdr.count); | 
|  | if (!leaf->hdr.count) | 
|  | return(0); | 
|  | return be32_to_cpu(leaf->entries[be16_to_cpu(leaf->hdr.count)-1].hashval); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of bytes used to store the indicated attribute | 
|  | * (whether local or remote only calculate bytes in this block). | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index) | 
|  | { | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | int size; | 
|  |  | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | if (leaf->entries[index].flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, index); | 
|  | size = xfs_attr_leaf_entsize_local(name_loc->namelen, | 
|  | be16_to_cpu(name_loc->valuelen)); | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, index); | 
|  | size = xfs_attr_leaf_entsize_remote(name_rmt->namelen); | 
|  | } | 
|  | return(size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Calculate the number of bytes that would be required to store the new | 
|  | * attribute (whether local or remote only calculate bytes in this block). | 
|  | * This routine decides as a side effect whether the attribute will be | 
|  | * a "local" or a "remote" attribute. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local) | 
|  | { | 
|  | int size; | 
|  |  | 
|  | size = xfs_attr_leaf_entsize_local(namelen, valuelen); | 
|  | if (size < xfs_attr_leaf_entsize_local_max(blocksize)) { | 
|  | if (local) { | 
|  | *local = 1; | 
|  | } | 
|  | } else { | 
|  | size = xfs_attr_leaf_entsize_remote(namelen); | 
|  | if (local) { | 
|  | *local = 0; | 
|  | } | 
|  | } | 
|  | return(size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Copy out attribute list entries for attr_list(), for leaf attribute lists. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_list_int(xfs_dabuf_t *bp, xfs_attr_list_context_t *context) | 
|  | { | 
|  | attrlist_cursor_kern_t *cursor; | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | int retval, i; | 
|  |  | 
|  | ASSERT(bp != NULL); | 
|  | leaf = bp->data; | 
|  | cursor = context->cursor; | 
|  | cursor->initted = 1; | 
|  |  | 
|  | trace_xfs_attr_list_leaf(context); | 
|  |  | 
|  | /* | 
|  | * Re-find our place in the leaf block if this is a new syscall. | 
|  | */ | 
|  | if (context->resynch) { | 
|  | entry = &leaf->entries[0]; | 
|  | for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { | 
|  | if (be32_to_cpu(entry->hashval) == cursor->hashval) { | 
|  | if (cursor->offset == context->dupcnt) { | 
|  | context->dupcnt = 0; | 
|  | break; | 
|  | } | 
|  | context->dupcnt++; | 
|  | } else if (be32_to_cpu(entry->hashval) > | 
|  | cursor->hashval) { | 
|  | context->dupcnt = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  | if (i == be16_to_cpu(leaf->hdr.count)) { | 
|  | trace_xfs_attr_list_notfound(context); | 
|  | return(0); | 
|  | } | 
|  | } else { | 
|  | entry = &leaf->entries[0]; | 
|  | i = 0; | 
|  | } | 
|  | context->resynch = 0; | 
|  |  | 
|  | /* | 
|  | * We have found our place, start copying out the new attributes. | 
|  | */ | 
|  | retval = 0; | 
|  | for (  ; (i < be16_to_cpu(leaf->hdr.count)); entry++, i++) { | 
|  | if (be32_to_cpu(entry->hashval) != cursor->hashval) { | 
|  | cursor->hashval = be32_to_cpu(entry->hashval); | 
|  | cursor->offset = 0; | 
|  | } | 
|  |  | 
|  | if (entry->flags & XFS_ATTR_INCOMPLETE) | 
|  | continue;		/* skip incomplete entries */ | 
|  |  | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | xfs_attr_leaf_name_local_t *name_loc = | 
|  | xfs_attr_leaf_name_local(leaf, i); | 
|  |  | 
|  | retval = context->put_listent(context, | 
|  | entry->flags, | 
|  | name_loc->nameval, | 
|  | (int)name_loc->namelen, | 
|  | be16_to_cpu(name_loc->valuelen), | 
|  | &name_loc->nameval[name_loc->namelen]); | 
|  | if (retval) | 
|  | return retval; | 
|  | } else { | 
|  | xfs_attr_leaf_name_remote_t *name_rmt = | 
|  | xfs_attr_leaf_name_remote(leaf, i); | 
|  |  | 
|  | int valuelen = be32_to_cpu(name_rmt->valuelen); | 
|  |  | 
|  | if (context->put_value) { | 
|  | xfs_da_args_t args; | 
|  |  | 
|  | memset((char *)&args, 0, sizeof(args)); | 
|  | args.dp = context->dp; | 
|  | args.whichfork = XFS_ATTR_FORK; | 
|  | args.valuelen = valuelen; | 
|  | args.value = kmem_alloc(valuelen, KM_SLEEP | KM_NOFS); | 
|  | args.rmtblkno = be32_to_cpu(name_rmt->valueblk); | 
|  | args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen); | 
|  | retval = xfs_attr_rmtval_get(&args); | 
|  | if (retval) | 
|  | return retval; | 
|  | retval = context->put_listent(context, | 
|  | entry->flags, | 
|  | name_rmt->name, | 
|  | (int)name_rmt->namelen, | 
|  | valuelen, | 
|  | args.value); | 
|  | kmem_free(args.value); | 
|  | } else { | 
|  | retval = context->put_listent(context, | 
|  | entry->flags, | 
|  | name_rmt->name, | 
|  | (int)name_rmt->namelen, | 
|  | valuelen, | 
|  | NULL); | 
|  | } | 
|  | if (retval) | 
|  | return retval; | 
|  | } | 
|  | if (context->seen_enough) | 
|  | break; | 
|  | cursor->offset++; | 
|  | } | 
|  | trace_xfs_attr_list_leaf_end(context); | 
|  | return(retval); | 
|  | } | 
|  |  | 
|  |  | 
|  | /*======================================================================== | 
|  | * Manage the INCOMPLETE flag in a leaf entry | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Clear the INCOMPLETE flag on an entry in a leaf block. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_clearflag(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | xfs_dabuf_t *bp; | 
|  | int error; | 
|  | #ifdef DEBUG | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | int namelen; | 
|  | char *name; | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | /* | 
|  | * Set up the operation. | 
|  | */ | 
|  | error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) { | 
|  | return(error); | 
|  | } | 
|  | ASSERT(bp != NULL); | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(args->index < be16_to_cpu(leaf->hdr.count)); | 
|  | ASSERT(args->index >= 0); | 
|  | entry = &leaf->entries[ args->index ]; | 
|  | ASSERT(entry->flags & XFS_ATTR_INCOMPLETE); | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (entry->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf, args->index); | 
|  | namelen = name_loc->namelen; | 
|  | name = (char *)name_loc->nameval; | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); | 
|  | namelen = name_rmt->namelen; | 
|  | name = (char *)name_rmt->name; | 
|  | } | 
|  | ASSERT(be32_to_cpu(entry->hashval) == args->hashval); | 
|  | ASSERT(namelen == args->namelen); | 
|  | ASSERT(memcmp(name, args->name, namelen) == 0); | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | entry->flags &= ~XFS_ATTR_INCOMPLETE; | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); | 
|  |  | 
|  | if (args->rmtblkno) { | 
|  | ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0); | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); | 
|  | name_rmt->valueblk = cpu_to_be32(args->rmtblkno); | 
|  | name_rmt->valuelen = cpu_to_be32(args->valuelen); | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  | xfs_da_buf_done(bp); | 
|  |  | 
|  | /* | 
|  | * Commit the flag value change and start the next trans in series. | 
|  | */ | 
|  | return xfs_trans_roll(&args->trans, args->dp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set the INCOMPLETE flag on an entry in a leaf block. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_setflag(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | xfs_dabuf_t *bp; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * Set up the operation. | 
|  | */ | 
|  | error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) { | 
|  | return(error); | 
|  | } | 
|  | ASSERT(bp != NULL); | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(args->index < be16_to_cpu(leaf->hdr.count)); | 
|  | ASSERT(args->index >= 0); | 
|  | entry = &leaf->entries[ args->index ]; | 
|  |  | 
|  | ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0); | 
|  | entry->flags |= XFS_ATTR_INCOMPLETE; | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry))); | 
|  | if ((entry->flags & XFS_ATTR_LOCAL) == 0) { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, args->index); | 
|  | name_rmt->valueblk = 0; | 
|  | name_rmt->valuelen = 0; | 
|  | xfs_da_log_buf(args->trans, bp, | 
|  | XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  | xfs_da_buf_done(bp); | 
|  |  | 
|  | /* | 
|  | * Commit the flag value change and start the next trans in series. | 
|  | */ | 
|  | return xfs_trans_roll(&args->trans, args->dp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In a single transaction, clear the INCOMPLETE flag on the leaf entry | 
|  | * given by args->blkno/index and set the INCOMPLETE flag on the leaf | 
|  | * entry given by args->blkno2/index2. | 
|  | * | 
|  | * Note that they could be in different blocks, or in the same block. | 
|  | */ | 
|  | int | 
|  | xfs_attr_leaf_flipflags(xfs_da_args_t *args) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf1, *leaf2; | 
|  | xfs_attr_leaf_entry_t *entry1, *entry2; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | xfs_dabuf_t *bp1, *bp2; | 
|  | int error; | 
|  | #ifdef DEBUG | 
|  | xfs_attr_leaf_name_local_t *name_loc; | 
|  | int namelen1, namelen2; | 
|  | char *name1, *name2; | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | /* | 
|  | * Read the block containing the "old" attr | 
|  | */ | 
|  | error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) { | 
|  | return(error); | 
|  | } | 
|  | ASSERT(bp1 != NULL); | 
|  |  | 
|  | /* | 
|  | * Read the block containing the "new" attr, if it is different | 
|  | */ | 
|  | if (args->blkno2 != args->blkno) { | 
|  | error = xfs_da_read_buf(args->trans, args->dp, args->blkno2, | 
|  | -1, &bp2, XFS_ATTR_FORK); | 
|  | if (error) { | 
|  | return(error); | 
|  | } | 
|  | ASSERT(bp2 != NULL); | 
|  | } else { | 
|  | bp2 = bp1; | 
|  | } | 
|  |  | 
|  | leaf1 = bp1->data; | 
|  | ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(args->index < be16_to_cpu(leaf1->hdr.count)); | 
|  | ASSERT(args->index >= 0); | 
|  | entry1 = &leaf1->entries[ args->index ]; | 
|  |  | 
|  | leaf2 = bp2->data; | 
|  | ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  | ASSERT(args->index2 < be16_to_cpu(leaf2->hdr.count)); | 
|  | ASSERT(args->index2 >= 0); | 
|  | entry2 = &leaf2->entries[ args->index2 ]; | 
|  |  | 
|  | #ifdef DEBUG | 
|  | if (entry1->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf1, args->index); | 
|  | namelen1 = name_loc->namelen; | 
|  | name1 = (char *)name_loc->nameval; | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf1, args->index); | 
|  | namelen1 = name_rmt->namelen; | 
|  | name1 = (char *)name_rmt->name; | 
|  | } | 
|  | if (entry2->flags & XFS_ATTR_LOCAL) { | 
|  | name_loc = xfs_attr_leaf_name_local(leaf2, args->index2); | 
|  | namelen2 = name_loc->namelen; | 
|  | name2 = (char *)name_loc->nameval; | 
|  | } else { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf2, args->index2); | 
|  | namelen2 = name_rmt->namelen; | 
|  | name2 = (char *)name_rmt->name; | 
|  | } | 
|  | ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval)); | 
|  | ASSERT(namelen1 == namelen2); | 
|  | ASSERT(memcmp(name1, name2, namelen1) == 0); | 
|  | #endif /* DEBUG */ | 
|  |  | 
|  | ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE); | 
|  | ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0); | 
|  |  | 
|  | entry1->flags &= ~XFS_ATTR_INCOMPLETE; | 
|  | xfs_da_log_buf(args->trans, bp1, | 
|  | XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1))); | 
|  | if (args->rmtblkno) { | 
|  | ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0); | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf1, args->index); | 
|  | name_rmt->valueblk = cpu_to_be32(args->rmtblkno); | 
|  | name_rmt->valuelen = cpu_to_be32(args->valuelen); | 
|  | xfs_da_log_buf(args->trans, bp1, | 
|  | XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  |  | 
|  | entry2->flags |= XFS_ATTR_INCOMPLETE; | 
|  | xfs_da_log_buf(args->trans, bp2, | 
|  | XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2))); | 
|  | if ((entry2->flags & XFS_ATTR_LOCAL) == 0) { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf2, args->index2); | 
|  | name_rmt->valueblk = 0; | 
|  | name_rmt->valuelen = 0; | 
|  | xfs_da_log_buf(args->trans, bp2, | 
|  | XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt))); | 
|  | } | 
|  | xfs_da_buf_done(bp1); | 
|  | if (bp1 != bp2) | 
|  | xfs_da_buf_done(bp2); | 
|  |  | 
|  | /* | 
|  | * Commit the flag value change and start the next trans in series. | 
|  | */ | 
|  | error = xfs_trans_roll(&args->trans, args->dp); | 
|  |  | 
|  | return(error); | 
|  | } | 
|  |  | 
|  | /*======================================================================== | 
|  | * Indiscriminately delete the entire attribute fork | 
|  | *========================================================================*/ | 
|  |  | 
|  | /* | 
|  | * Recurse (gasp!) through the attribute nodes until we find leaves. | 
|  | * We're doing a depth-first traversal in order to invalidate everything. | 
|  | */ | 
|  | int | 
|  | xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp) | 
|  | { | 
|  | xfs_da_blkinfo_t *info; | 
|  | xfs_daddr_t blkno; | 
|  | xfs_dabuf_t *bp; | 
|  | int error; | 
|  |  | 
|  | /* | 
|  | * Read block 0 to see what we have to work with. | 
|  | * We only get here if we have extents, since we remove | 
|  | * the extents in reverse order the extent containing | 
|  | * block 0 must still be there. | 
|  | */ | 
|  | error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | blkno = xfs_da_blkno(bp); | 
|  |  | 
|  | /* | 
|  | * Invalidate the tree, even if the "tree" is only a single leaf block. | 
|  | * This is a depth-first traversal! | 
|  | */ | 
|  | info = bp->data; | 
|  | if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) { | 
|  | error = xfs_attr_node_inactive(trans, dp, bp, 1); | 
|  | } else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) { | 
|  | error = xfs_attr_leaf_inactive(trans, dp, bp); | 
|  | } else { | 
|  | error = XFS_ERROR(EIO); | 
|  | xfs_da_brelse(*trans, bp); | 
|  | } | 
|  | if (error) | 
|  | return(error); | 
|  |  | 
|  | /* | 
|  | * Invalidate the incore copy of the root block. | 
|  | */ | 
|  | error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | xfs_da_binval(*trans, bp);	/* remove from cache */ | 
|  | /* | 
|  | * Commit the invalidate and start the next transaction. | 
|  | */ | 
|  | error = xfs_trans_roll(trans, dp); | 
|  |  | 
|  | return (error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Recurse (gasp!) through the attribute nodes until we find leaves. | 
|  | * We're doing a depth-first traversal in order to invalidate everything. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp, | 
|  | int level) | 
|  | { | 
|  | xfs_da_blkinfo_t *info; | 
|  | xfs_da_intnode_t *node; | 
|  | xfs_dablk_t child_fsb; | 
|  | xfs_daddr_t parent_blkno, child_blkno; | 
|  | int error, count, i; | 
|  | xfs_dabuf_t *child_bp; | 
|  |  | 
|  | /* | 
|  | * Since this code is recursive (gasp!) we must protect ourselves. | 
|  | */ | 
|  | if (level > XFS_DA_NODE_MAXDEPTH) { | 
|  | xfs_da_brelse(*trans, bp);	/* no locks for later trans */ | 
|  | return(XFS_ERROR(EIO)); | 
|  | } | 
|  |  | 
|  | node = bp->data; | 
|  | ASSERT(be16_to_cpu(node->hdr.info.magic) == XFS_DA_NODE_MAGIC); | 
|  | parent_blkno = xfs_da_blkno(bp);	/* save for re-read later */ | 
|  | count = be16_to_cpu(node->hdr.count); | 
|  | if (!count) { | 
|  | xfs_da_brelse(*trans, bp); | 
|  | return(0); | 
|  | } | 
|  | child_fsb = be32_to_cpu(node->btree[0].before); | 
|  | xfs_da_brelse(*trans, bp);	/* no locks for later trans */ | 
|  |  | 
|  | /* | 
|  | * If this is the node level just above the leaves, simply loop | 
|  | * over the leaves removing all of them.  If this is higher up | 
|  | * in the tree, recurse downward. | 
|  | */ | 
|  | for (i = 0; i < count; i++) { | 
|  | /* | 
|  | * Read the subsidiary block to see what we have to work with. | 
|  | * Don't do this in a transaction.  This is a depth-first | 
|  | * traversal of the tree so we may deal with many blocks | 
|  | * before we come back to this one. | 
|  | */ | 
|  | error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp, | 
|  | XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | if (child_bp) { | 
|  | /* save for re-read later */ | 
|  | child_blkno = xfs_da_blkno(child_bp); | 
|  |  | 
|  | /* | 
|  | * Invalidate the subtree, however we have to. | 
|  | */ | 
|  | info = child_bp->data; | 
|  | if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) { | 
|  | error = xfs_attr_node_inactive(trans, dp, | 
|  | child_bp, level+1); | 
|  | } else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) { | 
|  | error = xfs_attr_leaf_inactive(trans, dp, | 
|  | child_bp); | 
|  | } else { | 
|  | error = XFS_ERROR(EIO); | 
|  | xfs_da_brelse(*trans, child_bp); | 
|  | } | 
|  | if (error) | 
|  | return(error); | 
|  |  | 
|  | /* | 
|  | * Remove the subsidiary block from the cache | 
|  | * and from the log. | 
|  | */ | 
|  | error = xfs_da_get_buf(*trans, dp, 0, child_blkno, | 
|  | &child_bp, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | xfs_da_binval(*trans, child_bp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we're not done, re-read the parent to get the next | 
|  | * child block number. | 
|  | */ | 
|  | if ((i+1) < count) { | 
|  | error = xfs_da_read_buf(*trans, dp, 0, parent_blkno, | 
|  | &bp, XFS_ATTR_FORK); | 
|  | if (error) | 
|  | return(error); | 
|  | child_fsb = be32_to_cpu(node->btree[i+1].before); | 
|  | xfs_da_brelse(*trans, bp); | 
|  | } | 
|  | /* | 
|  | * Atomically commit the whole invalidate stuff. | 
|  | */ | 
|  | error = xfs_trans_roll(trans, dp); | 
|  | if (error) | 
|  | return (error); | 
|  | } | 
|  |  | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Invalidate all of the "remote" value regions pointed to by a particular | 
|  | * leaf block. | 
|  | * Note that we must release the lock on the buffer so that we are not | 
|  | * caught holding something that the logging code wants to flush to disk. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp) | 
|  | { | 
|  | xfs_attr_leafblock_t *leaf; | 
|  | xfs_attr_leaf_entry_t *entry; | 
|  | xfs_attr_leaf_name_remote_t *name_rmt; | 
|  | xfs_attr_inactive_list_t *list, *lp; | 
|  | int error, count, size, tmp, i; | 
|  |  | 
|  | leaf = bp->data; | 
|  | ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC); | 
|  |  | 
|  | /* | 
|  | * Count the number of "remote" value extents. | 
|  | */ | 
|  | count = 0; | 
|  | entry = &leaf->entries[0]; | 
|  | for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { | 
|  | if (be16_to_cpu(entry->nameidx) && | 
|  | ((entry->flags & XFS_ATTR_LOCAL) == 0)) { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, i); | 
|  | if (name_rmt->valueblk) | 
|  | count++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there are no "remote" values, we're done. | 
|  | */ | 
|  | if (count == 0) { | 
|  | xfs_da_brelse(*trans, bp); | 
|  | return(0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Allocate storage for a list of all the "remote" value extents. | 
|  | */ | 
|  | size = count * sizeof(xfs_attr_inactive_list_t); | 
|  | list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP); | 
|  |  | 
|  | /* | 
|  | * Identify each of the "remote" value extents. | 
|  | */ | 
|  | lp = list; | 
|  | entry = &leaf->entries[0]; | 
|  | for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) { | 
|  | if (be16_to_cpu(entry->nameidx) && | 
|  | ((entry->flags & XFS_ATTR_LOCAL) == 0)) { | 
|  | name_rmt = xfs_attr_leaf_name_remote(leaf, i); | 
|  | if (name_rmt->valueblk) { | 
|  | lp->valueblk = be32_to_cpu(name_rmt->valueblk); | 
|  | lp->valuelen = XFS_B_TO_FSB(dp->i_mount, | 
|  | be32_to_cpu(name_rmt->valuelen)); | 
|  | lp++; | 
|  | } | 
|  | } | 
|  | } | 
|  | xfs_da_brelse(*trans, bp);	/* unlock for trans. in freextent() */ | 
|  |  | 
|  | /* | 
|  | * Invalidate each of the "remote" value extents. | 
|  | */ | 
|  | error = 0; | 
|  | for (lp = list, i = 0; i < count; i++, lp++) { | 
|  | tmp = xfs_attr_leaf_freextent(trans, dp, | 
|  | lp->valueblk, lp->valuelen); | 
|  |  | 
|  | if (error == 0) | 
|  | error = tmp;	/* save only the 1st errno */ | 
|  | } | 
|  |  | 
|  | kmem_free((xfs_caddr_t)list); | 
|  | return(error); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Look at all the extents for this logical region, | 
|  | * invalidate any buffers that are incore/in transactions. | 
|  | */ | 
|  | STATIC int | 
|  | xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp, | 
|  | xfs_dablk_t blkno, int blkcnt) | 
|  | { | 
|  | xfs_bmbt_irec_t map; | 
|  | xfs_dablk_t tblkno; | 
|  | int tblkcnt, dblkcnt, nmap, error; | 
|  | xfs_daddr_t dblkno; | 
|  | xfs_buf_t *bp; | 
|  |  | 
|  | /* | 
|  | * Roll through the "value", invalidating the attribute value's | 
|  | * blocks. | 
|  | */ | 
|  | tblkno = blkno; | 
|  | tblkcnt = blkcnt; | 
|  | while (tblkcnt > 0) { | 
|  | /* | 
|  | * Try to remember where we decided to put the value. | 
|  | */ | 
|  | nmap = 1; | 
|  | error = xfs_bmapi(*trans, dp, (xfs_fileoff_t)tblkno, tblkcnt, | 
|  | XFS_BMAPI_ATTRFORK | XFS_BMAPI_METADATA, | 
|  | NULL, 0, &map, &nmap, NULL); | 
|  | if (error) { | 
|  | return(error); | 
|  | } | 
|  | ASSERT(nmap == 1); | 
|  | ASSERT(map.br_startblock != DELAYSTARTBLOCK); | 
|  |  | 
|  | /* | 
|  | * If it's a hole, these are already unmapped | 
|  | * so there's nothing to invalidate. | 
|  | */ | 
|  | if (map.br_startblock != HOLESTARTBLOCK) { | 
|  |  | 
|  | dblkno = XFS_FSB_TO_DADDR(dp->i_mount, | 
|  | map.br_startblock); | 
|  | dblkcnt = XFS_FSB_TO_BB(dp->i_mount, | 
|  | map.br_blockcount); | 
|  | bp = xfs_trans_get_buf(*trans, | 
|  | dp->i_mount->m_ddev_targp, | 
|  | dblkno, dblkcnt, XBF_LOCK); | 
|  | xfs_trans_binval(*trans, bp); | 
|  | /* | 
|  | * Roll to next transaction. | 
|  | */ | 
|  | error = xfs_trans_roll(trans, dp); | 
|  | if (error) | 
|  | return (error); | 
|  | } | 
|  |  | 
|  | tblkno += map.br_blockcount; | 
|  | tblkcnt -= map.br_blockcount; | 
|  | } | 
|  |  | 
|  | return(0); | 
|  | } |