blob: 65b6400124d58f6a6008978b7ccc4325a67e688d [file] [log] [blame]
/* Copyright (c) 2011-2012, Code Aurora Forum. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 and
* only version 2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#define pr_fmt(fmt) "[BATT][BMS] " fmt
#define pr_fmt_debug(fmt) "[BATT][BMS]%s: " fmt, __func__
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/errno.h>
#include <linux/mfd/pm8xxx/pm8921-bms-htc.h>
#include <linux/mfd/pm8xxx/pm8921-charger-htc.h>
#include <linux/mfd/pm8xxx/core.h>
#include <linux/mfd/pm8xxx/pm8xxx-adc.h>
#include <linux/mfd/pm8xxx/ccadc.h>
#include <linux/interrupt.h>
#include <linux/bitops.h>
#include <linux/debugfs.h>
#include <linux/slab.h>
#include <linux/delay.h>
#include <linux/mutex.h>
#include <mach/board_htc.h>
#ifdef CONFIG_HTC_BATT_8960
#include "mach/htc_battery_cell.h"
#endif
#if defined(pr_debug)
#undef pr_debug
#endif
#define pr_debug(fmt, ...) do { \
if (flag_enable_bms_chg_log) \
printk(KERN_INFO pr_fmt_debug(fmt), ##__VA_ARGS__); \
} while (0)
static bool flag_enable_bms_chg_log;
#define BMS_CONTROL 0x224
#define BMS_S1_DELAY 0x225
#define BMS_OUTPUT0 0x230
#define BMS_OUTPUT1 0x231
#define BMS_TOLERANCES 0x232
#define BMS_TEST1 0x237
#define ADC_ARB_SECP_CNTRL 0x190
#define ADC_ARB_SECP_AMUX_CNTRL 0x191
#define ADC_ARB_SECP_ANA_PARAM 0x192
#define ADC_ARB_SECP_DIG_PARAM 0x193
#define ADC_ARB_SECP_RSV 0x194
#define ADC_ARB_SECP_DATA1 0x195
#define ADC_ARB_SECP_DATA0 0x196
#define ADC_ARB_BMS_CNTRL 0x18D
#define AMUX_TRIM_2 0x322
#define TEST_PROGRAM_REV 0x339
#define OCV_UPDATE_STORAGE 0x105
#define OCV_UPDATE_STORAGE_USE_MASK 0x0F
enum pmic_bms_interrupts {
PM8921_BMS_SBI_WRITE_OK,
PM8921_BMS_CC_THR,
PM8921_BMS_VSENSE_THR,
PM8921_BMS_VSENSE_FOR_R,
PM8921_BMS_OCV_FOR_R,
PM8921_BMS_GOOD_OCV,
PM8921_BMS_VSENSE_AVG,
PM_BMS_MAX_INTS,
};
struct pm8921_soc_params {
uint16_t last_good_ocv_raw;
int cc;
int last_good_ocv_uv;
};
struct pm8921_rbatt_params {
uint16_t ocv_for_rbatt_raw;
uint16_t vsense_for_rbatt_raw;
uint16_t vbatt_for_rbatt_raw;
int ocv_for_rbatt_uv;
int vsense_for_rbatt_uv;
int vbatt_for_rbatt_uv;
};
struct pm8921_bms_chip {
struct device *dev;
struct dentry *dent;
unsigned int r_sense;
unsigned int i_test;
unsigned int v_failure;
unsigned int fcc;
struct single_row_lut *fcc_temp_lut;
struct single_row_lut *fcc_sf_lut;
struct pc_temp_ocv_lut *pc_temp_ocv_lut;
struct sf_lut *pc_sf_lut;
struct sf_lut *rbatt_sf_lut;
int delta_rbatt_mohm;
struct work_struct calib_hkadc_work;
unsigned int revision;
unsigned int xoadc_v0625_usb_present;
unsigned int xoadc_v0625_usb_absent;
unsigned int xoadc_v0625;
unsigned int xoadc_v125;
unsigned int batt_temp_channel;
unsigned int vbat_channel;
unsigned int ref625mv_channel;
unsigned int ref1p25v_channel;
unsigned int batt_id_channel;
unsigned int pmic_bms_irq[PM_BMS_MAX_INTS];
DECLARE_BITMAP(enabled_irqs, PM_BMS_MAX_INTS);
struct mutex bms_output_lock;
spinlock_t bms_100_lock;
struct single_row_lut *adjusted_fcc_temp_lut;
unsigned int charging_began;
int start_percent;
int end_percent;
uint16_t ocv_reading_at_100;
int cc_reading_at_100;
int max_voltage_uv;
int batt_temp_suspend;
int soc_rbatt_suspend;
int default_rbatt_mohm;
unsigned int rconn_mohm;
int amux_2_trim_delta;
uint16_t prev_last_good_ocv_raw;
int usb_chg_plugged_ready;
};
static struct pm8921_bms_chip *the_chip;
struct pm8921_bms_debug {
int rbatt;
int rbatt_sf;
int voltage_unusable_uv;
int pc_unusable;
int rc_pc;
int scalefactor;
int batt_temp;
int soc_rbatt;
};
static struct pm8921_bms_debug bms_dbg;
#define DEFAULT_RBATT_MOHMS 128
#define DEFAULT_OCV_MICROVOLTS 3900000
#define DEFAULT_CHARGE_CYCLES 0
static int last_usb_cal_delta_uv = 1800;
module_param(last_usb_cal_delta_uv, int, 0644);
static int last_chargecycles = DEFAULT_CHARGE_CYCLES;
static int last_charge_increase;
module_param(last_chargecycles, int, 0644);
module_param(last_charge_increase, int, 0644);
static int last_rbatt = -EINVAL;
static int last_ocv_uv = -EINVAL;
static int last_soc = -EINVAL;
static int last_real_fcc_mah = -EINVAL;
static int last_real_fcc_batt_temp = -EINVAL;
static int bms_ops_set(const char *val, const struct kernel_param *kp)
{
if (*(int *)kp->arg == -EINVAL)
return param_set_int(val, kp);
else
return 0;
}
static struct kernel_param_ops bms_param_ops = {
.set = bms_ops_set,
.get = param_get_int,
};
module_param_cb(last_rbatt, &bms_param_ops, &last_rbatt, 0644);
module_param_cb(last_ocv_uv, &bms_param_ops, &last_ocv_uv, 0644);
module_param_cb(last_soc, &bms_param_ops, &last_soc, 0644);
static int bms_fake_battery = -EINVAL;
module_param(bms_fake_battery, int, 0644);
static int bms_start_percent;
static int bms_start_ocv_uv;
static int bms_start_cc_uah;
static int bms_end_percent;
static int bms_end_ocv_uv;
static int bms_end_cc_uah;
static int bms_discharge_percent;
static int is_ocv_update_start;
static int bms_ro_ops_set(const char *val, const struct kernel_param *kp)
{
return -EINVAL;
}
static struct kernel_param_ops bms_ro_param_ops = {
.set = bms_ro_ops_set,
.get = param_get_int,
};
module_param_cb(bms_start_percent, &bms_ro_param_ops, &bms_start_percent, 0644);
module_param_cb(bms_start_ocv_uv, &bms_ro_param_ops, &bms_start_ocv_uv, 0644);
module_param_cb(bms_start_cc_uah, &bms_ro_param_ops, &bms_start_cc_uah, 0644);
module_param_cb(bms_end_percent, &bms_ro_param_ops, &bms_end_percent, 0644);
module_param_cb(bms_end_ocv_uv, &bms_ro_param_ops, &bms_end_ocv_uv, 0644);
module_param_cb(bms_end_cc_uah, &bms_ro_param_ops, &bms_end_cc_uah, 0644);
static int dump_cc_uah(void);
static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp);
static void readjust_fcc_table(void)
{
struct single_row_lut *temp, *old;
int i, fcc, ratio;
if (!the_chip->fcc_temp_lut) {
pr_err("The static fcc lut table is NULL\n");
return;
}
temp = kzalloc(sizeof(struct single_row_lut), GFP_KERNEL);
if (!temp) {
pr_err("Cannot allocate memory for adjusted fcc table\n");
return;
}
fcc = interpolate_fcc(the_chip, last_real_fcc_batt_temp);
temp->cols = the_chip->fcc_temp_lut->cols;
for (i = 0; i < the_chip->fcc_temp_lut->cols; i++) {
temp->x[i] = the_chip->fcc_temp_lut->x[i];
ratio = div_u64(the_chip->fcc_temp_lut->y[i] * 1000, fcc);
temp->y[i] = (ratio * last_real_fcc_mah);
temp->y[i] /= 1000;
pr_debug("temp=%d, staticfcc=%d, adjfcc=%d, ratio=%d\n",
temp->x[i], the_chip->fcc_temp_lut->y[i],
temp->y[i], ratio);
}
old = the_chip->adjusted_fcc_temp_lut;
the_chip->adjusted_fcc_temp_lut = temp;
kfree(old);
}
static int bms_last_real_fcc_set(const char *val,
const struct kernel_param *kp)
{
int rc = 0;
if (last_real_fcc_mah == -EINVAL)
rc = param_set_int(val, kp);
if (rc) {
pr_err("Failed to set last_real_fcc_mah rc=%d\n", rc);
return rc;
}
if (last_real_fcc_batt_temp != -EINVAL)
readjust_fcc_table();
return rc;
}
static struct kernel_param_ops bms_last_real_fcc_param_ops = {
.set = bms_last_real_fcc_set,
.get = param_get_int,
};
module_param_cb(last_real_fcc_mah, &bms_last_real_fcc_param_ops,
&last_real_fcc_mah, 0644);
static int bms_last_real_fcc_batt_temp_set(const char *val,
const struct kernel_param *kp)
{
int rc = 0;
if (last_real_fcc_batt_temp == -EINVAL)
rc = param_set_int(val, kp);
if (rc) {
pr_err("Failed to set last_real_fcc_batt_temp rc=%d\n", rc);
return rc;
}
if (last_real_fcc_mah != -EINVAL)
readjust_fcc_table();
return rc;
}
static struct kernel_param_ops bms_last_real_fcc_batt_temp_param_ops = {
.set = bms_last_real_fcc_batt_temp_set,
.get = param_get_int,
};
module_param_cb(last_real_fcc_batt_temp, &bms_last_real_fcc_batt_temp_param_ops,
&last_real_fcc_batt_temp, 0644);
static int pm_bms_get_rt_status(struct pm8921_bms_chip *chip, int irq_id)
{
return pm8xxx_read_irq_stat(chip->dev->parent,
chip->pmic_bms_irq[irq_id]);
}
static void pm8921_bms_enable_irq(struct pm8921_bms_chip *chip, int interrupt)
{
if (!__test_and_set_bit(interrupt, chip->enabled_irqs)) {
dev_dbg(chip->dev, "%s %d\n", __func__,
chip->pmic_bms_irq[interrupt]);
enable_irq(chip->pmic_bms_irq[interrupt]);
}
}
static void pm8921_bms_disable_irq(struct pm8921_bms_chip *chip, int interrupt)
{
if (__test_and_clear_bit(interrupt, chip->enabled_irqs)) {
pr_debug("%d\n", chip->pmic_bms_irq[interrupt]);
disable_irq_nosync(chip->pmic_bms_irq[interrupt]);
}
}
static int pm_bms_masked_write(struct pm8921_bms_chip *chip, u16 addr,
u8 mask, u8 val)
{
int rc;
u8 reg;
rc = pm8xxx_readb(chip->dev->parent, addr, &reg);
if (rc) {
pr_err("read failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
reg &= ~mask;
reg |= val & mask;
rc = pm8xxx_writeb(chip->dev->parent, addr, reg);
if (rc) {
pr_err("write failed addr = %03X, rc = %d\n", addr, rc);
return rc;
}
return 0;
}
static int usb_chg_plugged_in(void)
{
#if 0
union power_supply_propval ret = {0,};
static struct power_supply *psy;
if (psy == NULL) {
psy = power_supply_get_by_name("usb");
if (psy == NULL)
return 0;
}
if (psy->get_property(psy, POWER_SUPPLY_PROP_ONLINE, &ret))
return 0;
return ret.intval;
#endif
int rc = pm8921_is_usb_chg_plugged_in();
if (rc < 0) {
return 0;
}
the_chip->usb_chg_plugged_ready = 1;
return rc;
}
#define HOLD_OREG_DATA BIT(1)
static int pm_bms_lock_output_data(struct pm8921_bms_chip *chip)
{
int rc;
rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA,
HOLD_OREG_DATA);
if (rc) {
pr_err("couldnt lock bms output rc = %d\n", rc);
return rc;
}
return 0;
}
static int pm_bms_unlock_output_data(struct pm8921_bms_chip *chip)
{
int rc;
rc = pm_bms_masked_write(chip, BMS_CONTROL, HOLD_OREG_DATA, 0);
if (rc) {
pr_err("fail to unlock BMS_CONTROL rc = %d\n", rc);
return rc;
}
return 0;
}
#define SELECT_OUTPUT_DATA 0x1C
#define SELECT_OUTPUT_TYPE_SHIFT 2
#define OCV_FOR_RBATT 0x0
#define VSENSE_FOR_RBATT 0x1
#define VBATT_FOR_RBATT 0x2
#define CC_MSB 0x3
#define CC_LSB 0x4
#define LAST_GOOD_OCV_VALUE 0x5
#define VSENSE_AVG 0x6
#define VBATT_AVG 0x7
static int pm_bms_read_output_data(struct pm8921_bms_chip *chip, int type,
int16_t *result)
{
int rc;
u8 reg;
if (!result) {
pr_err("result pointer null\n");
return -EINVAL;
}
*result = 0;
if (type < OCV_FOR_RBATT || type > VBATT_AVG) {
pr_err("invalid type %d asked to read\n", type);
return -EINVAL;
}
rc = pm_bms_masked_write(chip, BMS_CONTROL, SELECT_OUTPUT_DATA,
type << SELECT_OUTPUT_TYPE_SHIFT);
if (rc) {
pr_err("fail to select %d type in BMS_CONTROL rc = %d\n",
type, rc);
return rc;
}
rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT0, &reg);
if (rc) {
pr_err("fail to read BMS_OUTPUT0 for type %d rc = %d\n",
type, rc);
return rc;
}
*result = reg;
rc = pm8xxx_readb(chip->dev->parent, BMS_OUTPUT1, &reg);
if (rc) {
pr_err("fail to read BMS_OUTPUT1 for type %d rc = %d\n",
type, rc);
return rc;
}
*result |= reg << 8;
pr_debug("type %d result %x", type, *result);
return 0;
}
#define V_PER_BIT_MUL_FACTOR 97656
#define V_PER_BIT_DIV_FACTOR 1000
#define XOADC_INTRINSIC_OFFSET 0x6000
static int xoadc_reading_to_microvolt(unsigned int a)
{
if (a <= XOADC_INTRINSIC_OFFSET)
return 0;
return (a - XOADC_INTRINSIC_OFFSET)
* V_PER_BIT_MUL_FACTOR / V_PER_BIT_DIV_FACTOR;
}
#define XOADC_CALIB_UV 625000
#define VBATT_MUL_FACTOR 3
static int adjust_xo_vbatt_reading(struct pm8921_bms_chip *chip,
int usb_chg, unsigned int uv)
{
s64 numerator, denominator;
int local_delta;
if (uv == 0)
return 0;
if (chip->xoadc_v0625 == 0 || chip->xoadc_v125 == 0) {
pr_debug("No cal yet return %d\n", VBATT_MUL_FACTOR * uv);
return VBATT_MUL_FACTOR * uv;
}
if (usb_chg)
local_delta = last_usb_cal_delta_uv;
else
local_delta = 0;
pr_debug("using delta = %d\n", local_delta);
numerator = ((s64)uv - chip->xoadc_v0625 - local_delta)
* XOADC_CALIB_UV;
denominator = (s64)chip->xoadc_v125 - chip->xoadc_v0625 - local_delta;
if (denominator == 0)
return uv * VBATT_MUL_FACTOR;
return (XOADC_CALIB_UV + local_delta + div_s64(numerator, denominator))
* VBATT_MUL_FACTOR;
}
#define CC_RESOLUTION_N_V1 1085069
#define CC_RESOLUTION_D_V1 100000
#define CC_RESOLUTION_N_V2 868056
#define CC_RESOLUTION_D_V2 10000
static s64 cc_to_microvolt_v1(s64 cc)
{
return div_s64(cc * CC_RESOLUTION_N_V1, CC_RESOLUTION_D_V1);
}
static s64 cc_to_microvolt_v2(s64 cc)
{
return div_s64(cc * CC_RESOLUTION_N_V2, CC_RESOLUTION_D_V2);
}
static s64 cc_to_microvolt(struct pm8921_bms_chip *chip, s64 cc)
{
return (chip->revision < PM8XXX_REVISION_8921_2p0) ?
cc_to_microvolt_v1((s64)cc) :
cc_to_microvolt_v2((s64)cc);
}
#define CC_READING_TICKS 56
#define SLEEP_CLK_HZ 32764
#define SECONDS_PER_HOUR 3600
static s64 ccmicrovolt_to_nvh(s64 cc_uv)
{
return div_s64(cc_uv * CC_READING_TICKS * 1000,
SLEEP_CLK_HZ * SECONDS_PER_HOUR);
}
static int read_cc(struct pm8921_bms_chip *chip, int *result)
{
int rc;
uint16_t msw, lsw;
rc = pm_bms_read_output_data(chip, CC_LSB, &lsw);
if (rc) {
pr_err("fail to read CC_LSB rc = %d\n", rc);
return rc;
}
rc = pm_bms_read_output_data(chip, CC_MSB, &msw);
if (rc) {
pr_err("fail to read CC_MSB rc = %d\n", rc);
return rc;
}
*result = msw << 16 | lsw;
pr_debug("msw = %04x lsw = %04x cc = %d\n", msw, lsw, *result);
return 0;
}
static int adjust_xo_vbatt_reading_for_mbg(struct pm8921_bms_chip *chip,
int result)
{
int64_t numerator;
int64_t denominator;
if (chip->amux_2_trim_delta == 0)
return result;
numerator = (s64)result * 1000000;
denominator = (1000000 + (410 * (s64)chip->amux_2_trim_delta));
return div_s64(numerator, denominator);
}
static int convert_vbatt_raw_to_uv(struct pm8921_bms_chip *chip,
int usb_chg,
uint16_t reading, int *result)
{
*result = xoadc_reading_to_microvolt(reading);
pr_debug("raw = %04x vbatt = %u\n", reading, *result);
*result = adjust_xo_vbatt_reading(chip, usb_chg, *result);
pr_debug("after adj vbatt = %u\n", *result);
*result = adjust_xo_vbatt_reading_for_mbg(chip, *result);
pr_debug("after mbg adj vbatt = %u\n", *result);
return 0;
}
static int convert_vsense_to_uv(struct pm8921_bms_chip *chip,
int16_t reading, int *result)
{
*result = pm8xxx_ccadc_reading_to_microvolt(chip->revision, reading);
pr_debug("raw = %04x vsense = %d\n", reading, *result);
*result = pm8xxx_cc_adjust_for_gain(*result);
pr_debug("after adj vsense = %d\n", *result);
return 0;
}
static int read_vsense_avg(struct pm8921_bms_chip *chip, int *result)
{
int rc;
int16_t reading;
rc = pm_bms_read_output_data(chip, VSENSE_AVG, &reading);
if (rc) {
pr_err("fail to read VSENSE_AVG rc = %d\n", rc);
return rc;
}
convert_vsense_to_uv(chip, reading, result);
return 0;
}
static int linear_interpolate(int y0, int x0, int y1, int x1, int x)
{
if (y0 == y1 || x == x0)
return y0;
if (x1 == x0 || x == x1)
return y1;
return y0 + ((y1 - y0) * (x - x0) / (x1 - x0));
}
static int interpolate_single_lut(struct single_row_lut *lut, int x)
{
int i, result;
if (x < lut->x[0]) {
pr_debug("x %d less than known range return y = %d lut = %pS\n",
x, lut->y[0], lut);
return lut->y[0];
}
if (x > lut->x[lut->cols - 1]) {
pr_debug("x %d more than known range return y = %d lut = %pS\n",
x, lut->y[lut->cols - 1], lut);
return lut->y[lut->cols - 1];
}
for (i = 0; i < lut->cols; i++)
if (x <= lut->x[i])
break;
if (x == lut->x[i]) {
result = lut->y[i];
} else {
result = linear_interpolate(
lut->y[i - 1],
lut->x[i - 1],
lut->y[i],
lut->x[i],
x);
}
return result;
}
static int interpolate_fcc(struct pm8921_bms_chip *chip, int batt_temp)
{
batt_temp = batt_temp/10;
return interpolate_single_lut(chip->fcc_temp_lut, batt_temp);
}
static int interpolate_fcc_adjusted(struct pm8921_bms_chip *chip, int batt_temp)
{
batt_temp = batt_temp/10;
return interpolate_single_lut(chip->adjusted_fcc_temp_lut, batt_temp);
}
static int interpolate_scalingfactor_fcc(struct pm8921_bms_chip *chip,
int cycles)
{
if (chip->fcc_sf_lut)
return interpolate_single_lut(chip->fcc_sf_lut, cycles);
else
return 100;
}
static int interpolate_scalingfactor(struct pm8921_bms_chip *chip,
struct sf_lut *sf_lut,
int row_entry, int pc)
{
int i, scalefactorrow1, scalefactorrow2, scalefactor;
int rows, cols;
int row1 = 0;
int row2 = 0;
if (!sf_lut)
return 100;
rows = sf_lut->rows;
cols = sf_lut->cols;
if (pc > sf_lut->percent[0]) {
pr_debug("pc %d greater than known pc ranges for sfd\n", pc);
row1 = 0;
row2 = 0;
}
if (pc < sf_lut->percent[rows - 1]) {
pr_debug("pc %d less than known pc ranges for sf", pc);
row1 = rows - 1;
row2 = rows - 1;
}
for (i = 0; i < rows; i++) {
if (pc == sf_lut->percent[i]) {
row1 = i;
row2 = i;
break;
}
if (pc > sf_lut->percent[i]) {
row1 = i - 1;
row2 = i;
break;
}
}
if (row_entry < sf_lut->row_entries[0])
row_entry = sf_lut->row_entries[0];
if (row_entry > sf_lut->row_entries[cols - 1])
row_entry = sf_lut->row_entries[cols - 1];
for (i = 0; i < cols; i++)
if (row_entry <= sf_lut->row_entries[i])
break;
if (row_entry == sf_lut->row_entries[i]) {
scalefactor = linear_interpolate(
sf_lut->sf[row1][i],
sf_lut->percent[row1],
sf_lut->sf[row2][i],
sf_lut->percent[row2],
pc);
return scalefactor;
}
scalefactorrow1 = linear_interpolate(
sf_lut->sf[row1][i - 1],
sf_lut->row_entries[i - 1],
sf_lut->sf[row1][i],
sf_lut->row_entries[i],
row_entry);
scalefactorrow2 = linear_interpolate(
sf_lut->sf[row2][i - 1],
sf_lut->row_entries[i - 1],
sf_lut->sf[row2][i],
sf_lut->row_entries[i],
row_entry);
scalefactor = linear_interpolate(
scalefactorrow1,
sf_lut->percent[row1],
scalefactorrow2,
sf_lut->percent[row2],
pc);
return scalefactor;
}
static int is_between(int left, int right, int value)
{
if (left >= right && left >= value && value >= right)
return 1;
if (left <= right && left <= value && value <= right)
return 1;
return 0;
}
static int interpolate_pc(struct pm8921_bms_chip *chip,
int batt_temp, int ocv)
{
int i, j, pcj, pcj_minus_one, pc;
int rows = chip->pc_temp_ocv_lut->rows;
int cols = chip->pc_temp_ocv_lut->cols;
batt_temp = batt_temp/10;
if (batt_temp < chip->pc_temp_ocv_lut->temp[0]) {
pr_debug("batt_temp %d < known temp range for pc\n", batt_temp);
batt_temp = chip->pc_temp_ocv_lut->temp[0];
}
if (batt_temp > chip->pc_temp_ocv_lut->temp[cols - 1]) {
pr_debug("batt_temp %d > known temp range for pc\n", batt_temp);
batt_temp = chip->pc_temp_ocv_lut->temp[cols - 1];
}
for (j = 0; j < cols; j++)
if (batt_temp <= chip->pc_temp_ocv_lut->temp[j])
break;
if (batt_temp == chip->pc_temp_ocv_lut->temp[j]) {
if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j])
return chip->pc_temp_ocv_lut->percent[0];
if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j])
return chip->pc_temp_ocv_lut->percent[rows - 1];
for (i = 0; i < rows; i++) {
if (ocv >= chip->pc_temp_ocv_lut->ocv[i][j]) {
if (ocv == chip->pc_temp_ocv_lut->ocv[i][j])
return
chip->pc_temp_ocv_lut->percent[i];
pc = linear_interpolate(
chip->pc_temp_ocv_lut->percent[i],
chip->pc_temp_ocv_lut->ocv[i][j],
chip->pc_temp_ocv_lut->percent[i - 1],
chip->pc_temp_ocv_lut->ocv[i - 1][j],
ocv);
return pc;
}
}
}
if (ocv >= chip->pc_temp_ocv_lut->ocv[0][j])
return chip->pc_temp_ocv_lut->percent[0];
if (ocv <= chip->pc_temp_ocv_lut->ocv[rows - 1][j - 1])
return chip->pc_temp_ocv_lut->percent[rows - 1];
pcj_minus_one = 0;
pcj = 0;
for (i = 0; i < rows-1; i++) {
if (pcj == 0
&& is_between(chip->pc_temp_ocv_lut->ocv[i][j],
chip->pc_temp_ocv_lut->ocv[i+1][j], ocv)) {
pcj = linear_interpolate(
chip->pc_temp_ocv_lut->percent[i],
chip->pc_temp_ocv_lut->ocv[i][j],
chip->pc_temp_ocv_lut->percent[i + 1],
chip->pc_temp_ocv_lut->ocv[i+1][j],
ocv);
}
if (pcj_minus_one == 0
&& is_between(chip->pc_temp_ocv_lut->ocv[i][j-1],
chip->pc_temp_ocv_lut->ocv[i+1][j-1], ocv)) {
pcj_minus_one = linear_interpolate(
chip->pc_temp_ocv_lut->percent[i],
chip->pc_temp_ocv_lut->ocv[i][j-1],
chip->pc_temp_ocv_lut->percent[i + 1],
chip->pc_temp_ocv_lut->ocv[i+1][j-1],
ocv);
}
if (pcj && pcj_minus_one) {
pc = linear_interpolate(
pcj_minus_one,
chip->pc_temp_ocv_lut->temp[j-1],
pcj,
chip->pc_temp_ocv_lut->temp[j],
batt_temp);
return pc;
}
}
if (pcj)
return pcj;
if (pcj_minus_one)
return pcj_minus_one;
pr_debug("%d ocv wasn't found for temp %d in the LUT returning 100%%",
ocv, batt_temp);
return 100;
}
#define BMS_MODE_BIT BIT(6)
#define EN_VBAT_BIT BIT(5)
#define OVERRIDE_MODE_DELAY_MS 20
int pm8921_bms_get_simultaneous_battery_voltage_and_current(int *ibat_ua,
int *vbat_uv)
{
int16_t vsense_raw;
int16_t vbat_raw;
int vsense_uv, usb_chg;
if (the_chip == NULL) {
pr_err("Called to early\n");
return -EINVAL;
}
mutex_lock(&the_chip->bms_output_lock);
pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x00);
pm_bms_masked_write(the_chip, BMS_CONTROL,
BMS_MODE_BIT | EN_VBAT_BIT, BMS_MODE_BIT | EN_VBAT_BIT);
msleep(OVERRIDE_MODE_DELAY_MS);
pm_bms_lock_output_data(the_chip);
pm_bms_read_output_data(the_chip, VSENSE_AVG, &vsense_raw);
pm_bms_read_output_data(the_chip, VBATT_AVG, &vbat_raw);
pm_bms_unlock_output_data(the_chip);
pm_bms_masked_write(the_chip, BMS_CONTROL,
BMS_MODE_BIT | EN_VBAT_BIT, 0);
pm8xxx_writeb(the_chip->dev->parent, BMS_S1_DELAY, 0x0B);
mutex_unlock(&the_chip->bms_output_lock);
usb_chg = usb_chg_plugged_in();
convert_vbatt_raw_to_uv(the_chip, usb_chg, vbat_raw, vbat_uv);
convert_vsense_to_uv(the_chip, vsense_raw, &vsense_uv);
*ibat_ua = vsense_uv * 1000 / (int)the_chip->r_sense;
pr_debug("vsense_raw = 0x%x vbat_raw = 0x%x"
" ibat_ua = %d vbat_uv = %d\n",
(uint16_t)vsense_raw, (uint16_t)vbat_raw,
*ibat_ua, *vbat_uv);
return 0;
}
EXPORT_SYMBOL(pm8921_bms_get_simultaneous_battery_voltage_and_current);
static int read_rbatt_params_raw(struct pm8921_bms_chip *chip,
struct pm8921_rbatt_params *raw)
{
int usb_chg;
mutex_lock(&chip->bms_output_lock);
pm_bms_lock_output_data(chip);
pm_bms_read_output_data(chip,
OCV_FOR_RBATT, &raw->ocv_for_rbatt_raw);
pm_bms_read_output_data(chip,
VBATT_FOR_RBATT, &raw->vbatt_for_rbatt_raw);
pm_bms_read_output_data(chip,
VSENSE_FOR_RBATT, &raw->vsense_for_rbatt_raw);
pm_bms_unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
usb_chg = usb_chg_plugged_in();
convert_vbatt_raw_to_uv(chip, usb_chg,
raw->vbatt_for_rbatt_raw, &raw->vbatt_for_rbatt_uv);
convert_vbatt_raw_to_uv(chip, usb_chg,
raw->ocv_for_rbatt_raw, &raw->ocv_for_rbatt_uv);
convert_vsense_to_uv(chip,
raw->vsense_for_rbatt_raw, &raw->vsense_for_rbatt_uv);
pr_debug("vbatt_for_rbatt_raw = 0x%x, vbatt_for_rbatt= %duV\n",
raw->vbatt_for_rbatt_raw, raw->vbatt_for_rbatt_uv);
pr_debug("ocv_for_rbatt_raw = 0x%x, ocv_for_rbatt= %duV\n",
raw->ocv_for_rbatt_raw, raw->ocv_for_rbatt_uv);
pr_debug("vsense_for_rbatt_raw = 0x%x, vsense_for_rbatt= %duV\n",
raw->vsense_for_rbatt_raw, raw->vsense_for_rbatt_uv);
return 0;
}
#define MBG_TRANSIENT_ERROR_RAW 51
static void adjust_pon_ocv_raw(struct pm8921_bms_chip *chip,
struct pm8921_soc_params *raw)
{
if (raw->last_good_ocv_raw >= MBG_TRANSIENT_ERROR_RAW)
raw->last_good_ocv_raw -= MBG_TRANSIENT_ERROR_RAW;
}
static int read_soc_params_raw(struct pm8921_bms_chip *chip,
struct pm8921_soc_params *raw)
{
int usb_chg, rc;
uint16_t last_good_ocv_raw_ori = 0;
int last_good_ocv_uv_ori_uv = 0;
u8 ocv_updated_flag = 0;
rc = pm8xxx_readb(chip->dev->parent, OCV_UPDATE_STORAGE, &ocv_updated_flag);
if (rc) {
pr_err("%s: failed to read addr = %d, rc=%d\n",
__func__, OCV_UPDATE_STORAGE, rc);
} else {
ocv_updated_flag &= OCV_UPDATE_STORAGE_USE_MASK;
pr_debug("%s: OCV_UPDATE_STORAGE = 0x%x\n", __func__, ocv_updated_flag);
}
mutex_lock(&chip->bms_output_lock);
pm_bms_lock_output_data(chip);
pm_bms_read_output_data(chip,
LAST_GOOD_OCV_VALUE, &raw->last_good_ocv_raw);
read_cc(chip, &raw->cc);
pm_bms_unlock_output_data(chip);
mutex_unlock(&chip->bms_output_lock);
usb_chg = usb_chg_plugged_in();
pr_debug("%s: usb_chg=%d, usb_chg_plugged_ready=%d,"
"prev_last_good_ocv_raw=0x%x, last_good_ocv_raw=0x%x\n",
__func__, usb_chg, chip->usb_chg_plugged_ready,
chip->prev_last_good_ocv_raw, raw->last_good_ocv_raw);
if (chip->prev_last_good_ocv_raw == 0) {
if (chip->usb_chg_plugged_ready == 1)
chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
last_good_ocv_raw_ori = raw->last_good_ocv_raw;
if (!ocv_updated_flag)
adjust_pon_ocv_raw(chip, raw);
else
pr_info("%s: Skip adjust_pon_ocv_raw due to ocv_updated_flag=0x%x\n",
__func__, ocv_updated_flag);
convert_vbatt_raw_to_uv(chip, usb_chg,
raw->last_good_ocv_raw, &raw->last_good_ocv_uv);
convert_vbatt_raw_to_uv(chip, usb_chg,
last_good_ocv_raw_ori, &last_good_ocv_uv_ori_uv);
last_ocv_uv = raw->last_good_ocv_uv;
pr_info("%s: last_good_ocv_raw/ori=0x%x/0x%x, last_good_ocv_uv/ori=%duV/%duV\n",
__func__, raw->last_good_ocv_raw, last_good_ocv_raw_ori,
raw->last_good_ocv_uv, last_good_ocv_uv_ori_uv);
} else if (chip->prev_last_good_ocv_raw != raw->last_good_ocv_raw) {
chip->prev_last_good_ocv_raw = raw->last_good_ocv_raw;
convert_vbatt_raw_to_uv(chip, usb_chg,
raw->last_good_ocv_raw, &raw->last_good_ocv_uv);
last_ocv_uv = raw->last_good_ocv_uv;
pm_bms_masked_write(chip, OCV_UPDATE_STORAGE,
OCV_UPDATE_STORAGE_USE_MASK, 0x1);
rc = pm8xxx_readb(chip->dev->parent, OCV_UPDATE_STORAGE, &ocv_updated_flag);
if (rc) {
pr_err("%s: failed to read addr = %d, rc=%d\n",
__func__, OCV_UPDATE_STORAGE, rc);
} else {
ocv_updated_flag &= OCV_UPDATE_STORAGE_USE_MASK;
}
pr_info("%s: last_good_ocv_raw/uv=0x%x/%duV, ocv_updated_flag=0x%x\n",
__func__, raw->last_good_ocv_raw, raw->last_good_ocv_uv,
ocv_updated_flag);
} else {
raw->last_good_ocv_uv = last_ocv_uv;
}
pr_debug("0p625 = %duV\n", chip->xoadc_v0625);
pr_debug("1p25 = %duV\n", chip->xoadc_v125);
pr_debug("last_good_ocv_raw= 0x%x, last_good_ocv_uv= %duV\n",
raw->last_good_ocv_raw, raw->last_good_ocv_uv);
pr_debug("cc_raw= 0x%x\n", raw->cc);
return 0;
}
static int get_rbatt(struct pm8921_bms_chip *chip, int soc_rbatt, int batt_temp)
{
int rbatt, scalefactor;
rbatt = (last_rbatt < 0) ? chip->default_rbatt_mohm : last_rbatt;
pr_debug("rbatt before scaling = %d\n", rbatt);
if (chip->rbatt_sf_lut == NULL) {
pr_debug("RBATT = %d\n", rbatt);
return rbatt;
}
batt_temp = batt_temp / 10;
scalefactor = interpolate_scalingfactor(chip, chip->rbatt_sf_lut,
batt_temp, soc_rbatt);
bms_dbg.rbatt_sf = scalefactor;
bms_dbg.soc_rbatt = soc_rbatt;
pr_debug("rbatt sf = %d for batt_temp = %d, soc_rbatt = %d\n",
scalefactor, batt_temp, soc_rbatt);
rbatt = (rbatt * scalefactor) / 100;
rbatt += the_chip->rconn_mohm;
pr_debug("adding rconn_mohm = %d rbatt = %d\n",
the_chip->rconn_mohm, rbatt);
if (is_between(20, 10, soc_rbatt))
rbatt = rbatt
+ ((20 - soc_rbatt) * chip->delta_rbatt_mohm) / 10;
else
if (is_between(10, 0, soc_rbatt))
rbatt = rbatt + chip->delta_rbatt_mohm;
pr_debug("RBATT = %d\n", rbatt);
return rbatt;
}
static int calculate_rbatt_resume(struct pm8921_bms_chip *chip,
struct pm8921_rbatt_params *raw)
{
unsigned int r_batt;
if (raw->ocv_for_rbatt_uv <= 0
|| raw->ocv_for_rbatt_uv <= raw->vbatt_for_rbatt_uv
|| raw->vsense_for_rbatt_raw <= 0) {
pr_debug("rbatt readings unavailable ocv = %d, vbatt = %d,"
"vsen = %d\n",
raw->ocv_for_rbatt_uv,
raw->vbatt_for_rbatt_uv,
raw->vsense_for_rbatt_raw);
return -EINVAL;
}
r_batt = ((raw->ocv_for_rbatt_uv - raw->vbatt_for_rbatt_uv)
* chip->r_sense) / raw->vsense_for_rbatt_uv;
pr_debug("r_batt = %umilliOhms", r_batt);
return r_batt;
}
static int calculate_fcc_uah(struct pm8921_bms_chip *chip, int batt_temp,
int chargecycles)
{
int initfcc, result, scalefactor = 0;
if (chip->adjusted_fcc_temp_lut == NULL) {
initfcc = interpolate_fcc(chip, batt_temp);
scalefactor = interpolate_scalingfactor_fcc(chip, chargecycles);
result = (initfcc * scalefactor * 1000) / 100;
pr_debug("fcc = %d uAh\n", result);
return result;
} else {
return 1000 * interpolate_fcc_adjusted(chip, batt_temp);
}
}
static int get_battery_uvolts(struct pm8921_bms_chip *chip, int *uvolts)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->vbat_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("mvolts phy = %lld meas = 0x%llx", result.physical,
result.measurement);
*uvolts = (int)result.physical;
return 0;
}
static int adc_based_ocv(struct pm8921_bms_chip *chip, int *ocv)
{
int vbatt, rbatt, ibatt_ua, rc;
rc = get_battery_uvolts(chip, &vbatt);
if (rc) {
pr_err("failed to read vbatt from adc rc = %d\n", rc);
return rc;
}
rc = pm8921_bms_get_battery_current(&ibatt_ua);
if (rc) {
pr_err("failed to read batt current rc = %d\n", rc);
return rc;
}
rbatt = (last_rbatt < 0) ? chip->default_rbatt_mohm : last_rbatt;
*ocv = vbatt + (ibatt_ua * rbatt)/1000;
return 0;
}
static int calculate_pc(struct pm8921_bms_chip *chip, int ocv_uv, int batt_temp,
int chargecycles)
{
int pc, scalefactor;
pc = interpolate_pc(chip, batt_temp, ocv_uv / 1000);
pr_debug("pc = %u for ocv = %dmicroVolts batt_temp = %d\n",
pc, ocv_uv, batt_temp);
scalefactor = interpolate_scalingfactor(chip,
chip->pc_sf_lut, chargecycles, pc);
pr_debug("scalefactor = %u batt_temp = %d\n", scalefactor, batt_temp);
bms_dbg.scalefactor = scalefactor;
pc = (pc * scalefactor) / 100;
return pc;
}
static void calculate_cc_uah(struct pm8921_bms_chip *chip, int cc, int *val)
{
int64_t cc_voltage_uv, cc_nvh, cc_uah;
cc_voltage_uv = cc;
cc_voltage_uv -= chip->cc_reading_at_100;
pr_debug("cc = %d. after subtracting %d cc = %lld\n",
cc, chip->cc_reading_at_100,
cc_voltage_uv);
cc_voltage_uv = cc_to_microvolt(chip, cc_voltage_uv);
cc_voltage_uv = pm8xxx_cc_adjust_for_gain(cc_voltage_uv);
pr_debug("cc_voltage_uv = %lld microvolts\n", cc_voltage_uv);
cc_nvh = ccmicrovolt_to_nvh(cc_voltage_uv);
pr_debug("cc_nvh = %lld nano_volt_hour\n", cc_nvh);
cc_uah = div_s64(cc_nvh, chip->r_sense);
*val = cc_uah;
}
static int calculate_unusable_charge_uah(struct pm8921_bms_chip *chip,
int rbatt, int fcc_uah,
int batt_temp, int chargecycles)
{
int voltage_unusable_uv, pc_unusable;
voltage_unusable_uv = (rbatt * chip->i_test)
+ (chip->v_failure * 1000);
pc_unusable = calculate_pc(chip, voltage_unusable_uv,
batt_temp, chargecycles);
pr_debug("rbatt = %umilliOhms unusable_v =%d unusable_pc = %d\n",
rbatt, voltage_unusable_uv, pc_unusable);
bms_dbg.rbatt = rbatt;
bms_dbg.voltage_unusable_uv = voltage_unusable_uv;
bms_dbg.pc_unusable = pc_unusable;
return (fcc_uah * pc_unusable) / 100;
}
static int calculate_remaining_charge_uah(struct pm8921_bms_chip *chip,
struct pm8921_soc_params *raw,
int fcc_uah, int batt_temp,
int chargecycles)
{
int ocv, pc;
ocv = 0;
if (chip->ocv_reading_at_100 != raw->last_good_ocv_raw) {
chip->ocv_reading_at_100 = 0;
chip->cc_reading_at_100 = 0;
ocv = raw->last_good_ocv_uv;
} else {
ocv = chip->max_voltage_uv;
}
if (ocv == 0) {
ocv = last_ocv_uv;
pr_debug("ocv not available using last_ocv_uv=%d\n", ocv);
}
pc = calculate_pc(chip, ocv, batt_temp, chargecycles);
bms_dbg.rc_pc = pc;
pr_debug("ocv = %d pc = %d\n", ocv, pc);
return (fcc_uah * pc) / 100;
}
static void calculate_soc_params(struct pm8921_bms_chip *chip,
struct pm8921_soc_params *raw,
int batt_temp, int chargecycles,
int *fcc_uah,
int *unusable_charge_uah,
int *remaining_charge_uah,
int *cc_uah,
int *rbatt)
{
unsigned long flags;
int soc_rbatt;
*fcc_uah = calculate_fcc_uah(chip, batt_temp, chargecycles);
pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n",
*fcc_uah, batt_temp, chargecycles);
spin_lock_irqsave(&chip->bms_100_lock, flags);
*remaining_charge_uah = calculate_remaining_charge_uah(chip, raw,
*fcc_uah, batt_temp, chargecycles);
pr_debug("RC = %uuAh\n", *remaining_charge_uah);
calculate_cc_uah(chip, raw->cc, cc_uah);
pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %d\n",
*cc_uah, raw->cc,
(int64_t)raw->cc - chip->cc_reading_at_100,
chip->cc_reading_at_100);
spin_unlock_irqrestore(&chip->bms_100_lock, flags);
soc_rbatt = ((*remaining_charge_uah - *cc_uah) * 100) / *fcc_uah;
if (soc_rbatt < 0)
soc_rbatt = 0;
*rbatt = get_rbatt(chip, soc_rbatt, batt_temp);
*unusable_charge_uah = calculate_unusable_charge_uah(chip, *rbatt,
*fcc_uah, batt_temp, chargecycles);
pr_debug("UUC = %uuAh\n", *unusable_charge_uah);
}
static int calculate_real_fcc_uah(struct pm8921_bms_chip *chip,
struct pm8921_soc_params *raw,
int batt_temp, int chargecycles,
int *ret_fcc_uah)
{
int fcc_uah, unusable_charge_uah;
int remaining_charge_uah;
int cc_uah;
int real_fcc_uah;
int rbatt;
calculate_soc_params(chip, raw, batt_temp, chargecycles,
&fcc_uah,
&unusable_charge_uah,
&remaining_charge_uah,
&cc_uah,
&rbatt);
real_fcc_uah = remaining_charge_uah - cc_uah;
*ret_fcc_uah = fcc_uah;
pr_debug("real_fcc = %d, RC = %d CC = %d fcc = %d\n",
real_fcc_uah, remaining_charge_uah, cc_uah, fcc_uah);
return real_fcc_uah;
}
static int calculate_state_of_charge(struct pm8921_bms_chip *chip,
struct pm8921_soc_params *raw,
int batt_temp, int chargecycles, int verbol)
{
int remaining_usable_charge_uah, fcc_uah, unusable_charge_uah;
int remaining_charge_uah, soc, soc_remainder = 0;
int update_userspace = 1;
int cc_uah;
int rbatt;
calculate_soc_params(chip, raw, batt_temp, chargecycles,
&fcc_uah,
&unusable_charge_uah,
&remaining_charge_uah,
&cc_uah,
&rbatt);
bms_dbg.batt_temp = batt_temp;
remaining_usable_charge_uah = remaining_charge_uah
- cc_uah
- unusable_charge_uah;
pr_debug("RUC = %duAh\n", remaining_usable_charge_uah);
if (fcc_uah - unusable_charge_uah <= 0) {
pr_warn("FCC = %duAh, UUC = %duAh forcing soc = 0\n",
fcc_uah, unusable_charge_uah);
soc = 0;
} else {
soc = (remaining_usable_charge_uah * 100)
/ (fcc_uah - unusable_charge_uah);
soc_remainder = (remaining_usable_charge_uah * 100)
% (fcc_uah - unusable_charge_uah);
if (soc >= 0 && soc_remainder > 0)
soc += 1;
}
if (verbol) {
pr_info("FCC=%d,UC=%d,RC=%d,CC=%d,RUC=%d,SOC=%d,SOC_R=%d,"
"start_percent=%d,end_percent=%d,"
"rbatt=%d,rbatt_sf=%d,batt_temp=%d,soc_rbatt=%d,last_rbatt=%d,"
"V_unusable_uv=%d,pc_unusable=%d,rc_pc=%d,scalefactor=%d\n",
fcc_uah, unusable_charge_uah, remaining_charge_uah,
cc_uah, remaining_usable_charge_uah, soc, soc_remainder,
the_chip->start_percent, the_chip->end_percent,
bms_dbg.rbatt, bms_dbg.rbatt_sf, bms_dbg.batt_temp,
bms_dbg.soc_rbatt, last_rbatt, bms_dbg.voltage_unusable_uv,
bms_dbg.pc_unusable, bms_dbg.rc_pc, bms_dbg.scalefactor);
}
if (soc > 100)
soc = 100;
pr_debug("SOC = %u%%\n", soc);
if (bms_fake_battery != -EINVAL) {
pr_debug("Returning Fake SOC = %d%%\n", bms_fake_battery);
return bms_fake_battery;
}
if (soc < 0) {
pr_err("bad rem_usb_chg = %d rem_chg %d,"
"cc_uah %d, unusb_chg %d\n",
remaining_usable_charge_uah,
remaining_charge_uah,
cc_uah, unusable_charge_uah);
pr_err("for bad rem_usb_chg last_ocv_uv = %d"
"chargecycles = %d, batt_temp = %d"
"fcc = %d soc =%d\n",
last_ocv_uv, chargecycles, batt_temp,
fcc_uah, soc);
update_userspace = 0;
soc = 0;
}
if (last_soc == -EINVAL || soc <= last_soc) {
last_soc = update_userspace ? soc : last_soc;
return soc;
}
if (the_chip->start_percent != -EINVAL) {
last_soc = soc;
} else {
pr_info("soc = %d reporting last_soc = %d\n", soc, last_soc);
soc = last_soc;
}
return soc;
}
#define MIN_DELTA_625_UV 1000
static void calib_hkadc(struct pm8921_bms_chip *chip)
{
int voltage, rc;
struct pm8xxx_adc_chan_result result;
int usb_chg;
int this_delta;
rc = pm8xxx_adc_read(the_chip->ref1p25v_channel, &result);
if (rc) {
pr_err("ADC failed for 1.25volts rc = %d\n", rc);
return;
}
voltage = xoadc_reading_to_microvolt(result.adc_code);
pr_debug("result 1.25v = 0x%x, voltage = %duV adc_meas = %lld\n",
result.adc_code, voltage, result.measurement);
chip->xoadc_v125 = voltage;
rc = pm8xxx_adc_read(the_chip->ref625mv_channel, &result);
if (rc) {
pr_err("ADC failed for 1.25volts rc = %d\n", rc);
return;
}
voltage = xoadc_reading_to_microvolt(result.adc_code);
usb_chg = usb_chg_plugged_in();
pr_debug("result 0.625V = 0x%x, voltage = %duV adc_meas = %lld "
"usb_chg = %d\n",
result.adc_code, voltage, result.measurement,
usb_chg);
if (usb_chg)
chip->xoadc_v0625_usb_present = voltage;
else
chip->xoadc_v0625_usb_absent = voltage;
chip->xoadc_v0625 = voltage;
if (chip->xoadc_v0625_usb_present && chip->xoadc_v0625_usb_absent) {
this_delta = chip->xoadc_v0625_usb_present
- chip->xoadc_v0625_usb_absent;
pr_debug("this_delta= %duV\n", this_delta);
if (this_delta > MIN_DELTA_625_UV)
last_usb_cal_delta_uv = this_delta;
pr_debug("625V_present= %d, 625V_absent= %d, delta = %duV\n",
chip->xoadc_v0625_usb_present,
chip->xoadc_v0625_usb_absent,
last_usb_cal_delta_uv);
}
}
static void calibrate_hkadc_work(struct work_struct *work)
{
struct pm8921_bms_chip *chip = container_of(work,
struct pm8921_bms_chip, calib_hkadc_work);
calib_hkadc(chip);
}
void pm8921_bms_calibrate_hkadc(void)
{
schedule_work(&the_chip->calib_hkadc_work);
}
int pm8921_bms_get_vsense_avg(int *result)
{
int rc = -EINVAL;
if (the_chip) {
mutex_lock(&the_chip->bms_output_lock);
pm_bms_lock_output_data(the_chip);
rc = read_vsense_avg(the_chip, result);
pm_bms_unlock_output_data(the_chip);
mutex_unlock(&the_chip->bms_output_lock);
} else
pr_err("called before initialization\n");
return rc;
}
EXPORT_SYMBOL(pm8921_bms_get_vsense_avg);
int pm8921_bms_get_battery_current(int *result_ua)
{
int vsense;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
if (the_chip->r_sense == 0) {
pr_err("r_sense is zero\n");
return -EINVAL;
}
mutex_lock(&the_chip->bms_output_lock);
pm_bms_lock_output_data(the_chip);
read_vsense_avg(the_chip, &vsense);
pm_bms_unlock_output_data(the_chip);
mutex_unlock(&the_chip->bms_output_lock);
pr_debug("vsense=%duV\n", vsense);
*result_ua = vsense * 1000 / (int)the_chip->r_sense;
pr_debug("ibat=%duA\n", *result_ua);
return 0;
}
EXPORT_SYMBOL(pm8921_bms_get_battery_current);
int pm8921_bms_get_percent_charge(void)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
struct pm8921_soc_params raw;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
result.measurement);
batt_temp = (int)result.physical;
read_soc_params_raw(the_chip, &raw);
return calculate_state_of_charge(the_chip, &raw,
batt_temp, last_chargecycles, 0);
}
EXPORT_SYMBOL_GPL(pm8921_bms_get_percent_charge);
int pm8921_bms_get_rbatt(void)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
struct pm8921_soc_params raw;
int fcc_uah;
int unusable_charge_uah;
int remaining_charge_uah;
int cc_uah;
int rbatt;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
batt_temp = (int)result.physical;
read_soc_params_raw(the_chip, &raw);
calculate_soc_params(the_chip, &raw, batt_temp, last_chargecycles,
&fcc_uah,
&unusable_charge_uah,
&remaining_charge_uah,
&cc_uah,
&rbatt);
return rbatt;
}
EXPORT_SYMBOL_GPL(pm8921_bms_get_rbatt);
int pm8921_bms_get_fcc(void)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx", result.physical,
result.measurement);
batt_temp = (int)result.physical;
return calculate_fcc_uah(the_chip, batt_temp, last_chargecycles);
}
EXPORT_SYMBOL_GPL(pm8921_bms_get_fcc);
#ifdef CONFIG_HTC_BATT_8960
int pm8921_bms_get_batt_current(int *result)
{
return pm8921_bms_get_battery_current(result);
}
int pm8921_bms_get_batt_soc(int *result)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result temp_result;
struct pm8921_soc_params raw;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &temp_result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx", temp_result.physical,
temp_result.measurement);
batt_temp = (int)temp_result.physical;
read_soc_params_raw(the_chip, &raw);
*result = calculate_state_of_charge(the_chip, &raw,
batt_temp, last_chargecycles, 1);
if (bms_discharge_percent &&
((bms_discharge_percent - *result) >= 5)) {
pr_info("OCV can be update due to %d - %d >= 5\n",
bms_discharge_percent, *result);
bms_discharge_percent = 0;
pm8921_bms_start_ocv_updates();
}
return 0;
}
int pm8921_bms_get_batt_cc(int *result)
{
*result = dump_cc_uah();
return 0;
}
#endif
#define IBAT_TOL_MASK 0x0F
#define OCV_TOL 0xF0
#define OCV_TOL_MASK 0xF0
#define IBAT_TOL_DEFAULT 0x03
#define IBAT_TOL_NOCHG 0x0F
#define OCV_TOL_DEFAULT 0x20
#define OCV_TOL_NO_OCV 0x00
int pm8921_bms_charging_began(void)
{
int batt_temp, rc = 0;
struct pm8xxx_adc_chan_result result;
struct pm8921_soc_params raw;
if (!the_chip) {
pr_err("called before initialization\n");
return -EINVAL;
}
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return rc;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
batt_temp = (int)result.physical;
read_soc_params_raw(the_chip, &raw);
the_chip->start_percent = calculate_state_of_charge(the_chip, &raw,
batt_temp, last_chargecycles, 0);
bms_start_percent = the_chip->start_percent;
bms_start_ocv_uv = raw.last_good_ocv_uv;
calculate_cc_uah(the_chip, raw.cc, &bms_start_cc_uah);
pm_bms_masked_write(the_chip, BMS_TOLERANCES,
IBAT_TOL_MASK, IBAT_TOL_DEFAULT);
pr_info("start_percent = %d%%\n", the_chip->start_percent);
bms_discharge_percent = 0;
pm8921_bms_stop_ocv_updates();
return rc;
}
EXPORT_SYMBOL_GPL(pm8921_bms_charging_began);
#define DELTA_FCC_PERCENT 3
#define MIN_START_PERCENT_FOR_LEARNING (-30)
void pm8921_bms_charging_end(int is_battery_full)
{
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
struct pm8921_soc_params raw;
if (the_chip == NULL)
return;
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return;
}
pr_debug("batt_temp phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
batt_temp = (int)result.physical;
read_soc_params_raw(the_chip, &raw);
calculate_cc_uah(the_chip, raw.cc, &bms_end_cc_uah);
if (is_battery_full
&& the_chip->start_percent <= MIN_START_PERCENT_FOR_LEARNING) {
int fcc_uah, new_fcc_uah, delta_fcc_uah;
new_fcc_uah = calculate_real_fcc_uah(the_chip, &raw,
batt_temp, last_chargecycles,
&fcc_uah);
delta_fcc_uah = new_fcc_uah - fcc_uah;
if (delta_fcc_uah < 0)
delta_fcc_uah = -delta_fcc_uah;
if (delta_fcc_uah * 100 > (DELTA_FCC_PERCENT * fcc_uah)) {
if (new_fcc_uah > fcc_uah)
new_fcc_uah
= (fcc_uah +
(DELTA_FCC_PERCENT * fcc_uah) / 100);
else
new_fcc_uah
= (fcc_uah -
(DELTA_FCC_PERCENT * fcc_uah) / 100);
pr_info("delta_fcc=%d > %d percent of fcc=%d"
"restring it to %d\n",
delta_fcc_uah, DELTA_FCC_PERCENT,
fcc_uah, new_fcc_uah);
}
last_real_fcc_mah = new_fcc_uah/1000;
last_real_fcc_batt_temp = batt_temp;
readjust_fcc_table();
pr_info("learnt fcc = %d batt_temp = %d\n",
last_real_fcc_mah, last_real_fcc_batt_temp);
}
if (is_battery_full) {
unsigned long flags;
spin_lock_irqsave(&the_chip->bms_100_lock, flags);
the_chip->ocv_reading_at_100 = raw.last_good_ocv_raw;
the_chip->cc_reading_at_100 = raw.cc;
spin_unlock_irqrestore(&the_chip->bms_100_lock, flags);
pr_debug("EOC ocv_reading = 0x%x cc = %d\n",
the_chip->ocv_reading_at_100,
the_chip->cc_reading_at_100);
pm8921_bms_start_ocv_updates();
}
the_chip->end_percent = calculate_state_of_charge(the_chip, &raw,
batt_temp, last_chargecycles, 0);
bms_end_percent = the_chip->end_percent;
if (!is_battery_full)
bms_discharge_percent = the_chip->end_percent;
else
bms_discharge_percent = 0;
bms_end_ocv_uv = raw.last_good_ocv_uv;
if (the_chip->end_percent > the_chip->start_percent) {
last_charge_increase +=
the_chip->end_percent - the_chip->start_percent;
if (last_charge_increase > 100) {
last_chargecycles++;
last_charge_increase = last_charge_increase % 100;
}
}
pr_info("end_percent = %d%% last_charge_increase = %d"
"last_chargecycles = %d\n",
the_chip->end_percent,
last_charge_increase,
last_chargecycles);
the_chip->start_percent = -EINVAL;
the_chip->end_percent = -EINVAL;
pm_bms_masked_write(the_chip, BMS_TOLERANCES,
IBAT_TOL_MASK, IBAT_TOL_NOCHG);
}
EXPORT_SYMBOL_GPL(pm8921_bms_charging_end);
int pm8921_bms_stop_ocv_updates(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (!is_ocv_update_start) {
pr_info("ocv updates is already stopped");
return -EINVAL;
}
is_ocv_update_start = 0;
pr_info("stopping ocv updates, is_ocv_update_start=%d", is_ocv_update_start);
return pm_bms_masked_write(the_chip, BMS_TOLERANCES,
OCV_TOL_MASK, OCV_TOL_NO_OCV);
}
EXPORT_SYMBOL_GPL(pm8921_bms_stop_ocv_updates);
int pm8921_bms_start_ocv_updates(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
if (is_ocv_update_start) {
pr_info("ocv updates is already started");
return -EINVAL;
}
is_ocv_update_start = 1;
pr_info("starting ocv updates, is_ocv_update_start=%d", is_ocv_update_start);
return pm_bms_masked_write(the_chip, BMS_TOLERANCES,
OCV_TOL_MASK, OCV_TOL_DEFAULT);
}
EXPORT_SYMBOL_GPL(pm8921_bms_start_ocv_updates);
static irqreturn_t pm8921_bms_sbi_write_ok_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_cc_thr_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_vsense_thr_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_vsense_for_r_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_ocv_for_r_handler(int irq, void *data)
{
struct pm8921_bms_chip *chip = data;
pr_debug("irq = %d triggered", irq);
schedule_work(&chip->calib_hkadc_work);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_good_ocv_handler(int irq, void *data)
{
struct pm8921_bms_chip *chip = data;
pr_debug("irq = %d triggered", irq);
schedule_work(&chip->calib_hkadc_work);
return IRQ_HANDLED;
}
static irqreturn_t pm8921_bms_vsense_avg_handler(int irq, void *data)
{
pr_debug("irq = %d triggered", irq);
return IRQ_HANDLED;
}
struct pm_bms_irq_init_data {
unsigned int irq_id;
char *name;
unsigned long flags;
irqreturn_t (*handler)(int, void *);
};
#define BMS_IRQ(_id, _flags, _handler) \
{ \
.irq_id = _id, \
.name = #_id, \
.flags = _flags, \
.handler = _handler, \
}
struct pm_bms_irq_init_data bms_irq_data[] = {
BMS_IRQ(PM8921_BMS_SBI_WRITE_OK, IRQF_TRIGGER_RISING,
pm8921_bms_sbi_write_ok_handler),
BMS_IRQ(PM8921_BMS_CC_THR, IRQF_TRIGGER_RISING,
pm8921_bms_cc_thr_handler),
BMS_IRQ(PM8921_BMS_VSENSE_THR, IRQF_TRIGGER_RISING,
pm8921_bms_vsense_thr_handler),
BMS_IRQ(PM8921_BMS_VSENSE_FOR_R, IRQF_TRIGGER_RISING,
pm8921_bms_vsense_for_r_handler),
BMS_IRQ(PM8921_BMS_OCV_FOR_R, IRQF_TRIGGER_RISING,
pm8921_bms_ocv_for_r_handler),
BMS_IRQ(PM8921_BMS_GOOD_OCV, IRQF_TRIGGER_RISING,
pm8921_bms_good_ocv_handler),
BMS_IRQ(PM8921_BMS_VSENSE_AVG, IRQF_TRIGGER_RISING,
pm8921_bms_vsense_avg_handler),
};
static void free_irqs(struct pm8921_bms_chip *chip)
{
int i;
for (i = 0; i < PM_BMS_MAX_INTS; i++)
if (chip->pmic_bms_irq[i]) {
free_irq(chip->pmic_bms_irq[i], NULL);
chip->pmic_bms_irq[i] = 0;
}
}
static int __devinit request_irqs(struct pm8921_bms_chip *chip,
struct platform_device *pdev)
{
struct resource *res;
int ret, i;
ret = 0;
bitmap_fill(chip->enabled_irqs, PM_BMS_MAX_INTS);
for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) {
res = platform_get_resource_byname(pdev, IORESOURCE_IRQ,
bms_irq_data[i].name);
if (res == NULL) {
pr_err("couldn't find %s\n", bms_irq_data[i].name);
goto err_out;
}
ret = request_irq(res->start, bms_irq_data[i].handler,
bms_irq_data[i].flags,
bms_irq_data[i].name, chip);
if (ret < 0) {
pr_err("couldn't request %d (%s) %d\n", res->start,
bms_irq_data[i].name, ret);
goto err_out;
}
chip->pmic_bms_irq[bms_irq_data[i].irq_id] = res->start;
pm8921_bms_disable_irq(chip, bms_irq_data[i].irq_id);
}
return 0;
err_out:
free_irqs(chip);
return -EINVAL;
}
#define EN_BMS_BIT BIT(7)
#define EN_PON_HS_BIT BIT(0)
static int __devinit pm8921_bms_hw_init(struct pm8921_bms_chip *chip)
{
int rc;
rc = pm_bms_masked_write(chip, BMS_CONTROL,
EN_BMS_BIT | EN_PON_HS_BIT, EN_BMS_BIT | EN_PON_HS_BIT);
if (rc) {
pr_err("failed to enable pon and bms addr = %d %d",
BMS_CONTROL, rc);
}
pm_bms_masked_write(chip, BMS_TOLERANCES,
IBAT_TOL_MASK, IBAT_TOL_NOCHG);
is_ocv_update_start = 1;
pm_bms_masked_write(chip, BMS_TOLERANCES,
OCV_TOL_MASK, OCV_TOL_DEFAULT);
return 0;
}
static int bms_disabled;
static int set_disable_bms_param(const char *val, struct kernel_param *kp)
{
u8 data;
int rc;
struct pm8921_bms_chip *chip = the_chip;
rc = param_set_int(val, kp);
if (rc) {
pr_err("error setting value %d\n", rc);
return rc;
}
if (bms_disabled)
data = 0;
else
data = EN_BMS_BIT | EN_PON_HS_BIT;
pr_info("set bms_disabled =%d\n", bms_disabled);
rc = pm_bms_masked_write(chip, BMS_CONTROL,
EN_BMS_BIT | EN_PON_HS_BIT, data);
if (rc) {
pr_err("failed to enable pon and bms addr = %d %d",
BMS_CONTROL, rc);
}
return 0;
}
module_param_call(disabled, set_disable_bms_param, param_get_uint,
&bms_disabled, 0644);
static void check_initial_ocv(struct pm8921_bms_chip *chip)
{
int ocv_uv, rc;
int16_t ocv_raw;
int usb_chg;
ocv_uv = 0;
pm_bms_read_output_data(chip, LAST_GOOD_OCV_VALUE, &ocv_raw);
usb_chg = usb_chg_plugged_in();
rc = convert_vbatt_raw_to_uv(chip, usb_chg, ocv_raw, &ocv_uv);
if (rc || ocv_uv == 0) {
rc = adc_based_ocv(chip, &ocv_uv);
if (rc) {
pr_err("failed to read adc based ocv_uv rc = %d\n", rc);
ocv_uv = DEFAULT_OCV_MICROVOLTS;
}
last_ocv_uv = ocv_uv;
}
pr_debug("ocv_uv = %d last_ocv_uv = %d\n", ocv_uv, last_ocv_uv);
}
static int64_t read_battery_id(struct pm8921_bms_chip *chip)
{
int rc;
struct pm8xxx_adc_chan_result result;
rc = pm8xxx_adc_read(chip->batt_id_channel, &result);
if (rc) {
pr_err("error reading batt id channel = %d, rc = %d\n",
chip->vbat_channel, rc);
return rc;
}
pr_debug("batt_id phy = %lld meas = 0x%llx\n", result.physical,
result.measurement);
return result.physical;
}
#ifdef CONFIG_HTC_BATT_8960
#define PM8921_BMS_HTC_FAKE_BATT_ID (1)
static int set_battery_data(struct pm8921_bms_chip *chip)
{
int battery_id_mv, batt_id;
struct pm8921_bms_battery_data* bms_battery_data;
if (pm8xxx_get_revision(chip->dev->parent) < PM8XXX_REVISION_8921_2p0) {
batt_id = PM8921_BMS_HTC_FAKE_BATT_ID;
htc_battery_cell_set_cur_cell_by_id(batt_id);
} else {
battery_id_mv = (int)read_battery_id(chip) / 1000;
batt_id = htc_battery_cell_find_and_set_id_auto(battery_id_mv);
}
bms_battery_data = htc_battery_cell_get_cur_cell_gauge_cdata();
if (bms_battery_data) {
pr_info("set bms_battery_data (cell_id=%d).\n",
batt_id);
chip->fcc = bms_battery_data->fcc;
chip->fcc_temp_lut = bms_battery_data->fcc_temp_lut;
chip->fcc_sf_lut = bms_battery_data->fcc_sf_lut;
chip->pc_temp_ocv_lut = bms_battery_data->pc_temp_ocv_lut;
chip->pc_sf_lut = bms_battery_data->pc_sf_lut;
chip->rbatt_sf_lut = bms_battery_data->rbatt_sf_lut;
chip->default_rbatt_mohm
= bms_battery_data->default_rbatt_mohm;
chip->delta_rbatt_mohm
= bms_battery_data->delta_rbatt_mohm;
} else {
pr_err("bms_battery_data doesn't exist (id=%d)\n",
batt_id);
chip->fcc = palladium_1500_data.fcc;
chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut;
chip->default_rbatt_mohm
= palladium_1500_data.default_rbatt_mohm;
chip->delta_rbatt_mohm
= palladium_1500_data.delta_rbatt_mohm;
}
return 0;
}
#else
#define PALLADIUM_ID_MIN 0x7F40
#define PALLADIUM_ID_MAX 0x7F5A
#define DESAY_5200_ID_MIN 0x7F7F
#define DESAY_5200_ID_MAX 0x802F
static int set_battery_data(struct pm8921_bms_chip *chip)
{
int64_t battery_id;
battery_id = read_battery_id(chip);
if (battery_id < 0) {
pr_err("cannot read battery id err = %lld\n", battery_id);
return battery_id;
}
if (is_between(PALLADIUM_ID_MIN, PALLADIUM_ID_MAX, battery_id)) {
chip->fcc = palladium_1500_data.fcc;
chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut;
chip->default_rbatt_mohm
= palladium_1500_data.default_rbatt_mohm;
chip->delta_rbatt_mohm
= palladium_1500_data.delta_rbatt_mohm;
return 0;
} else if (is_between(DESAY_5200_ID_MIN, DESAY_5200_ID_MAX,
battery_id)) {
chip->fcc = desay_5200_data.fcc;
chip->fcc_temp_lut = desay_5200_data.fcc_temp_lut;
chip->fcc_sf_lut = desay_5200_data.fcc_sf_lut;
chip->pc_temp_ocv_lut = desay_5200_data.pc_temp_ocv_lut;
chip->pc_sf_lut = desay_5200_data.pc_sf_lut;
chip->rbatt_sf_lut = desay_5200_data.rbatt_sf_lut;
chip->default_rbatt_mohm = desay_5200_data.default_rbatt_mohm;
chip->delta_rbatt_mohm = desay_5200_data.delta_rbatt_mohm;
return 0;
} else {
pr_warn("invalid battery id, palladium 1500 assumed batt_id %llx\n",
battery_id);
chip->fcc = palladium_1500_data.fcc;
chip->fcc_temp_lut = palladium_1500_data.fcc_temp_lut;
chip->fcc_sf_lut = palladium_1500_data.fcc_sf_lut;
chip->pc_temp_ocv_lut = palladium_1500_data.pc_temp_ocv_lut;
chip->pc_sf_lut = palladium_1500_data.pc_sf_lut;
chip->rbatt_sf_lut = palladium_1500_data.rbatt_sf_lut;
chip->default_rbatt_mohm
= palladium_1500_data.default_rbatt_mohm;
chip->delta_rbatt_mohm
= palladium_1500_data.delta_rbatt_mohm;
return 0;
}
}
#endif
enum bms_request_operation {
CALC_RBATT,
CALC_FCC,
CALC_PC,
CALC_SOC,
CALIB_HKADC,
CALIB_CCADC,
STOP_OCV,
START_OCV,
GET_VBAT_VSENSE_SIMULTANEOUS,
};
static int test_batt_temp = 5;
static int test_chargecycle = 150;
static int test_ocv = 3900000;
enum {
TEST_BATT_TEMP,
TEST_CHARGE_CYCLE,
TEST_OCV,
};
static int get_test_param(void *data, u64 * val)
{
switch ((int)data) {
case TEST_BATT_TEMP:
*val = test_batt_temp;
break;
case TEST_CHARGE_CYCLE:
*val = test_chargecycle;
break;
case TEST_OCV:
*val = test_ocv;
break;
default:
return -EINVAL;
}
return 0;
}
static int set_test_param(void *data, u64 val)
{
switch ((int)data) {
case TEST_BATT_TEMP:
test_batt_temp = (int)val;
break;
case TEST_CHARGE_CYCLE:
test_chargecycle = (int)val;
break;
case TEST_OCV:
test_ocv = (int)val;
break;
default:
return -EINVAL;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(temp_fops, get_test_param, set_test_param, "%llu\n");
static int get_calc(void *data, u64 * val)
{
int param = (int)data;
int ret = 0;
int ibat_ua, vbat_uv;
struct pm8921_soc_params raw;
struct pm8921_rbatt_params rraw;
read_soc_params_raw(the_chip, &raw);
read_rbatt_params_raw(the_chip, &rraw);
*val = 0;
switch (param) {
case CALC_RBATT:
*val = calculate_rbatt_resume(the_chip, &rraw);
break;
case CALC_FCC:
*val = calculate_fcc_uah(the_chip, test_batt_temp,
test_chargecycle);
break;
case CALC_PC:
*val = calculate_pc(the_chip, test_ocv, test_batt_temp,
test_chargecycle);
break;
case CALC_SOC:
*val = calculate_state_of_charge(the_chip, &raw,
test_batt_temp, test_chargecycle, 0);
break;
case CALIB_HKADC:
*val = 0;
calib_hkadc(the_chip);
break;
case CALIB_CCADC:
*val = 0;
pm8xxx_calib_ccadc();
break;
case GET_VBAT_VSENSE_SIMULTANEOUS:
*val =
pm8921_bms_get_simultaneous_battery_voltage_and_current(
&ibat_ua,
&vbat_uv);
break;
default:
ret = -EINVAL;
}
return ret;
}
static int set_calc(void *data, u64 val)
{
int param = (int)data;
int ret = 0;
switch (param) {
case STOP_OCV:
pm8921_bms_stop_ocv_updates();
break;
case START_OCV:
pm8921_bms_start_ocv_updates();
break;
default:
ret = -EINVAL;
}
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(calc_fops, get_calc, set_calc, "%llu\n");
static int get_reading(void *data, u64 * val)
{
int param = (int)data;
int ret = 0;
struct pm8921_soc_params raw;
struct pm8921_rbatt_params rraw;
read_soc_params_raw(the_chip, &raw);
read_rbatt_params_raw(the_chip, &rraw);
*val = 0;
switch (param) {
case CC_MSB:
case CC_LSB:
*val = raw.cc;
break;
case LAST_GOOD_OCV_VALUE:
*val = raw.last_good_ocv_uv;
break;
case VBATT_FOR_RBATT:
*val = rraw.vbatt_for_rbatt_uv;
break;
case VSENSE_FOR_RBATT:
*val = rraw.vsense_for_rbatt_uv;
break;
case OCV_FOR_RBATT:
*val = rraw.ocv_for_rbatt_uv;
break;
case VSENSE_AVG:
read_vsense_avg(the_chip, (uint *)val);
break;
default:
ret = -EINVAL;
}
return ret;
}
DEFINE_SIMPLE_ATTRIBUTE(reading_fops, get_reading, NULL, "%lld\n");
static int get_rt_status(void *data, u64 * val)
{
int i = (int)data;
int ret;
ret = pm_bms_get_rt_status(the_chip, i);
*val = ret;
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(rt_fops, get_rt_status, NULL, "%llu\n");
static int get_reg(void *data, u64 * val)
{
int addr = (int)data;
int ret;
u8 temp;
ret = pm8xxx_readb(the_chip->dev->parent, addr, &temp);
if (ret) {
pr_err("pm8xxx_readb to %x value = %d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
*val = temp;
return 0;
}
static int set_reg(void *data, u64 val)
{
int addr = (int)data;
int ret;
u8 temp;
temp = (u8) val;
ret = pm8xxx_writeb(the_chip->dev->parent, addr, temp);
if (ret) {
pr_err("pm8xxx_writeb to %x value = %d errored = %d\n",
addr, temp, ret);
return -EAGAIN;
}
return 0;
}
DEFINE_SIMPLE_ATTRIBUTE(reg_fops, get_reg, set_reg, "0x%02llx\n");
static void dump_all(void)
{
u64 val;
get_reg((void *)BMS_CONTROL, &val);
pr_info("BMS_CONTROL = 0x%02llx\n", val);
get_reg((void *)BMS_OUTPUT0, &val);
pr_info("BMS_OUTPUT0 = 0x%02llx\n", val);
get_reg((void *)BMS_OUTPUT1, &val);
pr_info("BMS_OUTPUT1 = 0x%02llx\n", val);
get_reg((void *)BMS_TOLERANCES, &val);
pr_info("BMS_TOLERANCES = 0x%02llx\n", val);
get_reg((void *)BMS_TEST1, &val);
pr_info("BMS_TEST1 = 0x%02llx\n", val);
get_reg((void *)OCV_UPDATE_STORAGE, &val);
pr_info("OCV_UPDATE_STORAGE = 0x%02llx\n", val);
get_reading((void *)CC_MSB, &val);
pr_info("read_cc = 0x%lld\n", val);
get_reading((void *)LAST_GOOD_OCV_VALUE, &val);
pr_info("last_good_ocv = 0x%lld\n", val);
get_reading((void *)VBATT_FOR_RBATT, &val);
pr_info("vbatt_for_rbatt = 0x%lld\n", val);
get_reading((void *)VSENSE_FOR_RBATT, &val);
pr_info("vsense_for_rbatt = 0x%lld\n", val);
get_reading((void *)OCV_FOR_RBATT, &val);
pr_info("ocv_for_rbatt = 0x%lld\n", val);
get_reading((void *)VSENSE_AVG, &val);
pr_info("vsense_avg = 0x%lld\n", val);
pr_info("BMS irq: %d%d%d%d%d%d%d\n",
pm_bms_get_rt_status(the_chip, PM8921_BMS_SBI_WRITE_OK),
pm_bms_get_rt_status(the_chip, PM8921_BMS_CC_THR),
pm_bms_get_rt_status(the_chip, PM8921_BMS_VSENSE_THR),
pm_bms_get_rt_status(the_chip, PM8921_BMS_VSENSE_FOR_R),
pm_bms_get_rt_status(the_chip, PM8921_BMS_OCV_FOR_R),
pm_bms_get_rt_status(the_chip, PM8921_BMS_GOOD_OCV),
pm_bms_get_rt_status(the_chip, PM8921_BMS_VSENSE_AVG));
pm8xxx_ccadc_dump_all();
}
inline int pm8921_bms_dump_all(void)
{
if (!the_chip) {
pr_err("called before init\n");
return -EINVAL;
}
dump_all();
return 0;
}
EXPORT_SYMBOL(pm8921_bms_dump_all);
int pm8921_bms_get_attr_text(char *buf, int size)
{
struct pm8921_soc_params raw;
struct pm8921_rbatt_params rraw;
unsigned long flags;
int len = 0;
u64 val = 0;
int cc_uah, fcc_uah, unusable_charge_uah, remaining_charge_uah;
int chargecycles;
int soc_rbatt, rbatt;
int batt_temp, rc;
struct pm8xxx_adc_chan_result result;
if (!the_chip) {
pr_err("driver not initialized\n");
return 0;
}
get_reg((void *)BMS_CONTROL, &val);
len += scnprintf(buf + len, size - len,
"BMS_CONTROL: 0x%02llx;\n", val);
get_reg((void *)BMS_OUTPUT0, &val);
len += scnprintf(buf + len, size - len,
"BMS_OUTPUT0: 0x%02llx;\n", val);
get_reg((void *)BMS_OUTPUT1, &val);
len += scnprintf(buf + len, size - len,
"BMS_OUTPUT1: 0x%02llx;\n", val);
get_reg((void *)BMS_TOLERANCES, &val);
len += scnprintf(buf + len, size - len,
"BMS_TOLERANCES: 0x%02llx;\n", val);
get_reg((void *)BMS_TEST1, &val);
len += scnprintf(buf + len, size - len,
"BMS_TEST1: 0x%02llx;\n", val);
get_reg((void *)OCV_UPDATE_STORAGE, &val);
len += scnprintf(buf + len, size - len,
"OCV_UPDATE_STORAGE: 0x%02llx;\n", val);
len += scnprintf(buf + len, size - len,
"bms_discharge_soc: %d;\n", bms_discharge_percent);
len += scnprintf(buf + len, size - len,
"is_ocv_update_start: %d;\n", is_ocv_update_start);
read_soc_params_raw(the_chip, &raw);
read_rbatt_params_raw(the_chip, &rraw);
len += scnprintf(buf + len, size - len,
"OCV_FOR_RBATT_RAW: 0x%x;\n", rraw.ocv_for_rbatt_raw);
len += scnprintf(buf + len, size - len,
"VBATT_FOR_RBATT_RAW: 0x%x;\n", rraw.vbatt_for_rbatt_raw);
len += scnprintf(buf + len, size - len,
"VSENSE_FOR_RBATT_RAW: 0x%x;\n", rraw.vsense_for_rbatt_raw);
len += scnprintf(buf + len, size - len,
"LAST_GOOD_OCV_RAW: 0x%x;\n", raw.last_good_ocv_raw);
len += scnprintf(buf + len, size - len,
"CC_RAW: 0x%x;\n", raw.cc);
len += scnprintf(buf + len, size - len,
"ocv_for_rbatt_uv: %d;\n", rraw.ocv_for_rbatt_uv);
len += scnprintf(buf + len, size - len,
"vbatt_for_rbatt_uv: %d;\n", rraw.vbatt_for_rbatt_uv);
len += scnprintf(buf + len, size - len,
"vsense_for_rbatt_uv: %d;\n", rraw.vsense_for_rbatt_uv);
len += scnprintf(buf + len, size - len,
"last_good_ocv_uv: %d;\n", raw.last_good_ocv_uv);
rc = pm8xxx_adc_read(the_chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
the_chip->batt_temp_channel, rc);
return len;
}
batt_temp = (int)result.physical;
chargecycles = last_chargecycles;
fcc_uah = calculate_fcc_uah(the_chip, batt_temp, chargecycles);
remaining_charge_uah = calculate_remaining_charge_uah(the_chip, &raw,
fcc_uah, batt_temp, chargecycles);
spin_lock_irqsave(&the_chip->bms_100_lock, flags);
calculate_cc_uah(the_chip, raw.cc, &cc_uah);
spin_unlock_irqrestore(&the_chip->bms_100_lock, flags);
soc_rbatt = ((remaining_charge_uah - cc_uah) * 100) / fcc_uah;
if (soc_rbatt < 0)
soc_rbatt = 0;
rbatt = get_rbatt(the_chip, soc_rbatt, batt_temp);
unusable_charge_uah = calculate_unusable_charge_uah(the_chip, rbatt,
fcc_uah, batt_temp, chargecycles);
len += scnprintf(buf + len, size - len,
"rbatt(milliOhms): %d;\n", bms_dbg.rbatt);
len += scnprintf(buf + len, size - len,
"rbatt_scalefactor: %d;\n", bms_dbg.rbatt_sf);
len += scnprintf(buf + len, size - len,
"soc_rbatt(%%): %d;\n", bms_dbg.soc_rbatt);
len += scnprintf(buf + len, size - len,
"last_rbatt(%%): %d;\n", last_rbatt);
len += scnprintf(buf + len, size - len,
"voltage_unusable_uv(uV): %d;\n", bms_dbg.voltage_unusable_uv);
len += scnprintf(buf + len, size - len,
"pc_unusable(%%): %d;\n", bms_dbg.pc_unusable);
len += scnprintf(buf + len, size - len,
"rc_pc(%%): %d;\n", bms_dbg.rc_pc);
len += scnprintf(buf + len, size - len,
"scalefactor(): %d;\n", bms_dbg.scalefactor);
len += scnprintf(buf + len, size - len,
"fcc(uAh): %d;\n", fcc_uah);
len += scnprintf(buf + len, size - len,
"unusable_charge(uAh): %d;\n", unusable_charge_uah);
len += scnprintf(buf + len, size - len,
"remaining_charge(uAh): %d;\n", remaining_charge_uah);
len += scnprintf(buf + len, size - len,
"cc(uAh): %d;\n", cc_uah);
len += scnprintf(buf + len, size - len,
"chargecycles: %d;\n", chargecycles);
len += scnprintf(buf + len, size - len,
"start_percent: %d;\n", the_chip->start_percent);
len += scnprintf(buf + len, size - len,
"end_percent: %d;\n", the_chip->end_percent);
len += pm8xxx_ccadc_get_attr_text(buf + len, size - len);
return len;
}
EXPORT_SYMBOL(pm8921_bms_get_attr_text);
static void create_debugfs_entries(struct pm8921_bms_chip *chip)
{
int i;
chip->dent = debugfs_create_dir("pm8921-bms", NULL);
if (IS_ERR(chip->dent)) {
pr_err("pmic bms couldnt create debugfs dir\n");
return;
}
debugfs_create_file("BMS_CONTROL", 0644, chip->dent,
(void *)BMS_CONTROL, &reg_fops);
debugfs_create_file("BMS_OUTPUT0", 0644, chip->dent,
(void *)BMS_OUTPUT0, &reg_fops);
debugfs_create_file("BMS_OUTPUT1", 0644, chip->dent,
(void *)BMS_OUTPUT1, &reg_fops);
debugfs_create_file("BMS_TEST1", 0644, chip->dent,
(void *)BMS_TEST1, &reg_fops);
debugfs_create_file("test_batt_temp", 0644, chip->dent,
(void *)TEST_BATT_TEMP, &temp_fops);
debugfs_create_file("test_chargecycle", 0644, chip->dent,
(void *)TEST_CHARGE_CYCLE, &temp_fops);
debugfs_create_file("test_ocv", 0644, chip->dent,
(void *)TEST_OCV, &temp_fops);
debugfs_create_file("read_cc", 0644, chip->dent,
(void *)CC_MSB, &reading_fops);
debugfs_create_file("read_last_good_ocv", 0644, chip->dent,
(void *)LAST_GOOD_OCV_VALUE, &reading_fops);
debugfs_create_file("read_vbatt_for_rbatt", 0644, chip->dent,
(void *)VBATT_FOR_RBATT, &reading_fops);
debugfs_create_file("read_vsense_for_rbatt", 0644, chip->dent,
(void *)VSENSE_FOR_RBATT, &reading_fops);
debugfs_create_file("read_ocv_for_rbatt", 0644, chip->dent,
(void *)OCV_FOR_RBATT, &reading_fops);
debugfs_create_file("read_vsense_avg", 0644, chip->dent,
(void *)VSENSE_AVG, &reading_fops);
debugfs_create_file("show_rbatt", 0644, chip->dent,
(void *)CALC_RBATT, &calc_fops);
debugfs_create_file("show_fcc", 0644, chip->dent,
(void *)CALC_FCC, &calc_fops);
debugfs_create_file("show_pc", 0644, chip->dent,
(void *)CALC_PC, &calc_fops);
debugfs_create_file("show_soc", 0644, chip->dent,
(void *)CALC_SOC, &calc_fops);
debugfs_create_file("calib_hkadc", 0644, chip->dent,
(void *)CALIB_HKADC, &calc_fops);
debugfs_create_file("calib_ccadc", 0644, chip->dent,
(void *)CALIB_CCADC, &calc_fops);
debugfs_create_file("stop_ocv", 0644, chip->dent,
(void *)STOP_OCV, &calc_fops);
debugfs_create_file("start_ocv", 0644, chip->dent,
(void *)START_OCV, &calc_fops);
debugfs_create_file("simultaneous", 0644, chip->dent,
(void *)GET_VBAT_VSENSE_SIMULTANEOUS, &calc_fops);
for (i = 0; i < ARRAY_SIZE(bms_irq_data); i++) {
if (chip->pmic_bms_irq[bms_irq_data[i].irq_id])
debugfs_create_file(bms_irq_data[i].name, 0444,
chip->dent,
(void *)bms_irq_data[i].irq_id,
&rt_fops);
}
}
static int dump_cc_uah(void)
{
unsigned long flags;
struct pm8921_soc_params raw;
int cc_uah;
if (!the_chip) {
pr_err("driver not initialized\n");
return 0;
}
read_soc_params_raw(the_chip, &raw);
spin_lock_irqsave(&the_chip->bms_100_lock, flags);
calculate_cc_uah(the_chip, raw.cc, &cc_uah);
pr_info("cc_uah = %duAh, raw->cc = %x,"
" cc = %lld after subtracting %d\n",
cc_uah, raw.cc,
(int64_t)raw.cc - the_chip->cc_reading_at_100,
the_chip->cc_reading_at_100);
spin_unlock_irqrestore(&the_chip->bms_100_lock, flags);
return cc_uah;
}
int prev_cc_uah = 0;
static int pm8921_bms_suspend(struct device *dev)
{
u64 val;
int rc;
struct pm8xxx_adc_chan_result result;
struct pm8921_bms_chip *chip = dev_get_drvdata(dev);
struct pm8921_soc_params raw;
int fcc_uah;
int remaining_charge_uah;
int cc_uah;
chip->batt_temp_suspend = 0;
rc = pm8xxx_adc_read(chip->batt_temp_channel, &result);
if (rc) {
pr_err("error reading adc channel = %d, rc = %d\n",
chip->batt_temp_channel, rc);
}
chip->batt_temp_suspend = (int)result.physical;
read_soc_params_raw(chip, &raw);
fcc_uah = calculate_fcc_uah(chip,
chip->batt_temp_suspend, last_chargecycles);
pr_debug("FCC = %uuAh batt_temp = %d, cycles = %d\n",
fcc_uah, chip->batt_temp_suspend, last_chargecycles);
remaining_charge_uah = calculate_remaining_charge_uah(chip, &raw,
fcc_uah, chip->batt_temp_suspend,
last_chargecycles);
pr_debug("RC = %uuAh\n", remaining_charge_uah);
calculate_cc_uah(chip, raw.cc, &cc_uah);
pr_debug("cc_uah = %duAh raw->cc = %x cc = %lld after subtracting %d\n",
cc_uah, raw.cc,
(int64_t)raw.cc - chip->cc_reading_at_100,
chip->cc_reading_at_100);
chip->soc_rbatt_suspend = ((remaining_charge_uah - cc_uah) * 100)
/ fcc_uah;
dump_cc_uah();
get_reg((void *)BMS_TOLERANCES, &val);
pr_info("BMS_TOLERANCES = 0x%02llx\n", val);
return 0;
}
#define DELTA_RBATT_PERCENT 10
static int pm8921_bms_resume(struct device *dev)
{
u64 val;
struct pm8921_rbatt_params raw;
struct pm8921_bms_chip *chip = dev_get_drvdata(dev);
int rbatt;
int expected_rbatt;
int scalefactor;
int delta_rbatt;
read_rbatt_params_raw(chip, &raw);
rbatt = calculate_rbatt_resume(chip, &raw);
if (rbatt < 0)
return 0;
expected_rbatt
= (last_rbatt < 0) ? chip->default_rbatt_mohm : last_rbatt;
if (chip->rbatt_sf_lut) {
scalefactor = interpolate_scalingfactor(chip,
chip->rbatt_sf_lut,
chip->batt_temp_suspend / 10,
chip->soc_rbatt_suspend);
rbatt = rbatt * 100 / scalefactor;
}
delta_rbatt = expected_rbatt - rbatt;
if (delta_rbatt)
delta_rbatt = -delta_rbatt;
if (delta_rbatt * 100 <= DELTA_RBATT_PERCENT * expected_rbatt)
last_rbatt = rbatt;
dump_cc_uah();
get_reg((void *)BMS_TOLERANCES, &val);
pr_info("last_rbatt:%d , BMS_TOLERANCES = 0x%02llx\n", last_rbatt, val);
return 0;
}
static const struct dev_pm_ops pm8921_bms_pm_ops = {
.suspend = pm8921_bms_suspend,
.resume = pm8921_bms_resume,
};
#define REG_SBI_CONFIG 0x04F
#define PAGE3_ENABLE_MASK 0x6
#define PROGRAM_REV_MASK 0x0F
#define PROGRAM_REV 0x9
static int read_ocv_trim(struct pm8921_bms_chip *chip)
{
int rc;
u8 reg, sbi_config;
rc = pm8xxx_readb(chip->dev->parent, REG_SBI_CONFIG, &sbi_config);
if (rc) {
pr_err("error = %d reading sbi config reg\n", rc);
return rc;
}
reg = sbi_config | PAGE3_ENABLE_MASK;
rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, reg);
if (rc) {
pr_err("error = %d writing sbi config reg\n", rc);
return rc;
}
rc = pm8xxx_readb(chip->dev->parent, TEST_PROGRAM_REV, &reg);
if (rc)
pr_err("Error %d reading %d addr %d\n",
rc, reg, TEST_PROGRAM_REV);
pr_info("program rev reg is 0x%x\n", reg);
reg &= PROGRAM_REV_MASK;
if (reg >= PROGRAM_REV) {
chip->amux_2_trim_delta = 0;
goto restore_sbi_config;
}
rc = pm8xxx_readb(chip->dev->parent, AMUX_TRIM_2, &reg);
if (rc) {
pr_err("error = %d reading trim reg\n", rc);
return rc;
}
chip->amux_2_trim_delta = abs(0x49 - reg);
pr_info("trim reg=0x%x, trim delta=%d\n", reg, chip->amux_2_trim_delta);
restore_sbi_config:
rc = pm8xxx_writeb(chip->dev->parent, REG_SBI_CONFIG, sbi_config);
if (rc) {
pr_err("error = %d writing sbi config reg\n", rc);
return rc;
}
return 0;
}
static int __devinit pm8921_bms_probe(struct platform_device *pdev)
{
int rc = 0;
int vbatt;
struct pm8921_bms_chip *chip;
const struct pm8921_bms_platform_data *pdata
= pdev->dev.platform_data;
#ifdef CONFIG_HTC_BATT_8960
const struct pm8921_charger_batt_param *chg_batt_param;
#endif
pr_info("%s\n", __func__);
if (!pdata) {
pr_err("missing platform data\n");
return -EINVAL;
}
chip = kzalloc(sizeof(struct pm8921_bms_chip), GFP_KERNEL);
if (!chip) {
pr_err("Cannot allocate pm_bms_chip\n");
return -ENOMEM;
}
mutex_init(&chip->bms_output_lock);
spin_lock_init(&chip->bms_100_lock);
chip->dev = &pdev->dev;
chip->r_sense = pdata->r_sense;
chip->i_test = pdata->i_test;
chip->v_failure = pdata->v_failure;
chip->rconn_mohm = pdata->rconn_mohm;
chip->start_percent = -EINVAL;
chip->end_percent = -EINVAL;
chip->batt_temp_channel = pdata->bms_cdata.batt_temp_channel;
chip->vbat_channel = pdata->bms_cdata.vbat_channel;
chip->ref625mv_channel = pdata->bms_cdata.ref625mv_channel;
chip->ref1p25v_channel = pdata->bms_cdata.ref1p25v_channel;
chip->batt_id_channel = pdata->bms_cdata.batt_id_channel;
chip->revision = pm8xxx_get_revision(chip->dev->parent);
INIT_WORK(&chip->calib_hkadc_work, calibrate_hkadc_work);
rc = set_battery_data(chip);
if (rc) {
pr_err("%s bad battery data %d\n", __func__, rc);
goto free_chip;
}
#ifdef CONFIG_HTC_BATT_8960
chg_batt_param = htc_battery_cell_get_cur_cell_charger_cdata();
if (!chg_batt_param) {
chip->max_voltage_uv = pdata->max_voltage_uv;
} else {
chip->max_voltage_uv = chg_batt_param->max_voltage * 1000;
}
#else
chip->max_voltage_uv = pdata->max_voltage_uv;
#endif
if (chip->pc_temp_ocv_lut == NULL) {
pr_err("temp ocv lut table is NULL\n");
rc = -EINVAL;
goto free_chip;
}
if (chip->default_rbatt_mohm <= 0)
chip->default_rbatt_mohm = DEFAULT_RBATT_MOHMS;
rc = request_irqs(chip, pdev);
if (rc) {
pr_err("couldn't register interrupts rc = %d\n", rc);
goto free_chip;
}
rc = pm8921_bms_hw_init(chip);
if (rc) {
pr_err("couldn't init hardware rc = %d\n", rc);
goto free_irqs;
}
platform_set_drvdata(pdev, chip);
the_chip = chip;
create_debugfs_entries(chip);
rc = read_ocv_trim(chip);
if (rc) {
pr_err("couldn't adjust ocv_trim rc= %d\n", rc);
goto free_irqs;
}
check_initial_ocv(chip);
schedule_work(&chip->calib_hkadc_work);
pm8921_bms_enable_irq(chip, PM8921_BMS_GOOD_OCV);
pm8921_bms_enable_irq(chip, PM8921_BMS_OCV_FOR_R);
get_battery_uvolts(chip, &vbatt);
pr_info("OK battery_capacity_at_boot=%d volt = %d ocv = %d\n",
pm8921_bms_get_percent_charge(),
vbatt, last_ocv_uv);
pr_info("r_sense=%u,i_test=%u,v_failure=%u\n", chip->r_sense, chip->i_test, chip->v_failure);
return 0;
free_irqs:
free_irqs(chip);
free_chip:
kfree(chip);
return rc;
}
static int __devexit pm8921_bms_remove(struct platform_device *pdev)
{
struct pm8921_bms_chip *chip = platform_get_drvdata(pdev);
free_irqs(chip);
kfree(chip->adjusted_fcc_temp_lut);
platform_set_drvdata(pdev, NULL);
the_chip = NULL;
kfree(chip);
return 0;
}
static struct platform_driver pm8921_bms_driver = {
.probe = pm8921_bms_probe,
.remove = __devexit_p(pm8921_bms_remove),
.driver = {
.name = PM8921_BMS_DEV_NAME,
.owner = THIS_MODULE,
.pm = &pm8921_bms_pm_ops,
},
};
static int __init pm8921_bms_init(void)
{
flag_enable_bms_chg_log =
(get_kernel_flag() & KERNEL_FLAG_ENABLE_BMS_CHARGER_LOG) ? 1 : 0;
return platform_driver_register(&pm8921_bms_driver);
}
static void __exit pm8921_bms_exit(void)
{
platform_driver_unregister(&pm8921_bms_driver);
}
late_initcall(pm8921_bms_init);
module_exit(pm8921_bms_exit);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("PMIC8921 bms driver");
MODULE_VERSION("1.0");
MODULE_ALIAS("platform:" PM8921_BMS_DEV_NAME);