|  | /* Software floating-point emulation. | 
|  | Basic one-word fraction declaration and manipulation. | 
|  | Copyright (C) 1997,1998,1999 Free Software Foundation, Inc. | 
|  | This file is part of the GNU C Library. | 
|  | Contributed by Richard Henderson (rth@cygnus.com), | 
|  | Jakub Jelinek (jj@ultra.linux.cz), | 
|  | David S. Miller (davem@redhat.com) and | 
|  | Peter Maydell (pmaydell@chiark.greenend.org.uk). | 
|  |  | 
|  | The GNU C Library is free software; you can redistribute it and/or | 
|  | modify it under the terms of the GNU Library General Public License as | 
|  | published by the Free Software Foundation; either version 2 of the | 
|  | License, or (at your option) any later version. | 
|  |  | 
|  | The GNU C Library is distributed in the hope that it will be useful, | 
|  | but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | Library General Public License for more details. | 
|  |  | 
|  | You should have received a copy of the GNU Library General Public | 
|  | License along with the GNU C Library; see the file COPYING.LIB.  If | 
|  | not, write to the Free Software Foundation, Inc., | 
|  | 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.  */ | 
|  |  | 
|  | #ifndef    __MATH_EMU_OP_1_H__ | 
|  | #define    __MATH_EMU_OP_1_H__ | 
|  |  | 
|  | #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f=0 | 
|  | #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f) | 
|  | #define _FP_FRAC_SET_1(X,I)	(X##_f = I) | 
|  | #define _FP_FRAC_HIGH_1(X)	(X##_f) | 
|  | #define _FP_FRAC_LOW_1(X)	(X##_f) | 
|  | #define _FP_FRAC_WORD_1(X,w)	(X##_f) | 
|  |  | 
|  | #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I) | 
|  | #define _FP_FRAC_SLL_1(X,N)			\ | 
|  | do {						\ | 
|  | if (__builtin_constant_p(N) && (N) == 1)	\ | 
|  | X##_f += X##_f;				\ | 
|  | else					\ | 
|  | X##_f <<= (N);				\ | 
|  | } while (0) | 
|  | #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N) | 
|  |  | 
|  | /* Right shift with sticky-lsb.  */ | 
|  | #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz) | 
|  |  | 
|  | #define __FP_FRAC_SRS_1(X,N,sz)						\ | 
|  | (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\ | 
|  | ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | 
|  |  | 
|  | #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f) | 
|  | #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f) | 
|  | #define _FP_FRAC_DEC_1(X,Y)	(X##_f -= Y##_f) | 
|  | #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f) | 
|  |  | 
|  | /* Predicates */ | 
|  | #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0) | 
|  | #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0) | 
|  | #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs) | 
|  | #define _FP_FRAC_CLEAR_OVERP_1(fs,X)	(X##_f &= ~_FP_OVERFLOW_##fs) | 
|  | #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f) | 
|  | #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f) | 
|  | #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f) | 
|  |  | 
|  | #define _FP_ZEROFRAC_1		0 | 
|  | #define _FP_MINFRAC_1		1 | 
|  | #define _FP_MAXFRAC_1		(~(_FP_WS_TYPE)0) | 
|  |  | 
|  | /* | 
|  | * Unpack the raw bits of a native fp value.  Do not classify or | 
|  | * normalize the data. | 
|  | */ | 
|  |  | 
|  | #define _FP_UNPACK_RAW_1(fs, X, val)				\ | 
|  | do {								\ | 
|  | union _FP_UNION_##fs _flo; _flo.flt = (val);		\ | 
|  | \ | 
|  | X##_f = _flo.bits.frac;					\ | 
|  | X##_e = _flo.bits.exp;					\ | 
|  | X##_s = _flo.bits.sign;					\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_UNPACK_RAW_1_P(fs, X, val)				\ | 
|  | do {								\ | 
|  | union _FP_UNION_##fs *_flo =				\ | 
|  | (union _FP_UNION_##fs *)(val);				\ | 
|  | \ | 
|  | X##_f = _flo->bits.frac;					\ | 
|  | X##_e = _flo->bits.exp;					\ | 
|  | X##_s = _flo->bits.sign;					\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Repack the raw bits of a native fp value. | 
|  | */ | 
|  |  | 
|  | #define _FP_PACK_RAW_1(fs, val, X)				\ | 
|  | do {								\ | 
|  | union _FP_UNION_##fs _flo;					\ | 
|  | \ | 
|  | _flo.bits.frac = X##_f;					\ | 
|  | _flo.bits.exp  = X##_e;					\ | 
|  | _flo.bits.sign = X##_s;					\ | 
|  | \ | 
|  | (val) = _flo.flt;						\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_PACK_RAW_1_P(fs, val, X)				\ | 
|  | do {								\ | 
|  | union _FP_UNION_##fs *_flo =				\ | 
|  | (union _FP_UNION_##fs *)(val);				\ | 
|  | \ | 
|  | _flo->bits.frac = X##_f;					\ | 
|  | _flo->bits.exp  = X##_e;					\ | 
|  | _flo->bits.sign = X##_s;					\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Multiplication algorithms: | 
|  | */ | 
|  |  | 
|  | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | multiplication immediately.  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_1_imm(wfracbits, R, X, Y)				\ | 
|  | do {									\ | 
|  | R##_f = X##_f * Y##_f;						\ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_1(R, wfracbits-1, 2*wfracbits);			\ | 
|  | } while (0) | 
|  |  | 
|  | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_1_wide(wfracbits, R, X, Y, doit)			\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _Z_f0, _Z_f1;						\ | 
|  | doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\ | 
|  | /* Normalize since we know where the msb of the multiplicands	\ | 
|  | were (bit B), we know that the msb of the of the product is	\ | 
|  | at either 2B or 2B-1.  */					\ | 
|  | _FP_FRAC_SRS_2(_Z, wfracbits-1, 2*wfracbits);			\ | 
|  | R##_f = _Z_f0;							\ | 
|  | } while (0) | 
|  |  | 
|  | /* Finally, a simple widening multiply algorithm.  What fun!  */ | 
|  |  | 
|  | #define _FP_MUL_MEAT_1_hard(wfracbits, R, X, Y)				\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\ | 
|  | \ | 
|  | /* split the words in half */					\ | 
|  | _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
|  | _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
|  | _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
|  | _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
|  | \ | 
|  | /* multiply the pieces */						\ | 
|  | _z_f0 = _xl * _yl;							\ | 
|  | _a_f0 = _xh * _yl;							\ | 
|  | _a_f1 = _xl * _yh;							\ | 
|  | _z_f1 = _xh * _yh;							\ | 
|  | \ | 
|  | /* reassemble into two full words */				\ | 
|  | if ((_a_f0 += _a_f1) < _a_f1)					\ | 
|  | _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\ | 
|  | _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\ | 
|  | _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\ | 
|  | _FP_FRAC_ADD_2(_z, _z, _a);						\ | 
|  | \ | 
|  | /* normalize */							\ | 
|  | _FP_FRAC_SRS_2(_z, wfracbits - 1, 2*wfracbits);			\ | 
|  | R##_f = _z_f0;							\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Division algorithms: | 
|  | */ | 
|  |  | 
|  | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
|  | division immediately.  Give this macro either _FP_DIV_HELP_imm for | 
|  | C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you | 
|  | choose will depend on what the compiler does with divrem4.  */ | 
|  |  | 
|  | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\ | 
|  | do {							\ | 
|  | _FP_W_TYPE _q, _r;					\ | 
|  | X##_f <<= (X##_f < Y##_f				\ | 
|  | ? R##_e--, _FP_WFRACBITS_##fs		\ | 
|  | : _FP_WFRACBITS_##fs - 1);		\ | 
|  | doit(_q, _r, X##_f, Y##_f);				\ | 
|  | R##_f = _q | (_r != 0);				\ | 
|  | } while (0) | 
|  |  | 
|  | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | 
|  | that may be useful in this situation.  This first is for a primitive | 
|  | that requires normalization, the second for one that does not.  Look | 
|  | for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */ | 
|  |  | 
|  | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\ | 
|  | do {									\ | 
|  | _FP_W_TYPE _nh, _nl, _q, _r, _y;					\ | 
|  | \ | 
|  | /* Normalize Y -- i.e. make the most significant bit set.  */	\ | 
|  | _y = Y##_f << _FP_WFRACXBITS_##fs;					\ | 
|  | \ | 
|  | /* Shift X op correspondingly high, that is, up one full word.  */	\ | 
|  | if (X##_f < Y##_f)							\ | 
|  | {									\ | 
|  | R##_e--;							\ | 
|  | _nl = 0;							\ | 
|  | _nh = X##_f;							\ | 
|  | }									\ | 
|  | else								\ | 
|  | {									\ | 
|  | _nl = X##_f << (_FP_W_TYPE_SIZE - 1);				\ | 
|  | _nh = X##_f >> 1;						\ | 
|  | }									\ | 
|  | \ | 
|  | udiv_qrnnd(_q, _r, _nh, _nl, _y);					\ | 
|  | R##_f = _q | (_r != 0);						\ | 
|  | } while (0) | 
|  |  | 
|  | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\ | 
|  | do {							\ | 
|  | _FP_W_TYPE _nh, _nl, _q, _r;			\ | 
|  | if (X##_f < Y##_f)					\ | 
|  | {							\ | 
|  | R##_e--;					\ | 
|  | _nl = X##_f << _FP_WFRACBITS_##fs;		\ | 
|  | _nh = X##_f >> _FP_WFRACXBITS_##fs;		\ | 
|  | }							\ | 
|  | else						\ | 
|  | {							\ | 
|  | _nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\ | 
|  | _nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\ | 
|  | }							\ | 
|  | udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\ | 
|  | R##_f = _q | (_r != 0);				\ | 
|  | } while (0) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Square root algorithms: | 
|  | * We have just one right now, maybe Newton approximation | 
|  | * should be added for those machines where division is fast. | 
|  | */ | 
|  |  | 
|  | #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\ | 
|  | do {							\ | 
|  | while (q != _FP_WORK_ROUND)				\ | 
|  | {							\ | 
|  | T##_f = S##_f + q;				\ | 
|  | if (T##_f <= X##_f)				\ | 
|  | {						\ | 
|  | S##_f = T##_f + q;				\ | 
|  | X##_f -= T##_f;				\ | 
|  | R##_f += q;					\ | 
|  | }						\ | 
|  | _FP_FRAC_SLL_1(X, 1);				\ | 
|  | q >>= 1;					\ | 
|  | }							\ | 
|  | if (X##_f)						\ | 
|  | {							\ | 
|  | if (S##_f < X##_f)				\ | 
|  | R##_f |= _FP_WORK_ROUND;			\ | 
|  | R##_f |= _FP_WORK_STICKY;			\ | 
|  | }							\ | 
|  | } while (0) | 
|  |  | 
|  | /* | 
|  | * Assembly/disassembly for converting to/from integral types. | 
|  | * No shifting or overflow handled here. | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f) | 
|  | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r) | 
|  |  | 
|  |  | 
|  | /* | 
|  | * Convert FP values between word sizes | 
|  | */ | 
|  |  | 
|  | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\ | 
|  | do {									\ | 
|  | D##_f = S##_f;							\ | 
|  | if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\ | 
|  | {									\ | 
|  | if (S##_c != FP_CLS_NAN)					\ | 
|  | _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\ | 
|  | _FP_WFRACBITS_##sfs);				\ | 
|  | else								\ | 
|  | _FP_FRAC_SRL_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs));	\ | 
|  | }									\ | 
|  | else								\ | 
|  | D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\ | 
|  | } while (0) | 
|  |  | 
|  | #endif /* __MATH_EMU_OP_1_H__ */ |