| /* | 
 |  * fs/direct-io.c | 
 |  * | 
 |  * Copyright (C) 2002, Linus Torvalds. | 
 |  * | 
 |  * O_DIRECT | 
 |  * | 
 |  * 04Jul2002	akpm@zip.com.au | 
 |  *		Initial version | 
 |  * 11Sep2002	janetinc@us.ibm.com | 
 |  * 		added readv/writev support. | 
 |  * 29Oct2002	akpm@zip.com.au | 
 |  *		rewrote bio_add_page() support. | 
 |  * 30Oct2002	pbadari@us.ibm.com | 
 |  *		added support for non-aligned IO. | 
 |  * 06Nov2002	pbadari@us.ibm.com | 
 |  *		added asynchronous IO support. | 
 |  * 21Jul2003	nathans@sgi.com | 
 |  *		added IO completion notifier. | 
 |  */ | 
 |  | 
 | #include <linux/kernel.h> | 
 | #include <linux/module.h> | 
 | #include <linux/types.h> | 
 | #include <linux/fs.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/pagemap.h> | 
 | #include <linux/bio.h> | 
 | #include <linux/wait.h> | 
 | #include <linux/err.h> | 
 | #include <linux/blkdev.h> | 
 | #include <linux/buffer_head.h> | 
 | #include <linux/rwsem.h> | 
 | #include <linux/uio.h> | 
 | #include <asm/atomic.h> | 
 |  | 
 | /* | 
 |  * How many user pages to map in one call to get_user_pages().  This determines | 
 |  * the size of a structure on the stack. | 
 |  */ | 
 | #define DIO_PAGES	64 | 
 |  | 
 | /* | 
 |  * This code generally works in units of "dio_blocks".  A dio_block is | 
 |  * somewhere between the hard sector size and the filesystem block size.  it | 
 |  * is determined on a per-invocation basis.   When talking to the filesystem | 
 |  * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity | 
 |  * down by dio->blkfactor.  Similarly, fs-blocksize quantities are converted | 
 |  * to bio_block quantities by shifting left by blkfactor. | 
 |  * | 
 |  * If blkfactor is zero then the user's request was aligned to the filesystem's | 
 |  * blocksize. | 
 |  * | 
 |  * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems. | 
 |  * This determines whether we need to do the fancy locking which prevents | 
 |  * direct-IO from being able to read uninitialised disk blocks.  If its zero | 
 |  * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is | 
 |  * not held for the entire direct write (taken briefly, initially, during a | 
 |  * direct read though, but its never held for the duration of a direct-IO). | 
 |  */ | 
 |  | 
 | struct dio { | 
 | 	/* BIO submission state */ | 
 | 	struct bio *bio;		/* bio under assembly */ | 
 | 	struct inode *inode; | 
 | 	int rw; | 
 | 	loff_t i_size;			/* i_size when submitted */ | 
 | 	int lock_type;			/* doesn't change */ | 
 | 	unsigned blkbits;		/* doesn't change */ | 
 | 	unsigned blkfactor;		/* When we're using an alignment which | 
 | 					   is finer than the filesystem's soft | 
 | 					   blocksize, this specifies how much | 
 | 					   finer.  blkfactor=2 means 1/4-block | 
 | 					   alignment.  Does not change */ | 
 | 	unsigned start_zero_done;	/* flag: sub-blocksize zeroing has | 
 | 					   been performed at the start of a | 
 | 					   write */ | 
 | 	int pages_in_io;		/* approximate total IO pages */ | 
 | 	size_t	size;			/* total request size (doesn't change)*/ | 
 | 	sector_t block_in_file;		/* Current offset into the underlying | 
 | 					   file in dio_block units. */ | 
 | 	unsigned blocks_available;	/* At block_in_file.  changes */ | 
 | 	sector_t final_block_in_request;/* doesn't change */ | 
 | 	unsigned first_block_in_page;	/* doesn't change, Used only once */ | 
 | 	int boundary;			/* prev block is at a boundary */ | 
 | 	int reap_counter;		/* rate limit reaping */ | 
 | 	get_blocks_t *get_blocks;	/* block mapping function */ | 
 | 	dio_iodone_t *end_io;		/* IO completion function */ | 
 | 	sector_t final_block_in_bio;	/* current final block in bio + 1 */ | 
 | 	sector_t next_block_for_io;	/* next block to be put under IO, | 
 | 					   in dio_blocks units */ | 
 | 	struct buffer_head map_bh;	/* last get_blocks() result */ | 
 |  | 
 | 	/* | 
 | 	 * Deferred addition of a page to the dio.  These variables are | 
 | 	 * private to dio_send_cur_page(), submit_page_section() and | 
 | 	 * dio_bio_add_page(). | 
 | 	 */ | 
 | 	struct page *cur_page;		/* The page */ | 
 | 	unsigned cur_page_offset;	/* Offset into it, in bytes */ | 
 | 	unsigned cur_page_len;		/* Nr of bytes at cur_page_offset */ | 
 | 	sector_t cur_page_block;	/* Where it starts */ | 
 |  | 
 | 	/* | 
 | 	 * Page fetching state. These variables belong to dio_refill_pages(). | 
 | 	 */ | 
 | 	int curr_page;			/* changes */ | 
 | 	int total_pages;		/* doesn't change */ | 
 | 	unsigned long curr_user_address;/* changes */ | 
 |  | 
 | 	/* | 
 | 	 * Page queue.  These variables belong to dio_refill_pages() and | 
 | 	 * dio_get_page(). | 
 | 	 */ | 
 | 	struct page *pages[DIO_PAGES];	/* page buffer */ | 
 | 	unsigned head;			/* next page to process */ | 
 | 	unsigned tail;			/* last valid page + 1 */ | 
 | 	int page_errors;		/* errno from get_user_pages() */ | 
 |  | 
 | 	/* BIO completion state */ | 
 | 	spinlock_t bio_lock;		/* protects BIO fields below */ | 
 | 	int bio_count;			/* nr bios to be completed */ | 
 | 	int bios_in_flight;		/* nr bios in flight */ | 
 | 	struct bio *bio_list;		/* singly linked via bi_private */ | 
 | 	struct task_struct *waiter;	/* waiting task (NULL if none) */ | 
 |  | 
 | 	/* AIO related stuff */ | 
 | 	struct kiocb *iocb;		/* kiocb */ | 
 | 	int is_async;			/* is IO async ? */ | 
 | 	ssize_t result;                 /* IO result */ | 
 | }; | 
 |  | 
 | /* | 
 |  * How many pages are in the queue? | 
 |  */ | 
 | static inline unsigned dio_pages_present(struct dio *dio) | 
 | { | 
 | 	return dio->tail - dio->head; | 
 | } | 
 |  | 
 | /* | 
 |  * Go grab and pin some userspace pages.   Typically we'll get 64 at a time. | 
 |  */ | 
 | static int dio_refill_pages(struct dio *dio) | 
 | { | 
 | 	int ret; | 
 | 	int nr_pages; | 
 |  | 
 | 	nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES); | 
 | 	down_read(¤t->mm->mmap_sem); | 
 | 	ret = get_user_pages( | 
 | 		current,			/* Task for fault acounting */ | 
 | 		current->mm,			/* whose pages? */ | 
 | 		dio->curr_user_address,		/* Where from? */ | 
 | 		nr_pages,			/* How many pages? */ | 
 | 		dio->rw == READ,		/* Write to memory? */ | 
 | 		0,				/* force (?) */ | 
 | 		&dio->pages[0], | 
 | 		NULL);				/* vmas */ | 
 | 	up_read(¤t->mm->mmap_sem); | 
 |  | 
 | 	if (ret < 0 && dio->blocks_available && (dio->rw == WRITE)) { | 
 | 		struct page *page = ZERO_PAGE(dio->curr_user_address); | 
 | 		/* | 
 | 		 * A memory fault, but the filesystem has some outstanding | 
 | 		 * mapped blocks.  We need to use those blocks up to avoid | 
 | 		 * leaking stale data in the file. | 
 | 		 */ | 
 | 		if (dio->page_errors == 0) | 
 | 			dio->page_errors = ret; | 
 | 		page_cache_get(page); | 
 | 		dio->pages[0] = page; | 
 | 		dio->head = 0; | 
 | 		dio->tail = 1; | 
 | 		ret = 0; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (ret >= 0) { | 
 | 		dio->curr_user_address += ret * PAGE_SIZE; | 
 | 		dio->curr_page += ret; | 
 | 		dio->head = 0; | 
 | 		dio->tail = ret; | 
 | 		ret = 0; | 
 | 	} | 
 | out: | 
 | 	return ret;	 | 
 | } | 
 |  | 
 | /* | 
 |  * Get another userspace page.  Returns an ERR_PTR on error.  Pages are | 
 |  * buffered inside the dio so that we can call get_user_pages() against a | 
 |  * decent number of pages, less frequently.  To provide nicer use of the | 
 |  * L1 cache. | 
 |  */ | 
 | static struct page *dio_get_page(struct dio *dio) | 
 | { | 
 | 	if (dio_pages_present(dio) == 0) { | 
 | 		int ret; | 
 |  | 
 | 		ret = dio_refill_pages(dio); | 
 | 		if (ret) | 
 | 			return ERR_PTR(ret); | 
 | 		BUG_ON(dio_pages_present(dio) == 0); | 
 | 	} | 
 | 	return dio->pages[dio->head++]; | 
 | } | 
 |  | 
 | /* | 
 |  * Called when all DIO BIO I/O has been completed - let the filesystem | 
 |  * know, if it registered an interest earlier via get_blocks.  Pass the | 
 |  * private field of the map buffer_head so that filesystems can use it | 
 |  * to hold additional state between get_blocks calls and dio_complete. | 
 |  */ | 
 | static void dio_complete(struct dio *dio, loff_t offset, ssize_t bytes) | 
 | { | 
 | 	if (dio->end_io && dio->result) | 
 | 		dio->end_io(dio->iocb, offset, bytes, dio->map_bh.b_private); | 
 | 	if (dio->lock_type == DIO_LOCKING) | 
 | 		up_read(&dio->inode->i_alloc_sem); | 
 | } | 
 |  | 
 | /* | 
 |  * Called when a BIO has been processed.  If the count goes to zero then IO is | 
 |  * complete and we can signal this to the AIO layer. | 
 |  */ | 
 | static void finished_one_bio(struct dio *dio) | 
 | { | 
 | 	unsigned long flags; | 
 |  | 
 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 	if (dio->bio_count == 1) { | 
 | 		if (dio->is_async) { | 
 | 			ssize_t transferred; | 
 | 			loff_t offset; | 
 |  | 
 | 			/* | 
 | 			 * Last reference to the dio is going away. | 
 | 			 * Drop spinlock and complete the DIO. | 
 | 			 */ | 
 | 			spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 |  | 
 | 			/* Check for short read case */ | 
 | 			transferred = dio->result; | 
 | 			offset = dio->iocb->ki_pos; | 
 |  | 
 | 			if ((dio->rw == READ) && | 
 | 			    ((offset + transferred) > dio->i_size)) | 
 | 				transferred = dio->i_size - offset; | 
 |  | 
 | 			dio_complete(dio, offset, transferred); | 
 |  | 
 | 			/* Complete AIO later if falling back to buffered i/o */ | 
 | 			if (dio->result == dio->size || | 
 | 				((dio->rw == READ) && dio->result)) { | 
 | 				aio_complete(dio->iocb, transferred, 0); | 
 | 				kfree(dio); | 
 | 				return; | 
 | 			} else { | 
 | 				/* | 
 | 				 * Falling back to buffered | 
 | 				 */ | 
 | 				spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 				dio->bio_count--; | 
 | 				if (dio->waiter) | 
 | 					wake_up_process(dio->waiter); | 
 | 				spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 				return; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	dio->bio_count--; | 
 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | } | 
 |  | 
 | static int dio_bio_complete(struct dio *dio, struct bio *bio); | 
 | /* | 
 |  * Asynchronous IO callback.  | 
 |  */ | 
 | static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error) | 
 | { | 
 | 	struct dio *dio = bio->bi_private; | 
 |  | 
 | 	if (bio->bi_size) | 
 | 		return 1; | 
 |  | 
 | 	/* cleanup the bio */ | 
 | 	dio_bio_complete(dio, bio); | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The BIO completion handler simply queues the BIO up for the process-context | 
 |  * handler. | 
 |  * | 
 |  * During I/O bi_private points at the dio.  After I/O, bi_private is used to | 
 |  * implement a singly-linked list of completed BIOs, at dio->bio_list. | 
 |  */ | 
 | static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error) | 
 | { | 
 | 	struct dio *dio = bio->bi_private; | 
 | 	unsigned long flags; | 
 |  | 
 | 	if (bio->bi_size) | 
 | 		return 1; | 
 |  | 
 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 	bio->bi_private = dio->bio_list; | 
 | 	dio->bio_list = bio; | 
 | 	dio->bios_in_flight--; | 
 | 	if (dio->waiter && dio->bios_in_flight == 0) | 
 | 		wake_up_process(dio->waiter); | 
 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int | 
 | dio_bio_alloc(struct dio *dio, struct block_device *bdev, | 
 | 		sector_t first_sector, int nr_vecs) | 
 | { | 
 | 	struct bio *bio; | 
 |  | 
 | 	bio = bio_alloc(GFP_KERNEL, nr_vecs); | 
 | 	if (bio == NULL) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	bio->bi_bdev = bdev; | 
 | 	bio->bi_sector = first_sector; | 
 | 	if (dio->is_async) | 
 | 		bio->bi_end_io = dio_bio_end_aio; | 
 | 	else | 
 | 		bio->bi_end_io = dio_bio_end_io; | 
 |  | 
 | 	dio->bio = bio; | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * In the AIO read case we speculatively dirty the pages before starting IO. | 
 |  * During IO completion, any of these pages which happen to have been written | 
 |  * back will be redirtied by bio_check_pages_dirty(). | 
 |  */ | 
 | static void dio_bio_submit(struct dio *dio) | 
 | { | 
 | 	struct bio *bio = dio->bio; | 
 | 	unsigned long flags; | 
 |  | 
 | 	bio->bi_private = dio; | 
 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 	dio->bio_count++; | 
 | 	dio->bios_in_flight++; | 
 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 	if (dio->is_async && dio->rw == READ) | 
 | 		bio_set_pages_dirty(bio); | 
 | 	submit_bio(dio->rw, bio); | 
 |  | 
 | 	dio->bio = NULL; | 
 | 	dio->boundary = 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Release any resources in case of a failure | 
 |  */ | 
 | static void dio_cleanup(struct dio *dio) | 
 | { | 
 | 	while (dio_pages_present(dio)) | 
 | 		page_cache_release(dio_get_page(dio)); | 
 | } | 
 |  | 
 | /* | 
 |  * Wait for the next BIO to complete.  Remove it and return it. | 
 |  */ | 
 | static struct bio *dio_await_one(struct dio *dio) | 
 | { | 
 | 	unsigned long flags; | 
 | 	struct bio *bio; | 
 |  | 
 | 	spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 	while (dio->bio_list == NULL) { | 
 | 		set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 		if (dio->bio_list == NULL) { | 
 | 			dio->waiter = current; | 
 | 			spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 			blk_run_address_space(dio->inode->i_mapping); | 
 | 			io_schedule(); | 
 | 			spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 			dio->waiter = NULL; | 
 | 		} | 
 | 		set_current_state(TASK_RUNNING); | 
 | 	} | 
 | 	bio = dio->bio_list; | 
 | 	dio->bio_list = bio->bi_private; | 
 | 	spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 	return bio; | 
 | } | 
 |  | 
 | /* | 
 |  * Process one completed BIO.  No locks are held. | 
 |  */ | 
 | static int dio_bio_complete(struct dio *dio, struct bio *bio) | 
 | { | 
 | 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 	struct bio_vec *bvec = bio->bi_io_vec; | 
 | 	int page_no; | 
 |  | 
 | 	if (!uptodate) | 
 | 		dio->result = -EIO; | 
 |  | 
 | 	if (dio->is_async && dio->rw == READ) { | 
 | 		bio_check_pages_dirty(bio);	/* transfers ownership */ | 
 | 	} else { | 
 | 		for (page_no = 0; page_no < bio->bi_vcnt; page_no++) { | 
 | 			struct page *page = bvec[page_no].bv_page; | 
 |  | 
 | 			if (dio->rw == READ && !PageCompound(page)) | 
 | 				set_page_dirty_lock(page); | 
 | 			page_cache_release(page); | 
 | 		} | 
 | 		bio_put(bio); | 
 | 	} | 
 | 	finished_one_bio(dio); | 
 | 	return uptodate ? 0 : -EIO; | 
 | } | 
 |  | 
 | /* | 
 |  * Wait on and process all in-flight BIOs. | 
 |  */ | 
 | static int dio_await_completion(struct dio *dio) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dio->bio) | 
 | 		dio_bio_submit(dio); | 
 |  | 
 | 	/* | 
 | 	 * The bio_lock is not held for the read of bio_count. | 
 | 	 * This is ok since it is the dio_bio_complete() that changes | 
 | 	 * bio_count. | 
 | 	 */ | 
 | 	while (dio->bio_count) { | 
 | 		struct bio *bio = dio_await_one(dio); | 
 | 		int ret2; | 
 |  | 
 | 		ret2 = dio_bio_complete(dio, bio); | 
 | 		if (ret == 0) | 
 | 			ret = ret2; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * A really large O_DIRECT read or write can generate a lot of BIOs.  So | 
 |  * to keep the memory consumption sane we periodically reap any completed BIOs | 
 |  * during the BIO generation phase. | 
 |  * | 
 |  * This also helps to limit the peak amount of pinned userspace memory. | 
 |  */ | 
 | static int dio_bio_reap(struct dio *dio) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dio->reap_counter++ >= 64) { | 
 | 		while (dio->bio_list) { | 
 | 			unsigned long flags; | 
 | 			struct bio *bio; | 
 | 			int ret2; | 
 |  | 
 | 			spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 			bio = dio->bio_list; | 
 | 			dio->bio_list = bio->bi_private; | 
 | 			spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 			ret2 = dio_bio_complete(dio, bio); | 
 | 			if (ret == 0) | 
 | 				ret = ret2; | 
 | 		} | 
 | 		dio->reap_counter = 0; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Call into the fs to map some more disk blocks.  We record the current number | 
 |  * of available blocks at dio->blocks_available.  These are in units of the | 
 |  * fs blocksize, (1 << inode->i_blkbits). | 
 |  * | 
 |  * The fs is allowed to map lots of blocks at once.  If it wants to do that, | 
 |  * it uses the passed inode-relative block number as the file offset, as usual. | 
 |  * | 
 |  * get_blocks() is passed the number of i_blkbits-sized blocks which direct_io | 
 |  * has remaining to do.  The fs should not map more than this number of blocks. | 
 |  * | 
 |  * If the fs has mapped a lot of blocks, it should populate bh->b_size to | 
 |  * indicate how much contiguous disk space has been made available at | 
 |  * bh->b_blocknr. | 
 |  * | 
 |  * If *any* of the mapped blocks are new, then the fs must set buffer_new(). | 
 |  * This isn't very efficient... | 
 |  * | 
 |  * In the case of filesystem holes: the fs may return an arbitrarily-large | 
 |  * hole by returning an appropriate value in b_size and by clearing | 
 |  * buffer_mapped().  However the direct-io code will only process holes one | 
 |  * block at a time - it will repeatedly call get_blocks() as it walks the hole. | 
 |  */ | 
 | static int get_more_blocks(struct dio *dio) | 
 | { | 
 | 	int ret; | 
 | 	struct buffer_head *map_bh = &dio->map_bh; | 
 | 	sector_t fs_startblk;	/* Into file, in filesystem-sized blocks */ | 
 | 	unsigned long fs_count;	/* Number of filesystem-sized blocks */ | 
 | 	unsigned long dio_count;/* Number of dio_block-sized blocks */ | 
 | 	unsigned long blkmask; | 
 | 	int create; | 
 |  | 
 | 	/* | 
 | 	 * If there was a memory error and we've overwritten all the | 
 | 	 * mapped blocks then we can now return that memory error | 
 | 	 */ | 
 | 	ret = dio->page_errors; | 
 | 	if (ret == 0) { | 
 | 		map_bh->b_state = 0; | 
 | 		map_bh->b_size = 0; | 
 | 		BUG_ON(dio->block_in_file >= dio->final_block_in_request); | 
 | 		fs_startblk = dio->block_in_file >> dio->blkfactor; | 
 | 		dio_count = dio->final_block_in_request - dio->block_in_file; | 
 | 		fs_count = dio_count >> dio->blkfactor; | 
 | 		blkmask = (1 << dio->blkfactor) - 1; | 
 | 		if (dio_count & blkmask)	 | 
 | 			fs_count++; | 
 |  | 
 | 		create = dio->rw == WRITE; | 
 | 		if (dio->lock_type == DIO_LOCKING) { | 
 | 			if (dio->block_in_file < (i_size_read(dio->inode) >> | 
 | 							dio->blkbits)) | 
 | 				create = 0; | 
 | 		} else if (dio->lock_type == DIO_NO_LOCKING) { | 
 | 			create = 0; | 
 | 		} | 
 | 		/* | 
 | 		 * For writes inside i_size we forbid block creations: only | 
 | 		 * overwrites are permitted.  We fall back to buffered writes | 
 | 		 * at a higher level for inside-i_size block-instantiating | 
 | 		 * writes. | 
 | 		 */ | 
 | 		ret = (*dio->get_blocks)(dio->inode, fs_startblk, fs_count, | 
 | 						map_bh, create); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * There is no bio.  Make one now. | 
 |  */ | 
 | static int dio_new_bio(struct dio *dio, sector_t start_sector) | 
 | { | 
 | 	sector_t sector; | 
 | 	int ret, nr_pages; | 
 |  | 
 | 	ret = dio_bio_reap(dio); | 
 | 	if (ret) | 
 | 		goto out; | 
 | 	sector = start_sector << (dio->blkbits - 9); | 
 | 	nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev)); | 
 | 	BUG_ON(nr_pages <= 0); | 
 | 	ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages); | 
 | 	dio->boundary = 0; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Attempt to put the current chunk of 'cur_page' into the current BIO.  If | 
 |  * that was successful then update final_block_in_bio and take a ref against | 
 |  * the just-added page. | 
 |  * | 
 |  * Return zero on success.  Non-zero means the caller needs to start a new BIO. | 
 |  */ | 
 | static int dio_bio_add_page(struct dio *dio) | 
 | { | 
 | 	int ret; | 
 |  | 
 | 	ret = bio_add_page(dio->bio, dio->cur_page, | 
 | 			dio->cur_page_len, dio->cur_page_offset); | 
 | 	if (ret == dio->cur_page_len) { | 
 | 		/* | 
 | 		 * Decrement count only, if we are done with this page | 
 | 		 */ | 
 | 		if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE) | 
 | 			dio->pages_in_io--; | 
 | 		page_cache_get(dio->cur_page); | 
 | 		dio->final_block_in_bio = dio->cur_page_block + | 
 | 			(dio->cur_page_len >> dio->blkbits); | 
 | 		ret = 0; | 
 | 	} else { | 
 | 		ret = 1; | 
 | 	} | 
 | 	return ret; | 
 | } | 
 | 		 | 
 | /* | 
 |  * Put cur_page under IO.  The section of cur_page which is described by | 
 |  * cur_page_offset,cur_page_len is put into a BIO.  The section of cur_page | 
 |  * starts on-disk at cur_page_block. | 
 |  * | 
 |  * We take a ref against the page here (on behalf of its presence in the bio). | 
 |  * | 
 |  * The caller of this function is responsible for removing cur_page from the | 
 |  * dio, and for dropping the refcount which came from that presence. | 
 |  */ | 
 | static int dio_send_cur_page(struct dio *dio) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	if (dio->bio) { | 
 | 		/* | 
 | 		 * See whether this new request is contiguous with the old | 
 | 		 */ | 
 | 		if (dio->final_block_in_bio != dio->cur_page_block) | 
 | 			dio_bio_submit(dio); | 
 | 		/* | 
 | 		 * Submit now if the underlying fs is about to perform a | 
 | 		 * metadata read | 
 | 		 */ | 
 | 		if (dio->boundary) | 
 | 			dio_bio_submit(dio); | 
 | 	} | 
 |  | 
 | 	if (dio->bio == NULL) { | 
 | 		ret = dio_new_bio(dio, dio->cur_page_block); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	if (dio_bio_add_page(dio) != 0) { | 
 | 		dio_bio_submit(dio); | 
 | 		ret = dio_new_bio(dio, dio->cur_page_block); | 
 | 		if (ret == 0) { | 
 | 			ret = dio_bio_add_page(dio); | 
 | 			BUG_ON(ret != 0); | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * An autonomous function to put a chunk of a page under deferred IO. | 
 |  * | 
 |  * The caller doesn't actually know (or care) whether this piece of page is in | 
 |  * a BIO, or is under IO or whatever.  We just take care of all possible  | 
 |  * situations here.  The separation between the logic of do_direct_IO() and | 
 |  * that of submit_page_section() is important for clarity.  Please don't break. | 
 |  * | 
 |  * The chunk of page starts on-disk at blocknr. | 
 |  * | 
 |  * We perform deferred IO, by recording the last-submitted page inside our | 
 |  * private part of the dio structure.  If possible, we just expand the IO | 
 |  * across that page here. | 
 |  * | 
 |  * If that doesn't work out then we put the old page into the bio and add this | 
 |  * page to the dio instead. | 
 |  */ | 
 | static int | 
 | submit_page_section(struct dio *dio, struct page *page, | 
 | 		unsigned offset, unsigned len, sector_t blocknr) | 
 | { | 
 | 	int ret = 0; | 
 |  | 
 | 	/* | 
 | 	 * Can we just grow the current page's presence in the dio? | 
 | 	 */ | 
 | 	if (	(dio->cur_page == page) && | 
 | 		(dio->cur_page_offset + dio->cur_page_len == offset) && | 
 | 		(dio->cur_page_block + | 
 | 			(dio->cur_page_len >> dio->blkbits) == blocknr)) { | 
 | 		dio->cur_page_len += len; | 
 |  | 
 | 		/* | 
 | 		 * If dio->boundary then we want to schedule the IO now to | 
 | 		 * avoid metadata seeks. | 
 | 		 */ | 
 | 		if (dio->boundary) { | 
 | 			ret = dio_send_cur_page(dio); | 
 | 			page_cache_release(dio->cur_page); | 
 | 			dio->cur_page = NULL; | 
 | 		} | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * If there's a deferred page already there then send it. | 
 | 	 */ | 
 | 	if (dio->cur_page) { | 
 | 		ret = dio_send_cur_page(dio); | 
 | 		page_cache_release(dio->cur_page); | 
 | 		dio->cur_page = NULL; | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	page_cache_get(page);		/* It is in dio */ | 
 | 	dio->cur_page = page; | 
 | 	dio->cur_page_offset = offset; | 
 | 	dio->cur_page_len = len; | 
 | 	dio->cur_page_block = blocknr; | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Clean any dirty buffers in the blockdev mapping which alias newly-created | 
 |  * file blocks.  Only called for S_ISREG files - blockdevs do not set | 
 |  * buffer_new | 
 |  */ | 
 | static void clean_blockdev_aliases(struct dio *dio) | 
 | { | 
 | 	unsigned i; | 
 | 	unsigned nblocks; | 
 |  | 
 | 	nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits; | 
 |  | 
 | 	for (i = 0; i < nblocks; i++) { | 
 | 		unmap_underlying_metadata(dio->map_bh.b_bdev, | 
 | 					dio->map_bh.b_blocknr + i); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * If we are not writing the entire block and get_block() allocated | 
 |  * the block for us, we need to fill-in the unused portion of the | 
 |  * block with zeros. This happens only if user-buffer, fileoffset or | 
 |  * io length is not filesystem block-size multiple. | 
 |  * | 
 |  * `end' is zero if we're doing the start of the IO, 1 at the end of the | 
 |  * IO. | 
 |  */ | 
 | static void dio_zero_block(struct dio *dio, int end) | 
 | { | 
 | 	unsigned dio_blocks_per_fs_block; | 
 | 	unsigned this_chunk_blocks;	/* In dio_blocks */ | 
 | 	unsigned this_chunk_bytes; | 
 | 	struct page *page; | 
 |  | 
 | 	dio->start_zero_done = 1; | 
 | 	if (!dio->blkfactor || !buffer_new(&dio->map_bh)) | 
 | 		return; | 
 |  | 
 | 	dio_blocks_per_fs_block = 1 << dio->blkfactor; | 
 | 	this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1); | 
 |  | 
 | 	if (!this_chunk_blocks) | 
 | 		return; | 
 |  | 
 | 	/* | 
 | 	 * We need to zero out part of an fs block.  It is either at the | 
 | 	 * beginning or the end of the fs block. | 
 | 	 */ | 
 | 	if (end)  | 
 | 		this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks; | 
 |  | 
 | 	this_chunk_bytes = this_chunk_blocks << dio->blkbits; | 
 |  | 
 | 	page = ZERO_PAGE(dio->curr_user_address); | 
 | 	if (submit_page_section(dio, page, 0, this_chunk_bytes,  | 
 | 				dio->next_block_for_io)) | 
 | 		return; | 
 |  | 
 | 	dio->next_block_for_io += this_chunk_blocks; | 
 | } | 
 |  | 
 | /* | 
 |  * Walk the user pages, and the file, mapping blocks to disk and generating | 
 |  * a sequence of (page,offset,len,block) mappings.  These mappings are injected | 
 |  * into submit_page_section(), which takes care of the next stage of submission | 
 |  * | 
 |  * Direct IO against a blockdev is different from a file.  Because we can | 
 |  * happily perform page-sized but 512-byte aligned IOs.  It is important that | 
 |  * blockdev IO be able to have fine alignment and large sizes. | 
 |  * | 
 |  * So what we do is to permit the ->get_blocks function to populate bh.b_size | 
 |  * with the size of IO which is permitted at this offset and this i_blkbits. | 
 |  * | 
 |  * For best results, the blockdev should be set up with 512-byte i_blkbits and | 
 |  * it should set b_size to PAGE_SIZE or more inside get_blocks().  This gives | 
 |  * fine alignment but still allows this function to work in PAGE_SIZE units. | 
 |  */ | 
 | static int do_direct_IO(struct dio *dio) | 
 | { | 
 | 	const unsigned blkbits = dio->blkbits; | 
 | 	const unsigned blocks_per_page = PAGE_SIZE >> blkbits; | 
 | 	struct page *page; | 
 | 	unsigned block_in_page; | 
 | 	struct buffer_head *map_bh = &dio->map_bh; | 
 | 	int ret = 0; | 
 |  | 
 | 	/* The I/O can start at any block offset within the first page */ | 
 | 	block_in_page = dio->first_block_in_page; | 
 |  | 
 | 	while (dio->block_in_file < dio->final_block_in_request) { | 
 | 		page = dio_get_page(dio); | 
 | 		if (IS_ERR(page)) { | 
 | 			ret = PTR_ERR(page); | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		while (block_in_page < blocks_per_page) { | 
 | 			unsigned offset_in_page = block_in_page << blkbits; | 
 | 			unsigned this_chunk_bytes;	/* # of bytes mapped */ | 
 | 			unsigned this_chunk_blocks;	/* # of blocks */ | 
 | 			unsigned u; | 
 |  | 
 | 			if (dio->blocks_available == 0) { | 
 | 				/* | 
 | 				 * Need to go and map some more disk | 
 | 				 */ | 
 | 				unsigned long blkmask; | 
 | 				unsigned long dio_remainder; | 
 |  | 
 | 				ret = get_more_blocks(dio); | 
 | 				if (ret) { | 
 | 					page_cache_release(page); | 
 | 					goto out; | 
 | 				} | 
 | 				if (!buffer_mapped(map_bh)) | 
 | 					goto do_holes; | 
 |  | 
 | 				dio->blocks_available = | 
 | 						map_bh->b_size >> dio->blkbits; | 
 | 				dio->next_block_for_io = | 
 | 					map_bh->b_blocknr << dio->blkfactor; | 
 | 				if (buffer_new(map_bh)) | 
 | 					clean_blockdev_aliases(dio); | 
 |  | 
 | 				if (!dio->blkfactor) | 
 | 					goto do_holes; | 
 |  | 
 | 				blkmask = (1 << dio->blkfactor) - 1; | 
 | 				dio_remainder = (dio->block_in_file & blkmask); | 
 |  | 
 | 				/* | 
 | 				 * If we are at the start of IO and that IO | 
 | 				 * starts partway into a fs-block, | 
 | 				 * dio_remainder will be non-zero.  If the IO | 
 | 				 * is a read then we can simply advance the IO | 
 | 				 * cursor to the first block which is to be | 
 | 				 * read.  But if the IO is a write and the | 
 | 				 * block was newly allocated we cannot do that; | 
 | 				 * the start of the fs block must be zeroed out | 
 | 				 * on-disk | 
 | 				 */ | 
 | 				if (!buffer_new(map_bh)) | 
 | 					dio->next_block_for_io += dio_remainder; | 
 | 				dio->blocks_available -= dio_remainder; | 
 | 			} | 
 | do_holes: | 
 | 			/* Handle holes */ | 
 | 			if (!buffer_mapped(map_bh)) { | 
 | 				char *kaddr; | 
 | 				loff_t i_size_aligned; | 
 |  | 
 | 				/* AKPM: eargh, -ENOTBLK is a hack */ | 
 | 				if (dio->rw == WRITE) { | 
 | 					page_cache_release(page); | 
 | 					return -ENOTBLK; | 
 | 				} | 
 |  | 
 | 				/* | 
 | 				 * Be sure to account for a partial block as the | 
 | 				 * last block in the file | 
 | 				 */ | 
 | 				i_size_aligned = ALIGN(i_size_read(dio->inode), | 
 | 							1 << blkbits); | 
 | 				if (dio->block_in_file >= | 
 | 						i_size_aligned >> blkbits) { | 
 | 					/* We hit eof */ | 
 | 					page_cache_release(page); | 
 | 					goto out; | 
 | 				} | 
 | 				kaddr = kmap_atomic(page, KM_USER0); | 
 | 				memset(kaddr + (block_in_page << blkbits), | 
 | 						0, 1 << blkbits); | 
 | 				flush_dcache_page(page); | 
 | 				kunmap_atomic(kaddr, KM_USER0); | 
 | 				dio->block_in_file++; | 
 | 				block_in_page++; | 
 | 				goto next_block; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * If we're performing IO which has an alignment which | 
 | 			 * is finer than the underlying fs, go check to see if | 
 | 			 * we must zero out the start of this block. | 
 | 			 */ | 
 | 			if (unlikely(dio->blkfactor && !dio->start_zero_done)) | 
 | 				dio_zero_block(dio, 0); | 
 |  | 
 | 			/* | 
 | 			 * Work out, in this_chunk_blocks, how much disk we | 
 | 			 * can add to this page | 
 | 			 */ | 
 | 			this_chunk_blocks = dio->blocks_available; | 
 | 			u = (PAGE_SIZE - offset_in_page) >> blkbits; | 
 | 			if (this_chunk_blocks > u) | 
 | 				this_chunk_blocks = u; | 
 | 			u = dio->final_block_in_request - dio->block_in_file; | 
 | 			if (this_chunk_blocks > u) | 
 | 				this_chunk_blocks = u; | 
 | 			this_chunk_bytes = this_chunk_blocks << blkbits; | 
 | 			BUG_ON(this_chunk_bytes == 0); | 
 |  | 
 | 			dio->boundary = buffer_boundary(map_bh); | 
 | 			ret = submit_page_section(dio, page, offset_in_page, | 
 | 				this_chunk_bytes, dio->next_block_for_io); | 
 | 			if (ret) { | 
 | 				page_cache_release(page); | 
 | 				goto out; | 
 | 			} | 
 | 			dio->next_block_for_io += this_chunk_blocks; | 
 |  | 
 | 			dio->block_in_file += this_chunk_blocks; | 
 | 			block_in_page += this_chunk_blocks; | 
 | 			dio->blocks_available -= this_chunk_blocks; | 
 | next_block: | 
 | 			if (dio->block_in_file > dio->final_block_in_request) | 
 | 				BUG(); | 
 | 			if (dio->block_in_file == dio->final_block_in_request) | 
 | 				break; | 
 | 		} | 
 |  | 
 | 		/* Drop the ref which was taken in get_user_pages() */ | 
 | 		page_cache_release(page); | 
 | 		block_in_page = 0; | 
 | 	} | 
 | out: | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * Releases both i_mutex and i_alloc_sem | 
 |  */ | 
 | static ssize_t | 
 | direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,  | 
 | 	const struct iovec *iov, loff_t offset, unsigned long nr_segs,  | 
 | 	unsigned blkbits, get_blocks_t get_blocks, dio_iodone_t end_io, | 
 | 	struct dio *dio) | 
 | { | 
 | 	unsigned long user_addr;  | 
 | 	int seg; | 
 | 	ssize_t ret = 0; | 
 | 	ssize_t ret2; | 
 | 	size_t bytes; | 
 |  | 
 | 	dio->bio = NULL; | 
 | 	dio->inode = inode; | 
 | 	dio->rw = rw; | 
 | 	dio->blkbits = blkbits; | 
 | 	dio->blkfactor = inode->i_blkbits - blkbits; | 
 | 	dio->start_zero_done = 0; | 
 | 	dio->size = 0; | 
 | 	dio->block_in_file = offset >> blkbits; | 
 | 	dio->blocks_available = 0; | 
 | 	dio->cur_page = NULL; | 
 |  | 
 | 	dio->boundary = 0; | 
 | 	dio->reap_counter = 0; | 
 | 	dio->get_blocks = get_blocks; | 
 | 	dio->end_io = end_io; | 
 | 	dio->map_bh.b_private = NULL; | 
 | 	dio->final_block_in_bio = -1; | 
 | 	dio->next_block_for_io = -1; | 
 |  | 
 | 	dio->page_errors = 0; | 
 | 	dio->result = 0; | 
 | 	dio->iocb = iocb; | 
 | 	dio->i_size = i_size_read(inode); | 
 |  | 
 | 	/* | 
 | 	 * BIO completion state. | 
 | 	 * | 
 | 	 * ->bio_count starts out at one, and we decrement it to zero after all | 
 | 	 * BIOs are submitted.  This to avoid the situation where a really fast | 
 | 	 * (or synchronous) device could take the count to zero while we're | 
 | 	 * still submitting BIOs. | 
 | 	 */ | 
 | 	dio->bio_count = 1; | 
 | 	dio->bios_in_flight = 0; | 
 | 	spin_lock_init(&dio->bio_lock); | 
 | 	dio->bio_list = NULL; | 
 | 	dio->waiter = NULL; | 
 |  | 
 | 	/* | 
 | 	 * In case of non-aligned buffers, we may need 2 more | 
 | 	 * pages since we need to zero out first and last block. | 
 | 	 */ | 
 | 	if (unlikely(dio->blkfactor)) | 
 | 		dio->pages_in_io = 2; | 
 | 	else | 
 | 		dio->pages_in_io = 0; | 
 |  | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		user_addr = (unsigned long)iov[seg].iov_base; | 
 | 		dio->pages_in_io += | 
 | 			((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE | 
 | 				- user_addr/PAGE_SIZE); | 
 | 	} | 
 |  | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		user_addr = (unsigned long)iov[seg].iov_base; | 
 | 		dio->size += bytes = iov[seg].iov_len; | 
 |  | 
 | 		/* Index into the first page of the first block */ | 
 | 		dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits; | 
 | 		dio->final_block_in_request = dio->block_in_file + | 
 | 						(bytes >> blkbits); | 
 | 		/* Page fetching state */ | 
 | 		dio->head = 0; | 
 | 		dio->tail = 0; | 
 | 		dio->curr_page = 0; | 
 |  | 
 | 		dio->total_pages = 0; | 
 | 		if (user_addr & (PAGE_SIZE-1)) { | 
 | 			dio->total_pages++; | 
 | 			bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1)); | 
 | 		} | 
 | 		dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE; | 
 | 		dio->curr_user_address = user_addr; | 
 | 	 | 
 | 		ret = do_direct_IO(dio); | 
 |  | 
 | 		dio->result += iov[seg].iov_len - | 
 | 			((dio->final_block_in_request - dio->block_in_file) << | 
 | 					blkbits); | 
 |  | 
 | 		if (ret) { | 
 | 			dio_cleanup(dio); | 
 | 			break; | 
 | 		} | 
 | 	} /* end iovec loop */ | 
 |  | 
 | 	if (ret == -ENOTBLK && rw == WRITE) { | 
 | 		/* | 
 | 		 * The remaining part of the request will be | 
 | 		 * be handled by buffered I/O when we return | 
 | 		 */ | 
 | 		ret = 0; | 
 | 	} | 
 | 	/* | 
 | 	 * There may be some unwritten disk at the end of a part-written | 
 | 	 * fs-block-sized block.  Go zero that now. | 
 | 	 */ | 
 | 	dio_zero_block(dio, 1); | 
 |  | 
 | 	if (dio->cur_page) { | 
 | 		ret2 = dio_send_cur_page(dio); | 
 | 		if (ret == 0) | 
 | 			ret = ret2; | 
 | 		page_cache_release(dio->cur_page); | 
 | 		dio->cur_page = NULL; | 
 | 	} | 
 | 	if (dio->bio) | 
 | 		dio_bio_submit(dio); | 
 |  | 
 | 	/* | 
 | 	 * It is possible that, we return short IO due to end of file. | 
 | 	 * In that case, we need to release all the pages we got hold on. | 
 | 	 */ | 
 | 	dio_cleanup(dio); | 
 |  | 
 | 	/* | 
 | 	 * All block lookups have been performed. For READ requests | 
 | 	 * we can let i_mutex go now that its achieved its purpose | 
 | 	 * of protecting us from looking up uninitialized blocks. | 
 | 	 */ | 
 | 	if ((rw == READ) && (dio->lock_type == DIO_LOCKING)) | 
 | 		mutex_unlock(&dio->inode->i_mutex); | 
 |  | 
 | 	/* | 
 | 	 * OK, all BIOs are submitted, so we can decrement bio_count to truly | 
 | 	 * reflect the number of to-be-processed BIOs. | 
 | 	 */ | 
 | 	if (dio->is_async) { | 
 | 		int should_wait = 0; | 
 |  | 
 | 		if (dio->result < dio->size && rw == WRITE) { | 
 | 			dio->waiter = current; | 
 | 			should_wait = 1; | 
 | 		} | 
 | 		if (ret == 0) | 
 | 			ret = dio->result; | 
 | 		finished_one_bio(dio);		/* This can free the dio */ | 
 | 		blk_run_address_space(inode->i_mapping); | 
 | 		if (should_wait) { | 
 | 			unsigned long flags; | 
 | 			/* | 
 | 			 * Wait for already issued I/O to drain out and | 
 | 			 * release its references to user-space pages | 
 | 			 * before returning to fallback on buffered I/O | 
 | 			 */ | 
 |  | 
 | 			spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 			set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			while (dio->bio_count) { | 
 | 				spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 				io_schedule(); | 
 | 				spin_lock_irqsave(&dio->bio_lock, flags); | 
 | 				set_current_state(TASK_UNINTERRUPTIBLE); | 
 | 			} | 
 | 			spin_unlock_irqrestore(&dio->bio_lock, flags); | 
 | 			set_current_state(TASK_RUNNING); | 
 | 			kfree(dio); | 
 | 		} | 
 | 	} else { | 
 | 		ssize_t transferred = 0; | 
 |  | 
 | 		finished_one_bio(dio); | 
 | 		ret2 = dio_await_completion(dio); | 
 | 		if (ret == 0) | 
 | 			ret = ret2; | 
 | 		if (ret == 0) | 
 | 			ret = dio->page_errors; | 
 | 		if (dio->result) { | 
 | 			loff_t i_size = i_size_read(inode); | 
 |  | 
 | 			transferred = dio->result; | 
 | 			/* | 
 | 			 * Adjust the return value if the read crossed a | 
 | 			 * non-block-aligned EOF. | 
 | 			 */ | 
 | 			if (rw == READ && (offset + transferred > i_size)) | 
 | 				transferred = i_size - offset; | 
 | 		} | 
 | 		dio_complete(dio, offset, transferred); | 
 | 		if (ret == 0) | 
 | 			ret = transferred; | 
 |  | 
 | 		/* We could have also come here on an AIO file extend */ | 
 | 		if (!is_sync_kiocb(iocb) && rw == WRITE && | 
 | 		    ret >= 0 && dio->result == dio->size) | 
 | 			/* | 
 | 			 * For AIO writes where we have completed the | 
 | 			 * i/o, we have to mark the the aio complete. | 
 | 			 */ | 
 | 			aio_complete(iocb, ret, 0); | 
 | 		kfree(dio); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * This is a library function for use by filesystem drivers. | 
 |  * The locking rules are governed by the dio_lock_type parameter. | 
 |  * | 
 |  * DIO_NO_LOCKING (no locking, for raw block device access) | 
 |  * For writes, i_mutex is not held on entry; it is never taken. | 
 |  * | 
 |  * DIO_LOCKING (simple locking for regular files) | 
 |  * For writes we are called under i_mutex and return with i_mutex held, even | 
 |  * though it is internally dropped. | 
 |  * For reads, i_mutex is not held on entry, but it is taken and dropped before | 
 |  * returning. | 
 |  * | 
 |  * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of | 
 |  *	uninitialised data, allowing parallel direct readers and writers) | 
 |  * For writes we are called without i_mutex, return without it, never touch it. | 
 |  * For reads we are called under i_mutex and return with i_mutex held, even | 
 |  * though it may be internally dropped. | 
 |  * | 
 |  * Additional i_alloc_sem locking requirements described inline below. | 
 |  */ | 
 | ssize_t | 
 | __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode, | 
 | 	struct block_device *bdev, const struct iovec *iov, loff_t offset,  | 
 | 	unsigned long nr_segs, get_blocks_t get_blocks, dio_iodone_t end_io, | 
 | 	int dio_lock_type) | 
 | { | 
 | 	int seg; | 
 | 	size_t size; | 
 | 	unsigned long addr; | 
 | 	unsigned blkbits = inode->i_blkbits; | 
 | 	unsigned bdev_blkbits = 0; | 
 | 	unsigned blocksize_mask = (1 << blkbits) - 1; | 
 | 	ssize_t retval = -EINVAL; | 
 | 	loff_t end = offset; | 
 | 	struct dio *dio; | 
 | 	int release_i_mutex = 0; | 
 | 	int acquire_i_mutex = 0; | 
 |  | 
 | 	if (rw & WRITE) | 
 | 		current->flags |= PF_SYNCWRITE; | 
 |  | 
 | 	if (bdev) | 
 | 		bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev)); | 
 |  | 
 | 	if (offset & blocksize_mask) { | 
 | 		if (bdev) | 
 | 			 blkbits = bdev_blkbits; | 
 | 		blocksize_mask = (1 << blkbits) - 1; | 
 | 		if (offset & blocksize_mask) | 
 | 			goto out; | 
 | 	} | 
 |  | 
 | 	/* Check the memory alignment.  Blocks cannot straddle pages */ | 
 | 	for (seg = 0; seg < nr_segs; seg++) { | 
 | 		addr = (unsigned long)iov[seg].iov_base; | 
 | 		size = iov[seg].iov_len; | 
 | 		end += size; | 
 | 		if ((addr & blocksize_mask) || (size & blocksize_mask))  { | 
 | 			if (bdev) | 
 | 				 blkbits = bdev_blkbits; | 
 | 			blocksize_mask = (1 << blkbits) - 1; | 
 | 			if ((addr & blocksize_mask) || (size & blocksize_mask))   | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	dio = kmalloc(sizeof(*dio), GFP_KERNEL); | 
 | 	retval = -ENOMEM; | 
 | 	if (!dio) | 
 | 		goto out; | 
 |  | 
 | 	/* | 
 | 	 * For block device access DIO_NO_LOCKING is used, | 
 | 	 *	neither readers nor writers do any locking at all | 
 | 	 * For regular files using DIO_LOCKING, | 
 | 	 *	readers need to grab i_mutex and i_alloc_sem | 
 | 	 *	writers need to grab i_alloc_sem only (i_mutex is already held) | 
 | 	 * For regular files using DIO_OWN_LOCKING, | 
 | 	 *	neither readers nor writers take any locks here | 
 | 	 */ | 
 | 	dio->lock_type = dio_lock_type; | 
 | 	if (dio_lock_type != DIO_NO_LOCKING) { | 
 | 		/* watch out for a 0 len io from a tricksy fs */ | 
 | 		if (rw == READ && end > offset) { | 
 | 			struct address_space *mapping; | 
 |  | 
 | 			mapping = iocb->ki_filp->f_mapping; | 
 | 			if (dio_lock_type != DIO_OWN_LOCKING) { | 
 | 				mutex_lock(&inode->i_mutex); | 
 | 				release_i_mutex = 1; | 
 | 			} | 
 |  | 
 | 			retval = filemap_write_and_wait_range(mapping, offset, | 
 | 							      end - 1); | 
 | 			if (retval) { | 
 | 				kfree(dio); | 
 | 				goto out; | 
 | 			} | 
 |  | 
 | 			if (dio_lock_type == DIO_OWN_LOCKING) { | 
 | 				mutex_unlock(&inode->i_mutex); | 
 | 				acquire_i_mutex = 1; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (dio_lock_type == DIO_LOCKING) | 
 | 			down_read(&inode->i_alloc_sem); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * For file extending writes updating i_size before data | 
 | 	 * writeouts complete can expose uninitialized blocks. So | 
 | 	 * even for AIO, we need to wait for i/o to complete before | 
 | 	 * returning in this case. | 
 | 	 */ | 
 | 	dio->is_async = !is_sync_kiocb(iocb) && !((rw == WRITE) && | 
 | 		(end > i_size_read(inode))); | 
 |  | 
 | 	retval = direct_io_worker(rw, iocb, inode, iov, offset, | 
 | 				nr_segs, blkbits, get_blocks, end_io, dio); | 
 |  | 
 | 	if (rw == READ && dio_lock_type == DIO_LOCKING) | 
 | 		release_i_mutex = 0; | 
 |  | 
 | out: | 
 | 	if (release_i_mutex) | 
 | 		mutex_unlock(&inode->i_mutex); | 
 | 	else if (acquire_i_mutex) | 
 | 		mutex_lock(&inode->i_mutex); | 
 | 	if (rw & WRITE) | 
 | 		current->flags &= ~PF_SYNCWRITE; | 
 | 	return retval; | 
 | } | 
 | EXPORT_SYMBOL(__blockdev_direct_IO); |