|  | /* SCTP kernel implementation | 
|  | * (C) Copyright IBM Corp. 2001, 2004 | 
|  | * Copyright (c) 1999-2000 Cisco, Inc. | 
|  | * Copyright (c) 1999-2001 Motorola, Inc. | 
|  | * Copyright (c) 2001-2002 Intel Corp. | 
|  | * Copyright (c) 2002      Nokia Corp. | 
|  | * | 
|  | * This is part of the SCTP Linux Kernel Implementation. | 
|  | * | 
|  | * These are the state functions for the state machine. | 
|  | * | 
|  | * This SCTP implementation is free software; | 
|  | * you can redistribute it and/or modify it under the terms of | 
|  | * the GNU General Public License as published by | 
|  | * the Free Software Foundation; either version 2, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This SCTP implementation is distributed in the hope that it | 
|  | * will be useful, but WITHOUT ANY WARRANTY; without even the implied | 
|  | *                 ************************ | 
|  | * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. | 
|  | * See the GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with GNU CC; see the file COPYING.  If not, write to | 
|  | * the Free Software Foundation, 59 Temple Place - Suite 330, | 
|  | * Boston, MA 02111-1307, USA. | 
|  | * | 
|  | * Please send any bug reports or fixes you make to the | 
|  | * email address(es): | 
|  | *    lksctp developers <lksctp-developers@lists.sourceforge.net> | 
|  | * | 
|  | * Or submit a bug report through the following website: | 
|  | *    http://www.sf.net/projects/lksctp | 
|  | * | 
|  | * Written or modified by: | 
|  | *    La Monte H.P. Yarroll <piggy@acm.org> | 
|  | *    Karl Knutson          <karl@athena.chicago.il.us> | 
|  | *    Mathew Kotowsky       <kotowsky@sctp.org> | 
|  | *    Sridhar Samudrala     <samudrala@us.ibm.com> | 
|  | *    Jon Grimm             <jgrimm@us.ibm.com> | 
|  | *    Hui Huang 	    <hui.huang@nokia.com> | 
|  | *    Dajiang Zhang 	    <dajiang.zhang@nokia.com> | 
|  | *    Daisy Chang	    <daisyc@us.ibm.com> | 
|  | *    Ardelle Fan	    <ardelle.fan@intel.com> | 
|  | *    Ryan Layer	    <rmlayer@us.ibm.com> | 
|  | *    Kevin Gao		    <kevin.gao@intel.com> | 
|  | * | 
|  | * Any bugs reported given to us we will try to fix... any fixes shared will | 
|  | * be incorporated into the next SCTP release. | 
|  | */ | 
|  |  | 
|  | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt | 
|  |  | 
|  | #include <linux/types.h> | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/ip.h> | 
|  | #include <linux/ipv6.h> | 
|  | #include <linux/net.h> | 
|  | #include <linux/inet.h> | 
|  | #include <linux/slab.h> | 
|  | #include <net/sock.h> | 
|  | #include <net/inet_ecn.h> | 
|  | #include <linux/skbuff.h> | 
|  | #include <net/sctp/sctp.h> | 
|  | #include <net/sctp/sm.h> | 
|  | #include <net/sctp/structs.h> | 
|  |  | 
|  | static struct sctp_packet *sctp_abort_pkt_new(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | const void *payload, | 
|  | size_t paylen); | 
|  | static int sctp_eat_data(const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands); | 
|  | static struct sctp_packet *sctp_ootb_pkt_new(const struct sctp_association *asoc, | 
|  | const struct sctp_chunk *chunk); | 
|  | static void sctp_send_stale_cookie_err(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands, | 
|  | struct sctp_chunk *err_chunk); | 
|  | static sctp_disposition_t sctp_sf_do_5_2_6_stale(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  | static sctp_disposition_t sctp_sf_shut_8_4_5(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  | static sctp_disposition_t sctp_sf_tabort_8_4_8(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  | static struct sctp_sackhdr *sctp_sm_pull_sack(struct sctp_chunk *chunk); | 
|  |  | 
|  | static sctp_disposition_t sctp_stop_t1_and_abort(sctp_cmd_seq_t *commands, | 
|  | __be16 error, int sk_err, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_transport *transport); | 
|  |  | 
|  | static sctp_disposition_t sctp_sf_abort_violation( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands, | 
|  | const __u8 *payload, | 
|  | const size_t paylen); | 
|  |  | 
|  | static sctp_disposition_t sctp_sf_violation_chunklen( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  |  | 
|  | static sctp_disposition_t sctp_sf_violation_paramlen( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, void *ext, | 
|  | sctp_cmd_seq_t *commands); | 
|  |  | 
|  | static sctp_disposition_t sctp_sf_violation_ctsn( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  |  | 
|  | static sctp_disposition_t sctp_sf_violation_chunk( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  |  | 
|  | static sctp_ierror_t sctp_sf_authenticate(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | struct sctp_chunk *chunk); | 
|  |  | 
|  | static sctp_disposition_t __sctp_sf_do_9_1_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands); | 
|  |  | 
|  | /* Small helper function that checks if the chunk length | 
|  | * is of the appropriate length.  The 'required_length' argument | 
|  | * is set to be the size of a specific chunk we are testing. | 
|  | * Return Values:  1 = Valid length | 
|  | * 		   0 = Invalid length | 
|  | * | 
|  | */ | 
|  | static inline int | 
|  | sctp_chunk_length_valid(struct sctp_chunk *chunk, | 
|  | __u16 required_length) | 
|  | { | 
|  | __u16 chunk_length = ntohs(chunk->chunk_hdr->length); | 
|  |  | 
|  | if (unlikely(chunk_length < required_length)) | 
|  | return 0; | 
|  |  | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | /********************************************************** | 
|  | * These are the state functions for handling chunk events. | 
|  | **********************************************************/ | 
|  |  | 
|  | /* | 
|  | * Process the final SHUTDOWN COMPLETE. | 
|  | * | 
|  | * Section: 4 (C) (diagram), 9.2 | 
|  | * Upon reception of the SHUTDOWN COMPLETE chunk the endpoint will verify | 
|  | * that it is in SHUTDOWN-ACK-SENT state, if it is not the chunk should be | 
|  | * discarded. If the endpoint is in the SHUTDOWN-ACK-SENT state the endpoint | 
|  | * should stop the T2-shutdown timer and remove all knowledge of the | 
|  | * association (and thus the association enters the CLOSED state). | 
|  | * | 
|  | * Verification Tag: 8.5.1(C), sctpimpguide 2.41. | 
|  | * C) Rules for packet carrying SHUTDOWN COMPLETE: | 
|  | * ... | 
|  | * - The receiver of a SHUTDOWN COMPLETE shall accept the packet | 
|  | *   if the Verification Tag field of the packet matches its own tag and | 
|  | *   the T bit is not set | 
|  | *   OR | 
|  | *   it is set to its peer's tag and the T bit is set in the Chunk | 
|  | *   Flags. | 
|  | *   Otherwise, the receiver MUST silently discard the packet | 
|  | *   and take no further action.  An endpoint MUST ignore the | 
|  | *   SHUTDOWN COMPLETE if it is not in the SHUTDOWN-ACK-SENT state. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_4_C(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | if (!sctp_vtag_verify_either(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* RFC 2960 6.10 Bundling | 
|  | * | 
|  | * An endpoint MUST NOT bundle INIT, INIT ACK or | 
|  | * SHUTDOWN COMPLETE with any other chunks. | 
|  | */ | 
|  | if (!chunk->singleton) | 
|  | return sctp_sf_violation_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the SHUTDOWN_COMPLETE chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* RFC 2960 10.2 SCTP-to-ULP | 
|  | * | 
|  | * H) SHUTDOWN COMPLETE notification | 
|  | * | 
|  | * When SCTP completes the shutdown procedures (section 9.2) this | 
|  | * notification is passed to the upper layer. | 
|  | */ | 
|  | ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_SHUTDOWN_COMP, | 
|  | 0, 0, 0, NULL, GFP_ATOMIC); | 
|  | if (ev) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(ev)); | 
|  |  | 
|  | /* Upon reception of the SHUTDOWN COMPLETE chunk the endpoint | 
|  | * will verify that it is in SHUTDOWN-ACK-SENT state, if it is | 
|  | * not the chunk should be discarded. If the endpoint is in | 
|  | * the SHUTDOWN-ACK-SENT state the endpoint should stop the | 
|  | * T2-shutdown timer and remove all knowledge of the | 
|  | * association (and thus the association enters the CLOSED | 
|  | * state). | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_SHUTDOWNS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  |  | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Respond to a normal INIT chunk. | 
|  | * We are the side that is being asked for an association. | 
|  | * | 
|  | * Section: 5.1 Normal Establishment of an Association, B | 
|  | * B) "Z" shall respond immediately with an INIT ACK chunk.  The | 
|  | *    destination IP address of the INIT ACK MUST be set to the source | 
|  | *    IP address of the INIT to which this INIT ACK is responding.  In | 
|  | *    the response, besides filling in other parameters, "Z" must set the | 
|  | *    Verification Tag field to Tag_A, and also provide its own | 
|  | *    Verification Tag (Tag_Z) in the Initiate Tag field. | 
|  | * | 
|  | * Verification Tag: Must be 0. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_1B_init(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *repl; | 
|  | struct sctp_association *new_asoc; | 
|  | struct sctp_chunk *err_chunk; | 
|  | struct sctp_packet *packet; | 
|  | sctp_unrecognized_param_t *unk_param; | 
|  | int len; | 
|  |  | 
|  | /* 6.10 Bundling | 
|  | * An endpoint MUST NOT bundle INIT, INIT ACK or | 
|  | * SHUTDOWN COMPLETE with any other chunks. | 
|  | * | 
|  | * IG Section 2.11.2 | 
|  | * Furthermore, we require that the receiver of an INIT chunk MUST | 
|  | * enforce these rules by silently discarding an arriving packet | 
|  | * with an INIT chunk that is bundled with other chunks. | 
|  | */ | 
|  | if (!chunk->singleton) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* If the packet is an OOTB packet which is temporarily on the | 
|  | * control endpoint, respond with an ABORT. | 
|  | */ | 
|  | if (ep == sctp_sk((sctp_get_ctl_sock()))->ep) { | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES); | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* 3.1 A packet containing an INIT chunk MUST have a zero Verification | 
|  | * Tag. | 
|  | */ | 
|  | if (chunk->sctp_hdr->vtag != 0) | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the INIT chunk has a valid length. | 
|  | * Normally, this would cause an ABORT with a Protocol Violation | 
|  | * error, but since we don't have an association, we'll | 
|  | * just discard the packet. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_init_chunk_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* If the INIT is coming toward a closing socket, we'll send back | 
|  | * and ABORT.  Essentially, this catches the race of INIT being | 
|  | * backloged to the socket at the same time as the user isses close(). | 
|  | * Since the socket and all its associations are going away, we | 
|  | * can treat this OOTB | 
|  | */ | 
|  | if (sctp_sstate(ep->base.sk, CLOSING)) | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Verify the INIT chunk before processing it. */ | 
|  | err_chunk = NULL; | 
|  | if (!sctp_verify_init(asoc, chunk->chunk_hdr->type, | 
|  | (sctp_init_chunk_t *)chunk->chunk_hdr, chunk, | 
|  | &err_chunk)) { | 
|  | /* This chunk contains fatal error. It is to be discarded. | 
|  | * Send an ABORT, with causes if there is any. | 
|  | */ | 
|  | if (err_chunk) { | 
|  | packet = sctp_abort_pkt_new(ep, asoc, arg, | 
|  | (__u8 *)(err_chunk->chunk_hdr) + | 
|  | sizeof(sctp_chunkhdr_t), | 
|  | ntohs(err_chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t)); | 
|  |  | 
|  | sctp_chunk_free(err_chunk); | 
|  |  | 
|  | if (packet) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } else { | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  | } else { | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, | 
|  | commands); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Grab the INIT header.  */ | 
|  | chunk->subh.init_hdr = (sctp_inithdr_t *)chunk->skb->data; | 
|  |  | 
|  | /* Tag the variable length parameters.  */ | 
|  | chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(sctp_inithdr_t)); | 
|  |  | 
|  | new_asoc = sctp_make_temp_asoc(ep, chunk, GFP_ATOMIC); | 
|  | if (!new_asoc) | 
|  | goto nomem; | 
|  |  | 
|  | if (sctp_assoc_set_bind_addr_from_ep(new_asoc, | 
|  | sctp_scope(sctp_source(chunk)), | 
|  | GFP_ATOMIC) < 0) | 
|  | goto nomem_init; | 
|  |  | 
|  | /* The call, sctp_process_init(), can fail on memory allocation.  */ | 
|  | if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk), | 
|  | (sctp_init_chunk_t *)chunk->chunk_hdr, | 
|  | GFP_ATOMIC)) | 
|  | goto nomem_init; | 
|  |  | 
|  | /* B) "Z" shall respond immediately with an INIT ACK chunk.  */ | 
|  |  | 
|  | /* If there are errors need to be reported for unknown parameters, | 
|  | * make sure to reserve enough room in the INIT ACK for them. | 
|  | */ | 
|  | len = 0; | 
|  | if (err_chunk) | 
|  | len = ntohs(err_chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t); | 
|  |  | 
|  | repl = sctp_make_init_ack(new_asoc, chunk, GFP_ATOMIC, len); | 
|  | if (!repl) | 
|  | goto nomem_init; | 
|  |  | 
|  | /* If there are errors need to be reported for unknown parameters, | 
|  | * include them in the outgoing INIT ACK as "Unrecognized parameter" | 
|  | * parameter. | 
|  | */ | 
|  | if (err_chunk) { | 
|  | /* Get the "Unrecognized parameter" parameter(s) out of the | 
|  | * ERROR chunk generated by sctp_verify_init(). Since the | 
|  | * error cause code for "unknown parameter" and the | 
|  | * "Unrecognized parameter" type is the same, we can | 
|  | * construct the parameters in INIT ACK by copying the | 
|  | * ERROR causes over. | 
|  | */ | 
|  | unk_param = (sctp_unrecognized_param_t *) | 
|  | ((__u8 *)(err_chunk->chunk_hdr) + | 
|  | sizeof(sctp_chunkhdr_t)); | 
|  | /* Replace the cause code with the "Unrecognized parameter" | 
|  | * parameter type. | 
|  | */ | 
|  | sctp_addto_chunk(repl, len, unk_param); | 
|  | sctp_chunk_free(err_chunk); | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  |  | 
|  | /* | 
|  | * Note:  After sending out INIT ACK with the State Cookie parameter, | 
|  | * "Z" MUST NOT allocate any resources, nor keep any states for the | 
|  | * new association.  Otherwise, "Z" will be vulnerable to resource | 
|  | * attacks. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  |  | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  |  | 
|  | nomem_init: | 
|  | sctp_association_free(new_asoc); | 
|  | nomem: | 
|  | if (err_chunk) | 
|  | sctp_chunk_free(err_chunk); | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Respond to a normal INIT ACK chunk. | 
|  | * We are the side that is initiating the association. | 
|  | * | 
|  | * Section: 5.1 Normal Establishment of an Association, C | 
|  | * C) Upon reception of the INIT ACK from "Z", "A" shall stop the T1-init | 
|  | *    timer and leave COOKIE-WAIT state. "A" shall then send the State | 
|  | *    Cookie received in the INIT ACK chunk in a COOKIE ECHO chunk, start | 
|  | *    the T1-cookie timer, and enter the COOKIE-ECHOED state. | 
|  | * | 
|  | *    Note: The COOKIE ECHO chunk can be bundled with any pending outbound | 
|  | *    DATA chunks, but it MUST be the first chunk in the packet and | 
|  | *    until the COOKIE ACK is returned the sender MUST NOT send any | 
|  | *    other packets to the peer. | 
|  | * | 
|  | * Verification Tag: 3.3.3 | 
|  | *   If the value of the Initiate Tag in a received INIT ACK chunk is | 
|  | *   found to be 0, the receiver MUST treat it as an error and close the | 
|  | *   association by transmitting an ABORT. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_1C_ack(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_init_chunk_t *initchunk; | 
|  | struct sctp_chunk *err_chunk; | 
|  | struct sctp_packet *packet; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* 6.10 Bundling | 
|  | * An endpoint MUST NOT bundle INIT, INIT ACK or | 
|  | * SHUTDOWN COMPLETE with any other chunks. | 
|  | */ | 
|  | if (!chunk->singleton) | 
|  | return sctp_sf_violation_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the INIT-ACK chunk has a valid length */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_initack_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  | /* Grab the INIT header.  */ | 
|  | chunk->subh.init_hdr = (sctp_inithdr_t *) chunk->skb->data; | 
|  |  | 
|  | /* Verify the INIT chunk before processing it. */ | 
|  | err_chunk = NULL; | 
|  | if (!sctp_verify_init(asoc, chunk->chunk_hdr->type, | 
|  | (sctp_init_chunk_t *)chunk->chunk_hdr, chunk, | 
|  | &err_chunk)) { | 
|  |  | 
|  | sctp_error_t error = SCTP_ERROR_NO_RESOURCE; | 
|  |  | 
|  | /* This chunk contains fatal error. It is to be discarded. | 
|  | * Send an ABORT, with causes.  If there are no causes, | 
|  | * then there wasn't enough memory.  Just terminate | 
|  | * the association. | 
|  | */ | 
|  | if (err_chunk) { | 
|  | packet = sctp_abort_pkt_new(ep, asoc, arg, | 
|  | (__u8 *)(err_chunk->chunk_hdr) + | 
|  | sizeof(sctp_chunkhdr_t), | 
|  | ntohs(err_chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t)); | 
|  |  | 
|  | sctp_chunk_free(err_chunk); | 
|  |  | 
|  | if (packet) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | error = SCTP_ERROR_INV_PARAM; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* SCTP-AUTH, Section 6.3: | 
|  | *    It should be noted that if the receiver wants to tear | 
|  | *    down an association in an authenticated way only, the | 
|  | *    handling of malformed packets should not result in | 
|  | *    tearing down the association. | 
|  | * | 
|  | * This means that if we only want to abort associations | 
|  | * in an authenticated way (i.e AUTH+ABORT), then we | 
|  | * can't destroy this association just because the packet | 
|  | * was malformed. | 
|  | */ | 
|  | if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | return sctp_stop_t1_and_abort(commands, error, ECONNREFUSED, | 
|  | asoc, chunk->transport); | 
|  | } | 
|  |  | 
|  | /* Tag the variable length parameters.  Note that we never | 
|  | * convert the parameters in an INIT chunk. | 
|  | */ | 
|  | chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(sctp_inithdr_t)); | 
|  |  | 
|  | initchunk = (sctp_init_chunk_t *) chunk->chunk_hdr; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PEER_INIT, | 
|  | SCTP_PEER_INIT(initchunk)); | 
|  |  | 
|  | /* Reset init error count upon receipt of INIT-ACK.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_RESET, SCTP_NULL()); | 
|  |  | 
|  | /* 5.1 C) "A" shall stop the T1-init timer and leave | 
|  | * COOKIE-WAIT state.  "A" shall then ... start the T1-cookie | 
|  | * timer, and enter the COOKIE-ECHOED state. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_COOKIE_ECHOED)); | 
|  |  | 
|  | /* SCTP-AUTH: genereate the assocition shared keys so that | 
|  | * we can potentially signe the COOKIE-ECHO. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_SHKEY, SCTP_NULL()); | 
|  |  | 
|  | /* 5.1 C) "A" shall then send the State Cookie received in the | 
|  | * INIT ACK chunk in a COOKIE ECHO chunk, ... | 
|  | */ | 
|  | /* If there is any errors to report, send the ERROR chunk generated | 
|  | * for unknown parameters as well. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_COOKIE_ECHO, | 
|  | SCTP_CHUNK(err_chunk)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Respond to a normal COOKIE ECHO chunk. | 
|  | * We are the side that is being asked for an association. | 
|  | * | 
|  | * Section: 5.1 Normal Establishment of an Association, D | 
|  | * D) Upon reception of the COOKIE ECHO chunk, Endpoint "Z" will reply | 
|  | *    with a COOKIE ACK chunk after building a TCB and moving to | 
|  | *    the ESTABLISHED state. A COOKIE ACK chunk may be bundled with | 
|  | *    any pending DATA chunks (and/or SACK chunks), but the COOKIE ACK | 
|  | *    chunk MUST be the first chunk in the packet. | 
|  | * | 
|  | *   IMPLEMENTATION NOTE: An implementation may choose to send the | 
|  | *   Communication Up notification to the SCTP user upon reception | 
|  | *   of a valid COOKIE ECHO chunk. | 
|  | * | 
|  | * Verification Tag: 8.5.1 Exceptions in Verification Tag Rules | 
|  | * D) Rules for packet carrying a COOKIE ECHO | 
|  | * | 
|  | * - When sending a COOKIE ECHO, the endpoint MUST use the value of the | 
|  | *   Initial Tag received in the INIT ACK. | 
|  | * | 
|  | * - The receiver of a COOKIE ECHO follows the procedures in Section 5. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_1D_ce(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_association *new_asoc; | 
|  | sctp_init_chunk_t *peer_init; | 
|  | struct sctp_chunk *repl; | 
|  | struct sctp_ulpevent *ev, *ai_ev = NULL; | 
|  | int error = 0; | 
|  | struct sctp_chunk *err_chk_p; | 
|  | struct sock *sk; | 
|  |  | 
|  | /* If the packet is an OOTB packet which is temporarily on the | 
|  | * control endpoint, respond with an ABORT. | 
|  | */ | 
|  | if (ep == sctp_sk((sctp_get_ctl_sock()))->ep) { | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES); | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* Make sure that the COOKIE_ECHO chunk has a valid length. | 
|  | * In this case, we check that we have enough for at least a | 
|  | * chunk header.  More detailed verification is done | 
|  | * in sctp_unpack_cookie(). | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* If the endpoint is not listening or if the number of associations | 
|  | * on the TCP-style socket exceed the max backlog, respond with an | 
|  | * ABORT. | 
|  | */ | 
|  | sk = ep->base.sk; | 
|  | if (!sctp_sstate(sk, LISTENING) || | 
|  | (sctp_style(sk, TCP) && sk_acceptq_is_full(sk))) | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* "Decode" the chunk.  We have no optional parameters so we | 
|  | * are in good shape. | 
|  | */ | 
|  | chunk->subh.cookie_hdr = | 
|  | (struct sctp_signed_cookie *)chunk->skb->data; | 
|  | if (!pskb_pull(chunk->skb, ntohs(chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t))) | 
|  | goto nomem; | 
|  |  | 
|  | /* 5.1 D) Upon reception of the COOKIE ECHO chunk, Endpoint | 
|  | * "Z" will reply with a COOKIE ACK chunk after building a TCB | 
|  | * and moving to the ESTABLISHED state. | 
|  | */ | 
|  | new_asoc = sctp_unpack_cookie(ep, asoc, chunk, GFP_ATOMIC, &error, | 
|  | &err_chk_p); | 
|  |  | 
|  | /* FIXME: | 
|  | * If the re-build failed, what is the proper error path | 
|  | * from here? | 
|  | * | 
|  | * [We should abort the association. --piggy] | 
|  | */ | 
|  | if (!new_asoc) { | 
|  | /* FIXME: Several errors are possible.  A bad cookie should | 
|  | * be silently discarded, but think about logging it too. | 
|  | */ | 
|  | switch (error) { | 
|  | case -SCTP_IERROR_NOMEM: | 
|  | goto nomem; | 
|  |  | 
|  | case -SCTP_IERROR_STALE_COOKIE: | 
|  | sctp_send_stale_cookie_err(ep, asoc, chunk, commands, | 
|  | err_chk_p); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | case -SCTP_IERROR_BAD_SIG: | 
|  | default: | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Delay state machine commands until later. | 
|  | * | 
|  | * Re-build the bind address for the association is done in | 
|  | * the sctp_unpack_cookie() already. | 
|  | */ | 
|  | /* This is a brand-new association, so these are not yet side | 
|  | * effects--it is safe to run them here. | 
|  | */ | 
|  | peer_init = &chunk->subh.cookie_hdr->c.peer_init[0]; | 
|  |  | 
|  | if (!sctp_process_init(new_asoc, chunk, | 
|  | &chunk->subh.cookie_hdr->c.peer_addr, | 
|  | peer_init, GFP_ATOMIC)) | 
|  | goto nomem_init; | 
|  |  | 
|  | /* SCTP-AUTH:  Now that we've populate required fields in | 
|  | * sctp_process_init, set up the assocaition shared keys as | 
|  | * necessary so that we can potentially authenticate the ACK | 
|  | */ | 
|  | error = sctp_auth_asoc_init_active_key(new_asoc, GFP_ATOMIC); | 
|  | if (error) | 
|  | goto nomem_init; | 
|  |  | 
|  | /* SCTP-AUTH:  auth_chunk pointer is only set when the cookie-echo | 
|  | * is supposed to be authenticated and we have to do delayed | 
|  | * authentication.  We've just recreated the association using | 
|  | * the information in the cookie and now it's much easier to | 
|  | * do the authentication. | 
|  | */ | 
|  | if (chunk->auth_chunk) { | 
|  | struct sctp_chunk auth; | 
|  | sctp_ierror_t ret; | 
|  |  | 
|  | /* set-up our fake chunk so that we can process it */ | 
|  | auth.skb = chunk->auth_chunk; | 
|  | auth.asoc = chunk->asoc; | 
|  | auth.sctp_hdr = chunk->sctp_hdr; | 
|  | auth.chunk_hdr = (sctp_chunkhdr_t *)skb_push(chunk->auth_chunk, | 
|  | sizeof(sctp_chunkhdr_t)); | 
|  | skb_pull(chunk->auth_chunk, sizeof(sctp_chunkhdr_t)); | 
|  | auth.transport = chunk->transport; | 
|  |  | 
|  | ret = sctp_sf_authenticate(ep, new_asoc, type, &auth); | 
|  |  | 
|  | /* We can now safely free the auth_chunk clone */ | 
|  | kfree_skb(chunk->auth_chunk); | 
|  |  | 
|  | if (ret != SCTP_IERROR_NO_ERROR) { | 
|  | sctp_association_free(new_asoc); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  | } | 
|  |  | 
|  | repl = sctp_make_cookie_ack(new_asoc, chunk); | 
|  | if (!repl) | 
|  | goto nomem_init; | 
|  |  | 
|  | /* RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * D) IMPLEMENTATION NOTE: An implementation may choose to | 
|  | * send the Communication Up notification to the SCTP user | 
|  | * upon reception of a valid COOKIE ECHO chunk. | 
|  | */ | 
|  | ev = sctp_ulpevent_make_assoc_change(new_asoc, 0, SCTP_COMM_UP, 0, | 
|  | new_asoc->c.sinit_num_ostreams, | 
|  | new_asoc->c.sinit_max_instreams, | 
|  | NULL, GFP_ATOMIC); | 
|  | if (!ev) | 
|  | goto nomem_ev; | 
|  |  | 
|  | /* Sockets API Draft Section 5.3.1.6 | 
|  | * When a peer sends a Adaptation Layer Indication parameter , SCTP | 
|  | * delivers this notification to inform the application that of the | 
|  | * peers requested adaptation layer. | 
|  | */ | 
|  | if (new_asoc->peer.adaptation_ind) { | 
|  | ai_ev = sctp_ulpevent_make_adaptation_indication(new_asoc, | 
|  | GFP_ATOMIC); | 
|  | if (!ai_ev) | 
|  | goto nomem_aiev; | 
|  | } | 
|  |  | 
|  | /* Add all the state machine commands now since we've created | 
|  | * everything.  This way we don't introduce memory corruptions | 
|  | * during side-effect processing and correclty count established | 
|  | * associations. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_ESTABLISHED)); | 
|  | SCTP_INC_STATS(SCTP_MIB_CURRESTAB); | 
|  | SCTP_INC_STATS(SCTP_MIB_PASSIVEESTABS); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL()); | 
|  |  | 
|  | if (new_asoc->autoclose) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE)); | 
|  |  | 
|  | /* This will send the COOKIE ACK */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  |  | 
|  | /* Queue the ASSOC_CHANGE event */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev)); | 
|  |  | 
|  | /* Send up the Adaptation Layer Indication event */ | 
|  | if (ai_ev) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(ai_ev)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem_aiev: | 
|  | sctp_ulpevent_free(ev); | 
|  | nomem_ev: | 
|  | sctp_chunk_free(repl); | 
|  | nomem_init: | 
|  | sctp_association_free(new_asoc); | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Respond to a normal COOKIE ACK chunk. | 
|  | * We are the side that is being asked for an association. | 
|  | * | 
|  | * RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * E) Upon reception of the COOKIE ACK, endpoint "A" will move from the | 
|  | *    COOKIE-ECHOED state to the ESTABLISHED state, stopping the T1-cookie | 
|  | *    timer. It may also notify its ULP about the successful | 
|  | *    establishment of the association with a Communication Up | 
|  | *    notification (see Section 10). | 
|  | * | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_1E_ca(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Verify that the chunk length for the COOKIE-ACK is OK. | 
|  | * If we don't do this, any bundled chunks may be junked. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Reset init error count upon receipt of COOKIE-ACK, | 
|  | * to avoid problems with the managemement of this | 
|  | * counter in stale cookie situations when a transition back | 
|  | * from the COOKIE-ECHOED state to the COOKIE-WAIT | 
|  | * state is performed. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_RESET, SCTP_NULL()); | 
|  |  | 
|  | /* RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * E) Upon reception of the COOKIE ACK, endpoint "A" will move | 
|  | * from the COOKIE-ECHOED state to the ESTABLISHED state, | 
|  | * stopping the T1-cookie timer. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_ESTABLISHED)); | 
|  | SCTP_INC_STATS(SCTP_MIB_CURRESTAB); | 
|  | SCTP_INC_STATS(SCTP_MIB_ACTIVEESTABS); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL()); | 
|  | if (asoc->autoclose) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE)); | 
|  |  | 
|  | /* It may also notify its ULP about the successful | 
|  | * establishment of the association with a Communication Up | 
|  | * notification (see Section 10). | 
|  | */ | 
|  | ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_COMM_UP, | 
|  | 0, asoc->c.sinit_num_ostreams, | 
|  | asoc->c.sinit_max_instreams, | 
|  | NULL, GFP_ATOMIC); | 
|  |  | 
|  | if (!ev) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev)); | 
|  |  | 
|  | /* Sockets API Draft Section 5.3.1.6 | 
|  | * When a peer sends a Adaptation Layer Indication parameter , SCTP | 
|  | * delivers this notification to inform the application that of the | 
|  | * peers requested adaptation layer. | 
|  | */ | 
|  | if (asoc->peer.adaptation_ind) { | 
|  | ev = sctp_ulpevent_make_adaptation_indication(asoc, GFP_ATOMIC); | 
|  | if (!ev) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(ev)); | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Generate and sendout a heartbeat packet.  */ | 
|  | static sctp_disposition_t sctp_sf_heartbeat(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_transport *transport = (struct sctp_transport *) arg; | 
|  | struct sctp_chunk *reply; | 
|  |  | 
|  | /* Send a heartbeat to our peer.  */ | 
|  | reply = sctp_make_heartbeat(asoc, transport); | 
|  | if (!reply) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  |  | 
|  | /* Set rto_pending indicating that an RTT measurement | 
|  | * is started with this heartbeat chunk. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_RTO_PENDING, | 
|  | SCTP_TRANSPORT(transport)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* Generate a HEARTBEAT packet on the given transport.  */ | 
|  | sctp_disposition_t sctp_sf_sendbeat_8_3(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_transport *transport = (struct sctp_transport *) arg; | 
|  |  | 
|  | if (asoc->overall_error_count >= asoc->max_retrans) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | /* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | /* Section 3.3.5. | 
|  | * The Sender-specific Heartbeat Info field should normally include | 
|  | * information about the sender's current time when this HEARTBEAT | 
|  | * chunk is sent and the destination transport address to which this | 
|  | * HEARTBEAT is sent (see Section 8.3). | 
|  | */ | 
|  |  | 
|  | if (transport->param_flags & SPP_HB_ENABLE) { | 
|  | if (SCTP_DISPOSITION_NOMEM == | 
|  | sctp_sf_heartbeat(ep, asoc, type, arg, | 
|  | commands)) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  |  | 
|  | /* Set transport error counter and association error counter | 
|  | * when sending heartbeat. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_HB_SENT, | 
|  | SCTP_TRANSPORT(transport)); | 
|  | } | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_IDLE, | 
|  | SCTP_TRANSPORT(transport)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMER_UPDATE, | 
|  | SCTP_TRANSPORT(transport)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an heartbeat request. | 
|  | * | 
|  | * Section: 8.3 Path Heartbeat | 
|  | * The receiver of the HEARTBEAT should immediately respond with a | 
|  | * HEARTBEAT ACK that contains the Heartbeat Information field copied | 
|  | * from the received HEARTBEAT chunk. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * When receiving an SCTP packet, the endpoint MUST ensure that the | 
|  | * value in the Verification Tag field of the received SCTP packet | 
|  | * matches its own Tag. If the received Verification Tag value does not | 
|  | * match the receiver's own tag value, the receiver shall silently | 
|  | * discard the packet and shall not process it any further except for | 
|  | * those cases listed in Section 8.5.1 below. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_beat_8_3(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *reply; | 
|  | size_t paylen = 0; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the HEARTBEAT chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_heartbeat_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* 8.3 The receiver of the HEARTBEAT should immediately | 
|  | * respond with a HEARTBEAT ACK that contains the Heartbeat | 
|  | * Information field copied from the received HEARTBEAT chunk. | 
|  | */ | 
|  | chunk->subh.hb_hdr = (sctp_heartbeathdr_t *) chunk->skb->data; | 
|  | paylen = ntohs(chunk->chunk_hdr->length) - sizeof(sctp_chunkhdr_t); | 
|  | if (!pskb_pull(chunk->skb, paylen)) | 
|  | goto nomem; | 
|  |  | 
|  | reply = sctp_make_heartbeat_ack(asoc, chunk, | 
|  | chunk->subh.hb_hdr, paylen); | 
|  | if (!reply) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the returning HEARTBEAT ACK. | 
|  | * | 
|  | * Section: 8.3 Path Heartbeat | 
|  | * Upon the receipt of the HEARTBEAT ACK, the sender of the HEARTBEAT | 
|  | * should clear the error counter of the destination transport | 
|  | * address to which the HEARTBEAT was sent, and mark the destination | 
|  | * transport address as active if it is not so marked. The endpoint may | 
|  | * optionally report to the upper layer when an inactive destination | 
|  | * address is marked as active due to the reception of the latest | 
|  | * HEARTBEAT ACK. The receiver of the HEARTBEAT ACK must also | 
|  | * clear the association overall error count as well (as defined | 
|  | * in section 8.1). | 
|  | * | 
|  | * The receiver of the HEARTBEAT ACK should also perform an RTT | 
|  | * measurement for that destination transport address using the time | 
|  | * value carried in the HEARTBEAT ACK chunk. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_backbeat_8_3(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | union sctp_addr from_addr; | 
|  | struct sctp_transport *link; | 
|  | sctp_sender_hb_info_t *hbinfo; | 
|  | unsigned long max_interval; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the HEARTBEAT-ACK chunk has a valid length.  */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t) + | 
|  | sizeof(sctp_sender_hb_info_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | hbinfo = (sctp_sender_hb_info_t *) chunk->skb->data; | 
|  | /* Make sure that the length of the parameter is what we expect */ | 
|  | if (ntohs(hbinfo->param_hdr.length) != | 
|  | sizeof(sctp_sender_hb_info_t)) { | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | from_addr = hbinfo->daddr; | 
|  | link = sctp_assoc_lookup_paddr(asoc, &from_addr); | 
|  |  | 
|  | /* This should never happen, but lets log it if so.  */ | 
|  | if (unlikely(!link)) { | 
|  | if (from_addr.sa.sa_family == AF_INET6) { | 
|  | if (net_ratelimit()) | 
|  | pr_warn("%s association %p could not find address %pI6\n", | 
|  | __func__, | 
|  | asoc, | 
|  | &from_addr.v6.sin6_addr); | 
|  | } else { | 
|  | if (net_ratelimit()) | 
|  | pr_warn("%s association %p could not find address %pI4\n", | 
|  | __func__, | 
|  | asoc, | 
|  | &from_addr.v4.sin_addr.s_addr); | 
|  | } | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* Validate the 64-bit random nonce. */ | 
|  | if (hbinfo->hb_nonce != link->hb_nonce) | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  |  | 
|  | max_interval = link->hbinterval + link->rto; | 
|  |  | 
|  | /* Check if the timestamp looks valid.  */ | 
|  | if (time_after(hbinfo->sent_at, jiffies) || | 
|  | time_after(jiffies, hbinfo->sent_at + max_interval)) { | 
|  | SCTP_DEBUG_PRINTK("%s: HEARTBEAT ACK with invalid timestamp " | 
|  | "received for transport: %p\n", | 
|  | __func__, link); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* 8.3 Upon the receipt of the HEARTBEAT ACK, the sender of | 
|  | * the HEARTBEAT should clear the error counter of the | 
|  | * destination transport address to which the HEARTBEAT was | 
|  | * sent and mark the destination transport address as active if | 
|  | * it is not so marked. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_ON, SCTP_TRANSPORT(link)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* Helper function to send out an abort for the restart | 
|  | * condition. | 
|  | */ | 
|  | static int sctp_sf_send_restart_abort(union sctp_addr *ssa, | 
|  | struct sctp_chunk *init, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | int len; | 
|  | struct sctp_packet *pkt; | 
|  | union sctp_addr_param *addrparm; | 
|  | struct sctp_errhdr *errhdr; | 
|  | struct sctp_endpoint *ep; | 
|  | char buffer[sizeof(struct sctp_errhdr)+sizeof(union sctp_addr_param)]; | 
|  | struct sctp_af *af = sctp_get_af_specific(ssa->v4.sin_family); | 
|  |  | 
|  | /* Build the error on the stack.   We are way to malloc crazy | 
|  | * throughout the code today. | 
|  | */ | 
|  | errhdr = (struct sctp_errhdr *)buffer; | 
|  | addrparm = (union sctp_addr_param *)errhdr->variable; | 
|  |  | 
|  | /* Copy into a parm format. */ | 
|  | len = af->to_addr_param(ssa, addrparm); | 
|  | len += sizeof(sctp_errhdr_t); | 
|  |  | 
|  | errhdr->cause = SCTP_ERROR_RESTART; | 
|  | errhdr->length = htons(len); | 
|  |  | 
|  | /* Assign to the control socket. */ | 
|  | ep = sctp_sk((sctp_get_ctl_sock()))->ep; | 
|  |  | 
|  | /* Association is NULL since this may be a restart attack and we | 
|  | * want to send back the attacker's vtag. | 
|  | */ | 
|  | pkt = sctp_abort_pkt_new(ep, NULL, init, errhdr, len); | 
|  |  | 
|  | if (!pkt) | 
|  | goto out; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, SCTP_PACKET(pkt)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  |  | 
|  | /* Discard the rest of the inbound packet. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL()); | 
|  |  | 
|  | out: | 
|  | /* Even if there is no memory, treat as a failure so | 
|  | * the packet will get dropped. | 
|  | */ | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool list_has_sctp_addr(const struct list_head *list, | 
|  | union sctp_addr *ipaddr) | 
|  | { | 
|  | struct sctp_transport *addr; | 
|  |  | 
|  | list_for_each_entry(addr, list, transports) { | 
|  | if (sctp_cmp_addr_exact(ipaddr, &addr->ipaddr)) | 
|  | return true; | 
|  | } | 
|  |  | 
|  | return false; | 
|  | } | 
|  | /* A restart is occurring, check to make sure no new addresses | 
|  | * are being added as we may be under a takeover attack. | 
|  | */ | 
|  | static int sctp_sf_check_restart_addrs(const struct sctp_association *new_asoc, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *init, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_transport *new_addr; | 
|  | int ret = 1; | 
|  |  | 
|  | /* Implementor's Guide - Section 5.2.2 | 
|  | * ... | 
|  | * Before responding the endpoint MUST check to see if the | 
|  | * unexpected INIT adds new addresses to the association. If new | 
|  | * addresses are added to the association, the endpoint MUST respond | 
|  | * with an ABORT.. | 
|  | */ | 
|  |  | 
|  | /* Search through all current addresses and make sure | 
|  | * we aren't adding any new ones. | 
|  | */ | 
|  | list_for_each_entry(new_addr, &new_asoc->peer.transport_addr_list, | 
|  | transports) { | 
|  | if (!list_has_sctp_addr(&asoc->peer.transport_addr_list, | 
|  | &new_addr->ipaddr)) { | 
|  | sctp_sf_send_restart_abort(&new_addr->ipaddr, init, | 
|  | commands); | 
|  | ret = 0; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Return success if all addresses were found. */ | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* Populate the verification/tie tags based on overlapping INIT | 
|  | * scenario. | 
|  | * | 
|  | * Note: Do not use in CLOSED or SHUTDOWN-ACK-SENT state. | 
|  | */ | 
|  | static void sctp_tietags_populate(struct sctp_association *new_asoc, | 
|  | const struct sctp_association *asoc) | 
|  | { | 
|  | switch (asoc->state) { | 
|  |  | 
|  | /* 5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State */ | 
|  |  | 
|  | case SCTP_STATE_COOKIE_WAIT: | 
|  | new_asoc->c.my_vtag     = asoc->c.my_vtag; | 
|  | new_asoc->c.my_ttag     = asoc->c.my_vtag; | 
|  | new_asoc->c.peer_ttag   = 0; | 
|  | break; | 
|  |  | 
|  | case SCTP_STATE_COOKIE_ECHOED: | 
|  | new_asoc->c.my_vtag     = asoc->c.my_vtag; | 
|  | new_asoc->c.my_ttag     = asoc->c.my_vtag; | 
|  | new_asoc->c.peer_ttag   = asoc->c.peer_vtag; | 
|  | break; | 
|  |  | 
|  | /* 5.2.2 Unexpected INIT in States Other than CLOSED, COOKIE-ECHOED, | 
|  | * COOKIE-WAIT and SHUTDOWN-ACK-SENT | 
|  | */ | 
|  | default: | 
|  | new_asoc->c.my_ttag   = asoc->c.my_vtag; | 
|  | new_asoc->c.peer_ttag = asoc->c.peer_vtag; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Other parameters for the endpoint SHOULD be copied from the | 
|  | * existing parameters of the association (e.g. number of | 
|  | * outbound streams) into the INIT ACK and cookie. | 
|  | */ | 
|  | new_asoc->rwnd                  = asoc->rwnd; | 
|  | new_asoc->c.sinit_num_ostreams  = asoc->c.sinit_num_ostreams; | 
|  | new_asoc->c.sinit_max_instreams = asoc->c.sinit_max_instreams; | 
|  | new_asoc->c.initial_tsn         = asoc->c.initial_tsn; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Compare vtag/tietag values to determine unexpected COOKIE-ECHO | 
|  | * handling action. | 
|  | * | 
|  | * RFC 2960 5.2.4 Handle a COOKIE ECHO when a TCB exists. | 
|  | * | 
|  | * Returns value representing action to be taken.   These action values | 
|  | * correspond to Action/Description values in RFC 2960, Table 2. | 
|  | */ | 
|  | static char sctp_tietags_compare(struct sctp_association *new_asoc, | 
|  | const struct sctp_association *asoc) | 
|  | { | 
|  | /* In this case, the peer may have restarted.  */ | 
|  | if ((asoc->c.my_vtag != new_asoc->c.my_vtag) && | 
|  | (asoc->c.peer_vtag != new_asoc->c.peer_vtag) && | 
|  | (asoc->c.my_vtag == new_asoc->c.my_ttag) && | 
|  | (asoc->c.peer_vtag == new_asoc->c.peer_ttag)) | 
|  | return 'A'; | 
|  |  | 
|  | /* Collision case B. */ | 
|  | if ((asoc->c.my_vtag == new_asoc->c.my_vtag) && | 
|  | ((asoc->c.peer_vtag != new_asoc->c.peer_vtag) || | 
|  | (0 == asoc->c.peer_vtag))) { | 
|  | return 'B'; | 
|  | } | 
|  |  | 
|  | /* Collision case D. */ | 
|  | if ((asoc->c.my_vtag == new_asoc->c.my_vtag) && | 
|  | (asoc->c.peer_vtag == new_asoc->c.peer_vtag)) | 
|  | return 'D'; | 
|  |  | 
|  | /* Collision case C. */ | 
|  | if ((asoc->c.my_vtag != new_asoc->c.my_vtag) && | 
|  | (asoc->c.peer_vtag == new_asoc->c.peer_vtag) && | 
|  | (0 == new_asoc->c.my_ttag) && | 
|  | (0 == new_asoc->c.peer_ttag)) | 
|  | return 'C'; | 
|  |  | 
|  | /* No match to any of the special cases; discard this packet. */ | 
|  | return 'E'; | 
|  | } | 
|  |  | 
|  | /* Common helper routine for both duplicate and simulataneous INIT | 
|  | * chunk handling. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_do_unexpected_init( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_disposition_t retval; | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *repl; | 
|  | struct sctp_association *new_asoc; | 
|  | struct sctp_chunk *err_chunk; | 
|  | struct sctp_packet *packet; | 
|  | sctp_unrecognized_param_t *unk_param; | 
|  | int len; | 
|  |  | 
|  | /* 6.10 Bundling | 
|  | * An endpoint MUST NOT bundle INIT, INIT ACK or | 
|  | * SHUTDOWN COMPLETE with any other chunks. | 
|  | * | 
|  | * IG Section 2.11.2 | 
|  | * Furthermore, we require that the receiver of an INIT chunk MUST | 
|  | * enforce these rules by silently discarding an arriving packet | 
|  | * with an INIT chunk that is bundled with other chunks. | 
|  | */ | 
|  | if (!chunk->singleton) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* 3.1 A packet containing an INIT chunk MUST have a zero Verification | 
|  | * Tag. | 
|  | */ | 
|  | if (chunk->sctp_hdr->vtag != 0) | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the INIT chunk has a valid length. | 
|  | * In this case, we generate a protocol violation since we have | 
|  | * an association established. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_init_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  | /* Grab the INIT header.  */ | 
|  | chunk->subh.init_hdr = (sctp_inithdr_t *) chunk->skb->data; | 
|  |  | 
|  | /* Tag the variable length parameters.  */ | 
|  | chunk->param_hdr.v = skb_pull(chunk->skb, sizeof(sctp_inithdr_t)); | 
|  |  | 
|  | /* Verify the INIT chunk before processing it. */ | 
|  | err_chunk = NULL; | 
|  | if (!sctp_verify_init(asoc, chunk->chunk_hdr->type, | 
|  | (sctp_init_chunk_t *)chunk->chunk_hdr, chunk, | 
|  | &err_chunk)) { | 
|  | /* This chunk contains fatal error. It is to be discarded. | 
|  | * Send an ABORT, with causes if there is any. | 
|  | */ | 
|  | if (err_chunk) { | 
|  | packet = sctp_abort_pkt_new(ep, asoc, arg, | 
|  | (__u8 *)(err_chunk->chunk_hdr) + | 
|  | sizeof(sctp_chunkhdr_t), | 
|  | ntohs(err_chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t)); | 
|  |  | 
|  | if (packet) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | retval = SCTP_DISPOSITION_CONSUME; | 
|  | } else { | 
|  | retval = SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  | goto cleanup; | 
|  | } else { | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, | 
|  | commands); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Other parameters for the endpoint SHOULD be copied from the | 
|  | * existing parameters of the association (e.g. number of | 
|  | * outbound streams) into the INIT ACK and cookie. | 
|  | * FIXME:  We are copying parameters from the endpoint not the | 
|  | * association. | 
|  | */ | 
|  | new_asoc = sctp_make_temp_asoc(ep, chunk, GFP_ATOMIC); | 
|  | if (!new_asoc) | 
|  | goto nomem; | 
|  |  | 
|  | if (sctp_assoc_set_bind_addr_from_ep(new_asoc, | 
|  | sctp_scope(sctp_source(chunk)), GFP_ATOMIC) < 0) | 
|  | goto nomem; | 
|  |  | 
|  | /* In the outbound INIT ACK the endpoint MUST copy its current | 
|  | * Verification Tag and Peers Verification tag into a reserved | 
|  | * place (local tie-tag and per tie-tag) within the state cookie. | 
|  | */ | 
|  | if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk), | 
|  | (sctp_init_chunk_t *)chunk->chunk_hdr, | 
|  | GFP_ATOMIC)) | 
|  | goto nomem; | 
|  |  | 
|  | /* Make sure no new addresses are being added during the | 
|  | * restart.   Do not do this check for COOKIE-WAIT state, | 
|  | * since there are no peer addresses to check against. | 
|  | * Upon return an ABORT will have been sent if needed. | 
|  | */ | 
|  | if (!sctp_state(asoc, COOKIE_WAIT)) { | 
|  | if (!sctp_sf_check_restart_addrs(new_asoc, asoc, chunk, | 
|  | commands)) { | 
|  | retval = SCTP_DISPOSITION_CONSUME; | 
|  | goto nomem_retval; | 
|  | } | 
|  | } | 
|  |  | 
|  | sctp_tietags_populate(new_asoc, asoc); | 
|  |  | 
|  | /* B) "Z" shall respond immediately with an INIT ACK chunk.  */ | 
|  |  | 
|  | /* If there are errors need to be reported for unknown parameters, | 
|  | * make sure to reserve enough room in the INIT ACK for them. | 
|  | */ | 
|  | len = 0; | 
|  | if (err_chunk) { | 
|  | len = ntohs(err_chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t); | 
|  | } | 
|  |  | 
|  | repl = sctp_make_init_ack(new_asoc, chunk, GFP_ATOMIC, len); | 
|  | if (!repl) | 
|  | goto nomem; | 
|  |  | 
|  | /* If there are errors need to be reported for unknown parameters, | 
|  | * include them in the outgoing INIT ACK as "Unrecognized parameter" | 
|  | * parameter. | 
|  | */ | 
|  | if (err_chunk) { | 
|  | /* Get the "Unrecognized parameter" parameter(s) out of the | 
|  | * ERROR chunk generated by sctp_verify_init(). Since the | 
|  | * error cause code for "unknown parameter" and the | 
|  | * "Unrecognized parameter" type is the same, we can | 
|  | * construct the parameters in INIT ACK by copying the | 
|  | * ERROR causes over. | 
|  | */ | 
|  | unk_param = (sctp_unrecognized_param_t *) | 
|  | ((__u8 *)(err_chunk->chunk_hdr) + | 
|  | sizeof(sctp_chunkhdr_t)); | 
|  | /* Replace the cause code with the "Unrecognized parameter" | 
|  | * parameter type. | 
|  | */ | 
|  | sctp_addto_chunk(repl, len, unk_param); | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  |  | 
|  | /* | 
|  | * Note: After sending out INIT ACK with the State Cookie parameter, | 
|  | * "Z" MUST NOT allocate any resources for this new association. | 
|  | * Otherwise, "Z" will be vulnerable to resource attacks. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  | retval = SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | nomem: | 
|  | retval = SCTP_DISPOSITION_NOMEM; | 
|  | nomem_retval: | 
|  | if (new_asoc) | 
|  | sctp_association_free(new_asoc); | 
|  | cleanup: | 
|  | if (err_chunk) | 
|  | sctp_chunk_free(err_chunk); | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle simultaneous INIT. | 
|  | * This means we started an INIT and then we got an INIT request from | 
|  | * our peer. | 
|  | * | 
|  | * Section: 5.2.1 INIT received in COOKIE-WAIT or COOKIE-ECHOED State (Item B) | 
|  | * This usually indicates an initialization collision, i.e., each | 
|  | * endpoint is attempting, at about the same time, to establish an | 
|  | * association with the other endpoint. | 
|  | * | 
|  | * Upon receipt of an INIT in the COOKIE-WAIT or COOKIE-ECHOED state, an | 
|  | * endpoint MUST respond with an INIT ACK using the same parameters it | 
|  | * sent in its original INIT chunk (including its Verification Tag, | 
|  | * unchanged). These original parameters are combined with those from the | 
|  | * newly received INIT chunk. The endpoint shall also generate a State | 
|  | * Cookie with the INIT ACK. The endpoint uses the parameters sent in its | 
|  | * INIT to calculate the State Cookie. | 
|  | * | 
|  | * After that, the endpoint MUST NOT change its state, the T1-init | 
|  | * timer shall be left running and the corresponding TCB MUST NOT be | 
|  | * destroyed. The normal procedures for handling State Cookies when | 
|  | * a TCB exists will resolve the duplicate INITs to a single association. | 
|  | * | 
|  | * For an endpoint that is in the COOKIE-ECHOED state it MUST populate | 
|  | * its Tie-Tags with the Tag information of itself and its peer (see | 
|  | * section 5.2.2 for a description of the Tie-Tags). | 
|  | * | 
|  | * Verification Tag: Not explicit, but an INIT can not have a valid | 
|  | * verification tag, so we skip the check. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_2_1_siminit(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* Call helper to do the real work for both simulataneous and | 
|  | * duplicate INIT chunk handling. | 
|  | */ | 
|  | return sctp_sf_do_unexpected_init(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle duplicated INIT messages.  These are usually delayed | 
|  | * restransmissions. | 
|  | * | 
|  | * Section: 5.2.2 Unexpected INIT in States Other than CLOSED, | 
|  | * COOKIE-ECHOED and COOKIE-WAIT | 
|  | * | 
|  | * Unless otherwise stated, upon reception of an unexpected INIT for | 
|  | * this association, the endpoint shall generate an INIT ACK with a | 
|  | * State Cookie.  In the outbound INIT ACK the endpoint MUST copy its | 
|  | * current Verification Tag and peer's Verification Tag into a reserved | 
|  | * place within the state cookie.  We shall refer to these locations as | 
|  | * the Peer's-Tie-Tag and the Local-Tie-Tag.  The outbound SCTP packet | 
|  | * containing this INIT ACK MUST carry a Verification Tag value equal to | 
|  | * the Initiation Tag found in the unexpected INIT.  And the INIT ACK | 
|  | * MUST contain a new Initiation Tag (randomly generated see Section | 
|  | * 5.3.1).  Other parameters for the endpoint SHOULD be copied from the | 
|  | * existing parameters of the association (e.g. number of outbound | 
|  | * streams) into the INIT ACK and cookie. | 
|  | * | 
|  | * After sending out the INIT ACK, the endpoint shall take no further | 
|  | * actions, i.e., the existing association, including its current state, | 
|  | * and the corresponding TCB MUST NOT be changed. | 
|  | * | 
|  | * Note: Only when a TCB exists and the association is not in a COOKIE- | 
|  | * WAIT state are the Tie-Tags populated.  For a normal association INIT | 
|  | * (i.e. the endpoint is in a COOKIE-WAIT state), the Tie-Tags MUST be | 
|  | * set to 0 (indicating that no previous TCB existed).  The INIT ACK and | 
|  | * State Cookie are populated as specified in section 5.2.1. | 
|  | * | 
|  | * Verification Tag: Not specified, but an INIT has no way of knowing | 
|  | * what the verification tag could be, so we ignore it. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_2_2_dupinit(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* Call helper to do the real work for both simulataneous and | 
|  | * duplicate INIT chunk handling. | 
|  | */ | 
|  | return sctp_sf_do_unexpected_init(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Unexpected INIT-ACK handler. | 
|  | * | 
|  | * Section 5.2.3 | 
|  | * If an INIT ACK received by an endpoint in any state other than the | 
|  | * COOKIE-WAIT state, the endpoint should discard the INIT ACK chunk. | 
|  | * An unexpected INIT ACK usually indicates the processing of an old or | 
|  | * duplicated INIT chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_2_3_initack(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* Per the above section, we'll discard the chunk if we have an | 
|  | * endpoint.  If this is an OOTB INIT-ACK, treat it as such. | 
|  | */ | 
|  | if (ep == sctp_sk((sctp_get_ctl_sock()))->ep) | 
|  | return sctp_sf_ootb(ep, asoc, type, arg, commands); | 
|  | else | 
|  | return sctp_sf_discard_chunk(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* Unexpected COOKIE-ECHO handler for peer restart (Table 2, action 'A') | 
|  | * | 
|  | * Section 5.2.4 | 
|  | *  A)  In this case, the peer may have restarted. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_do_dupcook_a(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *new_asoc) | 
|  | { | 
|  | sctp_init_chunk_t *peer_init; | 
|  | struct sctp_ulpevent *ev; | 
|  | struct sctp_chunk *repl; | 
|  | struct sctp_chunk *err; | 
|  | sctp_disposition_t disposition; | 
|  |  | 
|  | /* new_asoc is a brand-new association, so these are not yet | 
|  | * side effects--it is safe to run them here. | 
|  | */ | 
|  | peer_init = &chunk->subh.cookie_hdr->c.peer_init[0]; | 
|  |  | 
|  | if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk), peer_init, | 
|  | GFP_ATOMIC)) | 
|  | goto nomem; | 
|  |  | 
|  | /* Make sure no new addresses are being added during the | 
|  | * restart.  Though this is a pretty complicated attack | 
|  | * since you'd have to get inside the cookie. | 
|  | */ | 
|  | if (!sctp_sf_check_restart_addrs(new_asoc, asoc, chunk, commands)) { | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* If the endpoint is in the SHUTDOWN-ACK-SENT state and recognizes | 
|  | * the peer has restarted (Action A), it MUST NOT setup a new | 
|  | * association but instead resend the SHUTDOWN ACK and send an ERROR | 
|  | * chunk with a "Cookie Received while Shutting Down" error cause to | 
|  | * its peer. | 
|  | */ | 
|  | if (sctp_state(asoc, SHUTDOWN_ACK_SENT)) { | 
|  | disposition = sctp_sf_do_9_2_reshutack(ep, asoc, | 
|  | SCTP_ST_CHUNK(chunk->chunk_hdr->type), | 
|  | chunk, commands); | 
|  | if (SCTP_DISPOSITION_NOMEM == disposition) | 
|  | goto nomem; | 
|  |  | 
|  | err = sctp_make_op_error(asoc, chunk, | 
|  | SCTP_ERROR_COOKIE_IN_SHUTDOWN, | 
|  | NULL, 0, 0); | 
|  | if (err) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(err)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* For now, stop pending T3-rtx and SACK timers, fail any unsent/unacked | 
|  | * data. Consider the optional choice of resending of this data. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_T3_RTX_TIMERS_STOP, SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_SACK)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PURGE_OUTQUEUE, SCTP_NULL()); | 
|  |  | 
|  | /* Stop pending T4-rto timer, teardown ASCONF queue, ASCONF-ACK queue | 
|  | * and ASCONF-ACK cache. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PURGE_ASCONF_QUEUE, SCTP_NULL()); | 
|  |  | 
|  | repl = sctp_make_cookie_ack(new_asoc, chunk); | 
|  | if (!repl) | 
|  | goto nomem; | 
|  |  | 
|  | /* Report association restart to upper layer. */ | 
|  | ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_RESTART, 0, | 
|  | new_asoc->c.sinit_num_ostreams, | 
|  | new_asoc->c.sinit_max_instreams, | 
|  | NULL, GFP_ATOMIC); | 
|  | if (!ev) | 
|  | goto nomem_ev; | 
|  |  | 
|  | /* Update the content of current association. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_ASSOC, SCTP_ASOC(new_asoc)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem_ev: | 
|  | sctp_chunk_free(repl); | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Unexpected COOKIE-ECHO handler for setup collision (Table 2, action 'B') | 
|  | * | 
|  | * Section 5.2.4 | 
|  | *   B) In this case, both sides may be attempting to start an association | 
|  | *      at about the same time but the peer endpoint started its INIT | 
|  | *      after responding to the local endpoint's INIT | 
|  | */ | 
|  | /* This case represents an initialization collision.  */ | 
|  | static sctp_disposition_t sctp_sf_do_dupcook_b(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *new_asoc) | 
|  | { | 
|  | sctp_init_chunk_t *peer_init; | 
|  | struct sctp_chunk *repl; | 
|  |  | 
|  | /* new_asoc is a brand-new association, so these are not yet | 
|  | * side effects--it is safe to run them here. | 
|  | */ | 
|  | peer_init = &chunk->subh.cookie_hdr->c.peer_init[0]; | 
|  | if (!sctp_process_init(new_asoc, chunk, sctp_source(chunk), peer_init, | 
|  | GFP_ATOMIC)) | 
|  | goto nomem; | 
|  |  | 
|  | /* Update the content of current association.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_ASSOC, SCTP_ASOC(new_asoc)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_ESTABLISHED)); | 
|  | SCTP_INC_STATS(SCTP_MIB_CURRESTAB); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, SCTP_NULL()); | 
|  |  | 
|  | repl = sctp_make_cookie_ack(new_asoc, chunk); | 
|  | if (!repl) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  |  | 
|  | /* RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * D) IMPLEMENTATION NOTE: An implementation may choose to | 
|  | * send the Communication Up notification to the SCTP user | 
|  | * upon reception of a valid COOKIE ECHO chunk. | 
|  | * | 
|  | * Sadly, this needs to be implemented as a side-effect, because | 
|  | * we are not guaranteed to have set the association id of the real | 
|  | * association and so these notifications need to be delayed until | 
|  | * the association id is allocated. | 
|  | */ | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_CHANGE, SCTP_U8(SCTP_COMM_UP)); | 
|  |  | 
|  | /* Sockets API Draft Section 5.3.1.6 | 
|  | * When a peer sends a Adaptation Layer Indication parameter , SCTP | 
|  | * delivers this notification to inform the application that of the | 
|  | * peers requested adaptation layer. | 
|  | * | 
|  | * This also needs to be done as a side effect for the same reason as | 
|  | * above. | 
|  | */ | 
|  | if (asoc->peer.adaptation_ind) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ADAPTATION_IND, SCTP_NULL()); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Unexpected COOKIE-ECHO handler for setup collision (Table 2, action 'C') | 
|  | * | 
|  | * Section 5.2.4 | 
|  | *  C) In this case, the local endpoint's cookie has arrived late. | 
|  | *     Before it arrived, the local endpoint sent an INIT and received an | 
|  | *     INIT-ACK and finally sent a COOKIE ECHO with the peer's same tag | 
|  | *     but a new tag of its own. | 
|  | */ | 
|  | /* This case represents an initialization collision.  */ | 
|  | static sctp_disposition_t sctp_sf_do_dupcook_c(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *new_asoc) | 
|  | { | 
|  | /* The cookie should be silently discarded. | 
|  | * The endpoint SHOULD NOT change states and should leave | 
|  | * any timers running. | 
|  | */ | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* Unexpected COOKIE-ECHO handler lost chunk (Table 2, action 'D') | 
|  | * | 
|  | * Section 5.2.4 | 
|  | * | 
|  | * D) When both local and remote tags match the endpoint should always | 
|  | *    enter the ESTABLISHED state, if it has not already done so. | 
|  | */ | 
|  | /* This case represents an initialization collision.  */ | 
|  | static sctp_disposition_t sctp_sf_do_dupcook_d(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands, | 
|  | struct sctp_association *new_asoc) | 
|  | { | 
|  | struct sctp_ulpevent *ev = NULL, *ai_ev = NULL; | 
|  | struct sctp_chunk *repl; | 
|  |  | 
|  | /* Clarification from Implementor's Guide: | 
|  | * D) When both local and remote tags match the endpoint should | 
|  | * enter the ESTABLISHED state, if it is in the COOKIE-ECHOED state. | 
|  | * It should stop any cookie timer that may be running and send | 
|  | * a COOKIE ACK. | 
|  | */ | 
|  |  | 
|  | /* Don't accidentally move back into established state. */ | 
|  | if (asoc->state < SCTP_STATE_ESTABLISHED) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_ESTABLISHED)); | 
|  | SCTP_INC_STATS(SCTP_MIB_CURRESTAB); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_START, | 
|  | SCTP_NULL()); | 
|  |  | 
|  | /* RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * D) IMPLEMENTATION NOTE: An implementation may choose | 
|  | * to send the Communication Up notification to the | 
|  | * SCTP user upon reception of a valid COOKIE | 
|  | * ECHO chunk. | 
|  | */ | 
|  | ev = sctp_ulpevent_make_assoc_change(asoc, 0, | 
|  | SCTP_COMM_UP, 0, | 
|  | asoc->c.sinit_num_ostreams, | 
|  | asoc->c.sinit_max_instreams, | 
|  | NULL, GFP_ATOMIC); | 
|  | if (!ev) | 
|  | goto nomem; | 
|  |  | 
|  | /* Sockets API Draft Section 5.3.1.6 | 
|  | * When a peer sends a Adaptation Layer Indication parameter, | 
|  | * SCTP delivers this notification to inform the application | 
|  | * that of the peers requested adaptation layer. | 
|  | */ | 
|  | if (asoc->peer.adaptation_ind) { | 
|  | ai_ev = sctp_ulpevent_make_adaptation_indication(asoc, | 
|  | GFP_ATOMIC); | 
|  | if (!ai_ev) | 
|  | goto nomem; | 
|  |  | 
|  | } | 
|  | } | 
|  |  | 
|  | repl = sctp_make_cookie_ack(new_asoc, chunk); | 
|  | if (!repl) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  |  | 
|  | if (ev) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(ev)); | 
|  | if (ai_ev) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(ai_ev)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | if (ai_ev) | 
|  | sctp_ulpevent_free(ai_ev); | 
|  | if (ev) | 
|  | sctp_ulpevent_free(ev); | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a duplicate COOKIE-ECHO.  This usually means a cookie-carrying | 
|  | * chunk was retransmitted and then delayed in the network. | 
|  | * | 
|  | * Section: 5.2.4 Handle a COOKIE ECHO when a TCB exists | 
|  | * | 
|  | * Verification Tag: None.  Do cookie validation. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_5_2_4_dupcook(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_disposition_t retval; | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_association *new_asoc; | 
|  | int error = 0; | 
|  | char action; | 
|  | struct sctp_chunk *err_chk_p; | 
|  |  | 
|  | /* Make sure that the chunk has a valid length from the protocol | 
|  | * perspective.  In this case check to make sure we have at least | 
|  | * enough for the chunk header.  Cookie length verification is | 
|  | * done later. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* "Decode" the chunk.  We have no optional parameters so we | 
|  | * are in good shape. | 
|  | */ | 
|  | chunk->subh.cookie_hdr = (struct sctp_signed_cookie *)chunk->skb->data; | 
|  | if (!pskb_pull(chunk->skb, ntohs(chunk->chunk_hdr->length) - | 
|  | sizeof(sctp_chunkhdr_t))) | 
|  | goto nomem; | 
|  |  | 
|  | /* In RFC 2960 5.2.4 3, if both Verification Tags in the State Cookie | 
|  | * of a duplicate COOKIE ECHO match the Verification Tags of the | 
|  | * current association, consider the State Cookie valid even if | 
|  | * the lifespan is exceeded. | 
|  | */ | 
|  | new_asoc = sctp_unpack_cookie(ep, asoc, chunk, GFP_ATOMIC, &error, | 
|  | &err_chk_p); | 
|  |  | 
|  | /* FIXME: | 
|  | * If the re-build failed, what is the proper error path | 
|  | * from here? | 
|  | * | 
|  | * [We should abort the association. --piggy] | 
|  | */ | 
|  | if (!new_asoc) { | 
|  | /* FIXME: Several errors are possible.  A bad cookie should | 
|  | * be silently discarded, but think about logging it too. | 
|  | */ | 
|  | switch (error) { | 
|  | case -SCTP_IERROR_NOMEM: | 
|  | goto nomem; | 
|  |  | 
|  | case -SCTP_IERROR_STALE_COOKIE: | 
|  | sctp_send_stale_cookie_err(ep, asoc, chunk, commands, | 
|  | err_chk_p); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | case -SCTP_IERROR_BAD_SIG: | 
|  | default: | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Compare the tie_tag in cookie with the verification tag of | 
|  | * current association. | 
|  | */ | 
|  | action = sctp_tietags_compare(new_asoc, asoc); | 
|  |  | 
|  | switch (action) { | 
|  | case 'A': /* Association restart. */ | 
|  | retval = sctp_sf_do_dupcook_a(ep, asoc, chunk, commands, | 
|  | new_asoc); | 
|  | break; | 
|  |  | 
|  | case 'B': /* Collision case B. */ | 
|  | retval = sctp_sf_do_dupcook_b(ep, asoc, chunk, commands, | 
|  | new_asoc); | 
|  | break; | 
|  |  | 
|  | case 'C': /* Collision case C. */ | 
|  | retval = sctp_sf_do_dupcook_c(ep, asoc, chunk, commands, | 
|  | new_asoc); | 
|  | break; | 
|  |  | 
|  | case 'D': /* Collision case D. */ | 
|  | retval = sctp_sf_do_dupcook_d(ep, asoc, chunk, commands, | 
|  | new_asoc); | 
|  | break; | 
|  |  | 
|  | default: /* Discard packet for all others. */ | 
|  | retval = sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* Delete the tempory new association. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(new_asoc)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  |  | 
|  | return retval; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an ABORT.  (SHUTDOWN-PENDING state) | 
|  | * | 
|  | * See sctp_sf_do_9_1_abort(). | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_shutdown_pending_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | if (!sctp_vtag_verify_either(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ABORT chunk has a valid length. | 
|  | * Since this is an ABORT chunk, we have to discard it | 
|  | * because of the following text: | 
|  | * RFC 2960, Section 3.3.7 | 
|  | *    If an endpoint receives an ABORT with a format error or for an | 
|  | *    association that doesn't exist, it MUST silently discard it. | 
|  | * Because the length is "invalid", we can't really discard just | 
|  | * as we do not know its true length.  So, to be safe, discard the | 
|  | * packet. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* ADD-IP: Special case for ABORT chunks | 
|  | * F4)  One special consideration is that ABORT Chunks arriving | 
|  | * destined to the IP address being deleted MUST be | 
|  | * ignored (see Section 5.3.1 for further details). | 
|  | */ | 
|  | if (SCTP_ADDR_DEL == | 
|  | sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest)) | 
|  | return sctp_sf_discard_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | return __sctp_sf_do_9_1_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an ABORT.  (SHUTDOWN-SENT state) | 
|  | * | 
|  | * See sctp_sf_do_9_1_abort(). | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_shutdown_sent_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | if (!sctp_vtag_verify_either(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ABORT chunk has a valid length. | 
|  | * Since this is an ABORT chunk, we have to discard it | 
|  | * because of the following text: | 
|  | * RFC 2960, Section 3.3.7 | 
|  | *    If an endpoint receives an ABORT with a format error or for an | 
|  | *    association that doesn't exist, it MUST silently discard it. | 
|  | * Because the length is "invalid", we can't really discard just | 
|  | * as we do not know its true length.  So, to be safe, discard the | 
|  | * packet. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* ADD-IP: Special case for ABORT chunks | 
|  | * F4)  One special consideration is that ABORT Chunks arriving | 
|  | * destined to the IP address being deleted MUST be | 
|  | * ignored (see Section 5.3.1 for further details). | 
|  | */ | 
|  | if (SCTP_ADDR_DEL == | 
|  | sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest)) | 
|  | return sctp_sf_discard_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Stop the T2-shutdown timer. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | /* Stop the T5-shutdown guard timer.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  |  | 
|  | return __sctp_sf_do_9_1_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an ABORT.  (SHUTDOWN-ACK-SENT state) | 
|  | * | 
|  | * See sctp_sf_do_9_1_abort(). | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_shutdown_ack_sent_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* The same T2 timer, so we should be able to use | 
|  | * common function with the SHUTDOWN-SENT state. | 
|  | */ | 
|  | return sctp_sf_shutdown_sent_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle an Error received in COOKIE_ECHOED state. | 
|  | * | 
|  | * Only handle the error type of stale COOKIE Error, the other errors will | 
|  | * be ignored. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_echoed_err(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_errhdr_t *err; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ERROR chunk has a valid length. | 
|  | * The parameter walking depends on this as well. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_operr_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Process the error here */ | 
|  | /* FUTURE FIXME:  When PR-SCTP related and other optional | 
|  | * parms are emitted, this will have to change to handle multiple | 
|  | * errors. | 
|  | */ | 
|  | sctp_walk_errors(err, chunk->chunk_hdr) { | 
|  | if (SCTP_ERROR_STALE_COOKIE == err->cause) | 
|  | return sctp_sf_do_5_2_6_stale(ep, asoc, type, | 
|  | arg, commands); | 
|  | } | 
|  |  | 
|  | /* It is possible to have malformed error causes, and that | 
|  | * will cause us to end the walk early.  However, since | 
|  | * we are discarding the packet, there should be no adverse | 
|  | * affects. | 
|  | */ | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a Stale COOKIE Error | 
|  | * | 
|  | * Section: 5.2.6 Handle Stale COOKIE Error | 
|  | * If the association is in the COOKIE-ECHOED state, the endpoint may elect | 
|  | * one of the following three alternatives. | 
|  | * ... | 
|  | * 3) Send a new INIT chunk to the endpoint, adding a Cookie | 
|  | *    Preservative parameter requesting an extension to the lifetime of | 
|  | *    the State Cookie. When calculating the time extension, an | 
|  | *    implementation SHOULD use the RTT information measured based on the | 
|  | *    previous COOKIE ECHO / ERROR exchange, and should add no more | 
|  | *    than 1 second beyond the measured RTT, due to long State Cookie | 
|  | *    lifetimes making the endpoint more subject to a replay attack. | 
|  | * | 
|  | * Verification Tag:  Not explicit, but safe to ignore. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_do_5_2_6_stale(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | time_t stale; | 
|  | sctp_cookie_preserve_param_t bht; | 
|  | sctp_errhdr_t *err; | 
|  | struct sctp_chunk *reply; | 
|  | struct sctp_bind_addr *bp; | 
|  | int attempts = asoc->init_err_counter + 1; | 
|  |  | 
|  | if (attempts > asoc->max_init_attempts) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_STALE_COOKIE)); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | err = (sctp_errhdr_t *)(chunk->skb->data); | 
|  |  | 
|  | /* When calculating the time extension, an implementation | 
|  | * SHOULD use the RTT information measured based on the | 
|  | * previous COOKIE ECHO / ERROR exchange, and should add no | 
|  | * more than 1 second beyond the measured RTT, due to long | 
|  | * State Cookie lifetimes making the endpoint more subject to | 
|  | * a replay attack. | 
|  | * Measure of Staleness's unit is usec. (1/1000000 sec) | 
|  | * Suggested Cookie Life-span Increment's unit is msec. | 
|  | * (1/1000 sec) | 
|  | * In general, if you use the suggested cookie life, the value | 
|  | * found in the field of measure of staleness should be doubled | 
|  | * to give ample time to retransmit the new cookie and thus | 
|  | * yield a higher probability of success on the reattempt. | 
|  | */ | 
|  | stale = ntohl(*(__be32 *)((u8 *)err + sizeof(sctp_errhdr_t))); | 
|  | stale = (stale * 2) / 1000; | 
|  |  | 
|  | bht.param_hdr.type = SCTP_PARAM_COOKIE_PRESERVATIVE; | 
|  | bht.param_hdr.length = htons(sizeof(bht)); | 
|  | bht.lifespan_increment = htonl(stale); | 
|  |  | 
|  | /* Build that new INIT chunk.  */ | 
|  | bp = (struct sctp_bind_addr *) &asoc->base.bind_addr; | 
|  | reply = sctp_make_init(asoc, bp, GFP_ATOMIC, sizeof(bht)); | 
|  | if (!reply) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_addto_chunk(reply, sizeof(bht), &bht); | 
|  |  | 
|  | /* Clear peer's init_tag cached in assoc as we are sending a new INIT */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_CLEAR_INIT_TAG, SCTP_NULL()); | 
|  |  | 
|  | /* Stop pending T3-rtx and heartbeat timers */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_T3_RTX_TIMERS_STOP, SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL()); | 
|  |  | 
|  | /* Delete non-primary peer ip addresses since we are transitioning | 
|  | * back to the COOKIE-WAIT state | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DEL_NON_PRIMARY, SCTP_NULL()); | 
|  |  | 
|  | /* If we've sent any data bundled with COOKIE-ECHO we will need to | 
|  | * resend | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_T1_RETRAN, | 
|  | SCTP_TRANSPORT(asoc->peer.primary_path)); | 
|  |  | 
|  | /* Cast away the const modifier, as we want to just | 
|  | * rerun it through as a sideffect. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_COUNTER_INC, SCTP_NULL()); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_COOKIE_WAIT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an ABORT. | 
|  | * | 
|  | * Section: 9.1 | 
|  | * After checking the Verification Tag, the receiving endpoint shall | 
|  | * remove the association from its record, and shall report the | 
|  | * termination to its upper layer. | 
|  | * | 
|  | * Verification Tag: 8.5.1 Exceptions in Verification Tag Rules | 
|  | * B) Rules for packet carrying ABORT: | 
|  | * | 
|  | *  - The endpoint shall always fill in the Verification Tag field of the | 
|  | *    outbound packet with the destination endpoint's tag value if it | 
|  | *    is known. | 
|  | * | 
|  | *  - If the ABORT is sent in response to an OOTB packet, the endpoint | 
|  | *    MUST follow the procedure described in Section 8.4. | 
|  | * | 
|  | *  - The receiver MUST accept the packet if the Verification Tag | 
|  | *    matches either its own tag, OR the tag of its peer. Otherwise, the | 
|  | *    receiver MUST silently discard the packet and take no further | 
|  | *    action. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_1_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | if (!sctp_vtag_verify_either(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ABORT chunk has a valid length. | 
|  | * Since this is an ABORT chunk, we have to discard it | 
|  | * because of the following text: | 
|  | * RFC 2960, Section 3.3.7 | 
|  | *    If an endpoint receives an ABORT with a format error or for an | 
|  | *    association that doesn't exist, it MUST silently discard it. | 
|  | * Because the length is "invalid", we can't really discard just | 
|  | * as we do not know its true length.  So, to be safe, discard the | 
|  | * packet. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* ADD-IP: Special case for ABORT chunks | 
|  | * F4)  One special consideration is that ABORT Chunks arriving | 
|  | * destined to the IP address being deleted MUST be | 
|  | * ignored (see Section 5.3.1 for further details). | 
|  | */ | 
|  | if (SCTP_ADDR_DEL == | 
|  | sctp_bind_addr_state(&asoc->base.bind_addr, &chunk->dest)) | 
|  | return sctp_sf_discard_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | return __sctp_sf_do_9_1_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | static sctp_disposition_t __sctp_sf_do_9_1_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | unsigned len; | 
|  | __be16 error = SCTP_ERROR_NO_ERROR; | 
|  |  | 
|  | /* See if we have an error cause code in the chunk.  */ | 
|  | len = ntohs(chunk->chunk_hdr->length); | 
|  | if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_errhdr)) { | 
|  |  | 
|  | sctp_errhdr_t *err; | 
|  | sctp_walk_errors(err, chunk->chunk_hdr); | 
|  | if ((void *)err != (void *)chunk->chunk_end) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | error = ((sctp_errhdr_t *)chunk->skb->data)->cause; | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(ECONNRESET)); | 
|  | /* ASSOC_FAILED will DELETE_TCB. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, SCTP_PERR(error)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  |  | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an ABORT.  (COOKIE-WAIT state) | 
|  | * | 
|  | * See sctp_sf_do_9_1_abort() above. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_wait_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | unsigned len; | 
|  | __be16 error = SCTP_ERROR_NO_ERROR; | 
|  |  | 
|  | if (!sctp_vtag_verify_either(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ABORT chunk has a valid length. | 
|  | * Since this is an ABORT chunk, we have to discard it | 
|  | * because of the following text: | 
|  | * RFC 2960, Section 3.3.7 | 
|  | *    If an endpoint receives an ABORT with a format error or for an | 
|  | *    association that doesn't exist, it MUST silently discard it. | 
|  | * Because the length is "invalid", we can't really discard just | 
|  | * as we do not know its true length.  So, to be safe, discard the | 
|  | * packet. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_abort_chunk_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* See if we have an error cause code in the chunk.  */ | 
|  | len = ntohs(chunk->chunk_hdr->length); | 
|  | if (len >= sizeof(struct sctp_chunkhdr) + sizeof(struct sctp_errhdr)) | 
|  | error = ((sctp_errhdr_t *)chunk->skb->data)->cause; | 
|  |  | 
|  | return sctp_stop_t1_and_abort(commands, error, ECONNREFUSED, asoc, | 
|  | chunk->transport); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an incoming ICMP as an ABORT.  (COOKIE-WAIT state) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_wait_icmp_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | return sctp_stop_t1_and_abort(commands, SCTP_ERROR_NO_ERROR, | 
|  | ENOPROTOOPT, asoc, | 
|  | (struct sctp_transport *)arg); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an ABORT.  (COOKIE-ECHOED state) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_echoed_abort(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* There is a single T1 timer, so we should be able to use | 
|  | * common function with the COOKIE-WAIT state. | 
|  | */ | 
|  | return sctp_sf_cookie_wait_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Stop T1 timer and abort association with "INIT failed". | 
|  | * | 
|  | * This is common code called by several sctp_sf_*_abort() functions above. | 
|  | */ | 
|  | static sctp_disposition_t sctp_stop_t1_and_abort(sctp_cmd_seq_t *commands, | 
|  | __be16 error, int sk_err, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_transport *transport) | 
|  | { | 
|  | SCTP_DEBUG_PRINTK("ABORT received (INIT).\n"); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, SCTP_ERROR(sk_err)); | 
|  | /* CMD_INIT_FAILED will DELETE_TCB. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, | 
|  | SCTP_PERR(error)); | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_do_9_2_shut | 
|  | * | 
|  | * Section: 9.2 | 
|  | * Upon the reception of the SHUTDOWN, the peer endpoint shall | 
|  | *  - enter the SHUTDOWN-RECEIVED state, | 
|  | * | 
|  | *  - stop accepting new data from its SCTP user | 
|  | * | 
|  | *  - verify, by checking the Cumulative TSN Ack field of the chunk, | 
|  | *    that all its outstanding DATA chunks have been received by the | 
|  | *    SHUTDOWN sender. | 
|  | * | 
|  | * Once an endpoint as reached the SHUTDOWN-RECEIVED state it MUST NOT | 
|  | * send a SHUTDOWN in response to a ULP request. And should discard | 
|  | * subsequent SHUTDOWN chunks. | 
|  | * | 
|  | * If there are still outstanding DATA chunks left, the SHUTDOWN | 
|  | * receiver shall continue to follow normal data transmission | 
|  | * procedures defined in Section 6 until all outstanding DATA chunks | 
|  | * are acknowledged; however, the SHUTDOWN receiver MUST NOT accept | 
|  | * new data from its SCTP user. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_shutdown(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_shutdownhdr_t *sdh; | 
|  | sctp_disposition_t disposition; | 
|  | struct sctp_ulpevent *ev; | 
|  | __u32 ctsn; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the SHUTDOWN chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, | 
|  | sizeof(struct sctp_shutdown_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Convert the elaborate header.  */ | 
|  | sdh = (sctp_shutdownhdr_t *)chunk->skb->data; | 
|  | skb_pull(chunk->skb, sizeof(sctp_shutdownhdr_t)); | 
|  | chunk->subh.shutdown_hdr = sdh; | 
|  | ctsn = ntohl(sdh->cum_tsn_ack); | 
|  |  | 
|  | if (TSN_lt(ctsn, asoc->ctsn_ack_point)) { | 
|  | SCTP_DEBUG_PRINTK("ctsn %x\n", ctsn); | 
|  | SCTP_DEBUG_PRINTK("ctsn_ack_point %x\n", asoc->ctsn_ack_point); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* If Cumulative TSN Ack beyond the max tsn currently | 
|  | * send, terminating the association and respond to the | 
|  | * sender with an ABORT. | 
|  | */ | 
|  | if (!TSN_lt(ctsn, asoc->next_tsn)) | 
|  | return sctp_sf_violation_ctsn(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* API 5.3.1.5 SCTP_SHUTDOWN_EVENT | 
|  | * When a peer sends a SHUTDOWN, SCTP delivers this notification to | 
|  | * inform the application that it should cease sending data. | 
|  | */ | 
|  | ev = sctp_ulpevent_make_shutdown_event(asoc, 0, GFP_ATOMIC); | 
|  | if (!ev) { | 
|  | disposition = SCTP_DISPOSITION_NOMEM; | 
|  | goto out; | 
|  | } | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev)); | 
|  |  | 
|  | /* Upon the reception of the SHUTDOWN, the peer endpoint shall | 
|  | *  - enter the SHUTDOWN-RECEIVED state, | 
|  | *  - stop accepting new data from its SCTP user | 
|  | * | 
|  | * [This is implicit in the new state.] | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_SHUTDOWN_RECEIVED)); | 
|  | disposition = SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | if (sctp_outq_is_empty(&asoc->outqueue)) { | 
|  | disposition = sctp_sf_do_9_2_shutdown_ack(ep, asoc, type, | 
|  | arg, commands); | 
|  | } | 
|  |  | 
|  | if (SCTP_DISPOSITION_NOMEM == disposition) | 
|  | goto out; | 
|  |  | 
|  | /*  - verify, by checking the Cumulative TSN Ack field of the | 
|  | *    chunk, that all its outstanding DATA chunks have been | 
|  | *    received by the SHUTDOWN sender. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_CTSN, | 
|  | SCTP_BE32(chunk->subh.shutdown_hdr->cum_tsn_ack)); | 
|  |  | 
|  | out: | 
|  | return disposition; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_do_9_2_shut_ctsn | 
|  | * | 
|  | * Once an endpoint has reached the SHUTDOWN-RECEIVED state, | 
|  | * it MUST NOT send a SHUTDOWN in response to a ULP request. | 
|  | * The Cumulative TSN Ack of the received SHUTDOWN chunk | 
|  | * MUST be processed. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_shut_ctsn(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_shutdownhdr_t *sdh; | 
|  | __u32 ctsn; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the SHUTDOWN chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, | 
|  | sizeof(struct sctp_shutdown_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | sdh = (sctp_shutdownhdr_t *)chunk->skb->data; | 
|  | ctsn = ntohl(sdh->cum_tsn_ack); | 
|  |  | 
|  | if (TSN_lt(ctsn, asoc->ctsn_ack_point)) { | 
|  | SCTP_DEBUG_PRINTK("ctsn %x\n", ctsn); | 
|  | SCTP_DEBUG_PRINTK("ctsn_ack_point %x\n", asoc->ctsn_ack_point); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* If Cumulative TSN Ack beyond the max tsn currently | 
|  | * send, terminating the association and respond to the | 
|  | * sender with an ABORT. | 
|  | */ | 
|  | if (!TSN_lt(ctsn, asoc->next_tsn)) | 
|  | return sctp_sf_violation_ctsn(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* verify, by checking the Cumulative TSN Ack field of the | 
|  | * chunk, that all its outstanding DATA chunks have been | 
|  | * received by the SHUTDOWN sender. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_CTSN, | 
|  | SCTP_BE32(sdh->cum_tsn_ack)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* RFC 2960 9.2 | 
|  | * If an endpoint is in SHUTDOWN-ACK-SENT state and receives an INIT chunk | 
|  | * (e.g., if the SHUTDOWN COMPLETE was lost) with source and destination | 
|  | * transport addresses (either in the IP addresses or in the INIT chunk) | 
|  | * that belong to this association, it should discard the INIT chunk and | 
|  | * retransmit the SHUTDOWN ACK chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_reshutack(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = (struct sctp_chunk *) arg; | 
|  | struct sctp_chunk *reply; | 
|  |  | 
|  | /* Make sure that the chunk has a valid length */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Since we are not going to really process this INIT, there | 
|  | * is no point in verifying chunk boundries.  Just generate | 
|  | * the SHUTDOWN ACK. | 
|  | */ | 
|  | reply = sctp_make_shutdown_ack(asoc, chunk); | 
|  | if (NULL == reply) | 
|  | goto nomem; | 
|  |  | 
|  | /* Set the transport for the SHUTDOWN ACK chunk and the timeout for | 
|  | * the T2-SHUTDOWN timer. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply)); | 
|  |  | 
|  | /* and restart the T2-shutdown timer. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_do_ecn_cwr | 
|  | * | 
|  | * Section:  Appendix A: Explicit Congestion Notification | 
|  | * | 
|  | * CWR: | 
|  | * | 
|  | * RFC 2481 details a specific bit for a sender to send in the header of | 
|  | * its next outbound TCP segment to indicate to its peer that it has | 
|  | * reduced its congestion window.  This is termed the CWR bit.  For | 
|  | * SCTP the same indication is made by including the CWR chunk. | 
|  | * This chunk contains one data element, i.e. the TSN number that | 
|  | * was sent in the ECNE chunk.  This element represents the lowest | 
|  | * TSN number in the datagram that was originally marked with the | 
|  | * CE bit. | 
|  | * | 
|  | * Verification Tag: 8.5 Verification Tag [Normal verification] | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_ecn_cwr(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_cwrhdr_t *cwr; | 
|  | struct sctp_chunk *chunk = arg; | 
|  | u32 lowest_tsn; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_ecne_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | cwr = (sctp_cwrhdr_t *) chunk->skb->data; | 
|  | skb_pull(chunk->skb, sizeof(sctp_cwrhdr_t)); | 
|  |  | 
|  | lowest_tsn = ntohl(cwr->lowest_tsn); | 
|  |  | 
|  | /* Does this CWR ack the last sent congestion notification? */ | 
|  | if (TSN_lte(asoc->last_ecne_tsn, lowest_tsn)) { | 
|  | /* Stop sending ECNE. */ | 
|  | sctp_add_cmd_sf(commands, | 
|  | SCTP_CMD_ECN_CWR, | 
|  | SCTP_U32(lowest_tsn)); | 
|  | } | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_do_ecne | 
|  | * | 
|  | * Section:  Appendix A: Explicit Congestion Notification | 
|  | * | 
|  | * ECN-Echo | 
|  | * | 
|  | * RFC 2481 details a specific bit for a receiver to send back in its | 
|  | * TCP acknowledgements to notify the sender of the Congestion | 
|  | * Experienced (CE) bit having arrived from the network.  For SCTP this | 
|  | * same indication is made by including the ECNE chunk.  This chunk | 
|  | * contains one data element, i.e. the lowest TSN associated with the IP | 
|  | * datagram marked with the CE bit..... | 
|  | * | 
|  | * Verification Tag: 8.5 Verification Tag [Normal verification] | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_ecne(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_ecnehdr_t *ecne; | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_ecne_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | ecne = (sctp_ecnehdr_t *) chunk->skb->data; | 
|  | skb_pull(chunk->skb, sizeof(sctp_ecnehdr_t)); | 
|  |  | 
|  | /* If this is a newer ECNE than the last CWR packet we sent out */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ECN_ECNE, | 
|  | SCTP_U32(ntohl(ecne->lowest_tsn))); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Section: 6.2  Acknowledgement on Reception of DATA Chunks | 
|  | * | 
|  | * The SCTP endpoint MUST always acknowledge the reception of each valid | 
|  | * DATA chunk. | 
|  | * | 
|  | * The guidelines on delayed acknowledgement algorithm specified in | 
|  | * Section 4.2 of [RFC2581] SHOULD be followed. Specifically, an | 
|  | * acknowledgement SHOULD be generated for at least every second packet | 
|  | * (not every second DATA chunk) received, and SHOULD be generated within | 
|  | * 200 ms of the arrival of any unacknowledged DATA chunk. In some | 
|  | * situations it may be beneficial for an SCTP transmitter to be more | 
|  | * conservative than the algorithms detailed in this document allow. | 
|  | * However, an SCTP transmitter MUST NOT be more aggressive than the | 
|  | * following algorithms allow. | 
|  | * | 
|  | * A SCTP receiver MUST NOT generate more than one SACK for every | 
|  | * incoming packet, other than to update the offered window as the | 
|  | * receiving application consumes new data. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_eat_data_6_2(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_arg_t force = SCTP_NOFORCE(); | 
|  | int error; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_data_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | error = sctp_eat_data(asoc, chunk, commands ); | 
|  | switch (error) { | 
|  | case SCTP_IERROR_NO_ERROR: | 
|  | break; | 
|  | case SCTP_IERROR_HIGH_TSN: | 
|  | case SCTP_IERROR_BAD_STREAM: | 
|  | SCTP_INC_STATS(SCTP_MIB_IN_DATA_CHUNK_DISCARDS); | 
|  | goto discard_noforce; | 
|  | case SCTP_IERROR_DUP_TSN: | 
|  | case SCTP_IERROR_IGNORE_TSN: | 
|  | SCTP_INC_STATS(SCTP_MIB_IN_DATA_CHUNK_DISCARDS); | 
|  | goto discard_force; | 
|  | case SCTP_IERROR_NO_DATA: | 
|  | goto consume; | 
|  | case SCTP_IERROR_PROTO_VIOLATION: | 
|  | return sctp_sf_abort_violation(ep, asoc, chunk, commands, | 
|  | (u8 *)chunk->subh.data_hdr, sizeof(sctp_datahdr_t)); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | if (chunk->chunk_hdr->flags & SCTP_DATA_SACK_IMM) | 
|  | force = SCTP_FORCE(); | 
|  |  | 
|  | if (asoc->autoclose) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE)); | 
|  | } | 
|  |  | 
|  | /* If this is the last chunk in a packet, we need to count it | 
|  | * toward sack generation.  Note that we need to SACK every | 
|  | * OTHER packet containing data chunks, EVEN IF WE DISCARD | 
|  | * THEM.  We elect to NOT generate SACK's if the chunk fails | 
|  | * the verification tag test. | 
|  | * | 
|  | * RFC 2960 6.2 Acknowledgement on Reception of DATA Chunks | 
|  | * | 
|  | * The SCTP endpoint MUST always acknowledge the reception of | 
|  | * each valid DATA chunk. | 
|  | * | 
|  | * The guidelines on delayed acknowledgement algorithm | 
|  | * specified in  Section 4.2 of [RFC2581] SHOULD be followed. | 
|  | * Specifically, an acknowledgement SHOULD be generated for at | 
|  | * least every second packet (not every second DATA chunk) | 
|  | * received, and SHOULD be generated within 200 ms of the | 
|  | * arrival of any unacknowledged DATA chunk.  In some | 
|  | * situations it may be beneficial for an SCTP transmitter to | 
|  | * be more conservative than the algorithms detailed in this | 
|  | * document allow. However, an SCTP transmitter MUST NOT be | 
|  | * more aggressive than the following algorithms allow. | 
|  | */ | 
|  | if (chunk->end_of_packet) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, force); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | discard_force: | 
|  | /* RFC 2960 6.2 Acknowledgement on Reception of DATA Chunks | 
|  | * | 
|  | * When a packet arrives with duplicate DATA chunk(s) and with | 
|  | * no new DATA chunk(s), the endpoint MUST immediately send a | 
|  | * SACK with no delay.  If a packet arrives with duplicate | 
|  | * DATA chunk(s) bundled with new DATA chunks, the endpoint | 
|  | * MAY immediately send a SACK.  Normally receipt of duplicate | 
|  | * DATA chunks will occur when the original SACK chunk was lost | 
|  | * and the peer's RTO has expired.  The duplicate TSN number(s) | 
|  | * SHOULD be reported in the SACK as duplicate. | 
|  | */ | 
|  | /* In our case, we split the MAY SACK advice up whether or not | 
|  | * the last chunk is a duplicate.' | 
|  | */ | 
|  | if (chunk->end_of_packet) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE()); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  |  | 
|  | discard_noforce: | 
|  | if (chunk->end_of_packet) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, force); | 
|  |  | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | consume: | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_eat_data_fast_4_4 | 
|  | * | 
|  | * Section: 4 (4) | 
|  | * (4) In SHUTDOWN-SENT state the endpoint MUST acknowledge any received | 
|  | *    DATA chunks without delay. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_eat_data_fast_4_4(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | int error; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_data_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | error = sctp_eat_data(asoc, chunk, commands ); | 
|  | switch (error) { | 
|  | case SCTP_IERROR_NO_ERROR: | 
|  | case SCTP_IERROR_HIGH_TSN: | 
|  | case SCTP_IERROR_DUP_TSN: | 
|  | case SCTP_IERROR_IGNORE_TSN: | 
|  | case SCTP_IERROR_BAD_STREAM: | 
|  | break; | 
|  | case SCTP_IERROR_NO_DATA: | 
|  | goto consume; | 
|  | case SCTP_IERROR_PROTO_VIOLATION: | 
|  | return sctp_sf_abort_violation(ep, asoc, chunk, commands, | 
|  | (u8 *)chunk->subh.data_hdr, sizeof(sctp_datahdr_t)); | 
|  | default: | 
|  | BUG(); | 
|  | } | 
|  |  | 
|  | /* Go a head and force a SACK, since we are shutting down. */ | 
|  |  | 
|  | /* Implementor's Guide. | 
|  | * | 
|  | * While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately | 
|  | * respond to each received packet containing one or more DATA chunk(s) | 
|  | * with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer | 
|  | */ | 
|  | if (chunk->end_of_packet) { | 
|  | /* We must delay the chunk creation since the cumulative | 
|  | * TSN has not been updated yet. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SHUTDOWN, SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  | } | 
|  |  | 
|  | consume: | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Section: 6.2  Processing a Received SACK | 
|  | * D) Any time a SACK arrives, the endpoint performs the following: | 
|  | * | 
|  | *     i) If Cumulative TSN Ack is less than the Cumulative TSN Ack Point, | 
|  | *     then drop the SACK.   Since Cumulative TSN Ack is monotonically | 
|  | *     increasing, a SACK whose Cumulative TSN Ack is less than the | 
|  | *     Cumulative TSN Ack Point indicates an out-of-order SACK. | 
|  | * | 
|  | *     ii) Set rwnd equal to the newly received a_rwnd minus the number | 
|  | *     of bytes still outstanding after processing the Cumulative TSN Ack | 
|  | *     and the Gap Ack Blocks. | 
|  | * | 
|  | *     iii) If the SACK is missing a TSN that was previously | 
|  | *     acknowledged via a Gap Ack Block (e.g., the data receiver | 
|  | *     reneged on the data), then mark the corresponding DATA chunk | 
|  | *     as available for retransmit:  Mark it as missing for fast | 
|  | *     retransmit as described in Section 7.2.4 and if no retransmit | 
|  | *     timer is running for the destination address to which the DATA | 
|  | *     chunk was originally transmitted, then T3-rtx is started for | 
|  | *     that destination address. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_eat_sack_6_2(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_sackhdr_t *sackh; | 
|  | __u32 ctsn; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the SACK chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_sack_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Pull the SACK chunk from the data buffer */ | 
|  | sackh = sctp_sm_pull_sack(chunk); | 
|  | /* Was this a bogus SACK? */ | 
|  | if (!sackh) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | chunk->subh.sack_hdr = sackh; | 
|  | ctsn = ntohl(sackh->cum_tsn_ack); | 
|  |  | 
|  | /* i) If Cumulative TSN Ack is less than the Cumulative TSN | 
|  | *     Ack Point, then drop the SACK.  Since Cumulative TSN | 
|  | *     Ack is monotonically increasing, a SACK whose | 
|  | *     Cumulative TSN Ack is less than the Cumulative TSN Ack | 
|  | *     Point indicates an out-of-order SACK. | 
|  | */ | 
|  | if (TSN_lt(ctsn, asoc->ctsn_ack_point)) { | 
|  | SCTP_DEBUG_PRINTK("ctsn %x\n", ctsn); | 
|  | SCTP_DEBUG_PRINTK("ctsn_ack_point %x\n", asoc->ctsn_ack_point); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* If Cumulative TSN Ack beyond the max tsn currently | 
|  | * send, terminating the association and respond to the | 
|  | * sender with an ABORT. | 
|  | */ | 
|  | if (!TSN_lt(ctsn, asoc->next_tsn)) | 
|  | return sctp_sf_violation_ctsn(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Return this SACK for further processing.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_SACK, SCTP_SACKH(sackh)); | 
|  |  | 
|  | /* Note: We do the rest of the work on the PROCESS_SACK | 
|  | * sideeffect. | 
|  | */ | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate an ABORT in response to a packet. | 
|  | * | 
|  | * Section: 8.4 Handle "Out of the blue" Packets, sctpimpguide 2.41 | 
|  | * | 
|  | * 8) The receiver should respond to the sender of the OOTB packet with | 
|  | *    an ABORT.  When sending the ABORT, the receiver of the OOTB packet | 
|  | *    MUST fill in the Verification Tag field of the outbound packet | 
|  | *    with the value found in the Verification Tag field of the OOTB | 
|  | *    packet and set the T-bit in the Chunk Flags to indicate that the | 
|  | *    Verification Tag is reflected.  After sending this ABORT, the | 
|  | *    receiver of the OOTB packet shall discard the OOTB packet and take | 
|  | *    no further action. | 
|  | * | 
|  | * Verification Tag: | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_tabort_8_4_8(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_packet *packet = NULL; | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *abort; | 
|  |  | 
|  | packet = sctp_ootb_pkt_new(asoc, chunk); | 
|  |  | 
|  | if (packet) { | 
|  | /* Make an ABORT. The T bit will be set if the asoc | 
|  | * is NULL. | 
|  | */ | 
|  | abort = sctp_make_abort(asoc, chunk, 0); | 
|  | if (!abort) { | 
|  | sctp_ootb_pkt_free(packet); | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Reflect vtag if T-Bit is set */ | 
|  | if (sctp_test_T_bit(abort)) | 
|  | packet->vtag = ntohl(chunk->sctp_hdr->vtag); | 
|  |  | 
|  | /* Set the skb to the belonging sock for accounting.  */ | 
|  | abort->skb->sk = ep->base.sk; | 
|  |  | 
|  | sctp_packet_append_chunk(packet, abort); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  |  | 
|  | sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Received an ERROR chunk from peer.  Generate SCTP_REMOTE_ERROR | 
|  | * event as ULP notification for each cause included in the chunk. | 
|  | * | 
|  | * API 5.3.1.3 - SCTP_REMOTE_ERROR | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_operr_notify(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | sctp_errhdr_t *err; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ERROR chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_operr_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  | sctp_walk_errors(err, chunk->chunk_hdr); | 
|  | if ((void *)err != (void *)chunk->chunk_end) | 
|  | return sctp_sf_violation_paramlen(ep, asoc, type, arg, | 
|  | (void *)err, commands); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_OPERR, | 
|  | SCTP_CHUNK(chunk)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an inbound SHUTDOWN ACK. | 
|  | * | 
|  | * From Section 9.2: | 
|  | * Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall | 
|  | * stop the T2-shutdown timer, send a SHUTDOWN COMPLETE chunk to its | 
|  | * peer, and remove all record of the association. | 
|  | * | 
|  | * The return value is the disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_final(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *reply; | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the SHUTDOWN_ACK chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  | /* 10.2 H) SHUTDOWN COMPLETE notification | 
|  | * | 
|  | * When SCTP completes the shutdown procedures (section 9.2) this | 
|  | * notification is passed to the upper layer. | 
|  | */ | 
|  | ev = sctp_ulpevent_make_assoc_change(asoc, 0, SCTP_SHUTDOWN_COMP, | 
|  | 0, 0, 0, NULL, GFP_ATOMIC); | 
|  | if (!ev) | 
|  | goto nomem; | 
|  |  | 
|  | /* ...send a SHUTDOWN COMPLETE chunk to its peer, */ | 
|  | reply = sctp_make_shutdown_complete(asoc, chunk); | 
|  | if (!reply) | 
|  | goto nomem_chunk; | 
|  |  | 
|  | /* Do all the commands now (after allocation), so that we | 
|  | * have consistent state if memory allocation failes | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(ev)); | 
|  |  | 
|  | /* Upon the receipt of the SHUTDOWN ACK, the SHUTDOWN sender shall | 
|  | * stop the T2-shutdown timer, | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  | SCTP_INC_STATS(SCTP_MIB_SHUTDOWNS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  |  | 
|  | /* ...and remove all record of the association. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  |  | 
|  | nomem_chunk: | 
|  | sctp_ulpevent_free(ev); | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * RFC 2960, 8.4 - Handle "Out of the blue" Packets, sctpimpguide 2.41. | 
|  | * | 
|  | * 5) If the packet contains a SHUTDOWN ACK chunk, the receiver should | 
|  | *    respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE. | 
|  | *    When sending the SHUTDOWN COMPLETE, the receiver of the OOTB | 
|  | *    packet must fill in the Verification Tag field of the outbound | 
|  | *    packet with the Verification Tag received in the SHUTDOWN ACK and | 
|  | *    set the T-bit in the Chunk Flags to indicate that the Verification | 
|  | *    Tag is reflected. | 
|  | * | 
|  | * 8) The receiver should respond to the sender of the OOTB packet with | 
|  | *    an ABORT.  When sending the ABORT, the receiver of the OOTB packet | 
|  | *    MUST fill in the Verification Tag field of the outbound packet | 
|  | *    with the value found in the Verification Tag field of the OOTB | 
|  | *    packet and set the T-bit in the Chunk Flags to indicate that the | 
|  | *    Verification Tag is reflected.  After sending this ABORT, the | 
|  | *    receiver of the OOTB packet shall discard the OOTB packet and take | 
|  | *    no further action. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_ootb(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sk_buff *skb = chunk->skb; | 
|  | sctp_chunkhdr_t *ch; | 
|  | sctp_errhdr_t *err; | 
|  | __u8 *ch_end; | 
|  | int ootb_shut_ack = 0; | 
|  | int ootb_cookie_ack = 0; | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES); | 
|  |  | 
|  | ch = (sctp_chunkhdr_t *) chunk->chunk_hdr; | 
|  | do { | 
|  | /* Report violation if the chunk is less then minimal */ | 
|  | if (ntohs(ch->length) < sizeof(sctp_chunkhdr_t)) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Now that we know we at least have a chunk header, | 
|  | * do things that are type appropriate. | 
|  | */ | 
|  | if (SCTP_CID_SHUTDOWN_ACK == ch->type) | 
|  | ootb_shut_ack = 1; | 
|  |  | 
|  | /* RFC 2960, Section 3.3.7 | 
|  | *   Moreover, under any circumstances, an endpoint that | 
|  | *   receives an ABORT  MUST NOT respond to that ABORT by | 
|  | *   sending an ABORT of its own. | 
|  | */ | 
|  | if (SCTP_CID_ABORT == ch->type) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* RFC 8.4, 7) If the packet contains a "Stale cookie" ERROR | 
|  | * or a COOKIE ACK the SCTP Packet should be silently | 
|  | * discarded. | 
|  | */ | 
|  |  | 
|  | if (SCTP_CID_COOKIE_ACK == ch->type) | 
|  | ootb_cookie_ack = 1; | 
|  |  | 
|  | if (SCTP_CID_ERROR == ch->type) { | 
|  | sctp_walk_errors(err, ch) { | 
|  | if (SCTP_ERROR_STALE_COOKIE == err->cause) { | 
|  | ootb_cookie_ack = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Report violation if chunk len overflows */ | 
|  | ch_end = ((__u8 *)ch) + WORD_ROUND(ntohs(ch->length)); | 
|  | if (ch_end > skb_tail_pointer(skb)) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | ch = (sctp_chunkhdr_t *) ch_end; | 
|  | } while (ch_end < skb_tail_pointer(skb)); | 
|  |  | 
|  | if (ootb_shut_ack) | 
|  | return sctp_sf_shut_8_4_5(ep, asoc, type, arg, commands); | 
|  | else if (ootb_cookie_ack) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | else | 
|  | return sctp_sf_tabort_8_4_8(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle an "Out of the blue" SHUTDOWN ACK. | 
|  | * | 
|  | * Section: 8.4 5, sctpimpguide 2.41. | 
|  | * | 
|  | * 5) If the packet contains a SHUTDOWN ACK chunk, the receiver should | 
|  | *    respond to the sender of the OOTB packet with a SHUTDOWN COMPLETE. | 
|  | *    When sending the SHUTDOWN COMPLETE, the receiver of the OOTB | 
|  | *    packet must fill in the Verification Tag field of the outbound | 
|  | *    packet with the Verification Tag received in the SHUTDOWN ACK and | 
|  | *    set the T-bit in the Chunk Flags to indicate that the Verification | 
|  | *    Tag is reflected. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, type, arg, commands) | 
|  | * | 
|  | * Outputs | 
|  | * (sctp_disposition_t) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_shut_8_4_5(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_packet *packet = NULL; | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *shut; | 
|  |  | 
|  | packet = sctp_ootb_pkt_new(asoc, chunk); | 
|  |  | 
|  | if (packet) { | 
|  | /* Make an SHUTDOWN_COMPLETE. | 
|  | * The T bit will be set if the asoc is NULL. | 
|  | */ | 
|  | shut = sctp_make_shutdown_complete(asoc, chunk); | 
|  | if (!shut) { | 
|  | sctp_ootb_pkt_free(packet); | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Reflect vtag if T-Bit is set */ | 
|  | if (sctp_test_T_bit(shut)) | 
|  | packet->vtag = ntohl(chunk->sctp_hdr->vtag); | 
|  |  | 
|  | /* Set the skb to the belonging sock for accounting.  */ | 
|  | shut->skb->sk = ep->base.sk; | 
|  |  | 
|  | sctp_packet_append_chunk(packet, shut); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  |  | 
|  | /* If the chunk length is invalid, we don't want to process | 
|  | * the reset of the packet. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* We need to discard the rest of the packet to prevent | 
|  | * potential bomming attacks from additional bundled chunks. | 
|  | * This is documented in SCTP Threats ID. | 
|  | */ | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle SHUTDOWN ACK in COOKIE_ECHOED or COOKIE_WAIT state. | 
|  | * | 
|  | * Verification Tag:  8.5.1 E) Rules for packet carrying a SHUTDOWN ACK | 
|  | *   If the receiver is in COOKIE-ECHOED or COOKIE-WAIT state the | 
|  | *   procedures in section 8.4 SHOULD be followed, in other words it | 
|  | *   should be treated as an Out Of The Blue packet. | 
|  | *   [This means that we do NOT check the Verification Tag on these | 
|  | *   chunks. --piggy ] | 
|  | * | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_8_5_1_E_sa(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | /* Make sure that the SHUTDOWN_ACK chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | /* Although we do have an association in this case, it corresponds | 
|  | * to a restarted association. So the packet is treated as an OOTB | 
|  | * packet and the state function that handles OOTB SHUTDOWN_ACK is | 
|  | * called with a NULL association. | 
|  | */ | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTOFBLUES); | 
|  |  | 
|  | return sctp_sf_shut_8_4_5(ep, NULL, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* ADDIP Section 4.2 Upon reception of an ASCONF Chunk.  */ | 
|  | sctp_disposition_t sctp_sf_do_asconf(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk	*chunk = arg; | 
|  | struct sctp_chunk	*asconf_ack = NULL; | 
|  | struct sctp_paramhdr	*err_param = NULL; | 
|  | sctp_addiphdr_t		*hdr; | 
|  | union sctp_addr_param	*addr_param; | 
|  | __u32			serial; | 
|  | int			length; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* ADD-IP: Section 4.1.1 | 
|  | * This chunk MUST be sent in an authenticated way by using | 
|  | * the mechanism defined in [I-D.ietf-tsvwg-sctp-auth]. If this chunk | 
|  | * is received unauthenticated it MUST be silently discarded as | 
|  | * described in [I-D.ietf-tsvwg-sctp-auth]. | 
|  | */ | 
|  | if (!sctp_addip_noauth && !chunk->auth) | 
|  | return sctp_sf_discard_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ASCONF ADDIP chunk has a valid length.  */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_addip_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | hdr = (sctp_addiphdr_t *)chunk->skb->data; | 
|  | serial = ntohl(hdr->serial); | 
|  |  | 
|  | addr_param = (union sctp_addr_param *)hdr->params; | 
|  | length = ntohs(addr_param->p.length); | 
|  | if (length < sizeof(sctp_paramhdr_t)) | 
|  | return sctp_sf_violation_paramlen(ep, asoc, type, arg, | 
|  | (void *)addr_param, commands); | 
|  |  | 
|  | /* Verify the ASCONF chunk before processing it. */ | 
|  | if (!sctp_verify_asconf(asoc, | 
|  | (sctp_paramhdr_t *)((void *)addr_param + length), | 
|  | (void *)chunk->chunk_end, | 
|  | &err_param)) | 
|  | return sctp_sf_violation_paramlen(ep, asoc, type, arg, | 
|  | (void *)err_param, commands); | 
|  |  | 
|  | /* ADDIP 5.2 E1) Compare the value of the serial number to the value | 
|  | * the endpoint stored in a new association variable | 
|  | * 'Peer-Serial-Number'. | 
|  | */ | 
|  | if (serial == asoc->peer.addip_serial + 1) { | 
|  | /* If this is the first instance of ASCONF in the packet, | 
|  | * we can clean our old ASCONF-ACKs. | 
|  | */ | 
|  | if (!chunk->has_asconf) | 
|  | sctp_assoc_clean_asconf_ack_cache(asoc); | 
|  |  | 
|  | /* ADDIP 5.2 E4) When the Sequence Number matches the next one | 
|  | * expected, process the ASCONF as described below and after | 
|  | * processing the ASCONF Chunk, append an ASCONF-ACK Chunk to | 
|  | * the response packet and cache a copy of it (in the event it | 
|  | * later needs to be retransmitted). | 
|  | * | 
|  | * Essentially, do V1-V5. | 
|  | */ | 
|  | asconf_ack = sctp_process_asconf((struct sctp_association *) | 
|  | asoc, chunk); | 
|  | if (!asconf_ack) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } else if (serial < asoc->peer.addip_serial + 1) { | 
|  | /* ADDIP 5.2 E2) | 
|  | * If the value found in the Sequence Number is less than the | 
|  | * ('Peer- Sequence-Number' + 1), simply skip to the next | 
|  | * ASCONF, and include in the outbound response packet | 
|  | * any previously cached ASCONF-ACK response that was | 
|  | * sent and saved that matches the Sequence Number of the | 
|  | * ASCONF.  Note: It is possible that no cached ASCONF-ACK | 
|  | * Chunk exists.  This will occur when an older ASCONF | 
|  | * arrives out of order.  In such a case, the receiver | 
|  | * should skip the ASCONF Chunk and not include ASCONF-ACK | 
|  | * Chunk for that chunk. | 
|  | */ | 
|  | asconf_ack = sctp_assoc_lookup_asconf_ack(asoc, hdr->serial); | 
|  | if (!asconf_ack) | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  |  | 
|  | /* Reset the transport so that we select the correct one | 
|  | * this time around.  This is to make sure that we don't | 
|  | * accidentally use a stale transport that's been removed. | 
|  | */ | 
|  | asconf_ack->transport = NULL; | 
|  | } else { | 
|  | /* ADDIP 5.2 E5) Otherwise, the ASCONF Chunk is discarded since | 
|  | * it must be either a stale packet or from an attacker. | 
|  | */ | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* ADDIP 5.2 E6)  The destination address of the SCTP packet | 
|  | * containing the ASCONF-ACK Chunks MUST be the source address of | 
|  | * the SCTP packet that held the ASCONF Chunks. | 
|  | * | 
|  | * To do this properly, we'll set the destination address of the chunk | 
|  | * and at the transmit time, will try look up the transport to use. | 
|  | * Since ASCONFs may be bundled, the correct transport may not be | 
|  | * created until we process the entire packet, thus this workaround. | 
|  | */ | 
|  | asconf_ack->dest = chunk->source; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(asconf_ack)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ADDIP Section 4.3 General rules for address manipulation | 
|  | * When building TLV parameters for the ASCONF Chunk that will add or | 
|  | * delete IP addresses the D0 to D13 rules should be applied: | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_asconf_ack(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk	*asconf_ack = arg; | 
|  | struct sctp_chunk	*last_asconf = asoc->addip_last_asconf; | 
|  | struct sctp_chunk	*abort; | 
|  | struct sctp_paramhdr	*err_param = NULL; | 
|  | sctp_addiphdr_t		*addip_hdr; | 
|  | __u32			sent_serial, rcvd_serial; | 
|  |  | 
|  | if (!sctp_vtag_verify(asconf_ack, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* ADD-IP, Section 4.1.2: | 
|  | * This chunk MUST be sent in an authenticated way by using | 
|  | * the mechanism defined in [I-D.ietf-tsvwg-sctp-auth]. If this chunk | 
|  | * is received unauthenticated it MUST be silently discarded as | 
|  | * described in [I-D.ietf-tsvwg-sctp-auth]. | 
|  | */ | 
|  | if (!sctp_addip_noauth && !asconf_ack->auth) | 
|  | return sctp_sf_discard_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the ADDIP chunk has a valid length.  */ | 
|  | if (!sctp_chunk_length_valid(asconf_ack, sizeof(sctp_addip_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | addip_hdr = (sctp_addiphdr_t *)asconf_ack->skb->data; | 
|  | rcvd_serial = ntohl(addip_hdr->serial); | 
|  |  | 
|  | /* Verify the ASCONF-ACK chunk before processing it. */ | 
|  | if (!sctp_verify_asconf(asoc, | 
|  | (sctp_paramhdr_t *)addip_hdr->params, | 
|  | (void *)asconf_ack->chunk_end, | 
|  | &err_param)) | 
|  | return sctp_sf_violation_paramlen(ep, asoc, type, arg, | 
|  | (void *)err_param, commands); | 
|  |  | 
|  | if (last_asconf) { | 
|  | addip_hdr = (sctp_addiphdr_t *)last_asconf->subh.addip_hdr; | 
|  | sent_serial = ntohl(addip_hdr->serial); | 
|  | } else { | 
|  | sent_serial = asoc->addip_serial - 1; | 
|  | } | 
|  |  | 
|  | /* D0) If an endpoint receives an ASCONF-ACK that is greater than or | 
|  | * equal to the next serial number to be used but no ASCONF chunk is | 
|  | * outstanding the endpoint MUST ABORT the association. Note that a | 
|  | * sequence number is greater than if it is no more than 2^^31-1 | 
|  | * larger than the current sequence number (using serial arithmetic). | 
|  | */ | 
|  | if (ADDIP_SERIAL_gte(rcvd_serial, sent_serial + 1) && | 
|  | !(asoc->addip_last_asconf)) { | 
|  | abort = sctp_make_abort(asoc, asconf_ack, | 
|  | sizeof(sctp_errhdr_t)); | 
|  | if (abort) { | 
|  | sctp_init_cause(abort, SCTP_ERROR_ASCONF_ACK, 0); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(abort)); | 
|  | } | 
|  | /* We are going to ABORT, so we might as well stop | 
|  | * processing the rest of the chunks in the packet. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNABORTED)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_ASCONF_ACK)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  | } | 
|  |  | 
|  | if ((rcvd_serial == sent_serial) && asoc->addip_last_asconf) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  |  | 
|  | if (!sctp_process_asconf_ack((struct sctp_association *)asoc, | 
|  | asconf_ack)) { | 
|  | /* Successfully processed ASCONF_ACK.  We can | 
|  | * release the next asconf if we have one. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_NEXT_ASCONF, | 
|  | SCTP_NULL()); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | abort = sctp_make_abort(asoc, asconf_ack, | 
|  | sizeof(sctp_errhdr_t)); | 
|  | if (abort) { | 
|  | sctp_init_cause(abort, SCTP_ERROR_RSRC_LOW, 0); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(abort)); | 
|  | } | 
|  | /* We are going to ABORT, so we might as well stop | 
|  | * processing the rest of the chunks in the packet. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNABORTED)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_ASCONF_ACK)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * PR-SCTP Section 3.6 Receiver Side Implementation of PR-SCTP | 
|  | * | 
|  | * When a FORWARD TSN chunk arrives, the data receiver MUST first update | 
|  | * its cumulative TSN point to the value carried in the FORWARD TSN | 
|  | * chunk, and then MUST further advance its cumulative TSN point locally | 
|  | * if possible. | 
|  | * After the above processing, the data receiver MUST stop reporting any | 
|  | * missing TSNs earlier than or equal to the new cumulative TSN point. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_eat_fwd_tsn(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_fwdtsn_hdr *fwdtsn_hdr; | 
|  | struct sctp_fwdtsn_skip *skip; | 
|  | __u16 len; | 
|  | __u32 tsn; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* Make sure that the FORWARD_TSN chunk has valid length.  */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_fwdtsn_chunk))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | fwdtsn_hdr = (struct sctp_fwdtsn_hdr *)chunk->skb->data; | 
|  | chunk->subh.fwdtsn_hdr = fwdtsn_hdr; | 
|  | len = ntohs(chunk->chunk_hdr->length); | 
|  | len -= sizeof(struct sctp_chunkhdr); | 
|  | skb_pull(chunk->skb, len); | 
|  |  | 
|  | tsn = ntohl(fwdtsn_hdr->new_cum_tsn); | 
|  | SCTP_DEBUG_PRINTK("%s: TSN 0x%x.\n", __func__, tsn); | 
|  |  | 
|  | /* The TSN is too high--silently discard the chunk and count on it | 
|  | * getting retransmitted later. | 
|  | */ | 
|  | if (sctp_tsnmap_check(&asoc->peer.tsn_map, tsn) < 0) | 
|  | goto discard_noforce; | 
|  |  | 
|  | /* Silently discard the chunk if stream-id is not valid */ | 
|  | sctp_walk_fwdtsn(skip, chunk) { | 
|  | if (ntohs(skip->stream) >= asoc->c.sinit_max_instreams) | 
|  | goto discard_noforce; | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_FWDTSN, SCTP_U32(tsn)); | 
|  | if (len > sizeof(struct sctp_fwdtsn_hdr)) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_FWDTSN, | 
|  | SCTP_CHUNK(chunk)); | 
|  |  | 
|  | /* Count this as receiving DATA. */ | 
|  | if (asoc->autoclose) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE)); | 
|  | } | 
|  |  | 
|  | /* FIXME: For now send a SACK, but DATA processing may | 
|  | * send another. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_NOFORCE()); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | discard_noforce: | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | sctp_disposition_t sctp_sf_eat_fwd_tsn_fast( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_fwdtsn_hdr *fwdtsn_hdr; | 
|  | struct sctp_fwdtsn_skip *skip; | 
|  | __u16 len; | 
|  | __u32 tsn; | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* Make sure that the FORWARD_TSN chunk has a valid length.  */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_fwdtsn_chunk))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | fwdtsn_hdr = (struct sctp_fwdtsn_hdr *)chunk->skb->data; | 
|  | chunk->subh.fwdtsn_hdr = fwdtsn_hdr; | 
|  | len = ntohs(chunk->chunk_hdr->length); | 
|  | len -= sizeof(struct sctp_chunkhdr); | 
|  | skb_pull(chunk->skb, len); | 
|  |  | 
|  | tsn = ntohl(fwdtsn_hdr->new_cum_tsn); | 
|  | SCTP_DEBUG_PRINTK("%s: TSN 0x%x.\n", __func__, tsn); | 
|  |  | 
|  | /* The TSN is too high--silently discard the chunk and count on it | 
|  | * getting retransmitted later. | 
|  | */ | 
|  | if (sctp_tsnmap_check(&asoc->peer.tsn_map, tsn) < 0) | 
|  | goto gen_shutdown; | 
|  |  | 
|  | /* Silently discard the chunk if stream-id is not valid */ | 
|  | sctp_walk_fwdtsn(skip, chunk) { | 
|  | if (ntohs(skip->stream) >= asoc->c.sinit_max_instreams) | 
|  | goto gen_shutdown; | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_FWDTSN, SCTP_U32(tsn)); | 
|  | if (len > sizeof(struct sctp_fwdtsn_hdr)) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PROCESS_FWDTSN, | 
|  | SCTP_CHUNK(chunk)); | 
|  |  | 
|  | /* Go a head and force a SACK, since we are shutting down. */ | 
|  | gen_shutdown: | 
|  | /* Implementor's Guide. | 
|  | * | 
|  | * While in SHUTDOWN-SENT state, the SHUTDOWN sender MUST immediately | 
|  | * respond to each received packet containing one or more DATA chunk(s) | 
|  | * with a SACK, a SHUTDOWN chunk, and restart the T2-shutdown timer | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SHUTDOWN, SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SCTP-AUTH Section 6.3 Receiving authenticated chukns | 
|  | * | 
|  | *    The receiver MUST use the HMAC algorithm indicated in the HMAC | 
|  | *    Identifier field.  If this algorithm was not specified by the | 
|  | *    receiver in the HMAC-ALGO parameter in the INIT or INIT-ACK chunk | 
|  | *    during association setup, the AUTH chunk and all chunks after it MUST | 
|  | *    be discarded and an ERROR chunk SHOULD be sent with the error cause | 
|  | *    defined in Section 4.1. | 
|  | * | 
|  | *    If an endpoint with no shared key receives a Shared Key Identifier | 
|  | *    other than 0, it MUST silently discard all authenticated chunks.  If | 
|  | *    the endpoint has at least one endpoint pair shared key for the peer, | 
|  | *    it MUST use the key specified by the Shared Key Identifier if a | 
|  | *    key has been configured for that Shared Key Identifier.  If no | 
|  | *    endpoint pair shared key has been configured for that Shared Key | 
|  | *    Identifier, all authenticated chunks MUST be silently discarded. | 
|  | * | 
|  | * Verification Tag:  8.5 Verification Tag [Normal verification] | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | static sctp_ierror_t sctp_sf_authenticate(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_authhdr *auth_hdr; | 
|  | struct sctp_hmac *hmac; | 
|  | unsigned int sig_len; | 
|  | __u16 key_id; | 
|  | __u8 *save_digest; | 
|  | __u8 *digest; | 
|  |  | 
|  | /* Pull in the auth header, so we can do some more verification */ | 
|  | auth_hdr = (struct sctp_authhdr *)chunk->skb->data; | 
|  | chunk->subh.auth_hdr = auth_hdr; | 
|  | skb_pull(chunk->skb, sizeof(struct sctp_authhdr)); | 
|  |  | 
|  | /* Make sure that we suport the HMAC algorithm from the auth | 
|  | * chunk. | 
|  | */ | 
|  | if (!sctp_auth_asoc_verify_hmac_id(asoc, auth_hdr->hmac_id)) | 
|  | return SCTP_IERROR_AUTH_BAD_HMAC; | 
|  |  | 
|  | /* Make sure that the provided shared key identifier has been | 
|  | * configured | 
|  | */ | 
|  | key_id = ntohs(auth_hdr->shkey_id); | 
|  | if (key_id != asoc->active_key_id && !sctp_auth_get_shkey(asoc, key_id)) | 
|  | return SCTP_IERROR_AUTH_BAD_KEYID; | 
|  |  | 
|  |  | 
|  | /* Make sure that the length of the signature matches what | 
|  | * we expect. | 
|  | */ | 
|  | sig_len = ntohs(chunk->chunk_hdr->length) - sizeof(sctp_auth_chunk_t); | 
|  | hmac = sctp_auth_get_hmac(ntohs(auth_hdr->hmac_id)); | 
|  | if (sig_len != hmac->hmac_len) | 
|  | return SCTP_IERROR_PROTO_VIOLATION; | 
|  |  | 
|  | /* Now that we've done validation checks, we can compute and | 
|  | * verify the hmac.  The steps involved are: | 
|  | *  1. Save the digest from the chunk. | 
|  | *  2. Zero out the digest in the chunk. | 
|  | *  3. Compute the new digest | 
|  | *  4. Compare saved and new digests. | 
|  | */ | 
|  | digest = auth_hdr->hmac; | 
|  | skb_pull(chunk->skb, sig_len); | 
|  |  | 
|  | save_digest = kmemdup(digest, sig_len, GFP_ATOMIC); | 
|  | if (!save_digest) | 
|  | goto nomem; | 
|  |  | 
|  | memset(digest, 0, sig_len); | 
|  |  | 
|  | sctp_auth_calculate_hmac(asoc, chunk->skb, | 
|  | (struct sctp_auth_chunk *)chunk->chunk_hdr, | 
|  | GFP_ATOMIC); | 
|  |  | 
|  | /* Discard the packet if the digests do not match */ | 
|  | if (memcmp(save_digest, digest, sig_len)) { | 
|  | kfree(save_digest); | 
|  | return SCTP_IERROR_BAD_SIG; | 
|  | } | 
|  |  | 
|  | kfree(save_digest); | 
|  | chunk->auth = 1; | 
|  |  | 
|  | return SCTP_IERROR_NO_ERROR; | 
|  | nomem: | 
|  | return SCTP_IERROR_NOMEM; | 
|  | } | 
|  |  | 
|  | sctp_disposition_t sctp_sf_eat_auth(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_authhdr *auth_hdr; | 
|  | struct sctp_chunk *chunk = arg; | 
|  | struct sctp_chunk *err_chunk; | 
|  | sctp_ierror_t error; | 
|  |  | 
|  | /* Make sure that the peer has AUTH capable */ | 
|  | if (!asoc->peer.auth_capable) | 
|  | return sctp_sf_unk_chunk(ep, asoc, type, arg, commands); | 
|  |  | 
|  | if (!sctp_vtag_verify(chunk, asoc)) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_BAD_TAG, | 
|  | SCTP_NULL()); | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* Make sure that the AUTH chunk has valid length.  */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_auth_chunk))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | auth_hdr = (struct sctp_authhdr *)chunk->skb->data; | 
|  | error = sctp_sf_authenticate(ep, asoc, type, chunk); | 
|  | switch (error) { | 
|  | case SCTP_IERROR_AUTH_BAD_HMAC: | 
|  | /* Generate the ERROR chunk and discard the rest | 
|  | * of the packet | 
|  | */ | 
|  | err_chunk = sctp_make_op_error(asoc, chunk, | 
|  | SCTP_ERROR_UNSUP_HMAC, | 
|  | &auth_hdr->hmac_id, | 
|  | sizeof(__u16), 0); | 
|  | if (err_chunk) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(err_chunk)); | 
|  | } | 
|  | /* Fall Through */ | 
|  | case SCTP_IERROR_AUTH_BAD_KEYID: | 
|  | case SCTP_IERROR_BAD_SIG: | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | break; | 
|  | case SCTP_IERROR_PROTO_VIOLATION: | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  | break; | 
|  | case SCTP_IERROR_NOMEM: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (asoc->active_key_id != ntohs(auth_hdr->shkey_id)) { | 
|  | struct sctp_ulpevent *ev; | 
|  |  | 
|  | ev = sctp_ulpevent_make_authkey(asoc, ntohs(auth_hdr->shkey_id), | 
|  | SCTP_AUTH_NEWKEY, GFP_ATOMIC); | 
|  |  | 
|  | if (!ev) | 
|  | return -ENOMEM; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, | 
|  | SCTP_ULPEVENT(ev)); | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process an unknown chunk. | 
|  | * | 
|  | * Section: 3.2. Also, 2.1 in the implementor's guide. | 
|  | * | 
|  | * Chunk Types are encoded such that the highest-order two bits specify | 
|  | * the action that must be taken if the processing endpoint does not | 
|  | * recognize the Chunk Type. | 
|  | * | 
|  | * 00 - Stop processing this SCTP packet and discard it, do not process | 
|  | *      any further chunks within it. | 
|  | * | 
|  | * 01 - Stop processing this SCTP packet and discard it, do not process | 
|  | *      any further chunks within it, and report the unrecognized | 
|  | *      chunk in an 'Unrecognized Chunk Type'. | 
|  | * | 
|  | * 10 - Skip this chunk and continue processing. | 
|  | * | 
|  | * 11 - Skip this chunk and continue processing, but report in an ERROR | 
|  | *      Chunk using the 'Unrecognized Chunk Type' cause of error. | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_unk_chunk(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *unk_chunk = arg; | 
|  | struct sctp_chunk *err_chunk; | 
|  | sctp_chunkhdr_t *hdr; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("Processing the unknown chunk id %d.\n", type.chunk); | 
|  |  | 
|  | if (!sctp_vtag_verify(unk_chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the chunk has a valid length. | 
|  | * Since we don't know the chunk type, we use a general | 
|  | * chunkhdr structure to make a comparison. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(unk_chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | switch (type.chunk & SCTP_CID_ACTION_MASK) { | 
|  | case SCTP_CID_ACTION_DISCARD: | 
|  | /* Discard the packet.  */ | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | break; | 
|  | case SCTP_CID_ACTION_DISCARD_ERR: | 
|  | /* Generate an ERROR chunk as response. */ | 
|  | hdr = unk_chunk->chunk_hdr; | 
|  | err_chunk = sctp_make_op_error(asoc, unk_chunk, | 
|  | SCTP_ERROR_UNKNOWN_CHUNK, hdr, | 
|  | WORD_ROUND(ntohs(hdr->length)), | 
|  | 0); | 
|  | if (err_chunk) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(err_chunk)); | 
|  | } | 
|  |  | 
|  | /* Discard the packet.  */ | 
|  | sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | break; | 
|  | case SCTP_CID_ACTION_SKIP: | 
|  | /* Skip the chunk.  */ | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | break; | 
|  | case SCTP_CID_ACTION_SKIP_ERR: | 
|  | /* Generate an ERROR chunk as response. */ | 
|  | hdr = unk_chunk->chunk_hdr; | 
|  | err_chunk = sctp_make_op_error(asoc, unk_chunk, | 
|  | SCTP_ERROR_UNKNOWN_CHUNK, hdr, | 
|  | WORD_ROUND(ntohs(hdr->length)), | 
|  | 0); | 
|  | if (err_chunk) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(err_chunk)); | 
|  | } | 
|  | /* Skip the chunk.  */ | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Discard the chunk. | 
|  | * | 
|  | * Section: 0.2, 5.2.3, 5.2.5, 5.2.6, 6.0, 8.4.6, 8.5.1c, 9.2 | 
|  | * [Too numerous to mention...] | 
|  | * Verification Tag: No verification needed. | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_discard_chunk(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | /* Make sure that the chunk has a valid length. | 
|  | * Since we don't know the chunk type, we use a general | 
|  | * chunkhdr structure to make a comparison. | 
|  | */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("Chunk %d is discarded\n", type.chunk); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Discard the whole packet. | 
|  | * | 
|  | * Section: 8.4 2) | 
|  | * | 
|  | * 2) If the OOTB packet contains an ABORT chunk, the receiver MUST | 
|  | *    silently discard the OOTB packet and take no further action. | 
|  | * | 
|  | * Verification Tag: No verification necessary | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_pdiscard(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | SCTP_INC_STATS(SCTP_MIB_IN_PKT_DISCARDS); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET, SCTP_NULL()); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  |  | 
|  | /* | 
|  | * The other end is violating protocol. | 
|  | * | 
|  | * Section: Not specified | 
|  | * Verification Tag: Not specified | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (asoc, reply_msg, msg_up, timers, counters) | 
|  | * | 
|  | * We simply tag the chunk as a violation.  The state machine will log | 
|  | * the violation and continue. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_violation(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | /* Make sure that the chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(sctp_chunkhdr_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  |  | 
|  | return SCTP_DISPOSITION_VIOLATION; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Common function to handle a protocol violation. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_abort_violation( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands, | 
|  | const __u8 *payload, | 
|  | const size_t paylen) | 
|  | { | 
|  | struct sctp_packet *packet = NULL; | 
|  | struct sctp_chunk *chunk =  arg; | 
|  | struct sctp_chunk *abort = NULL; | 
|  |  | 
|  | /* SCTP-AUTH, Section 6.3: | 
|  | *    It should be noted that if the receiver wants to tear | 
|  | *    down an association in an authenticated way only, the | 
|  | *    handling of malformed packets should not result in | 
|  | *    tearing down the association. | 
|  | * | 
|  | * This means that if we only want to abort associations | 
|  | * in an authenticated way (i.e AUTH+ABORT), then we | 
|  | * can't destroy this association just because the packet | 
|  | * was malformed. | 
|  | */ | 
|  | if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc)) | 
|  | goto discard; | 
|  |  | 
|  | /* Make the abort chunk. */ | 
|  | abort = sctp_make_abort_violation(asoc, chunk, payload, paylen); | 
|  | if (!abort) | 
|  | goto nomem; | 
|  |  | 
|  | if (asoc) { | 
|  | /* Treat INIT-ACK as a special case during COOKIE-WAIT. */ | 
|  | if (chunk->chunk_hdr->type == SCTP_CID_INIT_ACK && | 
|  | !asoc->peer.i.init_tag) { | 
|  | sctp_initack_chunk_t *initack; | 
|  |  | 
|  | initack = (sctp_initack_chunk_t *)chunk->chunk_hdr; | 
|  | if (!sctp_chunk_length_valid(chunk, | 
|  | sizeof(sctp_initack_chunk_t))) | 
|  | abort->chunk_hdr->flags |= SCTP_CHUNK_FLAG_T; | 
|  | else { | 
|  | unsigned int inittag; | 
|  |  | 
|  | inittag = ntohl(initack->init_hdr.init_tag); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_UPDATE_INITTAG, | 
|  | SCTP_U32(inittag)); | 
|  | } | 
|  | } | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort)); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  |  | 
|  | if (asoc->state <= SCTP_STATE_COOKIE_ECHOED) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNREFUSED)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION)); | 
|  | } else { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNABORTED)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION)); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | } | 
|  | } else { | 
|  | packet = sctp_ootb_pkt_new(asoc, chunk); | 
|  |  | 
|  | if (!packet) | 
|  | goto nomem_pkt; | 
|  |  | 
|  | if (sctp_test_T_bit(abort)) | 
|  | packet->vtag = ntohl(chunk->sctp_hdr->vtag); | 
|  |  | 
|  | abort->skb->sk = ep->base.sk; | 
|  |  | 
|  | sctp_packet_append_chunk(packet, abort); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | } | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  |  | 
|  | discard: | 
|  | sctp_sf_pdiscard(ep, asoc, SCTP_ST_CHUNK(0), arg, commands); | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  |  | 
|  | nomem_pkt: | 
|  | sctp_chunk_free(abort); | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a protocol violation when the chunk length is invalid. | 
|  | * "Invalid" length is identified as smaller than the minimal length a | 
|  | * given chunk can be.  For example, a SACK chunk has invalid length | 
|  | * if its length is set to be smaller than the size of sctp_sack_chunk_t. | 
|  | * | 
|  | * We inform the other end by sending an ABORT with a Protocol Violation | 
|  | * error code. | 
|  | * | 
|  | * Section: Not specified | 
|  | * Verification Tag:  Nothing to do | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * Outputs | 
|  | * (reply_msg, msg_up, counters) | 
|  | * | 
|  | * Generate an  ABORT chunk and terminate the association. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_violation_chunklen( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | static const char err_str[]="The following chunk had invalid length:"; | 
|  |  | 
|  | return sctp_sf_abort_violation(ep, asoc, arg, commands, err_str, | 
|  | sizeof(err_str)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Handle a protocol violation when the parameter length is invalid. | 
|  | * If the length is smaller than the minimum length of a given parameter, | 
|  | * or accumulated length in multi parameters exceeds the end of the chunk, | 
|  | * the length is considered as invalid. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_violation_paramlen( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, void *ext, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk =  arg; | 
|  | struct sctp_paramhdr *param = ext; | 
|  | struct sctp_chunk *abort = NULL; | 
|  |  | 
|  | if (sctp_auth_recv_cid(SCTP_CID_ABORT, asoc)) | 
|  | goto discard; | 
|  |  | 
|  | /* Make the abort chunk. */ | 
|  | abort = sctp_make_violation_paramlen(asoc, chunk, param); | 
|  | if (!abort) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort)); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNABORTED)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_PROTO_VIOLATION)); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  |  | 
|  | discard: | 
|  | sctp_sf_pdiscard(ep, asoc, SCTP_ST_CHUNK(0), arg, commands); | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Handle a protocol violation when the peer trying to advance the | 
|  | * cumulative tsn ack to a point beyond the max tsn currently sent. | 
|  | * | 
|  | * We inform the other end by sending an ABORT with a Protocol Violation | 
|  | * error code. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_violation_ctsn( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | static const char err_str[]="The cumulative tsn ack beyond the max tsn currently sent:"; | 
|  |  | 
|  | return sctp_sf_abort_violation(ep, asoc, arg, commands, err_str, | 
|  | sizeof(err_str)); | 
|  | } | 
|  |  | 
|  | /* Handle protocol violation of an invalid chunk bundling.  For example, | 
|  | * when we have an association and we receive bundled INIT-ACK, or | 
|  | * SHUDOWN-COMPLETE, our peer is clearly violationg the "MUST NOT bundle" | 
|  | * statement from the specs.  Additionally, there might be an attacker | 
|  | * on the path and we may not want to continue this communication. | 
|  | */ | 
|  | static sctp_disposition_t sctp_sf_violation_chunk( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | static const char err_str[]="The following chunk violates protocol:"; | 
|  |  | 
|  | if (!asoc) | 
|  | return sctp_sf_violation(ep, asoc, type, arg, commands); | 
|  |  | 
|  | return sctp_sf_abort_violation(ep, asoc, arg, commands, err_str, | 
|  | sizeof(err_str)); | 
|  | } | 
|  | /*************************************************************************** | 
|  | * These are the state functions for handling primitive (Section 10) events. | 
|  | ***************************************************************************/ | 
|  | /* | 
|  | * sctp_sf_do_prm_asoc | 
|  | * | 
|  | * Section: 10.1 ULP-to-SCTP | 
|  | * B) Associate | 
|  | * | 
|  | * Format: ASSOCIATE(local SCTP instance name, destination transport addr, | 
|  | * outbound stream count) | 
|  | * -> association id [,destination transport addr list] [,outbound stream | 
|  | * count] | 
|  | * | 
|  | * This primitive allows the upper layer to initiate an association to a | 
|  | * specific peer endpoint. | 
|  | * | 
|  | * The peer endpoint shall be specified by one of the transport addresses | 
|  | * which defines the endpoint (see Section 1.4).  If the local SCTP | 
|  | * instance has not been initialized, the ASSOCIATE is considered an | 
|  | * error. | 
|  | * [This is not relevant for the kernel implementation since we do all | 
|  | * initialization at boot time.  It we hadn't initialized we wouldn't | 
|  | * get anywhere near this code.] | 
|  | * | 
|  | * An association id, which is a local handle to the SCTP association, | 
|  | * will be returned on successful establishment of the association. If | 
|  | * SCTP is not able to open an SCTP association with the peer endpoint, | 
|  | * an error is returned. | 
|  | * [In the kernel implementation, the struct sctp_association needs to | 
|  | * be created BEFORE causing this primitive to run.] | 
|  | * | 
|  | * Other association parameters may be returned, including the | 
|  | * complete destination transport addresses of the peer as well as the | 
|  | * outbound stream count of the local endpoint. One of the transport | 
|  | * address from the returned destination addresses will be selected by | 
|  | * the local endpoint as default primary path for sending SCTP packets | 
|  | * to this peer.  The returned "destination transport addr list" can | 
|  | * be used by the ULP to change the default primary path or to force | 
|  | * sending a packet to a specific transport address.  [All of this | 
|  | * stuff happens when the INIT ACK arrives.  This is a NON-BLOCKING | 
|  | * function.] | 
|  | * | 
|  | * Mandatory attributes: | 
|  | * | 
|  | * o local SCTP instance name - obtained from the INITIALIZE operation. | 
|  | *   [This is the argument asoc.] | 
|  | * o destination transport addr - specified as one of the transport | 
|  | * addresses of the peer endpoint with which the association is to be | 
|  | * established. | 
|  | *  [This is asoc->peer.active_path.] | 
|  | * o outbound stream count - the number of outbound streams the ULP | 
|  | * would like to open towards this peer endpoint. | 
|  | * [BUG: This is not currently implemented.] | 
|  | * Optional attributes: | 
|  | * | 
|  | * None. | 
|  | * | 
|  | * The return value is a disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_prm_asoc(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *repl; | 
|  | struct sctp_association* my_asoc; | 
|  |  | 
|  | /* The comment below says that we enter COOKIE-WAIT AFTER | 
|  | * sending the INIT, but that doesn't actually work in our | 
|  | * implementation... | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_COOKIE_WAIT)); | 
|  |  | 
|  | /* RFC 2960 5.1 Normal Establishment of an Association | 
|  | * | 
|  | * A) "A" first sends an INIT chunk to "Z".  In the INIT, "A" | 
|  | * must provide its Verification Tag (Tag_A) in the Initiate | 
|  | * Tag field.  Tag_A SHOULD be a random number in the range of | 
|  | * 1 to 4294967295 (see 5.3.1 for Tag value selection). ... | 
|  | */ | 
|  |  | 
|  | repl = sctp_make_init(asoc, &asoc->base.bind_addr, GFP_ATOMIC, 0); | 
|  | if (!repl) | 
|  | goto nomem; | 
|  |  | 
|  | /* Cast away the const modifier, as we want to just | 
|  | * rerun it through as a sideffect. | 
|  | */ | 
|  | my_asoc = (struct sctp_association *)asoc; | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_ASOC, SCTP_ASOC(my_asoc)); | 
|  |  | 
|  | /* Choose transport for INIT. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT, | 
|  | SCTP_CHUNK(repl)); | 
|  |  | 
|  | /* After sending the INIT, "A" starts the T1-init timer and | 
|  | * enters the COOKIE-WAIT state. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the SEND primitive. | 
|  | * | 
|  | * Section: 10.1 ULP-to-SCTP | 
|  | * E) Send | 
|  | * | 
|  | * Format: SEND(association id, buffer address, byte count [,context] | 
|  | *         [,stream id] [,life time] [,destination transport address] | 
|  | *         [,unorder flag] [,no-bundle flag] [,payload protocol-id] ) | 
|  | * -> result | 
|  | * | 
|  | * This is the main method to send user data via SCTP. | 
|  | * | 
|  | * Mandatory attributes: | 
|  | * | 
|  | *  o association id - local handle to the SCTP association | 
|  | * | 
|  | *  o buffer address - the location where the user message to be | 
|  | *    transmitted is stored; | 
|  | * | 
|  | *  o byte count - The size of the user data in number of bytes; | 
|  | * | 
|  | * Optional attributes: | 
|  | * | 
|  | *  o context - an optional 32 bit integer that will be carried in the | 
|  | *    sending failure notification to the ULP if the transportation of | 
|  | *    this User Message fails. | 
|  | * | 
|  | *  o stream id - to indicate which stream to send the data on. If not | 
|  | *    specified, stream 0 will be used. | 
|  | * | 
|  | *  o life time - specifies the life time of the user data. The user data | 
|  | *    will not be sent by SCTP after the life time expires. This | 
|  | *    parameter can be used to avoid efforts to transmit stale | 
|  | *    user messages. SCTP notifies the ULP if the data cannot be | 
|  | *    initiated to transport (i.e. sent to the destination via SCTP's | 
|  | *    send primitive) within the life time variable. However, the | 
|  | *    user data will be transmitted if SCTP has attempted to transmit a | 
|  | *    chunk before the life time expired. | 
|  | * | 
|  | *  o destination transport address - specified as one of the destination | 
|  | *    transport addresses of the peer endpoint to which this packet | 
|  | *    should be sent. Whenever possible, SCTP should use this destination | 
|  | *    transport address for sending the packets, instead of the current | 
|  | *    primary path. | 
|  | * | 
|  | *  o unorder flag - this flag, if present, indicates that the user | 
|  | *    would like the data delivered in an unordered fashion to the peer | 
|  | *    (i.e., the U flag is set to 1 on all DATA chunks carrying this | 
|  | *    message). | 
|  | * | 
|  | *  o no-bundle flag - instructs SCTP not to bundle this user data with | 
|  | *    other outbound DATA chunks. SCTP MAY still bundle even when | 
|  | *    this flag is present, when faced with network congestion. | 
|  | * | 
|  | *  o payload protocol-id - A 32 bit unsigned integer that is to be | 
|  | *    passed to the peer indicating the type of payload protocol data | 
|  | *    being transmitted. This value is passed as opaque data by SCTP. | 
|  | * | 
|  | * The return value is the disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_prm_send(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_datamsg *msg = arg; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_MSG, SCTP_DATAMSG(msg)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the SHUTDOWN primitive. | 
|  | * | 
|  | * Section: 10.1: | 
|  | * C) Shutdown | 
|  | * | 
|  | * Format: SHUTDOWN(association id) | 
|  | * -> result | 
|  | * | 
|  | * Gracefully closes an association. Any locally queued user data | 
|  | * will be delivered to the peer. The association will be terminated only | 
|  | * after the peer acknowledges all the SCTP packets sent.  A success code | 
|  | * will be returned on successful termination of the association. If | 
|  | * attempting to terminate the association results in a failure, an error | 
|  | * code shall be returned. | 
|  | * | 
|  | * Mandatory attributes: | 
|  | * | 
|  | *  o association id - local handle to the SCTP association | 
|  | * | 
|  | * Optional attributes: | 
|  | * | 
|  | * None. | 
|  | * | 
|  | * The return value is the disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_prm_shutdown( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | int disposition; | 
|  |  | 
|  | /* From 9.2 Shutdown of an Association | 
|  | * Upon receipt of the SHUTDOWN primitive from its upper | 
|  | * layer, the endpoint enters SHUTDOWN-PENDING state and | 
|  | * remains there until all outstanding data has been | 
|  | * acknowledged by its peer. The endpoint accepts no new data | 
|  | * from its upper layer, but retransmits data to the far end | 
|  | * if necessary to fill gaps. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_SHUTDOWN_PENDING)); | 
|  |  | 
|  | disposition = SCTP_DISPOSITION_CONSUME; | 
|  | if (sctp_outq_is_empty(&asoc->outqueue)) { | 
|  | disposition = sctp_sf_do_9_2_start_shutdown(ep, asoc, type, | 
|  | arg, commands); | 
|  | } | 
|  | return disposition; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the ABORT primitive. | 
|  | * | 
|  | * Section: 10.1: | 
|  | * C) Abort | 
|  | * | 
|  | * Format: Abort(association id [, cause code]) | 
|  | * -> result | 
|  | * | 
|  | * Ungracefully closes an association. Any locally queued user data | 
|  | * will be discarded and an ABORT chunk is sent to the peer.  A success code | 
|  | * will be returned on successful abortion of the association. If | 
|  | * attempting to abort the association results in a failure, an error | 
|  | * code shall be returned. | 
|  | * | 
|  | * Mandatory attributes: | 
|  | * | 
|  | *  o association id - local handle to the SCTP association | 
|  | * | 
|  | * Optional attributes: | 
|  | * | 
|  | *  o cause code - reason of the abort to be passed to the peer | 
|  | * | 
|  | * None. | 
|  | * | 
|  | * The return value is the disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_1_prm_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* From 9.1 Abort of an Association | 
|  | * Upon receipt of the ABORT primitive from its upper | 
|  | * layer, the endpoint enters CLOSED state and | 
|  | * discard all outstanding data has been | 
|  | * acknowledged by its peer. The endpoint accepts no new data | 
|  | * from its upper layer, but retransmits data to the far end | 
|  | * if necessary to fill gaps. | 
|  | */ | 
|  | struct sctp_chunk *abort = arg; | 
|  | sctp_disposition_t retval; | 
|  |  | 
|  | retval = SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort)); | 
|  |  | 
|  | /* Even if we can't send the ABORT due to low memory delete the | 
|  | * TCB.  This is a departure from our typical NOMEM handling. | 
|  | */ | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNABORTED)); | 
|  | /* Delete the established association. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_USER_ABORT)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* We tried an illegal operation on an association which is closed.  */ | 
|  | sctp_disposition_t sctp_sf_error_closed(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_ERROR, SCTP_ERROR(-EINVAL)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* We tried an illegal operation on an association which is shutting | 
|  | * down. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_error_shutdown(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_ERROR, | 
|  | SCTP_ERROR(-ESHUTDOWN)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_cookie_wait_prm_shutdown | 
|  | * | 
|  | * Section: 4 Note: 2 | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explicitly address this issue, but is the route through the | 
|  | * state table when someone issues a shutdown while in COOKIE_WAIT state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_wait_prm_shutdown( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_SHUTDOWNS); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DELETE_TCB, SCTP_NULL()); | 
|  |  | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_cookie_echoed_prm_shutdown | 
|  | * | 
|  | * Section: 4 Note: 2 | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explcitly address this issue, but is the route through the | 
|  | * state table when someone issues a shutdown while in COOKIE_ECHOED state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_echoed_prm_shutdown( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* There is a single T1 timer, so we should be able to use | 
|  | * common function with the COOKIE-WAIT state. | 
|  | */ | 
|  | return sctp_sf_cookie_wait_prm_shutdown(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_cookie_wait_prm_abort | 
|  | * | 
|  | * Section: 4 Note: 2 | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explicitly address this issue, but is the route through the | 
|  | * state table when someone issues an abort while in COOKIE_WAIT state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_wait_prm_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *abort = arg; | 
|  | sctp_disposition_t retval; | 
|  |  | 
|  | /* Stop T1-init timer */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  | retval = SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(abort)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_CLOSED)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  |  | 
|  | /* Even if we can't send the ABORT due to low memory delete the | 
|  | * TCB.  This is a departure from our typical NOMEM handling. | 
|  | */ | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNREFUSED)); | 
|  | /* Delete the established association. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_USER_ABORT)); | 
|  |  | 
|  | return retval; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_cookie_echoed_prm_abort | 
|  | * | 
|  | * Section: 4 Note: 3 | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explcitly address this issue, but is the route through the | 
|  | * state table when someone issues an abort while in COOKIE_ECHOED state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_cookie_echoed_prm_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* There is a single T1 timer, so we should be able to use | 
|  | * common function with the COOKIE-WAIT state. | 
|  | */ | 
|  | return sctp_sf_cookie_wait_prm_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_shutdown_pending_prm_abort | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explicitly address this issue, but is the route through the | 
|  | * state table when someone issues an abort while in SHUTDOWN-PENDING state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_shutdown_pending_prm_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* Stop the T5-shutdown guard timer.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  |  | 
|  | return sctp_sf_do_9_1_prm_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_shutdown_sent_prm_abort | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explicitly address this issue, but is the route through the | 
|  | * state table when someone issues an abort while in SHUTDOWN-SENT state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_shutdown_sent_prm_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* Stop the T2-shutdown timer.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | /* Stop the T5-shutdown guard timer.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  |  | 
|  | return sctp_sf_do_9_1_prm_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_cookie_echoed_prm_abort | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | * The RFC does not explcitly address this issue, but is the route through the | 
|  | * state table when someone issues an abort while in COOKIE_ECHOED state. | 
|  | * | 
|  | * Outputs | 
|  | * (timers) | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_shutdown_ack_sent_prm_abort( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | /* The same T2 timer, so we should be able to use | 
|  | * common function with the SHUTDOWN-SENT state. | 
|  | */ | 
|  | return sctp_sf_shutdown_sent_prm_abort(ep, asoc, type, arg, commands); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Process the REQUESTHEARTBEAT primitive | 
|  | * | 
|  | * 10.1 ULP-to-SCTP | 
|  | * J) Request Heartbeat | 
|  | * | 
|  | * Format: REQUESTHEARTBEAT(association id, destination transport address) | 
|  | * | 
|  | * -> result | 
|  | * | 
|  | * Instructs the local endpoint to perform a HeartBeat on the specified | 
|  | * destination transport address of the given association. The returned | 
|  | * result should indicate whether the transmission of the HEARTBEAT | 
|  | * chunk to the destination address is successful. | 
|  | * | 
|  | * Mandatory attributes: | 
|  | * | 
|  | * o association id - local handle to the SCTP association | 
|  | * | 
|  | * o destination transport address - the transport address of the | 
|  | *   association on which a heartbeat should be issued. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_prm_requestheartbeat( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | if (SCTP_DISPOSITION_NOMEM == sctp_sf_heartbeat(ep, asoc, type, | 
|  | (struct sctp_transport *)arg, commands)) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  |  | 
|  | /* | 
|  | * RFC 2960 (bis), section 8.3 | 
|  | * | 
|  | *    D) Request an on-demand HEARTBEAT on a specific destination | 
|  | *    transport address of a given association. | 
|  | * | 
|  | *    The endpoint should increment the respective error  counter of | 
|  | *    the destination transport address each time a HEARTBEAT is sent | 
|  | *    to that address and not acknowledged within one RTO. | 
|  | * | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TRANSPORT_HB_SENT, | 
|  | SCTP_TRANSPORT(arg)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ADDIP Section 4.1 ASCONF Chunk Procedures | 
|  | * When an endpoint has an ASCONF signaled change to be sent to the | 
|  | * remote endpoint it should do A1 to A9 | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_prm_asconf(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = arg; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T4, SCTP_CHUNK(chunk)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(chunk)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ignore the primitive event | 
|  | * | 
|  | * The return value is the disposition of the primitive. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_ignore_primitive( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | SCTP_DEBUG_PRINTK("Primitive type %d is ignored.\n", type.primitive); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /*************************************************************************** | 
|  | * These are the state functions for the OTHER events. | 
|  | ***************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * When the SCTP stack has no more user data to send or retransmit, this | 
|  | * notification is given to the user. Also, at the time when a user app | 
|  | * subscribes to this event, if there is no data to be sent or | 
|  | * retransmit, the stack will immediately send up this notification. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_no_pending_tsn( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_ulpevent *event; | 
|  |  | 
|  | event = sctp_ulpevent_make_sender_dry_event(asoc, GFP_ATOMIC); | 
|  | if (!event) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_EVENT_ULP, SCTP_ULPEVENT(event)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Start the shutdown negotiation. | 
|  | * | 
|  | * From Section 9.2: | 
|  | * Once all its outstanding data has been acknowledged, the endpoint | 
|  | * shall send a SHUTDOWN chunk to its peer including in the Cumulative | 
|  | * TSN Ack field the last sequential TSN it has received from the peer. | 
|  | * It shall then start the T2-shutdown timer and enter the SHUTDOWN-SENT | 
|  | * state. If the timer expires, the endpoint must re-send the SHUTDOWN | 
|  | * with the updated last sequential TSN received from its peer. | 
|  | * | 
|  | * The return value is the disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_start_shutdown( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *reply; | 
|  |  | 
|  | /* Once all its outstanding data has been acknowledged, the | 
|  | * endpoint shall send a SHUTDOWN chunk to its peer including | 
|  | * in the Cumulative TSN Ack field the last sequential TSN it | 
|  | * has received from the peer. | 
|  | */ | 
|  | reply = sctp_make_shutdown(asoc, NULL); | 
|  | if (!reply) | 
|  | goto nomem; | 
|  |  | 
|  | /* Set the transport for the SHUTDOWN chunk and the timeout for the | 
|  | * T2-shutdown timer. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply)); | 
|  |  | 
|  | /* It shall then start the T2-shutdown timer */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | /* RFC 4960 Section 9.2 | 
|  | * The sender of the SHUTDOWN MAY also start an overall guard timer | 
|  | * 'T5-shutdown-guard' to bound the overall time for shutdown sequence. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  |  | 
|  | if (asoc->autoclose) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE)); | 
|  |  | 
|  | /* and enter the SHUTDOWN-SENT state.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_SHUTDOWN_SENT)); | 
|  |  | 
|  | /* sctp-implguide 2.10 Issues with Heartbeating and failover | 
|  | * | 
|  | * HEARTBEAT ... is discontinued after sending either SHUTDOWN | 
|  | * or SHUTDOWN-ACK. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL()); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate a SHUTDOWN ACK now that everything is SACK'd. | 
|  | * | 
|  | * From Section 9.2: | 
|  | * | 
|  | * If it has no more outstanding DATA chunks, the SHUTDOWN receiver | 
|  | * shall send a SHUTDOWN ACK and start a T2-shutdown timer of its own, | 
|  | * entering the SHUTDOWN-ACK-SENT state. If the timer expires, the | 
|  | * endpoint must re-send the SHUTDOWN ACK. | 
|  | * | 
|  | * The return value is the disposition. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_9_2_shutdown_ack( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = (struct sctp_chunk *) arg; | 
|  | struct sctp_chunk *reply; | 
|  |  | 
|  | /* There are 2 ways of getting here: | 
|  | *    1) called in response to a SHUTDOWN chunk | 
|  | *    2) called when SCTP_EVENT_NO_PENDING_TSN event is issued. | 
|  | * | 
|  | * For the case (2), the arg parameter is set to NULL.  We need | 
|  | * to check that we have a chunk before accessing it's fields. | 
|  | */ | 
|  | if (chunk) { | 
|  | if (!sctp_vtag_verify(chunk, asoc)) | 
|  | return sctp_sf_pdiscard(ep, asoc, type, arg, commands); | 
|  |  | 
|  | /* Make sure that the SHUTDOWN chunk has a valid length. */ | 
|  | if (!sctp_chunk_length_valid(chunk, sizeof(struct sctp_shutdown_chunk_t))) | 
|  | return sctp_sf_violation_chunklen(ep, asoc, type, arg, | 
|  | commands); | 
|  | } | 
|  |  | 
|  | /* If it has no more outstanding DATA chunks, the SHUTDOWN receiver | 
|  | * shall send a SHUTDOWN ACK ... | 
|  | */ | 
|  | reply = sctp_make_shutdown_ack(asoc, chunk); | 
|  | if (!reply) | 
|  | goto nomem; | 
|  |  | 
|  | /* Set the transport for the SHUTDOWN ACK chunk and the timeout for | 
|  | * the T2-shutdown timer. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply)); | 
|  |  | 
|  | /* and start/restart a T2-shutdown timer of its own, */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  |  | 
|  | if (asoc->autoclose) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_AUTOCLOSE)); | 
|  |  | 
|  | /* Enter the SHUTDOWN-ACK-SENT state.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_SHUTDOWN_ACK_SENT)); | 
|  |  | 
|  | /* sctp-implguide 2.10 Issues with Heartbeating and failover | 
|  | * | 
|  | * HEARTBEAT ... is discontinued after sending either SHUTDOWN | 
|  | * or SHUTDOWN-ACK. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_HB_TIMERS_STOP, SCTP_NULL()); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ignore the event defined as other | 
|  | * | 
|  | * The return value is the disposition of the event. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_ignore_other(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | SCTP_DEBUG_PRINTK("The event other type %d is ignored\n", type.other); | 
|  | return SCTP_DISPOSITION_DISCARD; | 
|  | } | 
|  |  | 
|  | /************************************************************ | 
|  | * These are the state functions for handling timeout events. | 
|  | ************************************************************/ | 
|  |  | 
|  | /* | 
|  | * RTX Timeout | 
|  | * | 
|  | * Section: 6.3.3 Handle T3-rtx Expiration | 
|  | * | 
|  | * Whenever the retransmission timer T3-rtx expires for a destination | 
|  | * address, do the following: | 
|  | * [See below] | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_6_3_3_rtx(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_transport *transport = arg; | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_T3_RTX_EXPIREDS); | 
|  |  | 
|  | if (asoc->overall_error_count >= asoc->max_retrans) { | 
|  | if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING) { | 
|  | /* | 
|  | * We are here likely because the receiver had its rwnd | 
|  | * closed for a while and we have not been able to | 
|  | * transmit the locally queued data within the maximum | 
|  | * retransmission attempts limit.  Start the T5 | 
|  | * shutdown guard timer to give the receiver one last | 
|  | * chance and some additional time to recover before | 
|  | * aborting. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_START_ONCE, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD)); | 
|  | } else { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | /* CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* E1) For the destination address for which the timer | 
|  | * expires, adjust its ssthresh with rules defined in Section | 
|  | * 7.2.3 and set the cwnd <- MTU. | 
|  | */ | 
|  |  | 
|  | /* E2) For the destination address for which the timer | 
|  | * expires, set RTO <- RTO * 2 ("back off the timer").  The | 
|  | * maximum value discussed in rule C7 above (RTO.max) may be | 
|  | * used to provide an upper bound to this doubling operation. | 
|  | */ | 
|  |  | 
|  | /* E3) Determine how many of the earliest (i.e., lowest TSN) | 
|  | * outstanding DATA chunks for the address for which the | 
|  | * T3-rtx has expired will fit into a single packet, subject | 
|  | * to the MTU constraint for the path corresponding to the | 
|  | * destination transport address to which the retransmission | 
|  | * is being sent (this may be different from the address for | 
|  | * which the timer expires [see Section 6.4]).  Call this | 
|  | * value K. Bundle and retransmit those K DATA chunks in a | 
|  | * single packet to the destination endpoint. | 
|  | * | 
|  | * Note: Any DATA chunks that were sent to the address for | 
|  | * which the T3-rtx timer expired but did not fit in one MTU | 
|  | * (rule E3 above), should be marked for retransmission and | 
|  | * sent as soon as cwnd allows (normally when a SACK arrives). | 
|  | */ | 
|  |  | 
|  | /* Do some failure management (Section 8.2). */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE, SCTP_TRANSPORT(transport)); | 
|  |  | 
|  | /* NB: Rules E4 and F1 are implicit in R1.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_RETRAN, SCTP_TRANSPORT(transport)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generate delayed SACK on timeout | 
|  | * | 
|  | * Section: 6.2  Acknowledgement on Reception of DATA Chunks | 
|  | * | 
|  | * The guidelines on delayed acknowledgement algorithm specified in | 
|  | * Section 4.2 of [RFC2581] SHOULD be followed.  Specifically, an | 
|  | * acknowledgement SHOULD be generated for at least every second packet | 
|  | * (not every second DATA chunk) received, and SHOULD be generated | 
|  | * within 200 ms of the arrival of any unacknowledged DATA chunk.  In | 
|  | * some situations it may be beneficial for an SCTP transmitter to be | 
|  | * more conservative than the algorithms detailed in this document | 
|  | * allow. However, an SCTP transmitter MUST NOT be more aggressive than | 
|  | * the following algorithms allow. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_do_6_2_sack(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | SCTP_INC_STATS(SCTP_MIB_DELAY_SACK_EXPIREDS); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_GEN_SACK, SCTP_FORCE()); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_t1_init_timer_expire | 
|  | * | 
|  | * Section: 4 Note: 2 | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | *  RFC 2960 Section 4 Notes | 
|  | *  2) If the T1-init timer expires, the endpoint MUST retransmit INIT | 
|  | *     and re-start the T1-init timer without changing state.  This MUST | 
|  | *     be repeated up to 'Max.Init.Retransmits' times.  After that, the | 
|  | *     endpoint MUST abort the initialization process and report the | 
|  | *     error to SCTP user. | 
|  | * | 
|  | * Outputs | 
|  | * (timers, events) | 
|  | * | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_t1_init_timer_expire(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *repl = NULL; | 
|  | struct sctp_bind_addr *bp; | 
|  | int attempts = asoc->init_err_counter + 1; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("Timer T1 expired (INIT).\n"); | 
|  | SCTP_INC_STATS(SCTP_MIB_T1_INIT_EXPIREDS); | 
|  |  | 
|  | if (attempts <= asoc->max_init_attempts) { | 
|  | bp = (struct sctp_bind_addr *) &asoc->base.bind_addr; | 
|  | repl = sctp_make_init(asoc, bp, GFP_ATOMIC, 0); | 
|  | if (!repl) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  |  | 
|  | /* Choose transport for INIT. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT, | 
|  | SCTP_CHUNK(repl)); | 
|  |  | 
|  | /* Issue a sideeffect to do the needed accounting. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_INIT)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  | } else { | 
|  | SCTP_DEBUG_PRINTK("Giving up on INIT, attempts: %d" | 
|  | " max_init_attempts: %d\n", | 
|  | attempts, asoc->max_init_attempts); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sctp_sf_t1_cookie_timer_expire | 
|  | * | 
|  | * Section: 4 Note: 2 | 
|  | * Verification Tag: | 
|  | * Inputs | 
|  | * (endpoint, asoc) | 
|  | * | 
|  | *  RFC 2960 Section 4 Notes | 
|  | *  3) If the T1-cookie timer expires, the endpoint MUST retransmit | 
|  | *     COOKIE ECHO and re-start the T1-cookie timer without changing | 
|  | *     state.  This MUST be repeated up to 'Max.Init.Retransmits' times. | 
|  | *     After that, the endpoint MUST abort the initialization process and | 
|  | *     report the error to SCTP user. | 
|  | * | 
|  | * Outputs | 
|  | * (timers, events) | 
|  | * | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_t1_cookie_timer_expire(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *repl = NULL; | 
|  | int attempts = asoc->init_err_counter + 1; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("Timer T1 expired (COOKIE-ECHO).\n"); | 
|  | SCTP_INC_STATS(SCTP_MIB_T1_COOKIE_EXPIREDS); | 
|  |  | 
|  | if (attempts <= asoc->max_init_attempts) { | 
|  | repl = sctp_make_cookie_echo(asoc, NULL); | 
|  | if (!repl) | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_CHOOSE_TRANSPORT, | 
|  | SCTP_CHUNK(repl)); | 
|  | /* Issue a sideeffect to do the needed accounting. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_COOKIEECHO_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T1_COOKIE)); | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(repl)); | 
|  | } else { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_INIT_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* RFC2960 9.2 If the timer expires, the endpoint must re-send the SHUTDOWN | 
|  | * with the updated last sequential TSN received from its peer. | 
|  | * | 
|  | * An endpoint should limit the number of retransmissions of the | 
|  | * SHUTDOWN chunk to the protocol parameter 'Association.Max.Retrans'. | 
|  | * If this threshold is exceeded the endpoint should destroy the TCB and | 
|  | * MUST report the peer endpoint unreachable to the upper layer (and | 
|  | * thus the association enters the CLOSED state).  The reception of any | 
|  | * packet from its peer (i.e. as the peer sends all of its queued DATA | 
|  | * chunks) should clear the endpoint's retransmission count and restart | 
|  | * the T2-Shutdown timer,  giving its peer ample opportunity to transmit | 
|  | * all of its queued DATA chunks that have not yet been sent. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_t2_timer_expire(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *reply = NULL; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("Timer T2 expired.\n"); | 
|  | SCTP_INC_STATS(SCTP_MIB_T2_SHUTDOWN_EXPIREDS); | 
|  |  | 
|  | ((struct sctp_association *)asoc)->shutdown_retries++; | 
|  |  | 
|  | if (asoc->overall_error_count >= asoc->max_retrans) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | /* Note:  CMD_ASSOC_FAILED calls CMD_DELETE_TCB. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | } | 
|  |  | 
|  | switch (asoc->state) { | 
|  | case SCTP_STATE_SHUTDOWN_SENT: | 
|  | reply = sctp_make_shutdown(asoc, NULL); | 
|  | break; | 
|  |  | 
|  | case SCTP_STATE_SHUTDOWN_ACK_SENT: | 
|  | reply = sctp_make_shutdown_ack(asoc, NULL); | 
|  | break; | 
|  |  | 
|  | default: | 
|  | BUG(); | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!reply) | 
|  | goto nomem; | 
|  |  | 
|  | /* Do some failure management (Section 8.2). | 
|  | * If we remove the transport an SHUTDOWN was last sent to, don't | 
|  | * do failure management. | 
|  | */ | 
|  | if (asoc->shutdown_last_sent_to) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE, | 
|  | SCTP_TRANSPORT(asoc->shutdown_last_sent_to)); | 
|  |  | 
|  | /* Set the transport for the SHUTDOWN/ACK chunk and the timeout for | 
|  | * the T2-shutdown timer. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T2, SCTP_CHUNK(reply)); | 
|  |  | 
|  | /* Restart the T2-shutdown timer.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T2_SHUTDOWN)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  |  | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ADDIP Section 4.1 ASCONF CHunk Procedures | 
|  | * If the T4 RTO timer expires the endpoint should do B1 to B5 | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_t4_timer_expire( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *chunk = asoc->addip_last_asconf; | 
|  | struct sctp_transport *transport = chunk->transport; | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_T4_RTO_EXPIREDS); | 
|  |  | 
|  | /* ADDIP 4.1 B1) Increment the error counters and perform path failure | 
|  | * detection on the appropriate destination address as defined in | 
|  | * RFC2960 [5] section 8.1 and 8.2. | 
|  | */ | 
|  | if (transport) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_STRIKE, | 
|  | SCTP_TRANSPORT(transport)); | 
|  |  | 
|  | /* Reconfig T4 timer and transport. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SETUP_T4, SCTP_CHUNK(chunk)); | 
|  |  | 
|  | /* ADDIP 4.1 B2) Increment the association error counters and perform | 
|  | * endpoint failure detection on the association as defined in | 
|  | * RFC2960 [5] section 8.1 and 8.2. | 
|  | * association error counter is incremented in SCTP_CMD_STRIKE. | 
|  | */ | 
|  | if (asoc->overall_error_count >= asoc->max_retrans) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_STOP, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_DISPOSITION_ABORT; | 
|  | } | 
|  |  | 
|  | /* ADDIP 4.1 B3) Back-off the destination address RTO value to which | 
|  | * the ASCONF chunk was sent by doubling the RTO timer value. | 
|  | * This is done in SCTP_CMD_STRIKE. | 
|  | */ | 
|  |  | 
|  | /* ADDIP 4.1 B4) Re-transmit the ASCONF Chunk last sent and if possible | 
|  | * choose an alternate destination address (please refer to RFC2960 | 
|  | * [5] section 6.4.1). An endpoint MUST NOT add new parameters to this | 
|  | * chunk, it MUST be the same (including its serial number) as the last | 
|  | * ASCONF sent. | 
|  | */ | 
|  | sctp_chunk_hold(asoc->addip_last_asconf); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(asoc->addip_last_asconf)); | 
|  |  | 
|  | /* ADDIP 4.1 B5) Restart the T-4 RTO timer. Note that if a different | 
|  | * destination is selected, then the RTO used will be that of the new | 
|  | * destination address. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_TIMER_RESTART, | 
|  | SCTP_TO(SCTP_EVENT_TIMEOUT_T4_RTO)); | 
|  |  | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /* sctpimpguide-05 Section 2.12.2 | 
|  | * The sender of the SHUTDOWN MAY also start an overall guard timer | 
|  | * 'T5-shutdown-guard' to bound the overall time for shutdown sequence. | 
|  | * At the expiration of this timer the sender SHOULD abort the association | 
|  | * by sending an ABORT chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_t5_timer_expire(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | struct sctp_chunk *reply = NULL; | 
|  |  | 
|  | SCTP_DEBUG_PRINTK("Timer T5 expired.\n"); | 
|  | SCTP_INC_STATS(SCTP_MIB_T5_SHUTDOWN_GUARD_EXPIREDS); | 
|  |  | 
|  | reply = sctp_make_abort(asoc, NULL, 0); | 
|  | if (!reply) | 
|  | goto nomem; | 
|  |  | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, SCTP_CHUNK(reply)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ETIMEDOUT)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_ERROR)); | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  |  | 
|  | return SCTP_DISPOSITION_DELETE_TCB; | 
|  | nomem: | 
|  | return SCTP_DISPOSITION_NOMEM; | 
|  | } | 
|  |  | 
|  | /* Handle expiration of AUTOCLOSE timer.  When the autoclose timer expires, | 
|  | * the association is automatically closed by starting the shutdown process. | 
|  | * The work that needs to be done is same as when SHUTDOWN is initiated by | 
|  | * the user.  So this routine looks same as sctp_sf_do_9_2_prm_shutdown(). | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_autoclose_timer_expire( | 
|  | const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | int disposition; | 
|  |  | 
|  | SCTP_INC_STATS(SCTP_MIB_AUTOCLOSE_EXPIREDS); | 
|  |  | 
|  | /* From 9.2 Shutdown of an Association | 
|  | * Upon receipt of the SHUTDOWN primitive from its upper | 
|  | * layer, the endpoint enters SHUTDOWN-PENDING state and | 
|  | * remains there until all outstanding data has been | 
|  | * acknowledged by its peer. The endpoint accepts no new data | 
|  | * from its upper layer, but retransmits data to the far end | 
|  | * if necessary to fill gaps. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_NEW_STATE, | 
|  | SCTP_STATE(SCTP_STATE_SHUTDOWN_PENDING)); | 
|  |  | 
|  | disposition = SCTP_DISPOSITION_CONSUME; | 
|  | if (sctp_outq_is_empty(&asoc->outqueue)) { | 
|  | disposition = sctp_sf_do_9_2_start_shutdown(ep, asoc, type, | 
|  | arg, commands); | 
|  | } | 
|  | return disposition; | 
|  | } | 
|  |  | 
|  | /***************************************************************************** | 
|  | * These are sa state functions which could apply to all types of events. | 
|  | ****************************************************************************/ | 
|  |  | 
|  | /* | 
|  | * This table entry is not implemented. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_not_impl(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | return SCTP_DISPOSITION_NOT_IMPL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This table entry represents a bug. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_bug(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | return SCTP_DISPOSITION_BUG; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This table entry represents the firing of a timer in the wrong state. | 
|  | * Since timer deletion cannot be guaranteed a timer 'may' end up firing | 
|  | * when the association is in the wrong state.   This event should | 
|  | * be ignored, so as to prevent any rearming of the timer. | 
|  | * | 
|  | * Inputs | 
|  | * (endpoint, asoc, chunk) | 
|  | * | 
|  | * The return value is the disposition of the chunk. | 
|  | */ | 
|  | sctp_disposition_t sctp_sf_timer_ignore(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const sctp_subtype_t type, | 
|  | void *arg, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | SCTP_DEBUG_PRINTK("Timer %d ignored.\n", type.chunk); | 
|  | return SCTP_DISPOSITION_CONSUME; | 
|  | } | 
|  |  | 
|  | /******************************************************************** | 
|  | * 2nd Level Abstractions | 
|  | ********************************************************************/ | 
|  |  | 
|  | /* Pull the SACK chunk based on the SACK header. */ | 
|  | static struct sctp_sackhdr *sctp_sm_pull_sack(struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_sackhdr *sack; | 
|  | unsigned int len; | 
|  | __u16 num_blocks; | 
|  | __u16 num_dup_tsns; | 
|  |  | 
|  | /* Protect ourselves from reading too far into | 
|  | * the skb from a bogus sender. | 
|  | */ | 
|  | sack = (struct sctp_sackhdr *) chunk->skb->data; | 
|  |  | 
|  | num_blocks = ntohs(sack->num_gap_ack_blocks); | 
|  | num_dup_tsns = ntohs(sack->num_dup_tsns); | 
|  | len = sizeof(struct sctp_sackhdr); | 
|  | len += (num_blocks + num_dup_tsns) * sizeof(__u32); | 
|  | if (len > chunk->skb->len) | 
|  | return NULL; | 
|  |  | 
|  | skb_pull(chunk->skb, len); | 
|  |  | 
|  | return sack; | 
|  | } | 
|  |  | 
|  | /* Create an ABORT packet to be sent as a response, with the specified | 
|  | * error causes. | 
|  | */ | 
|  | static struct sctp_packet *sctp_abort_pkt_new(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | const void *payload, | 
|  | size_t paylen) | 
|  | { | 
|  | struct sctp_packet *packet; | 
|  | struct sctp_chunk *abort; | 
|  |  | 
|  | packet = sctp_ootb_pkt_new(asoc, chunk); | 
|  |  | 
|  | if (packet) { | 
|  | /* Make an ABORT. | 
|  | * The T bit will be set if the asoc is NULL. | 
|  | */ | 
|  | abort = sctp_make_abort(asoc, chunk, paylen); | 
|  | if (!abort) { | 
|  | sctp_ootb_pkt_free(packet); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Reflect vtag if T-Bit is set */ | 
|  | if (sctp_test_T_bit(abort)) | 
|  | packet->vtag = ntohl(chunk->sctp_hdr->vtag); | 
|  |  | 
|  | /* Add specified error causes, i.e., payload, to the | 
|  | * end of the chunk. | 
|  | */ | 
|  | sctp_addto_chunk(abort, paylen, payload); | 
|  |  | 
|  | /* Set the skb to the belonging sock for accounting.  */ | 
|  | abort->skb->sk = ep->base.sk; | 
|  |  | 
|  | sctp_packet_append_chunk(packet, abort); | 
|  |  | 
|  | } | 
|  |  | 
|  | return packet; | 
|  | } | 
|  |  | 
|  | /* Allocate a packet for responding in the OOTB conditions.  */ | 
|  | static struct sctp_packet *sctp_ootb_pkt_new(const struct sctp_association *asoc, | 
|  | const struct sctp_chunk *chunk) | 
|  | { | 
|  | struct sctp_packet *packet; | 
|  | struct sctp_transport *transport; | 
|  | __u16 sport; | 
|  | __u16 dport; | 
|  | __u32 vtag; | 
|  |  | 
|  | /* Get the source and destination port from the inbound packet.  */ | 
|  | sport = ntohs(chunk->sctp_hdr->dest); | 
|  | dport = ntohs(chunk->sctp_hdr->source); | 
|  |  | 
|  | /* The V-tag is going to be the same as the inbound packet if no | 
|  | * association exists, otherwise, use the peer's vtag. | 
|  | */ | 
|  | if (asoc) { | 
|  | /* Special case the INIT-ACK as there is no peer's vtag | 
|  | * yet. | 
|  | */ | 
|  | switch(chunk->chunk_hdr->type) { | 
|  | case SCTP_CID_INIT_ACK: | 
|  | { | 
|  | sctp_initack_chunk_t *initack; | 
|  |  | 
|  | initack = (sctp_initack_chunk_t *)chunk->chunk_hdr; | 
|  | vtag = ntohl(initack->init_hdr.init_tag); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | vtag = asoc->peer.i.init_tag; | 
|  | break; | 
|  | } | 
|  | } else { | 
|  | /* Special case the INIT and stale COOKIE_ECHO as there is no | 
|  | * vtag yet. | 
|  | */ | 
|  | switch(chunk->chunk_hdr->type) { | 
|  | case SCTP_CID_INIT: | 
|  | { | 
|  | sctp_init_chunk_t *init; | 
|  |  | 
|  | init = (sctp_init_chunk_t *)chunk->chunk_hdr; | 
|  | vtag = ntohl(init->init_hdr.init_tag); | 
|  | break; | 
|  | } | 
|  | default: | 
|  | vtag = ntohl(chunk->sctp_hdr->vtag); | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Make a transport for the bucket, Eliza... */ | 
|  | transport = sctp_transport_new(sctp_source(chunk), GFP_ATOMIC); | 
|  | if (!transport) | 
|  | goto nomem; | 
|  |  | 
|  | /* Cache a route for the transport with the chunk's destination as | 
|  | * the source address. | 
|  | */ | 
|  | sctp_transport_route(transport, (union sctp_addr *)&chunk->dest, | 
|  | sctp_sk(sctp_get_ctl_sock())); | 
|  |  | 
|  | packet = sctp_packet_init(&transport->packet, transport, sport, dport); | 
|  | packet = sctp_packet_config(packet, vtag, 0); | 
|  |  | 
|  | return packet; | 
|  |  | 
|  | nomem: | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | /* Free the packet allocated earlier for responding in the OOTB condition.  */ | 
|  | void sctp_ootb_pkt_free(struct sctp_packet *packet) | 
|  | { | 
|  | sctp_transport_free(packet->transport); | 
|  | } | 
|  |  | 
|  | /* Send a stale cookie error when a invalid COOKIE ECHO chunk is found  */ | 
|  | static void sctp_send_stale_cookie_err(const struct sctp_endpoint *ep, | 
|  | const struct sctp_association *asoc, | 
|  | const struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands, | 
|  | struct sctp_chunk *err_chunk) | 
|  | { | 
|  | struct sctp_packet *packet; | 
|  |  | 
|  | if (err_chunk) { | 
|  | packet = sctp_ootb_pkt_new(asoc, chunk); | 
|  | if (packet) { | 
|  | struct sctp_signed_cookie *cookie; | 
|  |  | 
|  | /* Override the OOTB vtag from the cookie. */ | 
|  | cookie = chunk->subh.cookie_hdr; | 
|  | packet->vtag = cookie->c.peer_vtag; | 
|  |  | 
|  | /* Set the skb to the belonging sock for accounting. */ | 
|  | err_chunk->skb->sk = ep->base.sk; | 
|  | sctp_packet_append_chunk(packet, err_chunk); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SEND_PKT, | 
|  | SCTP_PACKET(packet)); | 
|  | SCTP_INC_STATS(SCTP_MIB_OUTCTRLCHUNKS); | 
|  | } else | 
|  | sctp_chunk_free (err_chunk); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | /* Process a data chunk */ | 
|  | static int sctp_eat_data(const struct sctp_association *asoc, | 
|  | struct sctp_chunk *chunk, | 
|  | sctp_cmd_seq_t *commands) | 
|  | { | 
|  | sctp_datahdr_t *data_hdr; | 
|  | struct sctp_chunk *err; | 
|  | size_t datalen; | 
|  | sctp_verb_t deliver; | 
|  | int tmp; | 
|  | __u32 tsn; | 
|  | struct sctp_tsnmap *map = (struct sctp_tsnmap *)&asoc->peer.tsn_map; | 
|  | struct sock *sk = asoc->base.sk; | 
|  | u16 ssn; | 
|  | u16 sid; | 
|  | u8 ordered = 0; | 
|  |  | 
|  | data_hdr = chunk->subh.data_hdr = (sctp_datahdr_t *)chunk->skb->data; | 
|  | skb_pull(chunk->skb, sizeof(sctp_datahdr_t)); | 
|  |  | 
|  | tsn = ntohl(data_hdr->tsn); | 
|  | SCTP_DEBUG_PRINTK("eat_data: TSN 0x%x.\n", tsn); | 
|  |  | 
|  | /* ASSERT:  Now skb->data is really the user data.  */ | 
|  |  | 
|  | /* Process ECN based congestion. | 
|  | * | 
|  | * Since the chunk structure is reused for all chunks within | 
|  | * a packet, we use ecn_ce_done to track if we've already | 
|  | * done CE processing for this packet. | 
|  | * | 
|  | * We need to do ECN processing even if we plan to discard the | 
|  | * chunk later. | 
|  | */ | 
|  |  | 
|  | if (!chunk->ecn_ce_done) { | 
|  | struct sctp_af *af; | 
|  | chunk->ecn_ce_done = 1; | 
|  |  | 
|  | af = sctp_get_af_specific( | 
|  | ipver2af(ip_hdr(chunk->skb)->version)); | 
|  |  | 
|  | if (af && af->is_ce(chunk->skb) && asoc->peer.ecn_capable) { | 
|  | /* Do real work as sideffect. */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ECN_CE, | 
|  | SCTP_U32(tsn)); | 
|  | } | 
|  | } | 
|  |  | 
|  | tmp = sctp_tsnmap_check(&asoc->peer.tsn_map, tsn); | 
|  | if (tmp < 0) { | 
|  | /* The TSN is too high--silently discard the chunk and | 
|  | * count on it getting retransmitted later. | 
|  | */ | 
|  | return SCTP_IERROR_HIGH_TSN; | 
|  | } else if (tmp > 0) { | 
|  | /* This is a duplicate.  Record it.  */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_DUP, SCTP_U32(tsn)); | 
|  | return SCTP_IERROR_DUP_TSN; | 
|  | } | 
|  |  | 
|  | /* This is a new TSN.  */ | 
|  |  | 
|  | /* Discard if there is no room in the receive window. | 
|  | * Actually, allow a little bit of overflow (up to a MTU). | 
|  | */ | 
|  | datalen = ntohs(chunk->chunk_hdr->length); | 
|  | datalen -= sizeof(sctp_data_chunk_t); | 
|  |  | 
|  | deliver = SCTP_CMD_CHUNK_ULP; | 
|  |  | 
|  | /* Think about partial delivery. */ | 
|  | if ((datalen >= asoc->rwnd) && (!asoc->ulpq.pd_mode)) { | 
|  |  | 
|  | /* Even if we don't accept this chunk there is | 
|  | * memory pressure. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_PART_DELIVER, SCTP_NULL()); | 
|  | } | 
|  |  | 
|  | /* Spill over rwnd a little bit.  Note: While allowed, this spill over | 
|  | * seems a bit troublesome in that frag_point varies based on | 
|  | * PMTU.  In cases, such as loopback, this might be a rather | 
|  | * large spill over. | 
|  | */ | 
|  | if ((!chunk->data_accepted) && (!asoc->rwnd || asoc->rwnd_over || | 
|  | (datalen > asoc->rwnd + asoc->frag_point))) { | 
|  |  | 
|  | /* If this is the next TSN, consider reneging to make | 
|  | * room.   Note: Playing nice with a confused sender.  A | 
|  | * malicious sender can still eat up all our buffer | 
|  | * space and in the future we may want to detect and | 
|  | * do more drastic reneging. | 
|  | */ | 
|  | if (sctp_tsnmap_has_gap(map) && | 
|  | (sctp_tsnmap_get_ctsn(map) + 1) == tsn) { | 
|  | SCTP_DEBUG_PRINTK("Reneging for tsn:%u\n", tsn); | 
|  | deliver = SCTP_CMD_RENEGE; | 
|  | } else { | 
|  | SCTP_DEBUG_PRINTK("Discard tsn: %u len: %Zd, " | 
|  | "rwnd: %d\n", tsn, datalen, | 
|  | asoc->rwnd); | 
|  | return SCTP_IERROR_IGNORE_TSN; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Also try to renege to limit our memory usage in the event that | 
|  | * we are under memory pressure | 
|  | * If we can't renege, don't worry about it, the sk_rmem_schedule | 
|  | * in sctp_ulpevent_make_rcvmsg will drop the frame if we grow our | 
|  | * memory usage too much | 
|  | */ | 
|  | if (*sk->sk_prot_creator->memory_pressure) { | 
|  | if (sctp_tsnmap_has_gap(map) && | 
|  | (sctp_tsnmap_get_ctsn(map) + 1) == tsn) { | 
|  | SCTP_DEBUG_PRINTK("Under Pressure! Reneging for tsn:%u\n", tsn); | 
|  | deliver = SCTP_CMD_RENEGE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Section 3.3.10.9 No User Data (9) | 
|  | * | 
|  | * Cause of error | 
|  | * --------------- | 
|  | * No User Data:  This error cause is returned to the originator of a | 
|  | * DATA chunk if a received DATA chunk has no user data. | 
|  | */ | 
|  | if (unlikely(0 == datalen)) { | 
|  | err = sctp_make_abort_no_data(asoc, chunk, tsn); | 
|  | if (err) { | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(err)); | 
|  | } | 
|  | /* We are going to ABORT, so we might as well stop | 
|  | * processing the rest of the chunks in the packet. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_DISCARD_PACKET,SCTP_NULL()); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_SET_SK_ERR, | 
|  | SCTP_ERROR(ECONNABORTED)); | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_ASSOC_FAILED, | 
|  | SCTP_PERR(SCTP_ERROR_NO_DATA)); | 
|  | SCTP_INC_STATS(SCTP_MIB_ABORTEDS); | 
|  | SCTP_DEC_STATS(SCTP_MIB_CURRESTAB); | 
|  | return SCTP_IERROR_NO_DATA; | 
|  | } | 
|  |  | 
|  | chunk->data_accepted = 1; | 
|  |  | 
|  | /* Note: Some chunks may get overcounted (if we drop) or overcounted | 
|  | * if we renege and the chunk arrives again. | 
|  | */ | 
|  | if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED) | 
|  | SCTP_INC_STATS(SCTP_MIB_INUNORDERCHUNKS); | 
|  | else { | 
|  | SCTP_INC_STATS(SCTP_MIB_INORDERCHUNKS); | 
|  | ordered = 1; | 
|  | } | 
|  |  | 
|  | /* RFC 2960 6.5 Stream Identifier and Stream Sequence Number | 
|  | * | 
|  | * If an endpoint receive a DATA chunk with an invalid stream | 
|  | * identifier, it shall acknowledge the reception of the DATA chunk | 
|  | * following the normal procedure, immediately send an ERROR chunk | 
|  | * with cause set to "Invalid Stream Identifier" (See Section 3.3.10) | 
|  | * and discard the DATA chunk. | 
|  | */ | 
|  | sid = ntohs(data_hdr->stream); | 
|  | if (sid >= asoc->c.sinit_max_instreams) { | 
|  | /* Mark tsn as received even though we drop it */ | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPORT_TSN, SCTP_U32(tsn)); | 
|  |  | 
|  | err = sctp_make_op_error(asoc, chunk, SCTP_ERROR_INV_STRM, | 
|  | &data_hdr->stream, | 
|  | sizeof(data_hdr->stream), | 
|  | sizeof(u16)); | 
|  | if (err) | 
|  | sctp_add_cmd_sf(commands, SCTP_CMD_REPLY, | 
|  | SCTP_CHUNK(err)); | 
|  | return SCTP_IERROR_BAD_STREAM; | 
|  | } | 
|  |  | 
|  | /* Check to see if the SSN is possible for this TSN. | 
|  | * The biggest gap we can record is 4K wide.  Since SSNs wrap | 
|  | * at an unsigned short, there is no way that an SSN can | 
|  | * wrap and for a valid TSN.  We can simply check if the current | 
|  | * SSN is smaller then the next expected one.  If it is, it wrapped | 
|  | * and is invalid. | 
|  | */ | 
|  | ssn = ntohs(data_hdr->ssn); | 
|  | if (ordered && SSN_lt(ssn, sctp_ssn_peek(&asoc->ssnmap->in, sid))) { | 
|  | return SCTP_IERROR_PROTO_VIOLATION; | 
|  | } | 
|  |  | 
|  | /* Send the data up to the user.  Note:  Schedule  the | 
|  | * SCTP_CMD_CHUNK_ULP cmd before the SCTP_CMD_GEN_SACK, as the SACK | 
|  | * chunk needs the updated rwnd. | 
|  | */ | 
|  | sctp_add_cmd_sf(commands, deliver, SCTP_CHUNK(chunk)); | 
|  |  | 
|  | return SCTP_IERROR_NO_ERROR; | 
|  | } |