|  | /* ptrace.c */ | 
|  | /* By Ross Biro 1/23/92 */ | 
|  | /* edited by Linus Torvalds */ | 
|  | /* mangled further by Bob Manson (manson@santafe.edu) */ | 
|  | /* more mutilation by David Mosberger (davidm@azstarnet.com) */ | 
|  |  | 
|  | #include <linux/kernel.h> | 
|  | #include <linux/sched.h> | 
|  | #include <linux/mm.h> | 
|  | #include <linux/smp.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/ptrace.h> | 
|  | #include <linux/user.h> | 
|  | #include <linux/slab.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/signal.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/pgtable.h> | 
|  | #include <asm/system.h> | 
|  | #include <asm/fpu.h> | 
|  |  | 
|  | #include "proto.h" | 
|  |  | 
|  | #define DEBUG	DBG_MEM | 
|  | #undef DEBUG | 
|  |  | 
|  | #ifdef DEBUG | 
|  | enum { | 
|  | DBG_MEM		= (1<<0), | 
|  | DBG_BPT		= (1<<1), | 
|  | DBG_MEM_ALL	= (1<<2) | 
|  | }; | 
|  | #define DBG(fac,args)	{if ((fac) & DEBUG) printk args;} | 
|  | #else | 
|  | #define DBG(fac,args) | 
|  | #endif | 
|  |  | 
|  | #define BREAKINST	0x00000080	/* call_pal bpt */ | 
|  |  | 
|  | /* | 
|  | * does not yet catch signals sent when the child dies. | 
|  | * in exit.c or in signal.c. | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * Processes always block with the following stack-layout: | 
|  | * | 
|  | *  +================================+ <---- task + 2*PAGE_SIZE | 
|  | *  | PALcode saved frame (ps, pc,   | ^ | 
|  | *  | gp, a0, a1, a2)		     | | | 
|  | *  +================================+ | struct pt_regs | 
|  | *  |	        		     | | | 
|  | *  | frame generated by SAVE_ALL    | | | 
|  | *  |	        		     | v | 
|  | *  +================================+ | 
|  | *  |	        		     | ^ | 
|  | *  | frame saved by do_switch_stack | | struct switch_stack | 
|  | *  |	        		     | v | 
|  | *  +================================+ | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * The following table maps a register index into the stack offset at | 
|  | * which the register is saved.  Register indices are 0-31 for integer | 
|  | * regs, 32-63 for fp regs, and 64 for the pc.  Notice that sp and | 
|  | * zero have no stack-slot and need to be treated specially (see | 
|  | * get_reg/put_reg below). | 
|  | */ | 
|  | enum { | 
|  | REG_R0 = 0, REG_F0 = 32, REG_FPCR = 63, REG_PC = 64 | 
|  | }; | 
|  |  | 
|  | #define PT_REG(reg) \ | 
|  | (PAGE_SIZE*2 - sizeof(struct pt_regs) + offsetof(struct pt_regs, reg)) | 
|  |  | 
|  | #define SW_REG(reg) \ | 
|  | (PAGE_SIZE*2 - sizeof(struct pt_regs) - sizeof(struct switch_stack) \ | 
|  | + offsetof(struct switch_stack, reg)) | 
|  |  | 
|  | static int regoff[] = { | 
|  | PT_REG(	   r0), PT_REG(	   r1), PT_REG(	   r2), PT_REG(	  r3), | 
|  | PT_REG(	   r4), PT_REG(	   r5), PT_REG(	   r6), PT_REG(	  r7), | 
|  | PT_REG(	   r8), SW_REG(	   r9), SW_REG(	  r10), SW_REG(	 r11), | 
|  | SW_REG(	  r12), SW_REG(	  r13), SW_REG(	  r14), SW_REG(	 r15), | 
|  | PT_REG(	  r16), PT_REG(	  r17), PT_REG(	  r18), PT_REG(	 r19), | 
|  | PT_REG(	  r20), PT_REG(	  r21), PT_REG(	  r22), PT_REG(	 r23), | 
|  | PT_REG(	  r24), PT_REG(	  r25), PT_REG(	  r26), PT_REG(	 r27), | 
|  | PT_REG(	  r28), PT_REG(	   gp),		   -1,		   -1, | 
|  | SW_REG(fp[ 0]), SW_REG(fp[ 1]), SW_REG(fp[ 2]), SW_REG(fp[ 3]), | 
|  | SW_REG(fp[ 4]), SW_REG(fp[ 5]), SW_REG(fp[ 6]), SW_REG(fp[ 7]), | 
|  | SW_REG(fp[ 8]), SW_REG(fp[ 9]), SW_REG(fp[10]), SW_REG(fp[11]), | 
|  | SW_REG(fp[12]), SW_REG(fp[13]), SW_REG(fp[14]), SW_REG(fp[15]), | 
|  | SW_REG(fp[16]), SW_REG(fp[17]), SW_REG(fp[18]), SW_REG(fp[19]), | 
|  | SW_REG(fp[20]), SW_REG(fp[21]), SW_REG(fp[22]), SW_REG(fp[23]), | 
|  | SW_REG(fp[24]), SW_REG(fp[25]), SW_REG(fp[26]), SW_REG(fp[27]), | 
|  | SW_REG(fp[28]), SW_REG(fp[29]), SW_REG(fp[30]), SW_REG(fp[31]), | 
|  | PT_REG(	   pc) | 
|  | }; | 
|  |  | 
|  | static unsigned long zero; | 
|  |  | 
|  | /* | 
|  | * Get address of register REGNO in task TASK. | 
|  | */ | 
|  | static unsigned long * | 
|  | get_reg_addr(struct task_struct * task, unsigned long regno) | 
|  | { | 
|  | unsigned long *addr; | 
|  |  | 
|  | if (regno == 30) { | 
|  | addr = &task_thread_info(task)->pcb.usp; | 
|  | } else if (regno == 65) { | 
|  | addr = &task_thread_info(task)->pcb.unique; | 
|  | } else if (regno == 31 || regno > 65) { | 
|  | zero = 0; | 
|  | addr = &zero; | 
|  | } else { | 
|  | addr = task_stack_page(task) + regoff[regno]; | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Get contents of register REGNO in task TASK. | 
|  | */ | 
|  | static unsigned long | 
|  | get_reg(struct task_struct * task, unsigned long regno) | 
|  | { | 
|  | /* Special hack for fpcr -- combine hardware and software bits.  */ | 
|  | if (regno == 63) { | 
|  | unsigned long fpcr = *get_reg_addr(task, regno); | 
|  | unsigned long swcr | 
|  | = task_thread_info(task)->ieee_state & IEEE_SW_MASK; | 
|  | swcr = swcr_update_status(swcr, fpcr); | 
|  | return fpcr | swcr; | 
|  | } | 
|  | return *get_reg_addr(task, regno); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Write contents of register REGNO in task TASK. | 
|  | */ | 
|  | static int | 
|  | put_reg(struct task_struct *task, unsigned long regno, unsigned long data) | 
|  | { | 
|  | if (regno == 63) { | 
|  | task_thread_info(task)->ieee_state | 
|  | = ((task_thread_info(task)->ieee_state & ~IEEE_SW_MASK) | 
|  | | (data & IEEE_SW_MASK)); | 
|  | data = (data & FPCR_DYN_MASK) | ieee_swcr_to_fpcr(data); | 
|  | } | 
|  | *get_reg_addr(task, regno) = data; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | read_int(struct task_struct *task, unsigned long addr, int * data) | 
|  | { | 
|  | int copied = access_process_vm(task, addr, data, sizeof(int), 0); | 
|  | return (copied == sizeof(int)) ? 0 : -EIO; | 
|  | } | 
|  |  | 
|  | static inline int | 
|  | write_int(struct task_struct *task, unsigned long addr, int data) | 
|  | { | 
|  | int copied = access_process_vm(task, addr, &data, sizeof(int), 1); | 
|  | return (copied == sizeof(int)) ? 0 : -EIO; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set breakpoint. | 
|  | */ | 
|  | int | 
|  | ptrace_set_bpt(struct task_struct * child) | 
|  | { | 
|  | int displ, i, res, reg_b, nsaved = 0; | 
|  | unsigned int insn, op_code; | 
|  | unsigned long pc; | 
|  |  | 
|  | pc  = get_reg(child, REG_PC); | 
|  | res = read_int(child, pc, (int *) &insn); | 
|  | if (res < 0) | 
|  | return res; | 
|  |  | 
|  | op_code = insn >> 26; | 
|  | if (op_code >= 0x30) { | 
|  | /* | 
|  | * It's a branch: instead of trying to figure out | 
|  | * whether the branch will be taken or not, we'll put | 
|  | * a breakpoint at either location.  This is simpler, | 
|  | * more reliable, and probably not a whole lot slower | 
|  | * than the alternative approach of emulating the | 
|  | * branch (emulation can be tricky for fp branches). | 
|  | */ | 
|  | displ = ((s32)(insn << 11)) >> 9; | 
|  | task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; | 
|  | if (displ)		/* guard against unoptimized code */ | 
|  | task_thread_info(child)->bpt_addr[nsaved++] | 
|  | = pc + 4 + displ; | 
|  | DBG(DBG_BPT, ("execing branch\n")); | 
|  | } else if (op_code == 0x1a) { | 
|  | reg_b = (insn >> 16) & 0x1f; | 
|  | task_thread_info(child)->bpt_addr[nsaved++] = get_reg(child, reg_b); | 
|  | DBG(DBG_BPT, ("execing jump\n")); | 
|  | } else { | 
|  | task_thread_info(child)->bpt_addr[nsaved++] = pc + 4; | 
|  | DBG(DBG_BPT, ("execing normal insn\n")); | 
|  | } | 
|  |  | 
|  | /* install breakpoints: */ | 
|  | for (i = 0; i < nsaved; ++i) { | 
|  | res = read_int(child, task_thread_info(child)->bpt_addr[i], | 
|  | (int *) &insn); | 
|  | if (res < 0) | 
|  | return res; | 
|  | task_thread_info(child)->bpt_insn[i] = insn; | 
|  | DBG(DBG_BPT, ("    -> next_pc=%lx\n", | 
|  | task_thread_info(child)->bpt_addr[i])); | 
|  | res = write_int(child, task_thread_info(child)->bpt_addr[i], | 
|  | BREAKINST); | 
|  | if (res < 0) | 
|  | return res; | 
|  | } | 
|  | task_thread_info(child)->bpt_nsaved = nsaved; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Ensure no single-step breakpoint is pending.  Returns non-zero | 
|  | * value if child was being single-stepped. | 
|  | */ | 
|  | int | 
|  | ptrace_cancel_bpt(struct task_struct * child) | 
|  | { | 
|  | int i, nsaved = task_thread_info(child)->bpt_nsaved; | 
|  |  | 
|  | task_thread_info(child)->bpt_nsaved = 0; | 
|  |  | 
|  | if (nsaved > 2) { | 
|  | printk("ptrace_cancel_bpt: bogus nsaved: %d!\n", nsaved); | 
|  | nsaved = 2; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < nsaved; ++i) { | 
|  | write_int(child, task_thread_info(child)->bpt_addr[i], | 
|  | task_thread_info(child)->bpt_insn[i]); | 
|  | } | 
|  | return (nsaved != 0); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Called by kernel/ptrace.c when detaching.. | 
|  | * | 
|  | * Make sure the single step bit is not set. | 
|  | */ | 
|  | void ptrace_disable(struct task_struct *child) | 
|  | { | 
|  | ptrace_cancel_bpt(child); | 
|  | } | 
|  |  | 
|  | long arch_ptrace(struct task_struct *child, long request, long addr, long data) | 
|  | { | 
|  | unsigned long tmp; | 
|  | size_t copied; | 
|  | long ret; | 
|  |  | 
|  | switch (request) { | 
|  | /* When I and D space are separate, these will need to be fixed.  */ | 
|  | case PTRACE_PEEKTEXT: /* read word at location addr. */ | 
|  | case PTRACE_PEEKDATA: | 
|  | copied = access_process_vm(child, addr, &tmp, sizeof(tmp), 0); | 
|  | ret = -EIO; | 
|  | if (copied != sizeof(tmp)) | 
|  | break; | 
|  |  | 
|  | force_successful_syscall_return(); | 
|  | ret = tmp; | 
|  | break; | 
|  |  | 
|  | /* Read register number ADDR. */ | 
|  | case PTRACE_PEEKUSR: | 
|  | force_successful_syscall_return(); | 
|  | ret = get_reg(child, addr); | 
|  | DBG(DBG_MEM, ("peek $%ld->%#lx\n", addr, ret)); | 
|  | break; | 
|  |  | 
|  | /* When I and D space are separate, this will have to be fixed.  */ | 
|  | case PTRACE_POKETEXT: /* write the word at location addr. */ | 
|  | case PTRACE_POKEDATA: | 
|  | ret = generic_ptrace_pokedata(child, addr, data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_POKEUSR: /* write the specified register */ | 
|  | DBG(DBG_MEM, ("poke $%ld<-%#lx\n", addr, data)); | 
|  | ret = put_reg(child, addr, data); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SYSCALL: | 
|  | /* continue and stop at next (return from) syscall */ | 
|  | case PTRACE_CONT:    /* restart after signal. */ | 
|  | ret = -EIO; | 
|  | if (!valid_signal(data)) | 
|  | break; | 
|  | if (request == PTRACE_SYSCALL) | 
|  | set_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
|  | else | 
|  | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
|  | child->exit_code = data; | 
|  | /* make sure single-step breakpoint is gone. */ | 
|  | ptrace_cancel_bpt(child); | 
|  | wake_up_process(child); | 
|  | ret = 0; | 
|  | break; | 
|  |  | 
|  | /* | 
|  | * Make the child exit.  Best I can do is send it a sigkill. | 
|  | * perhaps it should be put in the status that it wants to | 
|  | * exit. | 
|  | */ | 
|  | case PTRACE_KILL: | 
|  | ret = 0; | 
|  | if (child->exit_state == EXIT_ZOMBIE) | 
|  | break; | 
|  | child->exit_code = SIGKILL; | 
|  | /* make sure single-step breakpoint is gone. */ | 
|  | ptrace_cancel_bpt(child); | 
|  | wake_up_process(child); | 
|  | break; | 
|  |  | 
|  | case PTRACE_SINGLESTEP:  /* execute single instruction. */ | 
|  | ret = -EIO; | 
|  | if (!valid_signal(data)) | 
|  | break; | 
|  | /* Mark single stepping.  */ | 
|  | task_thread_info(child)->bpt_nsaved = -1; | 
|  | clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE); | 
|  | child->exit_code = data; | 
|  | wake_up_process(child); | 
|  | /* give it a chance to run. */ | 
|  | ret = 0; | 
|  | break; | 
|  |  | 
|  | default: | 
|  | ret = ptrace_request(child, request, addr, data); | 
|  | break; | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | asmlinkage void | 
|  | syscall_trace(void) | 
|  | { | 
|  | if (!test_thread_flag(TIF_SYSCALL_TRACE)) | 
|  | return; | 
|  | if (!(current->ptrace & PT_PTRACED)) | 
|  | return; | 
|  | /* The 0x80 provides a way for the tracing parent to distinguish | 
|  | between a syscall stop and SIGTRAP delivery */ | 
|  | ptrace_notify(SIGTRAP | ((current->ptrace & PT_TRACESYSGOOD) | 
|  | ? 0x80 : 0)); | 
|  |  | 
|  | /* | 
|  | * This isn't the same as continuing with a signal, but it will do | 
|  | * for normal use.  strace only continues with a signal if the | 
|  | * stopping signal is not SIGTRAP.  -brl | 
|  | */ | 
|  | if (current->exit_code) { | 
|  | send_sig(current->exit_code, current, 1); | 
|  | current->exit_code = 0; | 
|  | } | 
|  | } |