|  | /* | 
|  | kmod, the new module loader (replaces kerneld) | 
|  | Kirk Petersen | 
|  |  | 
|  | Reorganized not to be a daemon by Adam Richter, with guidance | 
|  | from Greg Zornetzer. | 
|  |  | 
|  | Modified to avoid chroot and file sharing problems. | 
|  | Mikael Pettersson | 
|  |  | 
|  | Limit the concurrent number of kmod modprobes to catch loops from | 
|  | "modprobe needs a service that is in a module". | 
|  | Keith Owens <kaos@ocs.com.au> December 1999 | 
|  |  | 
|  | Unblock all signals when we exec a usermode process. | 
|  | Shuu Yamaguchi <shuu@wondernetworkresources.com> December 2000 | 
|  |  | 
|  | call_usermodehelper wait flag, and remove exec_usermodehelper. | 
|  | Rusty Russell <rusty@rustcorp.com.au>  Jan 2003 | 
|  | */ | 
|  | #include <linux/module.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/unistd.h> | 
|  | #include <linux/kmod.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/completion.h> | 
|  | #include <linux/cred.h> | 
|  | #include <linux/file.h> | 
|  | #include <linux/fdtable.h> | 
|  | #include <linux/workqueue.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/mount.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/init.h> | 
|  | #include <linux/resource.h> | 
|  | #include <linux/notifier.h> | 
|  | #include <linux/suspend.h> | 
|  | #include <asm/uaccess.h> | 
|  |  | 
|  | #include <trace/events/module.h> | 
|  |  | 
|  | extern int max_threads; | 
|  |  | 
|  | static struct workqueue_struct *khelper_wq; | 
|  |  | 
|  | #define CAP_BSET	(void *)1 | 
|  | #define CAP_PI		(void *)2 | 
|  |  | 
|  | static kernel_cap_t usermodehelper_bset = CAP_FULL_SET; | 
|  | static kernel_cap_t usermodehelper_inheritable = CAP_FULL_SET; | 
|  | static DEFINE_SPINLOCK(umh_sysctl_lock); | 
|  |  | 
|  | #ifdef CONFIG_MODULES | 
|  |  | 
|  | /* | 
|  | modprobe_path is set via /proc/sys. | 
|  | */ | 
|  | char modprobe_path[KMOD_PATH_LEN] = "/sbin/modprobe"; | 
|  |  | 
|  | /** | 
|  | * __request_module - try to load a kernel module | 
|  | * @wait: wait (or not) for the operation to complete | 
|  | * @fmt: printf style format string for the name of the module | 
|  | * @...: arguments as specified in the format string | 
|  | * | 
|  | * Load a module using the user mode module loader. The function returns | 
|  | * zero on success or a negative errno code on failure. Note that a | 
|  | * successful module load does not mean the module did not then unload | 
|  | * and exit on an error of its own. Callers must check that the service | 
|  | * they requested is now available not blindly invoke it. | 
|  | * | 
|  | * If module auto-loading support is disabled then this function | 
|  | * becomes a no-operation. | 
|  | */ | 
|  | int __request_module(bool wait, const char *fmt, ...) | 
|  | { | 
|  | va_list args; | 
|  | char module_name[MODULE_NAME_LEN]; | 
|  | unsigned int max_modprobes; | 
|  | int ret; | 
|  | char *argv[] = { modprobe_path, "-q", "--", module_name, NULL }; | 
|  | static char *envp[] = { "HOME=/", | 
|  | "TERM=linux", | 
|  | "PATH=/sbin:/usr/sbin:/bin:/usr/bin", | 
|  | NULL }; | 
|  | static atomic_t kmod_concurrent = ATOMIC_INIT(0); | 
|  | #define MAX_KMOD_CONCURRENT 50	/* Completely arbitrary value - KAO */ | 
|  | static int kmod_loop_msg; | 
|  |  | 
|  | va_start(args, fmt); | 
|  | ret = vsnprintf(module_name, MODULE_NAME_LEN, fmt, args); | 
|  | va_end(args); | 
|  | if (ret >= MODULE_NAME_LEN) | 
|  | return -ENAMETOOLONG; | 
|  |  | 
|  | ret = security_kernel_module_request(module_name); | 
|  | if (ret) | 
|  | return ret; | 
|  |  | 
|  | /* If modprobe needs a service that is in a module, we get a recursive | 
|  | * loop.  Limit the number of running kmod threads to max_threads/2 or | 
|  | * MAX_KMOD_CONCURRENT, whichever is the smaller.  A cleaner method | 
|  | * would be to run the parents of this process, counting how many times | 
|  | * kmod was invoked.  That would mean accessing the internals of the | 
|  | * process tables to get the command line, proc_pid_cmdline is static | 
|  | * and it is not worth changing the proc code just to handle this case. | 
|  | * KAO. | 
|  | * | 
|  | * "trace the ppid" is simple, but will fail if someone's | 
|  | * parent exits.  I think this is as good as it gets. --RR | 
|  | */ | 
|  | max_modprobes = min(max_threads/2, MAX_KMOD_CONCURRENT); | 
|  | atomic_inc(&kmod_concurrent); | 
|  | if (atomic_read(&kmod_concurrent) > max_modprobes) { | 
|  | /* We may be blaming an innocent here, but unlikely */ | 
|  | if (kmod_loop_msg < 5) { | 
|  | printk(KERN_ERR | 
|  | "request_module: runaway loop modprobe %s\n", | 
|  | module_name); | 
|  | kmod_loop_msg++; | 
|  | } | 
|  | atomic_dec(&kmod_concurrent); | 
|  | return -ENOMEM; | 
|  | } | 
|  |  | 
|  | trace_module_request(module_name, wait, _RET_IP_); | 
|  |  | 
|  | ret = call_usermodehelper_fns(modprobe_path, argv, envp, | 
|  | wait ? UMH_WAIT_PROC : UMH_WAIT_EXEC, | 
|  | NULL, NULL, NULL); | 
|  |  | 
|  | atomic_dec(&kmod_concurrent); | 
|  | return ret; | 
|  | } | 
|  | EXPORT_SYMBOL(__request_module); | 
|  | #endif /* CONFIG_MODULES */ | 
|  |  | 
|  | /* | 
|  | * This is the task which runs the usermode application | 
|  | */ | 
|  | static int ____call_usermodehelper(void *data) | 
|  | { | 
|  | struct subprocess_info *sub_info = data; | 
|  | struct cred *new; | 
|  | int retval; | 
|  |  | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | flush_signal_handlers(current, 1); | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | /* We can run anywhere, unlike our parent keventd(). */ | 
|  | set_cpus_allowed_ptr(current, cpu_all_mask); | 
|  |  | 
|  | /* | 
|  | * Our parent is keventd, which runs with elevated scheduling priority. | 
|  | * Avoid propagating that into the userspace child. | 
|  | */ | 
|  | set_user_nice(current, 0); | 
|  |  | 
|  | retval = -ENOMEM; | 
|  | new = prepare_kernel_cred(current); | 
|  | if (!new) | 
|  | goto fail; | 
|  |  | 
|  | spin_lock(&umh_sysctl_lock); | 
|  | new->cap_bset = cap_intersect(usermodehelper_bset, new->cap_bset); | 
|  | new->cap_inheritable = cap_intersect(usermodehelper_inheritable, | 
|  | new->cap_inheritable); | 
|  | spin_unlock(&umh_sysctl_lock); | 
|  |  | 
|  | if (sub_info->init) { | 
|  | retval = sub_info->init(sub_info, new); | 
|  | if (retval) { | 
|  | abort_creds(new); | 
|  | goto fail; | 
|  | } | 
|  | } | 
|  |  | 
|  | commit_creds(new); | 
|  |  | 
|  | retval = kernel_execve(sub_info->path, | 
|  | (const char *const *)sub_info->argv, | 
|  | (const char *const *)sub_info->envp); | 
|  |  | 
|  | /* Exec failed? */ | 
|  | fail: | 
|  | sub_info->retval = retval; | 
|  | do_exit(0); | 
|  | } | 
|  |  | 
|  | void call_usermodehelper_freeinfo(struct subprocess_info *info) | 
|  | { | 
|  | if (info->cleanup) | 
|  | (*info->cleanup)(info); | 
|  | kfree(info); | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper_freeinfo); | 
|  |  | 
|  | /* Keventd can't block, but this (a child) can. */ | 
|  | static int wait_for_helper(void *data) | 
|  | { | 
|  | struct subprocess_info *sub_info = data; | 
|  | pid_t pid; | 
|  |  | 
|  | /* If SIGCLD is ignored sys_wait4 won't populate the status. */ | 
|  | spin_lock_irq(¤t->sighand->siglock); | 
|  | current->sighand->action[SIGCHLD-1].sa.sa_handler = SIG_DFL; | 
|  | spin_unlock_irq(¤t->sighand->siglock); | 
|  |  | 
|  | pid = kernel_thread(____call_usermodehelper, sub_info, SIGCHLD); | 
|  | if (pid < 0) { | 
|  | sub_info->retval = pid; | 
|  | } else { | 
|  | int ret = -ECHILD; | 
|  | /* | 
|  | * Normally it is bogus to call wait4() from in-kernel because | 
|  | * wait4() wants to write the exit code to a userspace address. | 
|  | * But wait_for_helper() always runs as keventd, and put_user() | 
|  | * to a kernel address works OK for kernel threads, due to their | 
|  | * having an mm_segment_t which spans the entire address space. | 
|  | * | 
|  | * Thus the __user pointer cast is valid here. | 
|  | */ | 
|  | sys_wait4(pid, (int __user *)&ret, 0, NULL); | 
|  |  | 
|  | /* | 
|  | * If ret is 0, either ____call_usermodehelper failed and the | 
|  | * real error code is already in sub_info->retval or | 
|  | * sub_info->retval is 0 anyway, so don't mess with it then. | 
|  | */ | 
|  | if (ret) | 
|  | sub_info->retval = ret; | 
|  | } | 
|  |  | 
|  | complete(sub_info->complete); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* This is run by khelper thread  */ | 
|  | static void __call_usermodehelper(struct work_struct *work) | 
|  | { | 
|  | struct subprocess_info *sub_info = | 
|  | container_of(work, struct subprocess_info, work); | 
|  | enum umh_wait wait = sub_info->wait; | 
|  | pid_t pid; | 
|  |  | 
|  | /* CLONE_VFORK: wait until the usermode helper has execve'd | 
|  | * successfully We need the data structures to stay around | 
|  | * until that is done.  */ | 
|  | if (wait == UMH_WAIT_PROC) | 
|  | pid = kernel_thread(wait_for_helper, sub_info, | 
|  | CLONE_FS | CLONE_FILES | SIGCHLD); | 
|  | else | 
|  | pid = kernel_thread(____call_usermodehelper, sub_info, | 
|  | CLONE_VFORK | SIGCHLD); | 
|  |  | 
|  | switch (wait) { | 
|  | case UMH_NO_WAIT: | 
|  | call_usermodehelper_freeinfo(sub_info); | 
|  | break; | 
|  |  | 
|  | case UMH_WAIT_PROC: | 
|  | if (pid > 0) | 
|  | break; | 
|  | /* FALLTHROUGH */ | 
|  | case UMH_WAIT_EXEC: | 
|  | if (pid < 0) | 
|  | sub_info->retval = pid; | 
|  | complete(sub_info->complete); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If set, call_usermodehelper_exec() will exit immediately returning -EBUSY | 
|  | * (used for preventing user land processes from being created after the user | 
|  | * land has been frozen during a system-wide hibernation or suspend operation). | 
|  | */ | 
|  | static int usermodehelper_disabled; | 
|  |  | 
|  | /* Number of helpers running */ | 
|  | static atomic_t running_helpers = ATOMIC_INIT(0); | 
|  |  | 
|  | /* | 
|  | * Wait queue head used by usermodehelper_pm_callback() to wait for all running | 
|  | * helpers to finish. | 
|  | */ | 
|  | static DECLARE_WAIT_QUEUE_HEAD(running_helpers_waitq); | 
|  |  | 
|  | /* | 
|  | * Time to wait for running_helpers to become zero before the setting of | 
|  | * usermodehelper_disabled in usermodehelper_pm_callback() fails | 
|  | */ | 
|  | #define RUNNING_HELPERS_TIMEOUT	(5 * HZ) | 
|  |  | 
|  | /** | 
|  | * usermodehelper_disable - prevent new helpers from being started | 
|  | */ | 
|  | int usermodehelper_disable(void) | 
|  | { | 
|  | long retval; | 
|  |  | 
|  | usermodehelper_disabled = 1; | 
|  | smp_mb(); | 
|  | /* | 
|  | * From now on call_usermodehelper_exec() won't start any new | 
|  | * helpers, so it is sufficient if running_helpers turns out to | 
|  | * be zero at one point (it may be increased later, but that | 
|  | * doesn't matter). | 
|  | */ | 
|  | retval = wait_event_timeout(running_helpers_waitq, | 
|  | atomic_read(&running_helpers) == 0, | 
|  | RUNNING_HELPERS_TIMEOUT); | 
|  | if (retval) | 
|  | return 0; | 
|  |  | 
|  | usermodehelper_disabled = 0; | 
|  | return -EAGAIN; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usermodehelper_enable - allow new helpers to be started again | 
|  | */ | 
|  | void usermodehelper_enable(void) | 
|  | { | 
|  | usermodehelper_disabled = 0; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * usermodehelper_is_disabled - check if new helpers are allowed to be started | 
|  | */ | 
|  | bool usermodehelper_is_disabled(void) | 
|  | { | 
|  | return usermodehelper_disabled; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(usermodehelper_is_disabled); | 
|  |  | 
|  | static void helper_lock(void) | 
|  | { | 
|  | atomic_inc(&running_helpers); | 
|  | smp_mb__after_atomic_inc(); | 
|  | } | 
|  |  | 
|  | static void helper_unlock(void) | 
|  | { | 
|  | if (atomic_dec_and_test(&running_helpers)) | 
|  | wake_up(&running_helpers_waitq); | 
|  | } | 
|  |  | 
|  | /** | 
|  | * call_usermodehelper_setup - prepare to call a usermode helper | 
|  | * @path: path to usermode executable | 
|  | * @argv: arg vector for process | 
|  | * @envp: environment for process | 
|  | * @gfp_mask: gfp mask for memory allocation | 
|  | * | 
|  | * Returns either %NULL on allocation failure, or a subprocess_info | 
|  | * structure.  This should be passed to call_usermodehelper_exec to | 
|  | * exec the process and free the structure. | 
|  | */ | 
|  | struct subprocess_info *call_usermodehelper_setup(char *path, char **argv, | 
|  | char **envp, gfp_t gfp_mask) | 
|  | { | 
|  | struct subprocess_info *sub_info; | 
|  | sub_info = kzalloc(sizeof(struct subprocess_info), gfp_mask); | 
|  | if (!sub_info) | 
|  | goto out; | 
|  |  | 
|  | INIT_WORK(&sub_info->work, __call_usermodehelper); | 
|  | sub_info->path = path; | 
|  | sub_info->argv = argv; | 
|  | sub_info->envp = envp; | 
|  | out: | 
|  | return sub_info; | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper_setup); | 
|  |  | 
|  | /** | 
|  | * call_usermodehelper_setfns - set a cleanup/init function | 
|  | * @info: a subprocess_info returned by call_usermodehelper_setup | 
|  | * @cleanup: a cleanup function | 
|  | * @init: an init function | 
|  | * @data: arbitrary context sensitive data | 
|  | * | 
|  | * The init function is used to customize the helper process prior to | 
|  | * exec.  A non-zero return code causes the process to error out, exit, | 
|  | * and return the failure to the calling process | 
|  | * | 
|  | * The cleanup function is just before ethe subprocess_info is about to | 
|  | * be freed.  This can be used for freeing the argv and envp.  The | 
|  | * Function must be runnable in either a process context or the | 
|  | * context in which call_usermodehelper_exec is called. | 
|  | */ | 
|  | void call_usermodehelper_setfns(struct subprocess_info *info, | 
|  | int (*init)(struct subprocess_info *info, struct cred *new), | 
|  | void (*cleanup)(struct subprocess_info *info), | 
|  | void *data) | 
|  | { | 
|  | info->cleanup = cleanup; | 
|  | info->init = init; | 
|  | info->data = data; | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper_setfns); | 
|  |  | 
|  | /** | 
|  | * call_usermodehelper_exec - start a usermode application | 
|  | * @sub_info: information about the subprocessa | 
|  | * @wait: wait for the application to finish and return status. | 
|  | *        when -1 don't wait at all, but you get no useful error back when | 
|  | *        the program couldn't be exec'ed. This makes it safe to call | 
|  | *        from interrupt context. | 
|  | * | 
|  | * Runs a user-space application.  The application is started | 
|  | * asynchronously if wait is not set, and runs as a child of keventd. | 
|  | * (ie. it runs with full root capabilities). | 
|  | */ | 
|  | int call_usermodehelper_exec(struct subprocess_info *sub_info, | 
|  | enum umh_wait wait) | 
|  | { | 
|  | DECLARE_COMPLETION_ONSTACK(done); | 
|  | int retval = 0; | 
|  |  | 
|  | helper_lock(); | 
|  | if (sub_info->path[0] == '\0') | 
|  | goto out; | 
|  |  | 
|  | if (!khelper_wq || usermodehelper_disabled) { | 
|  | retval = -EBUSY; | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | sub_info->complete = &done; | 
|  | sub_info->wait = wait; | 
|  |  | 
|  | queue_work(khelper_wq, &sub_info->work); | 
|  | if (wait == UMH_NO_WAIT)	/* task has freed sub_info */ | 
|  | goto unlock; | 
|  | wait_for_completion(&done); | 
|  | retval = sub_info->retval; | 
|  |  | 
|  | out: | 
|  | call_usermodehelper_freeinfo(sub_info); | 
|  | unlock: | 
|  | helper_unlock(); | 
|  | return retval; | 
|  | } | 
|  | EXPORT_SYMBOL(call_usermodehelper_exec); | 
|  |  | 
|  | static int proc_cap_handler(struct ctl_table *table, int write, | 
|  | void __user *buffer, size_t *lenp, loff_t *ppos) | 
|  | { | 
|  | struct ctl_table t; | 
|  | unsigned long cap_array[_KERNEL_CAPABILITY_U32S]; | 
|  | kernel_cap_t new_cap; | 
|  | int err, i; | 
|  |  | 
|  | if (write && (!capable(CAP_SETPCAP) || | 
|  | !capable(CAP_SYS_MODULE))) | 
|  | return -EPERM; | 
|  |  | 
|  | /* | 
|  | * convert from the global kernel_cap_t to the ulong array to print to | 
|  | * userspace if this is a read. | 
|  | */ | 
|  | spin_lock(&umh_sysctl_lock); | 
|  | for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++)  { | 
|  | if (table->data == CAP_BSET) | 
|  | cap_array[i] = usermodehelper_bset.cap[i]; | 
|  | else if (table->data == CAP_PI) | 
|  | cap_array[i] = usermodehelper_inheritable.cap[i]; | 
|  | else | 
|  | BUG(); | 
|  | } | 
|  | spin_unlock(&umh_sysctl_lock); | 
|  |  | 
|  | t = *table; | 
|  | t.data = &cap_array; | 
|  |  | 
|  | /* | 
|  | * actually read or write and array of ulongs from userspace.  Remember | 
|  | * these are least significant 32 bits first | 
|  | */ | 
|  | err = proc_doulongvec_minmax(&t, write, buffer, lenp, ppos); | 
|  | if (err < 0) | 
|  | return err; | 
|  |  | 
|  | /* | 
|  | * convert from the sysctl array of ulongs to the kernel_cap_t | 
|  | * internal representation | 
|  | */ | 
|  | for (i = 0; i < _KERNEL_CAPABILITY_U32S; i++) | 
|  | new_cap.cap[i] = cap_array[i]; | 
|  |  | 
|  | /* | 
|  | * Drop everything not in the new_cap (but don't add things) | 
|  | */ | 
|  | spin_lock(&umh_sysctl_lock); | 
|  | if (write) { | 
|  | if (table->data == CAP_BSET) | 
|  | usermodehelper_bset = cap_intersect(usermodehelper_bset, new_cap); | 
|  | if (table->data == CAP_PI) | 
|  | usermodehelper_inheritable = cap_intersect(usermodehelper_inheritable, new_cap); | 
|  | } | 
|  | spin_unlock(&umh_sysctl_lock); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | struct ctl_table usermodehelper_table[] = { | 
|  | { | 
|  | .procname	= "bset", | 
|  | .data		= CAP_BSET, | 
|  | .maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long), | 
|  | .mode		= 0600, | 
|  | .proc_handler	= proc_cap_handler, | 
|  | }, | 
|  | { | 
|  | .procname	= "inheritable", | 
|  | .data		= CAP_PI, | 
|  | .maxlen		= _KERNEL_CAPABILITY_U32S * sizeof(unsigned long), | 
|  | .mode		= 0600, | 
|  | .proc_handler	= proc_cap_handler, | 
|  | }, | 
|  | { } | 
|  | }; | 
|  |  | 
|  | void __init usermodehelper_init(void) | 
|  | { | 
|  | khelper_wq = create_singlethread_workqueue("khelper"); | 
|  | BUG_ON(!khelper_wq); | 
|  | } |