|  | /* | 
|  | * Copyright(c) 2007 Atheros Corporation. All rights reserved. | 
|  | * | 
|  | * Derived from Intel e1000 driver | 
|  | * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. | 
|  | * | 
|  | * This program is free software; you can redistribute it and/or modify it | 
|  | * under the terms of the GNU General Public License as published by the Free | 
|  | * Software Foundation; either version 2 of the License, or (at your option) | 
|  | * any later version. | 
|  | * | 
|  | * This program is distributed in the hope that it will be useful, but WITHOUT | 
|  | * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or | 
|  | * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for | 
|  | * more details. | 
|  | * | 
|  | * You should have received a copy of the GNU General Public License along with | 
|  | * this program; if not, write to the Free Software Foundation, Inc., 59 | 
|  | * Temple Place - Suite 330, Boston, MA  02111-1307, USA. | 
|  | */ | 
|  | #include <linux/pci.h> | 
|  | #include <linux/delay.h> | 
|  | #include <linux/mii.h> | 
|  | #include <linux/crc32.h> | 
|  |  | 
|  | #include "atl1c.h" | 
|  |  | 
|  | /* | 
|  | * check_eeprom_exist | 
|  | * return 1 if eeprom exist | 
|  | */ | 
|  | int atl1c_check_eeprom_exist(struct atl1c_hw *hw) | 
|  | { | 
|  | u32 data; | 
|  |  | 
|  | AT_READ_REG(hw, REG_TWSI_DEBUG, &data); | 
|  | if (data & TWSI_DEBUG_DEV_EXIST) | 
|  | return 1; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void atl1c_hw_set_mac_addr(struct atl1c_hw *hw) | 
|  | { | 
|  | u32 value; | 
|  | /* | 
|  | * 00-0B-6A-F6-00-DC | 
|  | * 0:  6AF600DC 1: 000B | 
|  | * low dword | 
|  | */ | 
|  | value = (((u32)hw->mac_addr[2]) << 24) | | 
|  | (((u32)hw->mac_addr[3]) << 16) | | 
|  | (((u32)hw->mac_addr[4]) << 8)  | | 
|  | (((u32)hw->mac_addr[5])) ; | 
|  | AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 0, value); | 
|  | /* hight dword */ | 
|  | value = (((u32)hw->mac_addr[0]) << 8) | | 
|  | (((u32)hw->mac_addr[1])) ; | 
|  | AT_WRITE_REG_ARRAY(hw, REG_MAC_STA_ADDR, 1, value); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * atl1c_get_permanent_address | 
|  | * return 0 if get valid mac address, | 
|  | */ | 
|  | static int atl1c_get_permanent_address(struct atl1c_hw *hw) | 
|  | { | 
|  | u32 addr[2]; | 
|  | u32 i; | 
|  | u32 otp_ctrl_data; | 
|  | u32 twsi_ctrl_data; | 
|  | u8  eth_addr[ETH_ALEN]; | 
|  |  | 
|  | /* init */ | 
|  | addr[0] = addr[1] = 0; | 
|  | AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); | 
|  | if (atl1c_check_eeprom_exist(hw)) { | 
|  | /* Enable OTP CLK */ | 
|  | if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) { | 
|  | otp_ctrl_data |= OTP_CTRL_CLK_EN; | 
|  | AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); | 
|  | AT_WRITE_FLUSH(hw); | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); | 
|  | twsi_ctrl_data |= TWSI_CTRL_SW_LDSTART; | 
|  | AT_WRITE_REG(hw, REG_TWSI_CTRL, twsi_ctrl_data); | 
|  | for (i = 0; i < AT_TWSI_EEPROM_TIMEOUT; i++) { | 
|  | msleep(10); | 
|  | AT_READ_REG(hw, REG_TWSI_CTRL, &twsi_ctrl_data); | 
|  | if ((twsi_ctrl_data & TWSI_CTRL_SW_LDSTART) == 0) | 
|  | break; | 
|  | } | 
|  | if (i >= AT_TWSI_EEPROM_TIMEOUT) | 
|  | return -1; | 
|  | } | 
|  | /* Disable OTP_CLK */ | 
|  | if (otp_ctrl_data & OTP_CTRL_CLK_EN) { | 
|  | otp_ctrl_data &= ~OTP_CTRL_CLK_EN; | 
|  | AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); | 
|  | AT_WRITE_FLUSH(hw); | 
|  | msleep(1); | 
|  | } | 
|  |  | 
|  | /* maybe MAC-address is from BIOS */ | 
|  | AT_READ_REG(hw, REG_MAC_STA_ADDR, &addr[0]); | 
|  | AT_READ_REG(hw, REG_MAC_STA_ADDR + 4, &addr[1]); | 
|  | *(u32 *) ð_addr[2] = swab32(addr[0]); | 
|  | *(u16 *) ð_addr[0] = swab16(*(u16 *)&addr[1]); | 
|  |  | 
|  | if (is_valid_ether_addr(eth_addr)) { | 
|  | memcpy(hw->perm_mac_addr, eth_addr, ETH_ALEN); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | bool atl1c_read_eeprom(struct atl1c_hw *hw, u32 offset, u32 *p_value) | 
|  | { | 
|  | int i; | 
|  | int ret = false; | 
|  | u32 otp_ctrl_data; | 
|  | u32 control; | 
|  | u32 data; | 
|  |  | 
|  | if (offset & 3) | 
|  | return ret; /* address do not align */ | 
|  |  | 
|  | AT_READ_REG(hw, REG_OTP_CTRL, &otp_ctrl_data); | 
|  | if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) | 
|  | AT_WRITE_REG(hw, REG_OTP_CTRL, | 
|  | (otp_ctrl_data | OTP_CTRL_CLK_EN)); | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_EEPROM_DATA_LO, 0); | 
|  | control = (offset & EEPROM_CTRL_ADDR_MASK) << EEPROM_CTRL_ADDR_SHIFT; | 
|  | AT_WRITE_REG(hw, REG_EEPROM_CTRL, control); | 
|  |  | 
|  | for (i = 0; i < 10; i++) { | 
|  | udelay(100); | 
|  | AT_READ_REG(hw, REG_EEPROM_CTRL, &control); | 
|  | if (control & EEPROM_CTRL_RW) | 
|  | break; | 
|  | } | 
|  | if (control & EEPROM_CTRL_RW) { | 
|  | AT_READ_REG(hw, REG_EEPROM_CTRL, &data); | 
|  | AT_READ_REG(hw, REG_EEPROM_DATA_LO, p_value); | 
|  | data = data & 0xFFFF; | 
|  | *p_value = swab32((data << 16) | (*p_value >> 16)); | 
|  | ret = true; | 
|  | } | 
|  | if (!(otp_ctrl_data & OTP_CTRL_CLK_EN)) | 
|  | AT_WRITE_REG(hw, REG_OTP_CTRL, otp_ctrl_data); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  | /* | 
|  | * Reads the adapter's MAC address from the EEPROM | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | */ | 
|  | int atl1c_read_mac_addr(struct atl1c_hw *hw) | 
|  | { | 
|  | int err = 0; | 
|  |  | 
|  | err = atl1c_get_permanent_address(hw); | 
|  | if (err) | 
|  | random_ether_addr(hw->perm_mac_addr); | 
|  |  | 
|  | memcpy(hw->mac_addr, hw->perm_mac_addr, sizeof(hw->perm_mac_addr)); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * atl1c_hash_mc_addr | 
|  | *  purpose | 
|  | *      set hash value for a multicast address | 
|  | *      hash calcu processing : | 
|  | *          1. calcu 32bit CRC for multicast address | 
|  | *          2. reverse crc with MSB to LSB | 
|  | */ | 
|  | u32 atl1c_hash_mc_addr(struct atl1c_hw *hw, u8 *mc_addr) | 
|  | { | 
|  | u32 crc32; | 
|  | u32 value = 0; | 
|  | int i; | 
|  |  | 
|  | crc32 = ether_crc_le(6, mc_addr); | 
|  | for (i = 0; i < 32; i++) | 
|  | value |= (((crc32 >> i) & 1) << (31 - i)); | 
|  |  | 
|  | return value; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Sets the bit in the multicast table corresponding to the hash value. | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * hash_value - Multicast address hash value | 
|  | */ | 
|  | void atl1c_hash_set(struct atl1c_hw *hw, u32 hash_value) | 
|  | { | 
|  | u32 hash_bit, hash_reg; | 
|  | u32 mta; | 
|  |  | 
|  | /* | 
|  | * The HASH Table  is a register array of 2 32-bit registers. | 
|  | * It is treated like an array of 64 bits.  We want to set | 
|  | * bit BitArray[hash_value]. So we figure out what register | 
|  | * the bit is in, read it, OR in the new bit, then write | 
|  | * back the new value.  The register is determined by the | 
|  | * upper bit of the hash value and the bit within that | 
|  | * register are determined by the lower 5 bits of the value. | 
|  | */ | 
|  | hash_reg = (hash_value >> 31) & 0x1; | 
|  | hash_bit = (hash_value >> 26) & 0x1F; | 
|  |  | 
|  | mta = AT_READ_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg); | 
|  |  | 
|  | mta |= (1 << hash_bit); | 
|  |  | 
|  | AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, hash_reg, mta); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Reads the value from a PHY register | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to read | 
|  | */ | 
|  | int atl1c_read_phy_reg(struct atl1c_hw *hw, u16 reg_addr, u16 *phy_data) | 
|  | { | 
|  | u32 val; | 
|  | int i; | 
|  |  | 
|  | val = ((u32)(reg_addr & MDIO_REG_ADDR_MASK)) << MDIO_REG_ADDR_SHIFT | | 
|  | MDIO_START | MDIO_SUP_PREAMBLE | MDIO_RW | | 
|  | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_MDIO_CTRL, val); | 
|  |  | 
|  | for (i = 0; i < MDIO_WAIT_TIMES; i++) { | 
|  | udelay(2); | 
|  | AT_READ_REG(hw, REG_MDIO_CTRL, &val); | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | break; | 
|  | } | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) { | 
|  | *phy_data = (u16)val; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Writes a value to a PHY register | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * reg_addr - address of the PHY register to write | 
|  | * data - data to write to the PHY | 
|  | */ | 
|  | int atl1c_write_phy_reg(struct atl1c_hw *hw, u32 reg_addr, u16 phy_data) | 
|  | { | 
|  | int i; | 
|  | u32 val; | 
|  |  | 
|  | val = ((u32)(phy_data & MDIO_DATA_MASK)) << MDIO_DATA_SHIFT   | | 
|  | (reg_addr & MDIO_REG_ADDR_MASK) << MDIO_REG_ADDR_SHIFT | | 
|  | MDIO_SUP_PREAMBLE | MDIO_START | | 
|  | MDIO_CLK_25_4 << MDIO_CLK_SEL_SHIFT; | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_MDIO_CTRL, val); | 
|  |  | 
|  | for (i = 0; i < MDIO_WAIT_TIMES; i++) { | 
|  | udelay(2); | 
|  | AT_READ_REG(hw, REG_MDIO_CTRL, &val); | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (!(val & (MDIO_START | MDIO_BUSY))) | 
|  | return 0; | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Configures PHY autoneg and flow control advertisement settings | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | */ | 
|  | static int atl1c_phy_setup_adv(struct atl1c_hw *hw) | 
|  | { | 
|  | u16 mii_adv_data = ADVERTISE_DEFAULT_CAP & ~ADVERTISE_SPEED_MASK; | 
|  | u16 mii_giga_ctrl_data = GIGA_CR_1000T_DEFAULT_CAP & | 
|  | ~GIGA_CR_1000T_SPEED_MASK; | 
|  |  | 
|  | if (hw->autoneg_advertised & ADVERTISED_10baseT_Half) | 
|  | mii_adv_data |= ADVERTISE_10HALF; | 
|  | if (hw->autoneg_advertised & ADVERTISED_10baseT_Full) | 
|  | mii_adv_data |= ADVERTISE_10FULL; | 
|  | if (hw->autoneg_advertised & ADVERTISED_100baseT_Half) | 
|  | mii_adv_data |= ADVERTISE_100HALF; | 
|  | if (hw->autoneg_advertised & ADVERTISED_100baseT_Full) | 
|  | mii_adv_data |= ADVERTISE_100FULL; | 
|  |  | 
|  | if (hw->autoneg_advertised & ADVERTISED_Autoneg) | 
|  | mii_adv_data |= ADVERTISE_10HALF  | ADVERTISE_10FULL | | 
|  | ADVERTISE_100HALF | ADVERTISE_100FULL; | 
|  |  | 
|  | if (hw->ctrl_flags & ATL1C_LINK_CAP_1000M) { | 
|  | if (hw->autoneg_advertised & ADVERTISED_1000baseT_Half) | 
|  | mii_giga_ctrl_data |= ADVERTISE_1000HALF; | 
|  | if (hw->autoneg_advertised & ADVERTISED_1000baseT_Full) | 
|  | mii_giga_ctrl_data |= ADVERTISE_1000FULL; | 
|  | if (hw->autoneg_advertised & ADVERTISED_Autoneg) | 
|  | mii_giga_ctrl_data |= ADVERTISE_1000HALF | | 
|  | ADVERTISE_1000FULL; | 
|  | } | 
|  |  | 
|  | if (atl1c_write_phy_reg(hw, MII_ADVERTISE, mii_adv_data) != 0 || | 
|  | atl1c_write_phy_reg(hw, MII_GIGA_CR, mii_giga_ctrl_data) != 0) | 
|  | return -1; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void atl1c_phy_disable(struct atl1c_hw *hw) | 
|  | { | 
|  | AT_WRITE_REGW(hw, REG_GPHY_CTRL, | 
|  | GPHY_CTRL_PW_WOL_DIS | GPHY_CTRL_EXT_RESET); | 
|  | } | 
|  |  | 
|  | static void atl1c_phy_magic_data(struct atl1c_hw *hw) | 
|  | { | 
|  | u16 data; | 
|  |  | 
|  | data = ANA_LOOP_SEL_10BT | ANA_EN_MASK_TB | ANA_EN_10BT_IDLE | | 
|  | ((1 & ANA_INTERVAL_SEL_TIMER_MASK) << | 
|  | ANA_INTERVAL_SEL_TIMER_SHIFT); | 
|  |  | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_18); | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  |  | 
|  | data = (2 & ANA_SERDES_CDR_BW_MASK) | ANA_MS_PAD_DBG | | 
|  | ANA_SERDES_EN_DEEM | ANA_SERDES_SEL_HSP | ANA_SERDES_EN_PLL | | 
|  | ANA_SERDES_EN_LCKDT; | 
|  |  | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_5); | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  |  | 
|  | data = (44 & ANA_LONG_CABLE_TH_100_MASK) | | 
|  | ((33 & ANA_SHORT_CABLE_TH_100_MASK) << | 
|  | ANA_SHORT_CABLE_TH_100_SHIFT) | ANA_BP_BAD_LINK_ACCUM | | 
|  | ANA_BP_SMALL_BW; | 
|  |  | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_54); | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  |  | 
|  | data = (11 & ANA_IECHO_ADJ_MASK) | ((11 & ANA_IECHO_ADJ_MASK) << | 
|  | ANA_IECHO_ADJ_2_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) << | 
|  | ANA_IECHO_ADJ_1_SHIFT) | ((8 & ANA_IECHO_ADJ_MASK) << | 
|  | ANA_IECHO_ADJ_0_SHIFT); | 
|  |  | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_4); | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  |  | 
|  | data = ANA_RESTART_CAL | ((7 & ANA_MANUL_SWICH_ON_MASK) << | 
|  | ANA_MANUL_SWICH_ON_SHIFT) | ANA_MAN_ENABLE | | 
|  | ANA_SEL_HSP | ANA_EN_HB | ANA_OEN_125M; | 
|  |  | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_0); | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  |  | 
|  | if (hw->ctrl_flags & ATL1C_HIB_DISABLE) { | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_41); | 
|  | if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0) | 
|  | return; | 
|  | data &= ~ANA_TOP_PS_EN; | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  |  | 
|  | atl1c_write_phy_reg(hw, MII_DBG_ADDR, MII_ANA_CTRL_11); | 
|  | if (atl1c_read_phy_reg(hw, MII_DBG_DATA, &data) != 0) | 
|  | return; | 
|  | data &= ~ANA_PS_HIB_EN; | 
|  | atl1c_write_phy_reg(hw, MII_DBG_DATA, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | int atl1c_phy_reset(struct atl1c_hw *hw) | 
|  | { | 
|  | struct atl1c_adapter *adapter = hw->adapter; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | u32 phy_ctrl_data = GPHY_CTRL_DEFAULT; | 
|  | u32 mii_ier_data = IER_LINK_UP | IER_LINK_DOWN; | 
|  | int err; | 
|  |  | 
|  | if (hw->ctrl_flags & ATL1C_HIB_DISABLE) | 
|  | phy_ctrl_data &= ~GPHY_CTRL_HIB_EN; | 
|  |  | 
|  | AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); | 
|  | AT_WRITE_FLUSH(hw); | 
|  | msleep(40); | 
|  | phy_ctrl_data |= GPHY_CTRL_EXT_RESET; | 
|  | AT_WRITE_REG(hw, REG_GPHY_CTRL, phy_ctrl_data); | 
|  | AT_WRITE_FLUSH(hw); | 
|  | msleep(10); | 
|  |  | 
|  | /*Enable PHY LinkChange Interrupt */ | 
|  | err = atl1c_write_phy_reg(hw, MII_IER, mii_ier_data); | 
|  | if (err) { | 
|  | if (netif_msg_hw(adapter)) | 
|  | dev_err(&pdev->dev, | 
|  | "Error enable PHY linkChange Interrupt\n"); | 
|  | return err; | 
|  | } | 
|  | if (!(hw->ctrl_flags & ATL1C_FPGA_VERSION)) | 
|  | atl1c_phy_magic_data(hw); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int atl1c_phy_init(struct atl1c_hw *hw) | 
|  | { | 
|  | struct atl1c_adapter *adapter = (struct atl1c_adapter *)hw->adapter; | 
|  | struct pci_dev *pdev = adapter->pdev; | 
|  | int ret_val; | 
|  | u16 mii_bmcr_data = BMCR_RESET; | 
|  | u16 phy_id1, phy_id2; | 
|  |  | 
|  | if ((atl1c_read_phy_reg(hw, MII_PHYSID1, &phy_id1) != 0) || | 
|  | (atl1c_read_phy_reg(hw, MII_PHYSID2, &phy_id2) != 0)) { | 
|  | if (netif_msg_link(adapter)) | 
|  | dev_err(&pdev->dev, "Error get phy ID\n"); | 
|  | return -1; | 
|  | } | 
|  | switch (hw->media_type) { | 
|  | case MEDIA_TYPE_AUTO_SENSOR: | 
|  | ret_val = atl1c_phy_setup_adv(hw); | 
|  | if (ret_val) { | 
|  | if (netif_msg_link(adapter)) | 
|  | dev_err(&pdev->dev, | 
|  | "Error Setting up Auto-Negotiation\n"); | 
|  | return ret_val; | 
|  | } | 
|  | mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG; | 
|  | break; | 
|  | case MEDIA_TYPE_100M_FULL: | 
|  | mii_bmcr_data |= BMCR_SPEED_100 | BMCR_FULL_DUPLEX; | 
|  | break; | 
|  | case MEDIA_TYPE_100M_HALF: | 
|  | mii_bmcr_data |= BMCR_SPEED_100; | 
|  | break; | 
|  | case MEDIA_TYPE_10M_FULL: | 
|  | mii_bmcr_data |= BMCR_SPEED_10 | BMCR_FULL_DUPLEX; | 
|  | break; | 
|  | case MEDIA_TYPE_10M_HALF: | 
|  | mii_bmcr_data |= BMCR_SPEED_10; | 
|  | break; | 
|  | default: | 
|  | if (netif_msg_link(adapter)) | 
|  | dev_err(&pdev->dev, "Wrong Media type %d\n", | 
|  | hw->media_type); | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | ret_val = atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); | 
|  | if (ret_val) | 
|  | return ret_val; | 
|  | hw->phy_configured = true; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Detects the current speed and duplex settings of the hardware. | 
|  | * | 
|  | * hw - Struct containing variables accessed by shared code | 
|  | * speed - Speed of the connection | 
|  | * duplex - Duplex setting of the connection | 
|  | */ | 
|  | int atl1c_get_speed_and_duplex(struct atl1c_hw *hw, u16 *speed, u16 *duplex) | 
|  | { | 
|  | int err; | 
|  | u16 phy_data; | 
|  |  | 
|  | /* Read   PHY Specific Status Register (17) */ | 
|  | err = atl1c_read_phy_reg(hw, MII_GIGA_PSSR, &phy_data); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | if (!(phy_data & GIGA_PSSR_SPD_DPLX_RESOLVED)) | 
|  | return -1; | 
|  |  | 
|  | switch (phy_data & GIGA_PSSR_SPEED) { | 
|  | case GIGA_PSSR_1000MBS: | 
|  | *speed = SPEED_1000; | 
|  | break; | 
|  | case GIGA_PSSR_100MBS: | 
|  | *speed = SPEED_100; | 
|  | break; | 
|  | case  GIGA_PSSR_10MBS: | 
|  | *speed = SPEED_10; | 
|  | break; | 
|  | default: | 
|  | return -1; | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (phy_data & GIGA_PSSR_DPLX) | 
|  | *duplex = FULL_DUPLEX; | 
|  | else | 
|  | *duplex = HALF_DUPLEX; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int atl1c_restart_autoneg(struct atl1c_hw *hw) | 
|  | { | 
|  | int err = 0; | 
|  | u16 mii_bmcr_data = BMCR_RESET; | 
|  |  | 
|  | err = atl1c_phy_setup_adv(hw); | 
|  | if (err) | 
|  | return err; | 
|  | mii_bmcr_data |= BMCR_AUTO_NEG_EN | BMCR_RESTART_AUTO_NEG; | 
|  |  | 
|  | return atl1c_write_phy_reg(hw, MII_BMCR, mii_bmcr_data); | 
|  | } |