|  | /* | 
|  | * Copyright (c) 2000-2003,2005 Silicon Graphics, Inc. | 
|  | * Copyright (C) 2010 Red Hat, Inc. | 
|  | * All Rights Reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU General Public License as | 
|  | * published by the Free Software Foundation. | 
|  | * | 
|  | * This program is distributed in the hope that it would be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | * GNU General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License | 
|  | * along with this program; if not, write the Free Software Foundation, | 
|  | * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA | 
|  | */ | 
|  | #include "xfs.h" | 
|  | #include "xfs_fs.h" | 
|  | #include "xfs_types.h" | 
|  | #include "xfs_bit.h" | 
|  | #include "xfs_log.h" | 
|  | #include "xfs_inum.h" | 
|  | #include "xfs_trans.h" | 
|  | #include "xfs_sb.h" | 
|  | #include "xfs_ag.h" | 
|  | #include "xfs_mount.h" | 
|  | #include "xfs_error.h" | 
|  | #include "xfs_da_btree.h" | 
|  | #include "xfs_bmap_btree.h" | 
|  | #include "xfs_alloc_btree.h" | 
|  | #include "xfs_ialloc_btree.h" | 
|  | #include "xfs_dinode.h" | 
|  | #include "xfs_inode.h" | 
|  | #include "xfs_btree.h" | 
|  | #include "xfs_ialloc.h" | 
|  | #include "xfs_alloc.h" | 
|  | #include "xfs_bmap.h" | 
|  | #include "xfs_quota.h" | 
|  | #include "xfs_trans_priv.h" | 
|  | #include "xfs_trans_space.h" | 
|  | #include "xfs_inode_item.h" | 
|  | #include "xfs_trace.h" | 
|  |  | 
|  | kmem_zone_t	*xfs_trans_zone; | 
|  | kmem_zone_t	*xfs_log_item_desc_zone; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Various log reservation values. | 
|  | * | 
|  | * These are based on the size of the file system block because that is what | 
|  | * most transactions manipulate.  Each adds in an additional 128 bytes per | 
|  | * item logged to try to account for the overhead of the transaction mechanism. | 
|  | * | 
|  | * Note:  Most of the reservations underestimate the number of allocation | 
|  | * groups into which they could free extents in the xfs_bmap_finish() call. | 
|  | * This is because the number in the worst case is quite high and quite | 
|  | * unusual.  In order to fix this we need to change xfs_bmap_finish() to free | 
|  | * extents in only a single AG at a time.  This will require changes to the | 
|  | * EFI code as well, however, so that the EFI for the extents not freed is | 
|  | * logged again in each transaction.  See SGI PV #261917. | 
|  | * | 
|  | * Reservation functions here avoid a huge stack in xfs_trans_init due to | 
|  | * register overflow from temporaries in the calculations. | 
|  | */ | 
|  |  | 
|  |  | 
|  | /* | 
|  | * In a write transaction we can allocate a maximum of 2 | 
|  | * extents.  This gives: | 
|  | *    the inode getting the new extents: inode size | 
|  | *    the inode's bmap btree: max depth * block size | 
|  | *    the agfs of the ags from which the extents are allocated: 2 * sector | 
|  | *    the superblock free block counter: sector size | 
|  | *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | * And the bmap_finish transaction can free bmap blocks in a join: | 
|  | *    the agfs of the ags containing the blocks: 2 * sector size | 
|  | *    the agfls of the ags containing the blocks: 2 * sector size | 
|  | *    the super block free block counter: sector size | 
|  | *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_write_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + | 
|  | 2 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 2) + | 
|  | 128 * (4 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 2))), | 
|  | (2 * mp->m_sb.sb_sectsize + | 
|  | 2 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 2) + | 
|  | 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In truncating a file we free up to two extents at once.  We can modify: | 
|  | *    the inode being truncated: inode size | 
|  | *    the inode's bmap btree: (max depth + 1) * block size | 
|  | * And the bmap_finish transaction can free the blocks and bmap blocks: | 
|  | *    the agf for each of the ags: 4 * sector size | 
|  | *    the agfl for each of the ags: 4 * sector size | 
|  | *    the super block to reflect the freed blocks: sector size | 
|  | *    worst case split in allocation btrees per extent assuming 4 extents: | 
|  | *		4 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | *    the inode btree: max depth * blocksize | 
|  | *    the allocation btrees: 2 trees * (max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_itruncate_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + 1) + | 
|  | 128 * (2 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), | 
|  | (4 * mp->m_sb.sb_sectsize + | 
|  | 4 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 4) + | 
|  | 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)) + | 
|  | 128 * 5 + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In renaming a files we can modify: | 
|  | *    the four inodes involved: 4 * inode size | 
|  | *    the two directory btrees: 2 * (max depth + v2) * dir block size | 
|  | *    the two directory bmap btrees: 2 * max depth * block size | 
|  | * And the bmap_finish transaction can free dir and bmap blocks (two sets | 
|  | *	of bmap blocks) giving: | 
|  | *    the agf for the ags in which the blocks live: 3 * sector size | 
|  | *    the agfl for the ags in which the blocks live: 3 * sector size | 
|  | *    the superblock for the free block count: sector size | 
|  | *    the allocation btrees: 3 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_rename_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((4 * mp->m_sb.sb_inodesize + | 
|  | 2 * XFS_DIROP_LOG_RES(mp) + | 
|  | 128 * (4 + 2 * XFS_DIROP_LOG_COUNT(mp))), | 
|  | (3 * mp->m_sb.sb_sectsize + | 
|  | 3 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 3) + | 
|  | 128 * (7 + XFS_ALLOCFREE_LOG_COUNT(mp, 3)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For creating a link to an inode: | 
|  | *    the parent directory inode: inode size | 
|  | *    the linked inode: inode size | 
|  | *    the directory btree could split: (max depth + v2) * dir block size | 
|  | *    the directory bmap btree could join or split: (max depth + v2) * blocksize | 
|  | * And the bmap_finish transaction can free some bmap blocks giving: | 
|  | *    the agf for the ag in which the blocks live: sector size | 
|  | *    the agfl for the ag in which the blocks live: sector size | 
|  | *    the superblock for the free block count: sector size | 
|  | *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_link_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_inodesize + | 
|  | XFS_DIROP_LOG_RES(mp) + | 
|  | 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), | 
|  | (mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For removing a directory entry we can modify: | 
|  | *    the parent directory inode: inode size | 
|  | *    the removed inode: inode size | 
|  | *    the directory btree could join: (max depth + v2) * dir block size | 
|  | *    the directory bmap btree could join or split: (max depth + v2) * blocksize | 
|  | * And the bmap_finish transaction can free the dir and bmap blocks giving: | 
|  | *    the agf for the ag in which the blocks live: 2 * sector size | 
|  | *    the agfl for the ag in which the blocks live: 2 * sector size | 
|  | *    the superblock for the free block count: sector size | 
|  | *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_remove_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_inodesize + | 
|  | XFS_DIROP_LOG_RES(mp) + | 
|  | 128 * (2 + XFS_DIROP_LOG_COUNT(mp))), | 
|  | (2 * mp->m_sb.sb_sectsize + | 
|  | 2 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 2) + | 
|  | 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For symlink we can modify: | 
|  | *    the parent directory inode: inode size | 
|  | *    the new inode: inode size | 
|  | *    the inode btree entry: 1 block | 
|  | *    the directory btree: (max depth + v2) * dir block size | 
|  | *    the directory inode's bmap btree: (max depth + v2) * block size | 
|  | *    the blocks for the symlink: 1 kB | 
|  | * Or in the first xact we allocate some inodes giving: | 
|  | *    the agi and agf of the ag getting the new inodes: 2 * sectorsize | 
|  | *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize | 
|  | *    the inode btree: max depth * blocksize | 
|  | *    the allocation btrees: 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_symlink_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_inodesize + | 
|  | XFS_FSB_TO_B(mp, 1) + | 
|  | XFS_DIROP_LOG_RES(mp) + | 
|  | 1024 + | 
|  | 128 * (4 + XFS_DIROP_LOG_COUNT(mp))), | 
|  | (2 * mp->m_sb.sb_sectsize + | 
|  | XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + | 
|  | XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * For create we can modify: | 
|  | *    the parent directory inode: inode size | 
|  | *    the new inode: inode size | 
|  | *    the inode btree entry: block size | 
|  | *    the superblock for the nlink flag: sector size | 
|  | *    the directory btree: (max depth + v2) * dir block size | 
|  | *    the directory inode's bmap btree: (max depth + v2) * block size | 
|  | * Or in the first xact we allocate some inodes giving: | 
|  | *    the agi and agf of the ag getting the new inodes: 2 * sectorsize | 
|  | *    the superblock for the nlink flag: sector size | 
|  | *    the inode blocks allocated: XFS_IALLOC_BLOCKS * blocksize | 
|  | *    the inode btree: max depth * blocksize | 
|  | *    the allocation btrees: 2 trees * (max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_create_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_FSB_TO_B(mp, 1) + | 
|  | XFS_DIROP_LOG_RES(mp) + | 
|  | 128 * (3 + XFS_DIROP_LOG_COUNT(mp))), | 
|  | (3 * mp->m_sb.sb_sectsize + | 
|  | XFS_FSB_TO_B(mp, XFS_IALLOC_BLOCKS(mp)) + | 
|  | XFS_FSB_TO_B(mp, mp->m_in_maxlevels) + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 1)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Making a new directory is the same as creating a new file. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_mkdir_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return xfs_calc_create_reservation(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In freeing an inode we can modify: | 
|  | *    the inode being freed: inode size | 
|  | *    the super block free inode counter: sector size | 
|  | *    the agi hash list and counters: sector size | 
|  | *    the inode btree entry: block size | 
|  | *    the on disk inode before ours in the agi hash list: inode cluster size | 
|  | *    the inode btree: max depth * blocksize | 
|  | *    the allocation btrees: 2 trees * (max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_ifree_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_FSB_TO_B(mp, 1) + | 
|  | MAX((__uint16_t)XFS_FSB_TO_B(mp, 1), | 
|  | XFS_INODE_CLUSTER_SIZE(mp)) + | 
|  | 128 * 5 + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (2 + XFS_IALLOC_BLOCKS(mp) + mp->m_in_maxlevels + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When only changing the inode we log the inode and possibly the superblock | 
|  | * We also add a bit of slop for the transaction stuff. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_ichange_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | 512; | 
|  |  | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Growing the data section of the filesystem. | 
|  | *	superblock | 
|  | *	agi and agf | 
|  | *	allocation btrees | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_growdata_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return mp->m_sb.sb_sectsize * 3 + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (3 + XFS_ALLOCFREE_LOG_COUNT(mp, 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Growing the rt section of the filesystem. | 
|  | * In the first set of transactions (ALLOC) we allocate space to the | 
|  | * bitmap or summary files. | 
|  | *	superblock: sector size | 
|  | *	agf of the ag from which the extent is allocated: sector size | 
|  | *	bmap btree for bitmap/summary inode: max depth * blocksize | 
|  | *	bitmap/summary inode: inode size | 
|  | *	allocation btrees for 1 block alloc: 2 * (2 * maxdepth - 1) * blocksize | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_growrtalloc_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return 2 * mp->m_sb.sb_sectsize + | 
|  | XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK)) + | 
|  | mp->m_sb.sb_inodesize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (3 + XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK) + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Growing the rt section of the filesystem. | 
|  | * In the second set of transactions (ZERO) we zero the new metadata blocks. | 
|  | *	one bitmap/summary block: blocksize | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_growrtzero_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return mp->m_sb.sb_blocksize + 128; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Growing the rt section of the filesystem. | 
|  | * In the third set of transactions (FREE) we update metadata without | 
|  | * allocating any new blocks. | 
|  | *	superblock: sector size | 
|  | *	bitmap inode: inode size | 
|  | *	summary inode: inode size | 
|  | *	one bitmap block: blocksize | 
|  | *	summary blocks: new summary size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_growrtfree_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return mp->m_sb.sb_sectsize + | 
|  | 2 * mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_blocksize + | 
|  | mp->m_rsumsize + | 
|  | 128 * 5; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Logging the inode modification timestamp on a synchronous write. | 
|  | *	inode | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_swrite_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return mp->m_sb.sb_inodesize + 128; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Logging the inode mode bits when writing a setuid/setgid file | 
|  | *	inode | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_writeid_reservation(xfs_mount_t *mp) | 
|  | { | 
|  | return mp->m_sb.sb_inodesize + 128; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Converting the inode from non-attributed to attributed. | 
|  | *	the inode being converted: inode size | 
|  | *	agf block and superblock (for block allocation) | 
|  | *	the new block (directory sized) | 
|  | *	bmap blocks for the new directory block | 
|  | *	allocation btrees | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_addafork_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_sectsize * 2 + | 
|  | mp->m_dirblksize + | 
|  | XFS_FSB_TO_B(mp, XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1) + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 1) + | 
|  | 128 * (4 + XFS_DAENTER_BMAP1B(mp, XFS_DATA_FORK) + 1 + | 
|  | XFS_ALLOCFREE_LOG_COUNT(mp, 1)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removing the attribute fork of a file | 
|  | *    the inode being truncated: inode size | 
|  | *    the inode's bmap btree: max depth * block size | 
|  | * And the bmap_finish transaction can free the blocks and bmap blocks: | 
|  | *    the agf for each of the ags: 4 * sector size | 
|  | *    the agfl for each of the ags: 4 * sector size | 
|  | *    the super block to reflect the freed blocks: sector size | 
|  | *    worst case split in allocation btrees per extent assuming 4 extents: | 
|  | *		4 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_attrinval_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return MAX((mp->m_sb.sb_inodesize + | 
|  | XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + | 
|  | 128 * (1 + XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK))), | 
|  | (4 * mp->m_sb.sb_sectsize + | 
|  | 4 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 4) + | 
|  | 128 * (9 + XFS_ALLOCFREE_LOG_COUNT(mp, 4)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Setting an attribute. | 
|  | *	the inode getting the attribute | 
|  | *	the superblock for allocations | 
|  | *	the agfs extents are allocated from | 
|  | *	the attribute btree * max depth | 
|  | *	the inode allocation btree | 
|  | * Since attribute transaction space is dependent on the size of the attribute, | 
|  | * the calculation is done partially at mount time and partially at runtime. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_attrset_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | mp->m_sb.sb_inodesize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + | 
|  | 128 * (2 + XFS_DA_NODE_MAXDEPTH); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Removing an attribute. | 
|  | *    the inode: inode size | 
|  | *    the attribute btree could join: max depth * block size | 
|  | *    the inode bmap btree could join or split: max depth * block size | 
|  | * And the bmap_finish transaction can free the attr blocks freed giving: | 
|  | *    the agf for the ag in which the blocks live: 2 * sector size | 
|  | *    the agfl for the ag in which the blocks live: 2 * sector size | 
|  | *    the superblock for the free block count: sector size | 
|  | *    the allocation btrees: 2 exts * 2 trees * (2 * max depth - 1) * block size | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_attrrm_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return XFS_DQUOT_LOGRES(mp) + | 
|  | MAX((mp->m_sb.sb_inodesize + | 
|  | XFS_FSB_TO_B(mp, XFS_DA_NODE_MAXDEPTH) + | 
|  | XFS_FSB_TO_B(mp, XFS_BM_MAXLEVELS(mp, XFS_ATTR_FORK)) + | 
|  | 128 * (1 + XFS_DA_NODE_MAXDEPTH + | 
|  | XFS_BM_MAXLEVELS(mp, XFS_DATA_FORK))), | 
|  | (2 * mp->m_sb.sb_sectsize + | 
|  | 2 * mp->m_sb.sb_sectsize + | 
|  | mp->m_sb.sb_sectsize + | 
|  | XFS_ALLOCFREE_LOG_RES(mp, 2) + | 
|  | 128 * (5 + XFS_ALLOCFREE_LOG_COUNT(mp, 2)))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Clearing a bad agino number in an agi hash bucket. | 
|  | */ | 
|  | STATIC uint | 
|  | xfs_calc_clear_agi_bucket_reservation( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | return mp->m_sb.sb_sectsize + 128; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Initialize the precomputed transaction reservation values | 
|  | * in the mount structure. | 
|  | */ | 
|  | void | 
|  | xfs_trans_init( | 
|  | struct xfs_mount	*mp) | 
|  | { | 
|  | struct xfs_trans_reservations *resp = &mp->m_reservations; | 
|  |  | 
|  | resp->tr_write = xfs_calc_write_reservation(mp); | 
|  | resp->tr_itruncate = xfs_calc_itruncate_reservation(mp); | 
|  | resp->tr_rename = xfs_calc_rename_reservation(mp); | 
|  | resp->tr_link = xfs_calc_link_reservation(mp); | 
|  | resp->tr_remove = xfs_calc_remove_reservation(mp); | 
|  | resp->tr_symlink = xfs_calc_symlink_reservation(mp); | 
|  | resp->tr_create = xfs_calc_create_reservation(mp); | 
|  | resp->tr_mkdir = xfs_calc_mkdir_reservation(mp); | 
|  | resp->tr_ifree = xfs_calc_ifree_reservation(mp); | 
|  | resp->tr_ichange = xfs_calc_ichange_reservation(mp); | 
|  | resp->tr_growdata = xfs_calc_growdata_reservation(mp); | 
|  | resp->tr_swrite = xfs_calc_swrite_reservation(mp); | 
|  | resp->tr_writeid = xfs_calc_writeid_reservation(mp); | 
|  | resp->tr_addafork = xfs_calc_addafork_reservation(mp); | 
|  | resp->tr_attrinval = xfs_calc_attrinval_reservation(mp); | 
|  | resp->tr_attrset = xfs_calc_attrset_reservation(mp); | 
|  | resp->tr_attrrm = xfs_calc_attrrm_reservation(mp); | 
|  | resp->tr_clearagi = xfs_calc_clear_agi_bucket_reservation(mp); | 
|  | resp->tr_growrtalloc = xfs_calc_growrtalloc_reservation(mp); | 
|  | resp->tr_growrtzero = xfs_calc_growrtzero_reservation(mp); | 
|  | resp->tr_growrtfree = xfs_calc_growrtfree_reservation(mp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This routine is called to allocate a transaction structure. | 
|  | * The type parameter indicates the type of the transaction.  These | 
|  | * are enumerated in xfs_trans.h. | 
|  | * | 
|  | * Dynamically allocate the transaction structure from the transaction | 
|  | * zone, initialize it, and return it to the caller. | 
|  | */ | 
|  | xfs_trans_t * | 
|  | xfs_trans_alloc( | 
|  | xfs_mount_t	*mp, | 
|  | uint		type) | 
|  | { | 
|  | xfs_wait_for_freeze(mp, SB_FREEZE_TRANS); | 
|  | return _xfs_trans_alloc(mp, type, KM_SLEEP); | 
|  | } | 
|  |  | 
|  | xfs_trans_t * | 
|  | _xfs_trans_alloc( | 
|  | xfs_mount_t	*mp, | 
|  | uint		type, | 
|  | uint		memflags) | 
|  | { | 
|  | xfs_trans_t	*tp; | 
|  |  | 
|  | atomic_inc(&mp->m_active_trans); | 
|  |  | 
|  | tp = kmem_zone_zalloc(xfs_trans_zone, memflags); | 
|  | tp->t_magic = XFS_TRANS_MAGIC; | 
|  | tp->t_type = type; | 
|  | tp->t_mountp = mp; | 
|  | INIT_LIST_HEAD(&tp->t_items); | 
|  | INIT_LIST_HEAD(&tp->t_busy); | 
|  | return tp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Free the transaction structure.  If there is more clean up | 
|  | * to do when the structure is freed, add it here. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_free( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | struct xfs_busy_extent	*busyp, *n; | 
|  |  | 
|  | list_for_each_entry_safe(busyp, n, &tp->t_busy, list) | 
|  | xfs_alloc_busy_clear(tp->t_mountp, busyp); | 
|  |  | 
|  | atomic_dec(&tp->t_mountp->m_active_trans); | 
|  | xfs_trans_free_dqinfo(tp); | 
|  | kmem_zone_free(xfs_trans_zone, tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to create a new transaction which will share the | 
|  | * permanent log reservation of the given transaction.  The remaining | 
|  | * unused block and rt extent reservations are also inherited.  This | 
|  | * implies that the original transaction is no longer allowed to allocate | 
|  | * blocks.  Locks and log items, however, are no inherited.  They must | 
|  | * be added to the new transaction explicitly. | 
|  | */ | 
|  | xfs_trans_t * | 
|  | xfs_trans_dup( | 
|  | xfs_trans_t	*tp) | 
|  | { | 
|  | xfs_trans_t	*ntp; | 
|  |  | 
|  | ntp = kmem_zone_zalloc(xfs_trans_zone, KM_SLEEP); | 
|  |  | 
|  | /* | 
|  | * Initialize the new transaction structure. | 
|  | */ | 
|  | ntp->t_magic = XFS_TRANS_MAGIC; | 
|  | ntp->t_type = tp->t_type; | 
|  | ntp->t_mountp = tp->t_mountp; | 
|  | INIT_LIST_HEAD(&ntp->t_items); | 
|  | INIT_LIST_HEAD(&ntp->t_busy); | 
|  |  | 
|  | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | ASSERT(tp->t_ticket != NULL); | 
|  |  | 
|  | ntp->t_flags = XFS_TRANS_PERM_LOG_RES | (tp->t_flags & XFS_TRANS_RESERVE); | 
|  | ntp->t_ticket = xfs_log_ticket_get(tp->t_ticket); | 
|  | ntp->t_blk_res = tp->t_blk_res - tp->t_blk_res_used; | 
|  | tp->t_blk_res = tp->t_blk_res_used; | 
|  | ntp->t_rtx_res = tp->t_rtx_res - tp->t_rtx_res_used; | 
|  | tp->t_rtx_res = tp->t_rtx_res_used; | 
|  | ntp->t_pflags = tp->t_pflags; | 
|  |  | 
|  | xfs_trans_dup_dqinfo(tp, ntp); | 
|  |  | 
|  | atomic_inc(&tp->t_mountp->m_active_trans); | 
|  | return ntp; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is called to reserve free disk blocks and log space for the | 
|  | * given transaction.  This must be done before allocating any resources | 
|  | * within the transaction. | 
|  | * | 
|  | * This will return ENOSPC if there are not enough blocks available. | 
|  | * It will sleep waiting for available log space. | 
|  | * The only valid value for the flags parameter is XFS_RES_LOG_PERM, which | 
|  | * is used by long running transactions.  If any one of the reservations | 
|  | * fails then they will all be backed out. | 
|  | * | 
|  | * This does not do quota reservations. That typically is done by the | 
|  | * caller afterwards. | 
|  | */ | 
|  | int | 
|  | xfs_trans_reserve( | 
|  | xfs_trans_t	*tp, | 
|  | uint		blocks, | 
|  | uint		logspace, | 
|  | uint		rtextents, | 
|  | uint		flags, | 
|  | uint		logcount) | 
|  | { | 
|  | int		log_flags; | 
|  | int		error = 0; | 
|  | int		rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; | 
|  |  | 
|  | /* Mark this thread as being in a transaction */ | 
|  | current_set_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  |  | 
|  | /* | 
|  | * Attempt to reserve the needed disk blocks by decrementing | 
|  | * the number needed from the number available.  This will | 
|  | * fail if the count would go below zero. | 
|  | */ | 
|  | if (blocks > 0) { | 
|  | error = xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, | 
|  | -((int64_t)blocks), rsvd); | 
|  | if (error != 0) { | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  | return (XFS_ERROR(ENOSPC)); | 
|  | } | 
|  | tp->t_blk_res += blocks; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reserve the log space needed for this transaction. | 
|  | */ | 
|  | if (logspace > 0) { | 
|  | ASSERT((tp->t_log_res == 0) || (tp->t_log_res == logspace)); | 
|  | ASSERT((tp->t_log_count == 0) || | 
|  | (tp->t_log_count == logcount)); | 
|  | if (flags & XFS_TRANS_PERM_LOG_RES) { | 
|  | log_flags = XFS_LOG_PERM_RESERV; | 
|  | tp->t_flags |= XFS_TRANS_PERM_LOG_RES; | 
|  | } else { | 
|  | ASSERT(tp->t_ticket == NULL); | 
|  | ASSERT(!(tp->t_flags & XFS_TRANS_PERM_LOG_RES)); | 
|  | log_flags = 0; | 
|  | } | 
|  |  | 
|  | error = xfs_log_reserve(tp->t_mountp, logspace, logcount, | 
|  | &tp->t_ticket, | 
|  | XFS_TRANSACTION, log_flags, tp->t_type); | 
|  | if (error) { | 
|  | goto undo_blocks; | 
|  | } | 
|  | tp->t_log_res = logspace; | 
|  | tp->t_log_count = logcount; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Attempt to reserve the needed realtime extents by decrementing | 
|  | * the number needed from the number available.  This will | 
|  | * fail if the count would go below zero. | 
|  | */ | 
|  | if (rtextents > 0) { | 
|  | error = xfs_mod_incore_sb(tp->t_mountp, XFS_SBS_FREXTENTS, | 
|  | -((int64_t)rtextents), rsvd); | 
|  | if (error) { | 
|  | error = XFS_ERROR(ENOSPC); | 
|  | goto undo_log; | 
|  | } | 
|  | tp->t_rtx_res += rtextents; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  |  | 
|  | /* | 
|  | * Error cases jump to one of these labels to undo any | 
|  | * reservations which have already been performed. | 
|  | */ | 
|  | undo_log: | 
|  | if (logspace > 0) { | 
|  | if (flags & XFS_TRANS_PERM_LOG_RES) { | 
|  | log_flags = XFS_LOG_REL_PERM_RESERV; | 
|  | } else { | 
|  | log_flags = 0; | 
|  | } | 
|  | xfs_log_done(tp->t_mountp, tp->t_ticket, NULL, log_flags); | 
|  | tp->t_ticket = NULL; | 
|  | tp->t_log_res = 0; | 
|  | tp->t_flags &= ~XFS_TRANS_PERM_LOG_RES; | 
|  | } | 
|  |  | 
|  | undo_blocks: | 
|  | if (blocks > 0) { | 
|  | xfs_icsb_modify_counters(tp->t_mountp, XFS_SBS_FDBLOCKS, | 
|  | (int64_t)blocks, rsvd); | 
|  | tp->t_blk_res = 0; | 
|  | } | 
|  |  | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  |  | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Record the indicated change to the given field for application | 
|  | * to the file system's superblock when the transaction commits. | 
|  | * For now, just store the change in the transaction structure. | 
|  | * | 
|  | * Mark the transaction structure to indicate that the superblock | 
|  | * needs to be updated before committing. | 
|  | * | 
|  | * Because we may not be keeping track of allocated/free inodes and | 
|  | * used filesystem blocks in the superblock, we do not mark the | 
|  | * superblock dirty in this transaction if we modify these fields. | 
|  | * We still need to update the transaction deltas so that they get | 
|  | * applied to the incore superblock, but we don't want them to | 
|  | * cause the superblock to get locked and logged if these are the | 
|  | * only fields in the superblock that the transaction modifies. | 
|  | */ | 
|  | void | 
|  | xfs_trans_mod_sb( | 
|  | xfs_trans_t	*tp, | 
|  | uint		field, | 
|  | int64_t		delta) | 
|  | { | 
|  | uint32_t	flags = (XFS_TRANS_DIRTY|XFS_TRANS_SB_DIRTY); | 
|  | xfs_mount_t	*mp = tp->t_mountp; | 
|  |  | 
|  | switch (field) { | 
|  | case XFS_TRANS_SB_ICOUNT: | 
|  | tp->t_icount_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_IFREE: | 
|  | tp->t_ifree_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_FDBLOCKS: | 
|  | /* | 
|  | * Track the number of blocks allocated in the | 
|  | * transaction.  Make sure it does not exceed the | 
|  | * number reserved. | 
|  | */ | 
|  | if (delta < 0) { | 
|  | tp->t_blk_res_used += (uint)-delta; | 
|  | ASSERT(tp->t_blk_res_used <= tp->t_blk_res); | 
|  | } | 
|  | tp->t_fdblocks_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_RES_FDBLOCKS: | 
|  | /* | 
|  | * The allocation has already been applied to the | 
|  | * in-core superblock's counter.  This should only | 
|  | * be applied to the on-disk superblock. | 
|  | */ | 
|  | ASSERT(delta < 0); | 
|  | tp->t_res_fdblocks_delta += delta; | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb)) | 
|  | flags &= ~XFS_TRANS_SB_DIRTY; | 
|  | break; | 
|  | case XFS_TRANS_SB_FREXTENTS: | 
|  | /* | 
|  | * Track the number of blocks allocated in the | 
|  | * transaction.  Make sure it does not exceed the | 
|  | * number reserved. | 
|  | */ | 
|  | if (delta < 0) { | 
|  | tp->t_rtx_res_used += (uint)-delta; | 
|  | ASSERT(tp->t_rtx_res_used <= tp->t_rtx_res); | 
|  | } | 
|  | tp->t_frextents_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_RES_FREXTENTS: | 
|  | /* | 
|  | * The allocation has already been applied to the | 
|  | * in-core superblock's counter.  This should only | 
|  | * be applied to the on-disk superblock. | 
|  | */ | 
|  | ASSERT(delta < 0); | 
|  | tp->t_res_frextents_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_DBLOCKS: | 
|  | ASSERT(delta > 0); | 
|  | tp->t_dblocks_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_AGCOUNT: | 
|  | ASSERT(delta > 0); | 
|  | tp->t_agcount_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_IMAXPCT: | 
|  | tp->t_imaxpct_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_REXTSIZE: | 
|  | tp->t_rextsize_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_RBMBLOCKS: | 
|  | tp->t_rbmblocks_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_RBLOCKS: | 
|  | tp->t_rblocks_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_REXTENTS: | 
|  | tp->t_rextents_delta += delta; | 
|  | break; | 
|  | case XFS_TRANS_SB_REXTSLOG: | 
|  | tp->t_rextslog_delta += delta; | 
|  | break; | 
|  | default: | 
|  | ASSERT(0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | tp->t_flags |= flags; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_trans_apply_sb_deltas() is called from the commit code | 
|  | * to bring the superblock buffer into the current transaction | 
|  | * and modify it as requested by earlier calls to xfs_trans_mod_sb(). | 
|  | * | 
|  | * For now we just look at each field allowed to change and change | 
|  | * it if necessary. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_apply_sb_deltas( | 
|  | xfs_trans_t	*tp) | 
|  | { | 
|  | xfs_dsb_t	*sbp; | 
|  | xfs_buf_t	*bp; | 
|  | int		whole = 0; | 
|  |  | 
|  | bp = xfs_trans_getsb(tp, tp->t_mountp, 0); | 
|  | sbp = XFS_BUF_TO_SBP(bp); | 
|  |  | 
|  | /* | 
|  | * Check that superblock mods match the mods made to AGF counters. | 
|  | */ | 
|  | ASSERT((tp->t_fdblocks_delta + tp->t_res_fdblocks_delta) == | 
|  | (tp->t_ag_freeblks_delta + tp->t_ag_flist_delta + | 
|  | tp->t_ag_btree_delta)); | 
|  |  | 
|  | /* | 
|  | * Only update the superblock counters if we are logging them | 
|  | */ | 
|  | if (!xfs_sb_version_haslazysbcount(&(tp->t_mountp->m_sb))) { | 
|  | if (tp->t_icount_delta) | 
|  | be64_add_cpu(&sbp->sb_icount, tp->t_icount_delta); | 
|  | if (tp->t_ifree_delta) | 
|  | be64_add_cpu(&sbp->sb_ifree, tp->t_ifree_delta); | 
|  | if (tp->t_fdblocks_delta) | 
|  | be64_add_cpu(&sbp->sb_fdblocks, tp->t_fdblocks_delta); | 
|  | if (tp->t_res_fdblocks_delta) | 
|  | be64_add_cpu(&sbp->sb_fdblocks, tp->t_res_fdblocks_delta); | 
|  | } | 
|  |  | 
|  | if (tp->t_frextents_delta) | 
|  | be64_add_cpu(&sbp->sb_frextents, tp->t_frextents_delta); | 
|  | if (tp->t_res_frextents_delta) | 
|  | be64_add_cpu(&sbp->sb_frextents, tp->t_res_frextents_delta); | 
|  |  | 
|  | if (tp->t_dblocks_delta) { | 
|  | be64_add_cpu(&sbp->sb_dblocks, tp->t_dblocks_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_agcount_delta) { | 
|  | be32_add_cpu(&sbp->sb_agcount, tp->t_agcount_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_imaxpct_delta) { | 
|  | sbp->sb_imax_pct += tp->t_imaxpct_delta; | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rextsize_delta) { | 
|  | be32_add_cpu(&sbp->sb_rextsize, tp->t_rextsize_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rbmblocks_delta) { | 
|  | be32_add_cpu(&sbp->sb_rbmblocks, tp->t_rbmblocks_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rblocks_delta) { | 
|  | be64_add_cpu(&sbp->sb_rblocks, tp->t_rblocks_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rextents_delta) { | 
|  | be64_add_cpu(&sbp->sb_rextents, tp->t_rextents_delta); | 
|  | whole = 1; | 
|  | } | 
|  | if (tp->t_rextslog_delta) { | 
|  | sbp->sb_rextslog += tp->t_rextslog_delta; | 
|  | whole = 1; | 
|  | } | 
|  |  | 
|  | if (whole) | 
|  | /* | 
|  | * Log the whole thing, the fields are noncontiguous. | 
|  | */ | 
|  | xfs_trans_log_buf(tp, bp, 0, sizeof(xfs_dsb_t) - 1); | 
|  | else | 
|  | /* | 
|  | * Since all the modifiable fields are contiguous, we | 
|  | * can get away with this. | 
|  | */ | 
|  | xfs_trans_log_buf(tp, bp, offsetof(xfs_dsb_t, sb_icount), | 
|  | offsetof(xfs_dsb_t, sb_frextents) + | 
|  | sizeof(sbp->sb_frextents) - 1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_trans_unreserve_and_mod_sb() is called to release unused reservations | 
|  | * and apply superblock counter changes to the in-core superblock.  The | 
|  | * t_res_fdblocks_delta and t_res_frextents_delta fields are explicitly NOT | 
|  | * applied to the in-core superblock.  The idea is that that has already been | 
|  | * done. | 
|  | * | 
|  | * This is done efficiently with a single call to xfs_mod_incore_sb_batch(). | 
|  | * However, we have to ensure that we only modify each superblock field only | 
|  | * once because the application of the delta values may not be atomic. That can | 
|  | * lead to ENOSPC races occurring if we have two separate modifcations of the | 
|  | * free space counter to put back the entire reservation and then take away | 
|  | * what we used. | 
|  | * | 
|  | * If we are not logging superblock counters, then the inode allocated/free and | 
|  | * used block counts are not updated in the on disk superblock. In this case, | 
|  | * XFS_TRANS_SB_DIRTY will not be set when the transaction is updated but we | 
|  | * still need to update the incore superblock with the changes. | 
|  | */ | 
|  | void | 
|  | xfs_trans_unreserve_and_mod_sb( | 
|  | xfs_trans_t	*tp) | 
|  | { | 
|  | xfs_mod_sb_t	msb[9];	/* If you add cases, add entries */ | 
|  | xfs_mod_sb_t	*msbp; | 
|  | xfs_mount_t	*mp = tp->t_mountp; | 
|  | /* REFERENCED */ | 
|  | int		error; | 
|  | int		rsvd; | 
|  | int64_t		blkdelta = 0; | 
|  | int64_t		rtxdelta = 0; | 
|  | int64_t		idelta = 0; | 
|  | int64_t		ifreedelta = 0; | 
|  |  | 
|  | msbp = msb; | 
|  | rsvd = (tp->t_flags & XFS_TRANS_RESERVE) != 0; | 
|  |  | 
|  | /* calculate deltas */ | 
|  | if (tp->t_blk_res > 0) | 
|  | blkdelta = tp->t_blk_res; | 
|  | if ((tp->t_fdblocks_delta != 0) && | 
|  | (xfs_sb_version_haslazysbcount(&mp->m_sb) || | 
|  | (tp->t_flags & XFS_TRANS_SB_DIRTY))) | 
|  | blkdelta += tp->t_fdblocks_delta; | 
|  |  | 
|  | if (tp->t_rtx_res > 0) | 
|  | rtxdelta = tp->t_rtx_res; | 
|  | if ((tp->t_frextents_delta != 0) && | 
|  | (tp->t_flags & XFS_TRANS_SB_DIRTY)) | 
|  | rtxdelta += tp->t_frextents_delta; | 
|  |  | 
|  | if (xfs_sb_version_haslazysbcount(&mp->m_sb) || | 
|  | (tp->t_flags & XFS_TRANS_SB_DIRTY)) { | 
|  | idelta = tp->t_icount_delta; | 
|  | ifreedelta = tp->t_ifree_delta; | 
|  | } | 
|  |  | 
|  | /* apply the per-cpu counters */ | 
|  | if (blkdelta) { | 
|  | error = xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, | 
|  | blkdelta, rsvd); | 
|  | if (error) | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (idelta) { | 
|  | error = xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, | 
|  | idelta, rsvd); | 
|  | if (error) | 
|  | goto out_undo_fdblocks; | 
|  | } | 
|  |  | 
|  | if (ifreedelta) { | 
|  | error = xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, | 
|  | ifreedelta, rsvd); | 
|  | if (error) | 
|  | goto out_undo_icount; | 
|  | } | 
|  |  | 
|  | /* apply remaining deltas */ | 
|  | if (rtxdelta != 0) { | 
|  | msbp->msb_field = XFS_SBS_FREXTENTS; | 
|  | msbp->msb_delta = rtxdelta; | 
|  | msbp++; | 
|  | } | 
|  |  | 
|  | if (tp->t_flags & XFS_TRANS_SB_DIRTY) { | 
|  | if (tp->t_dblocks_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_DBLOCKS; | 
|  | msbp->msb_delta = tp->t_dblocks_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_agcount_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_AGCOUNT; | 
|  | msbp->msb_delta = tp->t_agcount_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_imaxpct_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_IMAX_PCT; | 
|  | msbp->msb_delta = tp->t_imaxpct_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_rextsize_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_REXTSIZE; | 
|  | msbp->msb_delta = tp->t_rextsize_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_rbmblocks_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_RBMBLOCKS; | 
|  | msbp->msb_delta = tp->t_rbmblocks_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_rblocks_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_RBLOCKS; | 
|  | msbp->msb_delta = tp->t_rblocks_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_rextents_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_REXTENTS; | 
|  | msbp->msb_delta = tp->t_rextents_delta; | 
|  | msbp++; | 
|  | } | 
|  | if (tp->t_rextslog_delta != 0) { | 
|  | msbp->msb_field = XFS_SBS_REXTSLOG; | 
|  | msbp->msb_delta = tp->t_rextslog_delta; | 
|  | msbp++; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If we need to change anything, do it. | 
|  | */ | 
|  | if (msbp > msb) { | 
|  | error = xfs_mod_incore_sb_batch(tp->t_mountp, msb, | 
|  | (uint)(msbp - msb), rsvd); | 
|  | if (error) | 
|  | goto out_undo_ifreecount; | 
|  | } | 
|  |  | 
|  | return; | 
|  |  | 
|  | out_undo_ifreecount: | 
|  | if (ifreedelta) | 
|  | xfs_icsb_modify_counters(mp, XFS_SBS_IFREE, -ifreedelta, rsvd); | 
|  | out_undo_icount: | 
|  | if (idelta) | 
|  | xfs_icsb_modify_counters(mp, XFS_SBS_ICOUNT, -idelta, rsvd); | 
|  | out_undo_fdblocks: | 
|  | if (blkdelta) | 
|  | xfs_icsb_modify_counters(mp, XFS_SBS_FDBLOCKS, -blkdelta, rsvd); | 
|  | out: | 
|  | ASSERT(error == 0); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Add the given log item to the transaction's list of log items. | 
|  | * | 
|  | * The log item will now point to its new descriptor with its li_desc field. | 
|  | */ | 
|  | void | 
|  | xfs_trans_add_item( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | struct xfs_log_item_desc *lidp; | 
|  |  | 
|  | ASSERT(lip->li_mountp = tp->t_mountp); | 
|  | ASSERT(lip->li_ailp = tp->t_mountp->m_ail); | 
|  |  | 
|  | lidp = kmem_zone_zalloc(xfs_log_item_desc_zone, KM_SLEEP | KM_NOFS); | 
|  |  | 
|  | lidp->lid_item = lip; | 
|  | lidp->lid_flags = 0; | 
|  | lidp->lid_size = 0; | 
|  | list_add_tail(&lidp->lid_trans, &tp->t_items); | 
|  |  | 
|  | lip->li_desc = lidp; | 
|  | } | 
|  |  | 
|  | STATIC void | 
|  | xfs_trans_free_item_desc( | 
|  | struct xfs_log_item_desc *lidp) | 
|  | { | 
|  | list_del_init(&lidp->lid_trans); | 
|  | kmem_zone_free(xfs_log_item_desc_zone, lidp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlink and free the given descriptor. | 
|  | */ | 
|  | void | 
|  | xfs_trans_del_item( | 
|  | struct xfs_log_item	*lip) | 
|  | { | 
|  | xfs_trans_free_item_desc(lip->li_desc); | 
|  | lip->li_desc = NULL; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock all of the items of a transaction and free all the descriptors | 
|  | * of that transaction. | 
|  | */ | 
|  | void | 
|  | xfs_trans_free_items( | 
|  | struct xfs_trans	*tp, | 
|  | xfs_lsn_t		commit_lsn, | 
|  | int			flags) | 
|  | { | 
|  | struct xfs_log_item_desc *lidp, *next; | 
|  |  | 
|  | list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { | 
|  | struct xfs_log_item	*lip = lidp->lid_item; | 
|  |  | 
|  | lip->li_desc = NULL; | 
|  |  | 
|  | if (commit_lsn != NULLCOMMITLSN) | 
|  | IOP_COMMITTING(lip, commit_lsn); | 
|  | if (flags & XFS_TRANS_ABORT) | 
|  | lip->li_flags |= XFS_LI_ABORTED; | 
|  | IOP_UNLOCK(lip); | 
|  |  | 
|  | xfs_trans_free_item_desc(lidp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock the items associated with a transaction. | 
|  | * | 
|  | * Items which were not logged should be freed.  Those which were logged must | 
|  | * still be tracked so they can be unpinned when the transaction commits. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_unlock_items( | 
|  | struct xfs_trans	*tp, | 
|  | xfs_lsn_t		commit_lsn) | 
|  | { | 
|  | struct xfs_log_item_desc *lidp, *next; | 
|  |  | 
|  | list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { | 
|  | struct xfs_log_item	*lip = lidp->lid_item; | 
|  |  | 
|  | lip->li_desc = NULL; | 
|  |  | 
|  | if (commit_lsn != NULLCOMMITLSN) | 
|  | IOP_COMMITTING(lip, commit_lsn); | 
|  | IOP_UNLOCK(lip); | 
|  |  | 
|  | /* | 
|  | * Free the descriptor if the item is not dirty | 
|  | * within this transaction. | 
|  | */ | 
|  | if (!(lidp->lid_flags & XFS_LID_DIRTY)) | 
|  | xfs_trans_free_item_desc(lidp); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Total up the number of log iovecs needed to commit this | 
|  | * transaction.  The transaction itself needs one for the | 
|  | * transaction header.  Ask each dirty item in turn how many | 
|  | * it needs to get the total. | 
|  | */ | 
|  | static uint | 
|  | xfs_trans_count_vecs( | 
|  | struct xfs_trans	*tp) | 
|  | { | 
|  | int			nvecs; | 
|  | struct xfs_log_item_desc *lidp; | 
|  |  | 
|  | nvecs = 1; | 
|  |  | 
|  | /* In the non-debug case we need to start bailing out if we | 
|  | * didn't find a log_item here, return zero and let trans_commit | 
|  | * deal with it. | 
|  | */ | 
|  | if (list_empty(&tp->t_items)) { | 
|  | ASSERT(0); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(lidp, &tp->t_items, lid_trans) { | 
|  | /* | 
|  | * Skip items which aren't dirty in this transaction. | 
|  | */ | 
|  | if (!(lidp->lid_flags & XFS_LID_DIRTY)) | 
|  | continue; | 
|  | lidp->lid_size = IOP_SIZE(lidp->lid_item); | 
|  | nvecs += lidp->lid_size; | 
|  | } | 
|  |  | 
|  | return nvecs; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the vector with pointers to data to be logged | 
|  | * by this transaction.  The transaction header takes | 
|  | * the first vector, and then each dirty item takes the | 
|  | * number of vectors it indicated it needed in xfs_trans_count_vecs(). | 
|  | * | 
|  | * As each item fills in the entries it needs, also pin the item | 
|  | * so that it cannot be flushed out until the log write completes. | 
|  | */ | 
|  | static void | 
|  | xfs_trans_fill_vecs( | 
|  | struct xfs_trans	*tp, | 
|  | struct xfs_log_iovec	*log_vector) | 
|  | { | 
|  | struct xfs_log_item_desc *lidp; | 
|  | struct xfs_log_iovec	*vecp; | 
|  | uint			nitems; | 
|  |  | 
|  | /* | 
|  | * Skip over the entry for the transaction header, we'll | 
|  | * fill that in at the end. | 
|  | */ | 
|  | vecp = log_vector + 1; | 
|  |  | 
|  | nitems = 0; | 
|  | ASSERT(!list_empty(&tp->t_items)); | 
|  | list_for_each_entry(lidp, &tp->t_items, lid_trans) { | 
|  | /* Skip items which aren't dirty in this transaction. */ | 
|  | if (!(lidp->lid_flags & XFS_LID_DIRTY)) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * The item may be marked dirty but not log anything.  This can | 
|  | * be used to get called when a transaction is committed. | 
|  | */ | 
|  | if (lidp->lid_size) | 
|  | nitems++; | 
|  | IOP_FORMAT(lidp->lid_item, vecp); | 
|  | vecp += lidp->lid_size; | 
|  | IOP_PIN(lidp->lid_item); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we've counted the number of items in this transaction, fill | 
|  | * in the transaction header. Note that the transaction header does not | 
|  | * have a log item. | 
|  | */ | 
|  | tp->t_header.th_magic = XFS_TRANS_HEADER_MAGIC; | 
|  | tp->t_header.th_type = tp->t_type; | 
|  | tp->t_header.th_num_items = nitems; | 
|  | log_vector->i_addr = (xfs_caddr_t)&tp->t_header; | 
|  | log_vector->i_len = sizeof(xfs_trans_header_t); | 
|  | log_vector->i_type = XLOG_REG_TYPE_TRANSHDR; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The committed item processing consists of calling the committed routine of | 
|  | * each logged item, updating the item's position in the AIL if necessary, and | 
|  | * unpinning each item.  If the committed routine returns -1, then do nothing | 
|  | * further with the item because it may have been freed. | 
|  | * | 
|  | * Since items are unlocked when they are copied to the incore log, it is | 
|  | * possible for two transactions to be completing and manipulating the same | 
|  | * item simultaneously.  The AIL lock will protect the lsn field of each item. | 
|  | * The value of this field can never go backwards. | 
|  | * | 
|  | * We unpin the items after repositioning them in the AIL, because otherwise | 
|  | * they could be immediately flushed and we'd have to race with the flusher | 
|  | * trying to pull the item from the AIL as we add it. | 
|  | */ | 
|  | static void | 
|  | xfs_trans_item_committed( | 
|  | struct xfs_log_item	*lip, | 
|  | xfs_lsn_t		commit_lsn, | 
|  | int			aborted) | 
|  | { | 
|  | xfs_lsn_t		item_lsn; | 
|  | struct xfs_ail		*ailp; | 
|  |  | 
|  | if (aborted) | 
|  | lip->li_flags |= XFS_LI_ABORTED; | 
|  | item_lsn = IOP_COMMITTED(lip, commit_lsn); | 
|  |  | 
|  | /* If the committed routine returns -1, item has been freed. */ | 
|  | if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) | 
|  | return; | 
|  |  | 
|  | /* | 
|  | * If the returned lsn is greater than what it contained before, update | 
|  | * the location of the item in the AIL.  If it is not, then do nothing. | 
|  | * Items can never move backwards in the AIL. | 
|  | * | 
|  | * While the new lsn should usually be greater, it is possible that a | 
|  | * later transaction completing simultaneously with an earlier one | 
|  | * using the same item could complete first with a higher lsn.  This | 
|  | * would cause the earlier transaction to fail the test below. | 
|  | */ | 
|  | ailp = lip->li_ailp; | 
|  | spin_lock(&ailp->xa_lock); | 
|  | if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) { | 
|  | /* | 
|  | * This will set the item's lsn to item_lsn and update the | 
|  | * position of the item in the AIL. | 
|  | * | 
|  | * xfs_trans_ail_update() drops the AIL lock. | 
|  | */ | 
|  | xfs_trans_ail_update(ailp, lip, item_lsn); | 
|  | } else { | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that we've repositioned the item in the AIL, unpin it so it can | 
|  | * be flushed. Pass information about buffer stale state down from the | 
|  | * log item flags, if anyone else stales the buffer we do not want to | 
|  | * pay any attention to it. | 
|  | */ | 
|  | IOP_UNPIN(lip, 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is typically called by the LM when a transaction has been fully | 
|  | * committed to disk.  It needs to unpin the items which have | 
|  | * been logged by the transaction and update their positions | 
|  | * in the AIL if necessary. | 
|  | * | 
|  | * This also gets called when the transactions didn't get written out | 
|  | * because of an I/O error. Abortflag & XFS_LI_ABORTED is set then. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_committed( | 
|  | void			*arg, | 
|  | int			abortflag) | 
|  | { | 
|  | struct xfs_trans	*tp = arg; | 
|  | struct xfs_log_item_desc *lidp, *next; | 
|  |  | 
|  | list_for_each_entry_safe(lidp, next, &tp->t_items, lid_trans) { | 
|  | xfs_trans_item_committed(lidp->lid_item, tp->t_lsn, abortflag); | 
|  | xfs_trans_free_item_desc(lidp); | 
|  | } | 
|  |  | 
|  | xfs_trans_free(tp); | 
|  | } | 
|  |  | 
|  | static inline void | 
|  | xfs_log_item_batch_insert( | 
|  | struct xfs_ail		*ailp, | 
|  | struct xfs_log_item	**log_items, | 
|  | int			nr_items, | 
|  | xfs_lsn_t		commit_lsn) | 
|  | { | 
|  | int	i; | 
|  |  | 
|  | spin_lock(&ailp->xa_lock); | 
|  | /* xfs_trans_ail_update_bulk drops ailp->xa_lock */ | 
|  | xfs_trans_ail_update_bulk(ailp, log_items, nr_items, commit_lsn); | 
|  |  | 
|  | for (i = 0; i < nr_items; i++) | 
|  | IOP_UNPIN(log_items[i], 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Bulk operation version of xfs_trans_committed that takes a log vector of | 
|  | * items to insert into the AIL. This uses bulk AIL insertion techniques to | 
|  | * minimise lock traffic. | 
|  | * | 
|  | * If we are called with the aborted flag set, it is because a log write during | 
|  | * a CIL checkpoint commit has failed. In this case, all the items in the | 
|  | * checkpoint have already gone through IOP_COMMITED and IOP_UNLOCK, which | 
|  | * means that checkpoint commit abort handling is treated exactly the same | 
|  | * as an iclog write error even though we haven't started any IO yet. Hence in | 
|  | * this case all we need to do is IOP_COMMITTED processing, followed by an | 
|  | * IOP_UNPIN(aborted) call. | 
|  | */ | 
|  | void | 
|  | xfs_trans_committed_bulk( | 
|  | struct xfs_ail		*ailp, | 
|  | struct xfs_log_vec	*log_vector, | 
|  | xfs_lsn_t		commit_lsn, | 
|  | int			aborted) | 
|  | { | 
|  | #define LOG_ITEM_BATCH_SIZE	32 | 
|  | struct xfs_log_item	*log_items[LOG_ITEM_BATCH_SIZE]; | 
|  | struct xfs_log_vec	*lv; | 
|  | int			i = 0; | 
|  |  | 
|  | /* unpin all the log items */ | 
|  | for (lv = log_vector; lv; lv = lv->lv_next ) { | 
|  | struct xfs_log_item	*lip = lv->lv_item; | 
|  | xfs_lsn_t		item_lsn; | 
|  |  | 
|  | if (aborted) | 
|  | lip->li_flags |= XFS_LI_ABORTED; | 
|  | item_lsn = IOP_COMMITTED(lip, commit_lsn); | 
|  |  | 
|  | /* item_lsn of -1 means the item was freed */ | 
|  | if (XFS_LSN_CMP(item_lsn, (xfs_lsn_t)-1) == 0) | 
|  | continue; | 
|  |  | 
|  | /* | 
|  | * if we are aborting the operation, no point in inserting the | 
|  | * object into the AIL as we are in a shutdown situation. | 
|  | */ | 
|  | if (aborted) { | 
|  | ASSERT(XFS_FORCED_SHUTDOWN(ailp->xa_mount)); | 
|  | IOP_UNPIN(lip, 1); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (item_lsn != commit_lsn) { | 
|  |  | 
|  | /* | 
|  | * Not a bulk update option due to unusual item_lsn. | 
|  | * Push into AIL immediately, rechecking the lsn once | 
|  | * we have the ail lock. Then unpin the item. | 
|  | */ | 
|  | spin_lock(&ailp->xa_lock); | 
|  | if (XFS_LSN_CMP(item_lsn, lip->li_lsn) > 0) | 
|  | xfs_trans_ail_update(ailp, lip, item_lsn); | 
|  | else | 
|  | spin_unlock(&ailp->xa_lock); | 
|  | IOP_UNPIN(lip, 0); | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* Item is a candidate for bulk AIL insert.  */ | 
|  | log_items[i++] = lv->lv_item; | 
|  | if (i >= LOG_ITEM_BATCH_SIZE) { | 
|  | xfs_log_item_batch_insert(ailp, log_items, | 
|  | LOG_ITEM_BATCH_SIZE, commit_lsn); | 
|  | i = 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* make sure we insert the remainder! */ | 
|  | if (i) | 
|  | xfs_log_item_batch_insert(ailp, log_items, i, commit_lsn); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called from the trans_commit code when we notice that the filesystem is in | 
|  | * the middle of a forced shutdown. | 
|  | * | 
|  | * When we are called here, we have already pinned all the items in the | 
|  | * transaction. However, neither IOP_COMMITTING or IOP_UNLOCK has been called | 
|  | * so we can simply walk the items in the transaction, unpin them with an abort | 
|  | * flag and then free the items. Note that unpinning the items can result in | 
|  | * them being freed immediately, so we need to use a safe list traversal method | 
|  | * here. | 
|  | */ | 
|  | STATIC void | 
|  | xfs_trans_uncommit( | 
|  | struct xfs_trans	*tp, | 
|  | uint			flags) | 
|  | { | 
|  | struct xfs_log_item_desc *lidp, *n; | 
|  |  | 
|  | list_for_each_entry_safe(lidp, n, &tp->t_items, lid_trans) { | 
|  | if (lidp->lid_flags & XFS_LID_DIRTY) | 
|  | IOP_UNPIN(lidp->lid_item, 1); | 
|  | } | 
|  |  | 
|  | xfs_trans_unreserve_and_mod_sb(tp); | 
|  | xfs_trans_unreserve_and_mod_dquots(tp); | 
|  |  | 
|  | xfs_trans_free_items(tp, NULLCOMMITLSN, flags); | 
|  | xfs_trans_free(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Format the transaction direct to the iclog. This isolates the physical | 
|  | * transaction commit operation from the logical operation and hence allows | 
|  | * other methods to be introduced without affecting the existing commit path. | 
|  | */ | 
|  | static int | 
|  | xfs_trans_commit_iclog( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans	*tp, | 
|  | xfs_lsn_t		*commit_lsn, | 
|  | int			flags) | 
|  | { | 
|  | int			shutdown; | 
|  | int			error; | 
|  | int			log_flags = 0; | 
|  | struct xlog_in_core	*commit_iclog; | 
|  | #define XFS_TRANS_LOGVEC_COUNT  16 | 
|  | struct xfs_log_iovec	log_vector_fast[XFS_TRANS_LOGVEC_COUNT]; | 
|  | struct xfs_log_iovec	*log_vector; | 
|  | uint			nvec; | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Ask each log item how many log_vector entries it will | 
|  | * need so we can figure out how many to allocate. | 
|  | * Try to avoid the kmem_alloc() call in the common case | 
|  | * by using a vector from the stack when it fits. | 
|  | */ | 
|  | nvec = xfs_trans_count_vecs(tp); | 
|  | if (nvec == 0) { | 
|  | return ENOMEM;	/* triggers a shutdown! */ | 
|  | } else if (nvec <= XFS_TRANS_LOGVEC_COUNT) { | 
|  | log_vector = log_vector_fast; | 
|  | } else { | 
|  | log_vector = (xfs_log_iovec_t *)kmem_alloc(nvec * | 
|  | sizeof(xfs_log_iovec_t), | 
|  | KM_SLEEP); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Fill in the log_vector and pin the logged items, and | 
|  | * then write the transaction to the log. | 
|  | */ | 
|  | xfs_trans_fill_vecs(tp, log_vector); | 
|  |  | 
|  | if (flags & XFS_TRANS_RELEASE_LOG_RES) | 
|  | log_flags = XFS_LOG_REL_PERM_RESERV; | 
|  |  | 
|  | error = xfs_log_write(mp, log_vector, nvec, tp->t_ticket, &(tp->t_lsn)); | 
|  |  | 
|  | /* | 
|  | * The transaction is committed incore here, and can go out to disk | 
|  | * at any time after this call.  However, all the items associated | 
|  | * with the transaction are still locked and pinned in memory. | 
|  | */ | 
|  | *commit_lsn = xfs_log_done(mp, tp->t_ticket, &commit_iclog, log_flags); | 
|  |  | 
|  | tp->t_commit_lsn = *commit_lsn; | 
|  | trace_xfs_trans_commit_lsn(tp); | 
|  |  | 
|  | if (nvec > XFS_TRANS_LOGVEC_COUNT) | 
|  | kmem_free(log_vector); | 
|  |  | 
|  | /* | 
|  | * If we got a log write error. Unpin the logitems that we | 
|  | * had pinned, clean up, free trans structure, and return error. | 
|  | */ | 
|  | if (error || *commit_lsn == -1) { | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  | xfs_trans_uncommit(tp, flags|XFS_TRANS_ABORT); | 
|  | return XFS_ERROR(EIO); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Once the transaction has committed, unused | 
|  | * reservations need to be released and changes to | 
|  | * the superblock need to be reflected in the in-core | 
|  | * version.  Do that now. | 
|  | */ | 
|  | xfs_trans_unreserve_and_mod_sb(tp); | 
|  |  | 
|  | /* | 
|  | * Tell the LM to call the transaction completion routine | 
|  | * when the log write with LSN commit_lsn completes (e.g. | 
|  | * when the transaction commit really hits the on-disk log). | 
|  | * After this call we cannot reference tp, because the call | 
|  | * can happen at any time and the call will free the transaction | 
|  | * structure pointed to by tp.  The only case where we call | 
|  | * the completion routine (xfs_trans_committed) directly is | 
|  | * if the log is turned off on a debug kernel or we're | 
|  | * running in simulation mode (the log is explicitly turned | 
|  | * off). | 
|  | */ | 
|  | tp->t_logcb.cb_func = xfs_trans_committed; | 
|  | tp->t_logcb.cb_arg = tp; | 
|  |  | 
|  | /* | 
|  | * We need to pass the iclog buffer which was used for the | 
|  | * transaction commit record into this function, and attach | 
|  | * the callback to it. The callback must be attached before | 
|  | * the items are unlocked to avoid racing with other threads | 
|  | * waiting for an item to unlock. | 
|  | */ | 
|  | shutdown = xfs_log_notify(mp, commit_iclog, &(tp->t_logcb)); | 
|  |  | 
|  | /* | 
|  | * Mark this thread as no longer being in a transaction | 
|  | */ | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  |  | 
|  | /* | 
|  | * Once all the items of the transaction have been copied | 
|  | * to the in core log and the callback is attached, the | 
|  | * items can be unlocked. | 
|  | * | 
|  | * This will free descriptors pointing to items which were | 
|  | * not logged since there is nothing more to do with them. | 
|  | * For items which were logged, we will keep pointers to them | 
|  | * so they can be unpinned after the transaction commits to disk. | 
|  | * This will also stamp each modified meta-data item with | 
|  | * the commit lsn of this transaction for dependency tracking | 
|  | * purposes. | 
|  | */ | 
|  | xfs_trans_unlock_items(tp, *commit_lsn); | 
|  |  | 
|  | /* | 
|  | * If we detected a log error earlier, finish committing | 
|  | * the transaction now (unpin log items, etc). | 
|  | * | 
|  | * Order is critical here, to avoid using the transaction | 
|  | * pointer after its been freed (by xfs_trans_committed | 
|  | * either here now, or as a callback).  We cannot do this | 
|  | * step inside xfs_log_notify as was done earlier because | 
|  | * of this issue. | 
|  | */ | 
|  | if (shutdown) | 
|  | xfs_trans_committed(tp, XFS_LI_ABORTED); | 
|  |  | 
|  | /* | 
|  | * Now that the xfs_trans_committed callback has been attached, | 
|  | * and the items are released we can finally allow the iclog to | 
|  | * go to disk. | 
|  | */ | 
|  | return xfs_log_release_iclog(mp, commit_iclog); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Walk the log items and allocate log vector structures for | 
|  | * each item large enough to fit all the vectors they require. | 
|  | * Note that this format differs from the old log vector format in | 
|  | * that there is no transaction header in these log vectors. | 
|  | */ | 
|  | STATIC struct xfs_log_vec * | 
|  | xfs_trans_alloc_log_vecs( | 
|  | xfs_trans_t	*tp) | 
|  | { | 
|  | struct xfs_log_item_desc *lidp; | 
|  | struct xfs_log_vec	*lv = NULL; | 
|  | struct xfs_log_vec	*ret_lv = NULL; | 
|  |  | 
|  |  | 
|  | /* Bail out if we didn't find a log item.  */ | 
|  | if (list_empty(&tp->t_items)) { | 
|  | ASSERT(0); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | list_for_each_entry(lidp, &tp->t_items, lid_trans) { | 
|  | struct xfs_log_vec *new_lv; | 
|  |  | 
|  | /* Skip items which aren't dirty in this transaction. */ | 
|  | if (!(lidp->lid_flags & XFS_LID_DIRTY)) | 
|  | continue; | 
|  |  | 
|  | /* Skip items that do not have any vectors for writing */ | 
|  | lidp->lid_size = IOP_SIZE(lidp->lid_item); | 
|  | if (!lidp->lid_size) | 
|  | continue; | 
|  |  | 
|  | new_lv = kmem_zalloc(sizeof(*new_lv) + | 
|  | lidp->lid_size * sizeof(struct xfs_log_iovec), | 
|  | KM_SLEEP); | 
|  |  | 
|  | /* The allocated iovec region lies beyond the log vector. */ | 
|  | new_lv->lv_iovecp = (struct xfs_log_iovec *)&new_lv[1]; | 
|  | new_lv->lv_niovecs = lidp->lid_size; | 
|  | new_lv->lv_item = lidp->lid_item; | 
|  | if (!ret_lv) | 
|  | ret_lv = new_lv; | 
|  | else | 
|  | lv->lv_next = new_lv; | 
|  | lv = new_lv; | 
|  | } | 
|  |  | 
|  | return ret_lv; | 
|  | } | 
|  |  | 
|  | static int | 
|  | xfs_trans_commit_cil( | 
|  | struct xfs_mount	*mp, | 
|  | struct xfs_trans	*tp, | 
|  | xfs_lsn_t		*commit_lsn, | 
|  | int			flags) | 
|  | { | 
|  | struct xfs_log_vec	*log_vector; | 
|  |  | 
|  | /* | 
|  | * Get each log item to allocate a vector structure for | 
|  | * the log item to to pass to the log write code. The | 
|  | * CIL commit code will format the vector and save it away. | 
|  | */ | 
|  | log_vector = xfs_trans_alloc_log_vecs(tp); | 
|  | if (!log_vector) | 
|  | return ENOMEM; | 
|  |  | 
|  | xfs_log_commit_cil(mp, tp, log_vector, commit_lsn, flags); | 
|  |  | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  | xfs_trans_free(tp); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * xfs_trans_commit | 
|  | * | 
|  | * Commit the given transaction to the log a/synchronously. | 
|  | * | 
|  | * XFS disk error handling mechanism is not based on a typical | 
|  | * transaction abort mechanism. Logically after the filesystem | 
|  | * gets marked 'SHUTDOWN', we can't let any new transactions | 
|  | * be durable - ie. committed to disk - because some metadata might | 
|  | * be inconsistent. In such cases, this returns an error, and the | 
|  | * caller may assume that all locked objects joined to the transaction | 
|  | * have already been unlocked as if the commit had succeeded. | 
|  | * Do not reference the transaction structure after this call. | 
|  | */ | 
|  | int | 
|  | _xfs_trans_commit( | 
|  | struct xfs_trans	*tp, | 
|  | uint			flags, | 
|  | int			*log_flushed) | 
|  | { | 
|  | struct xfs_mount	*mp = tp->t_mountp; | 
|  | xfs_lsn_t		commit_lsn = -1; | 
|  | int			error = 0; | 
|  | int			log_flags = 0; | 
|  | int			sync = tp->t_flags & XFS_TRANS_SYNC; | 
|  |  | 
|  | /* | 
|  | * Determine whether this commit is releasing a permanent | 
|  | * log reservation or not. | 
|  | */ | 
|  | if (flags & XFS_TRANS_RELEASE_LOG_RES) { | 
|  | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | log_flags = XFS_LOG_REL_PERM_RESERV; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If there is nothing to be logged by the transaction, | 
|  | * then unlock all of the items associated with the | 
|  | * transaction and free the transaction structure. | 
|  | * Also make sure to return any reserved blocks to | 
|  | * the free pool. | 
|  | */ | 
|  | if (!(tp->t_flags & XFS_TRANS_DIRTY)) | 
|  | goto out_unreserve; | 
|  |  | 
|  | if (XFS_FORCED_SHUTDOWN(mp)) { | 
|  | error = XFS_ERROR(EIO); | 
|  | goto out_unreserve; | 
|  | } | 
|  |  | 
|  | ASSERT(tp->t_ticket != NULL); | 
|  |  | 
|  | /* | 
|  | * If we need to update the superblock, then do it now. | 
|  | */ | 
|  | if (tp->t_flags & XFS_TRANS_SB_DIRTY) | 
|  | xfs_trans_apply_sb_deltas(tp); | 
|  | xfs_trans_apply_dquot_deltas(tp); | 
|  |  | 
|  | if (mp->m_flags & XFS_MOUNT_DELAYLOG) | 
|  | error = xfs_trans_commit_cil(mp, tp, &commit_lsn, flags); | 
|  | else | 
|  | error = xfs_trans_commit_iclog(mp, tp, &commit_lsn, flags); | 
|  |  | 
|  | if (error == ENOMEM) { | 
|  | xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR); | 
|  | error = XFS_ERROR(EIO); | 
|  | goto out_unreserve; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If the transaction needs to be synchronous, then force the | 
|  | * log out now and wait for it. | 
|  | */ | 
|  | if (sync) { | 
|  | if (!error) { | 
|  | error = _xfs_log_force_lsn(mp, commit_lsn, | 
|  | XFS_LOG_SYNC, log_flushed); | 
|  | } | 
|  | XFS_STATS_INC(xs_trans_sync); | 
|  | } else { | 
|  | XFS_STATS_INC(xs_trans_async); | 
|  | } | 
|  |  | 
|  | return error; | 
|  |  | 
|  | out_unreserve: | 
|  | xfs_trans_unreserve_and_mod_sb(tp); | 
|  |  | 
|  | /* | 
|  | * It is indeed possible for the transaction to be not dirty but | 
|  | * the dqinfo portion to be.  All that means is that we have some | 
|  | * (non-persistent) quota reservations that need to be unreserved. | 
|  | */ | 
|  | xfs_trans_unreserve_and_mod_dquots(tp); | 
|  | if (tp->t_ticket) { | 
|  | commit_lsn = xfs_log_done(mp, tp->t_ticket, NULL, log_flags); | 
|  | if (commit_lsn == -1 && !error) | 
|  | error = XFS_ERROR(EIO); | 
|  | } | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  | xfs_trans_free_items(tp, NULLCOMMITLSN, error ? XFS_TRANS_ABORT : 0); | 
|  | xfs_trans_free(tp); | 
|  |  | 
|  | XFS_STATS_INC(xs_trans_empty); | 
|  | return error; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unlock all of the transaction's items and free the transaction. | 
|  | * The transaction must not have modified any of its items, because | 
|  | * there is no way to restore them to their previous state. | 
|  | * | 
|  | * If the transaction has made a log reservation, make sure to release | 
|  | * it as well. | 
|  | */ | 
|  | void | 
|  | xfs_trans_cancel( | 
|  | xfs_trans_t		*tp, | 
|  | int			flags) | 
|  | { | 
|  | int			log_flags; | 
|  | xfs_mount_t		*mp = tp->t_mountp; | 
|  |  | 
|  | /* | 
|  | * See if the caller is being too lazy to figure out if | 
|  | * the transaction really needs an abort. | 
|  | */ | 
|  | if ((flags & XFS_TRANS_ABORT) && !(tp->t_flags & XFS_TRANS_DIRTY)) | 
|  | flags &= ~XFS_TRANS_ABORT; | 
|  | /* | 
|  | * See if the caller is relying on us to shut down the | 
|  | * filesystem.  This happens in paths where we detect | 
|  | * corruption and decide to give up. | 
|  | */ | 
|  | if ((tp->t_flags & XFS_TRANS_DIRTY) && !XFS_FORCED_SHUTDOWN(mp)) { | 
|  | XFS_ERROR_REPORT("xfs_trans_cancel", XFS_ERRLEVEL_LOW, mp); | 
|  | xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); | 
|  | } | 
|  | #ifdef DEBUG | 
|  | if (!(flags & XFS_TRANS_ABORT) && !XFS_FORCED_SHUTDOWN(mp)) { | 
|  | struct xfs_log_item_desc *lidp; | 
|  |  | 
|  | list_for_each_entry(lidp, &tp->t_items, lid_trans) | 
|  | ASSERT(!(lidp->lid_item->li_type == XFS_LI_EFD)); | 
|  | } | 
|  | #endif | 
|  | xfs_trans_unreserve_and_mod_sb(tp); | 
|  | xfs_trans_unreserve_and_mod_dquots(tp); | 
|  |  | 
|  | if (tp->t_ticket) { | 
|  | if (flags & XFS_TRANS_RELEASE_LOG_RES) { | 
|  | ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES); | 
|  | log_flags = XFS_LOG_REL_PERM_RESERV; | 
|  | } else { | 
|  | log_flags = 0; | 
|  | } | 
|  | xfs_log_done(mp, tp->t_ticket, NULL, log_flags); | 
|  | } | 
|  |  | 
|  | /* mark this thread as no longer being in a transaction */ | 
|  | current_restore_flags_nested(&tp->t_pflags, PF_FSTRANS); | 
|  |  | 
|  | xfs_trans_free_items(tp, NULLCOMMITLSN, flags); | 
|  | xfs_trans_free(tp); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Roll from one trans in the sequence of PERMANENT transactions to | 
|  | * the next: permanent transactions are only flushed out when | 
|  | * committed with XFS_TRANS_RELEASE_LOG_RES, but we still want as soon | 
|  | * as possible to let chunks of it go to the log. So we commit the | 
|  | * chunk we've been working on and get a new transaction to continue. | 
|  | */ | 
|  | int | 
|  | xfs_trans_roll( | 
|  | struct xfs_trans	**tpp, | 
|  | struct xfs_inode	*dp) | 
|  | { | 
|  | struct xfs_trans	*trans; | 
|  | unsigned int		logres, count; | 
|  | int			error; | 
|  |  | 
|  | /* | 
|  | * Ensure that the inode is always logged. | 
|  | */ | 
|  | trans = *tpp; | 
|  | xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE); | 
|  |  | 
|  | /* | 
|  | * Copy the critical parameters from one trans to the next. | 
|  | */ | 
|  | logres = trans->t_log_res; | 
|  | count = trans->t_log_count; | 
|  | *tpp = xfs_trans_dup(trans); | 
|  |  | 
|  | /* | 
|  | * Commit the current transaction. | 
|  | * If this commit failed, then it'd just unlock those items that | 
|  | * are not marked ihold. That also means that a filesystem shutdown | 
|  | * is in progress. The caller takes the responsibility to cancel | 
|  | * the duplicate transaction that gets returned. | 
|  | */ | 
|  | error = xfs_trans_commit(trans, 0); | 
|  | if (error) | 
|  | return (error); | 
|  |  | 
|  | trans = *tpp; | 
|  |  | 
|  | /* | 
|  | * transaction commit worked ok so we can drop the extra ticket | 
|  | * reference that we gained in xfs_trans_dup() | 
|  | */ | 
|  | xfs_log_ticket_put(trans->t_ticket); | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Reserve space in the log for th next transaction. | 
|  | * This also pushes items in the "AIL", the list of logged items, | 
|  | * out to disk if they are taking up space at the tail of the log | 
|  | * that we want to use.  This requires that either nothing be locked | 
|  | * across this call, or that anything that is locked be logged in | 
|  | * the prior and the next transactions. | 
|  | */ | 
|  | error = xfs_trans_reserve(trans, 0, logres, 0, | 
|  | XFS_TRANS_PERM_LOG_RES, count); | 
|  | /* | 
|  | *  Ensure that the inode is in the new transaction and locked. | 
|  | */ | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | xfs_trans_ijoin(trans, dp); | 
|  | return 0; | 
|  | } |