| /* | 
 |  * Copyright (C) 2011 STRATO.  All rights reserved. | 
 |  * | 
 |  * This program is free software; you can redistribute it and/or | 
 |  * modify it under the terms of the GNU General Public | 
 |  * License v2 as published by the Free Software Foundation. | 
 |  * | 
 |  * This program is distributed in the hope that it will be useful, | 
 |  * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 |  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
 |  * General Public License for more details. | 
 |  * | 
 |  * You should have received a copy of the GNU General Public | 
 |  * License along with this program; if not, write to the | 
 |  * Free Software Foundation, Inc., 59 Temple Place - Suite 330, | 
 |  * Boston, MA 021110-1307, USA. | 
 |  */ | 
 |  | 
 | #include <linux/blkdev.h> | 
 | #include <linux/ratelimit.h> | 
 | #include "ctree.h" | 
 | #include "volumes.h" | 
 | #include "disk-io.h" | 
 | #include "ordered-data.h" | 
 | #include "transaction.h" | 
 | #include "backref.h" | 
 | #include "extent_io.h" | 
 | #include "check-integrity.h" | 
 |  | 
 | /* | 
 |  * This is only the first step towards a full-features scrub. It reads all | 
 |  * extent and super block and verifies the checksums. In case a bad checksum | 
 |  * is found or the extent cannot be read, good data will be written back if | 
 |  * any can be found. | 
 |  * | 
 |  * Future enhancements: | 
 |  *  - In case an unrepairable extent is encountered, track which files are | 
 |  *    affected and report them | 
 |  *  - track and record media errors, throw out bad devices | 
 |  *  - add a mode to also read unallocated space | 
 |  */ | 
 |  | 
 | struct scrub_block; | 
 | struct scrub_dev; | 
 |  | 
 | #define SCRUB_PAGES_PER_BIO	16	/* 64k per bio */ | 
 | #define SCRUB_BIOS_PER_DEV	16	/* 1 MB per device in flight */ | 
 | #define SCRUB_MAX_PAGES_PER_BLOCK	16	/* 64k per node/leaf/sector */ | 
 |  | 
 | struct scrub_page { | 
 | 	struct scrub_block	*sblock; | 
 | 	struct page		*page; | 
 | 	struct block_device	*bdev; | 
 | 	u64			flags;  /* extent flags */ | 
 | 	u64			generation; | 
 | 	u64			logical; | 
 | 	u64			physical; | 
 | 	struct { | 
 | 		unsigned int	mirror_num:8; | 
 | 		unsigned int	have_csum:1; | 
 | 		unsigned int	io_error:1; | 
 | 	}; | 
 | 	u8			csum[BTRFS_CSUM_SIZE]; | 
 | }; | 
 |  | 
 | struct scrub_bio { | 
 | 	int			index; | 
 | 	struct scrub_dev	*sdev; | 
 | 	struct bio		*bio; | 
 | 	int			err; | 
 | 	u64			logical; | 
 | 	u64			physical; | 
 | 	struct scrub_page	*pagev[SCRUB_PAGES_PER_BIO]; | 
 | 	int			page_count; | 
 | 	int			next_free; | 
 | 	struct btrfs_work	work; | 
 | }; | 
 |  | 
 | struct scrub_block { | 
 | 	struct scrub_page	pagev[SCRUB_MAX_PAGES_PER_BLOCK]; | 
 | 	int			page_count; | 
 | 	atomic_t		outstanding_pages; | 
 | 	atomic_t		ref_count; /* free mem on transition to zero */ | 
 | 	struct scrub_dev	*sdev; | 
 | 	struct { | 
 | 		unsigned int	header_error:1; | 
 | 		unsigned int	checksum_error:1; | 
 | 		unsigned int	no_io_error_seen:1; | 
 | 	}; | 
 | }; | 
 |  | 
 | struct scrub_dev { | 
 | 	struct scrub_bio	*bios[SCRUB_BIOS_PER_DEV]; | 
 | 	struct btrfs_device	*dev; | 
 | 	int			first_free; | 
 | 	int			curr; | 
 | 	atomic_t		in_flight; | 
 | 	atomic_t		fixup_cnt; | 
 | 	spinlock_t		list_lock; | 
 | 	wait_queue_head_t	list_wait; | 
 | 	u16			csum_size; | 
 | 	struct list_head	csum_list; | 
 | 	atomic_t		cancel_req; | 
 | 	int			readonly; | 
 | 	int			pages_per_bio; /* <= SCRUB_PAGES_PER_BIO */ | 
 | 	u32			sectorsize; | 
 | 	u32			nodesize; | 
 | 	u32			leafsize; | 
 | 	/* | 
 | 	 * statistics | 
 | 	 */ | 
 | 	struct btrfs_scrub_progress stat; | 
 | 	spinlock_t		stat_lock; | 
 | }; | 
 |  | 
 | struct scrub_fixup_nodatasum { | 
 | 	struct scrub_dev	*sdev; | 
 | 	u64			logical; | 
 | 	struct btrfs_root	*root; | 
 | 	struct btrfs_work	work; | 
 | 	int			mirror_num; | 
 | }; | 
 |  | 
 | struct scrub_warning { | 
 | 	struct btrfs_path	*path; | 
 | 	u64			extent_item_size; | 
 | 	char			*scratch_buf; | 
 | 	char			*msg_buf; | 
 | 	const char		*errstr; | 
 | 	sector_t		sector; | 
 | 	u64			logical; | 
 | 	struct btrfs_device	*dev; | 
 | 	int			msg_bufsize; | 
 | 	int			scratch_bufsize; | 
 | }; | 
 |  | 
 |  | 
 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check); | 
 | static int scrub_setup_recheck_block(struct scrub_dev *sdev, | 
 | 				     struct btrfs_mapping_tree *map_tree, | 
 | 				     u64 length, u64 logical, | 
 | 				     struct scrub_block *sblock); | 
 | static int scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
 | 			       struct scrub_block *sblock, int is_metadata, | 
 | 			       int have_csum, u8 *csum, u64 generation, | 
 | 			       u16 csum_size); | 
 | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | 
 | 					 struct scrub_block *sblock, | 
 | 					 int is_metadata, int have_csum, | 
 | 					 const u8 *csum, u64 generation, | 
 | 					 u16 csum_size); | 
 | static void scrub_complete_bio_end_io(struct bio *bio, int err); | 
 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					     struct scrub_block *sblock_good, | 
 | 					     int force_write); | 
 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					    struct scrub_block *sblock_good, | 
 | 					    int page_num, int force_write); | 
 | static int scrub_checksum_data(struct scrub_block *sblock); | 
 | static int scrub_checksum_tree_block(struct scrub_block *sblock); | 
 | static int scrub_checksum_super(struct scrub_block *sblock); | 
 | static void scrub_block_get(struct scrub_block *sblock); | 
 | static void scrub_block_put(struct scrub_block *sblock); | 
 | static int scrub_add_page_to_bio(struct scrub_dev *sdev, | 
 | 				 struct scrub_page *spage); | 
 | static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, | 
 | 		       u64 physical, u64 flags, u64 gen, int mirror_num, | 
 | 		       u8 *csum, int force); | 
 | static void scrub_bio_end_io(struct bio *bio, int err); | 
 | static void scrub_bio_end_io_worker(struct btrfs_work *work); | 
 | static void scrub_block_complete(struct scrub_block *sblock); | 
 |  | 
 |  | 
 | static void scrub_free_csums(struct scrub_dev *sdev) | 
 | { | 
 | 	while (!list_empty(&sdev->csum_list)) { | 
 | 		struct btrfs_ordered_sum *sum; | 
 | 		sum = list_first_entry(&sdev->csum_list, | 
 | 				       struct btrfs_ordered_sum, list); | 
 | 		list_del(&sum->list); | 
 | 		kfree(sum); | 
 | 	} | 
 | } | 
 |  | 
 | static noinline_for_stack void scrub_free_dev(struct scrub_dev *sdev) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	if (!sdev) | 
 | 		return; | 
 |  | 
 | 	/* this can happen when scrub is cancelled */ | 
 | 	if (sdev->curr != -1) { | 
 | 		struct scrub_bio *sbio = sdev->bios[sdev->curr]; | 
 |  | 
 | 		for (i = 0; i < sbio->page_count; i++) { | 
 | 			BUG_ON(!sbio->pagev[i]); | 
 | 			BUG_ON(!sbio->pagev[i]->page); | 
 | 			scrub_block_put(sbio->pagev[i]->sblock); | 
 | 		} | 
 | 		bio_put(sbio->bio); | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { | 
 | 		struct scrub_bio *sbio = sdev->bios[i]; | 
 |  | 
 | 		if (!sbio) | 
 | 			break; | 
 | 		kfree(sbio); | 
 | 	} | 
 |  | 
 | 	scrub_free_csums(sdev); | 
 | 	kfree(sdev); | 
 | } | 
 |  | 
 | static noinline_for_stack | 
 | struct scrub_dev *scrub_setup_dev(struct btrfs_device *dev) | 
 | { | 
 | 	struct scrub_dev *sdev; | 
 | 	int		i; | 
 | 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; | 
 | 	int pages_per_bio; | 
 |  | 
 | 	pages_per_bio = min_t(int, SCRUB_PAGES_PER_BIO, | 
 | 			      bio_get_nr_vecs(dev->bdev)); | 
 | 	sdev = kzalloc(sizeof(*sdev), GFP_NOFS); | 
 | 	if (!sdev) | 
 | 		goto nomem; | 
 | 	sdev->dev = dev; | 
 | 	sdev->pages_per_bio = pages_per_bio; | 
 | 	sdev->curr = -1; | 
 | 	for (i = 0; i < SCRUB_BIOS_PER_DEV; ++i) { | 
 | 		struct scrub_bio *sbio; | 
 |  | 
 | 		sbio = kzalloc(sizeof(*sbio), GFP_NOFS); | 
 | 		if (!sbio) | 
 | 			goto nomem; | 
 | 		sdev->bios[i] = sbio; | 
 |  | 
 | 		sbio->index = i; | 
 | 		sbio->sdev = sdev; | 
 | 		sbio->page_count = 0; | 
 | 		sbio->work.func = scrub_bio_end_io_worker; | 
 |  | 
 | 		if (i != SCRUB_BIOS_PER_DEV-1) | 
 | 			sdev->bios[i]->next_free = i + 1; | 
 | 		else | 
 | 			sdev->bios[i]->next_free = -1; | 
 | 	} | 
 | 	sdev->first_free = 0; | 
 | 	sdev->nodesize = dev->dev_root->nodesize; | 
 | 	sdev->leafsize = dev->dev_root->leafsize; | 
 | 	sdev->sectorsize = dev->dev_root->sectorsize; | 
 | 	atomic_set(&sdev->in_flight, 0); | 
 | 	atomic_set(&sdev->fixup_cnt, 0); | 
 | 	atomic_set(&sdev->cancel_req, 0); | 
 | 	sdev->csum_size = btrfs_super_csum_size(fs_info->super_copy); | 
 | 	INIT_LIST_HEAD(&sdev->csum_list); | 
 |  | 
 | 	spin_lock_init(&sdev->list_lock); | 
 | 	spin_lock_init(&sdev->stat_lock); | 
 | 	init_waitqueue_head(&sdev->list_wait); | 
 | 	return sdev; | 
 |  | 
 | nomem: | 
 | 	scrub_free_dev(sdev); | 
 | 	return ERR_PTR(-ENOMEM); | 
 | } | 
 |  | 
 | static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, void *ctx) | 
 | { | 
 | 	u64 isize; | 
 | 	u32 nlink; | 
 | 	int ret; | 
 | 	int i; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_inode_item *inode_item; | 
 | 	struct scrub_warning *swarn = ctx; | 
 | 	struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info; | 
 | 	struct inode_fs_paths *ipath = NULL; | 
 | 	struct btrfs_root *local_root; | 
 | 	struct btrfs_key root_key; | 
 |  | 
 | 	root_key.objectid = root; | 
 | 	root_key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	root_key.offset = (u64)-1; | 
 | 	local_root = btrfs_read_fs_root_no_name(fs_info, &root_key); | 
 | 	if (IS_ERR(local_root)) { | 
 | 		ret = PTR_ERR(local_root); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	ret = inode_item_info(inum, 0, local_root, swarn->path); | 
 | 	if (ret) { | 
 | 		btrfs_release_path(swarn->path); | 
 | 		goto err; | 
 | 	} | 
 |  | 
 | 	eb = swarn->path->nodes[0]; | 
 | 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], | 
 | 					struct btrfs_inode_item); | 
 | 	isize = btrfs_inode_size(eb, inode_item); | 
 | 	nlink = btrfs_inode_nlink(eb, inode_item); | 
 | 	btrfs_release_path(swarn->path); | 
 |  | 
 | 	ipath = init_ipath(4096, local_root, swarn->path); | 
 | 	if (IS_ERR(ipath)) { | 
 | 		ret = PTR_ERR(ipath); | 
 | 		ipath = NULL; | 
 | 		goto err; | 
 | 	} | 
 | 	ret = paths_from_inode(inum, ipath); | 
 |  | 
 | 	if (ret < 0) | 
 | 		goto err; | 
 |  | 
 | 	/* | 
 | 	 * we deliberately ignore the bit ipath might have been too small to | 
 | 	 * hold all of the paths here | 
 | 	 */ | 
 | 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) | 
 | 		printk(KERN_WARNING "btrfs: %s at logical %llu on dev " | 
 | 			"%s, sector %llu, root %llu, inode %llu, offset %llu, " | 
 | 			"length %llu, links %u (path: %s)\n", swarn->errstr, | 
 | 			swarn->logical, swarn->dev->name, | 
 | 			(unsigned long long)swarn->sector, root, inum, offset, | 
 | 			min(isize - offset, (u64)PAGE_SIZE), nlink, | 
 | 			(char *)(unsigned long)ipath->fspath->val[i]); | 
 |  | 
 | 	free_ipath(ipath); | 
 | 	return 0; | 
 |  | 
 | err: | 
 | 	printk(KERN_WARNING "btrfs: %s at logical %llu on dev " | 
 | 		"%s, sector %llu, root %llu, inode %llu, offset %llu: path " | 
 | 		"resolving failed with ret=%d\n", swarn->errstr, | 
 | 		swarn->logical, swarn->dev->name, | 
 | 		(unsigned long long)swarn->sector, root, inum, offset, ret); | 
 |  | 
 | 	free_ipath(ipath); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) | 
 | { | 
 | 	struct btrfs_device *dev = sblock->sdev->dev; | 
 | 	struct btrfs_fs_info *fs_info = dev->dev_root->fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_key found_key; | 
 | 	struct extent_buffer *eb; | 
 | 	struct btrfs_extent_item *ei; | 
 | 	struct scrub_warning swarn; | 
 | 	u32 item_size; | 
 | 	int ret; | 
 | 	u64 ref_root; | 
 | 	u8 ref_level; | 
 | 	unsigned long ptr = 0; | 
 | 	const int bufsize = 4096; | 
 | 	u64 extent_item_pos; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 |  | 
 | 	swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS); | 
 | 	swarn.msg_buf = kmalloc(bufsize, GFP_NOFS); | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	swarn.sector = (sblock->pagev[0].physical) >> 9; | 
 | 	swarn.logical = sblock->pagev[0].logical; | 
 | 	swarn.errstr = errstr; | 
 | 	swarn.dev = dev; | 
 | 	swarn.msg_bufsize = bufsize; | 
 | 	swarn.scratch_bufsize = bufsize; | 
 |  | 
 | 	if (!path || !swarn.scratch_buf || !swarn.msg_buf) | 
 | 		goto out; | 
 |  | 
 | 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key); | 
 | 	if (ret < 0) | 
 | 		goto out; | 
 |  | 
 | 	extent_item_pos = swarn.logical - found_key.objectid; | 
 | 	swarn.extent_item_size = found_key.offset; | 
 |  | 
 | 	eb = path->nodes[0]; | 
 | 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); | 
 | 	item_size = btrfs_item_size_nr(eb, path->slots[0]); | 
 | 	btrfs_release_path(path); | 
 |  | 
 | 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		do { | 
 | 			ret = tree_backref_for_extent(&ptr, eb, ei, item_size, | 
 | 							&ref_root, &ref_level); | 
 | 			printk(KERN_WARNING | 
 | 				"btrfs: %s at logical %llu on dev %s, " | 
 | 				"sector %llu: metadata %s (level %d) in tree " | 
 | 				"%llu\n", errstr, swarn.logical, dev->name, | 
 | 				(unsigned long long)swarn.sector, | 
 | 				ref_level ? "node" : "leaf", | 
 | 				ret < 0 ? -1 : ref_level, | 
 | 				ret < 0 ? -1 : ref_root); | 
 | 		} while (ret != 1); | 
 | 	} else { | 
 | 		swarn.path = path; | 
 | 		iterate_extent_inodes(fs_info, found_key.objectid, | 
 | 					extent_item_pos, 1, | 
 | 					scrub_print_warning_inode, &swarn); | 
 | 	} | 
 |  | 
 | out: | 
 | 	btrfs_free_path(path); | 
 | 	kfree(swarn.scratch_buf); | 
 | 	kfree(swarn.msg_buf); | 
 | } | 
 |  | 
 | static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *ctx) | 
 | { | 
 | 	struct page *page = NULL; | 
 | 	unsigned long index; | 
 | 	struct scrub_fixup_nodatasum *fixup = ctx; | 
 | 	int ret; | 
 | 	int corrected = 0; | 
 | 	struct btrfs_key key; | 
 | 	struct inode *inode = NULL; | 
 | 	u64 end = offset + PAGE_SIZE - 1; | 
 | 	struct btrfs_root *local_root; | 
 |  | 
 | 	key.objectid = root; | 
 | 	key.type = BTRFS_ROOT_ITEM_KEY; | 
 | 	key.offset = (u64)-1; | 
 | 	local_root = btrfs_read_fs_root_no_name(fixup->root->fs_info, &key); | 
 | 	if (IS_ERR(local_root)) | 
 | 		return PTR_ERR(local_root); | 
 |  | 
 | 	key.type = BTRFS_INODE_ITEM_KEY; | 
 | 	key.objectid = inum; | 
 | 	key.offset = 0; | 
 | 	inode = btrfs_iget(fixup->root->fs_info->sb, &key, local_root, NULL); | 
 | 	if (IS_ERR(inode)) | 
 | 		return PTR_ERR(inode); | 
 |  | 
 | 	index = offset >> PAGE_CACHE_SHIFT; | 
 |  | 
 | 	page = find_or_create_page(inode->i_mapping, index, GFP_NOFS); | 
 | 	if (!page) { | 
 | 		ret = -ENOMEM; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (PageUptodate(page)) { | 
 | 		struct btrfs_mapping_tree *map_tree; | 
 | 		if (PageDirty(page)) { | 
 | 			/* | 
 | 			 * we need to write the data to the defect sector. the | 
 | 			 * data that was in that sector is not in memory, | 
 | 			 * because the page was modified. we must not write the | 
 | 			 * modified page to that sector. | 
 | 			 * | 
 | 			 * TODO: what could be done here: wait for the delalloc | 
 | 			 *       runner to write out that page (might involve | 
 | 			 *       COW) and see whether the sector is still | 
 | 			 *       referenced afterwards. | 
 | 			 * | 
 | 			 * For the meantime, we'll treat this error | 
 | 			 * incorrectable, although there is a chance that a | 
 | 			 * later scrub will find the bad sector again and that | 
 | 			 * there's no dirty page in memory, then. | 
 | 			 */ | 
 | 			ret = -EIO; | 
 | 			goto out; | 
 | 		} | 
 | 		map_tree = &BTRFS_I(inode)->root->fs_info->mapping_tree; | 
 | 		ret = repair_io_failure(map_tree, offset, PAGE_SIZE, | 
 | 					fixup->logical, page, | 
 | 					fixup->mirror_num); | 
 | 		unlock_page(page); | 
 | 		corrected = !ret; | 
 | 	} else { | 
 | 		/* | 
 | 		 * we need to get good data first. the general readpage path | 
 | 		 * will call repair_io_failure for us, we just have to make | 
 | 		 * sure we read the bad mirror. | 
 | 		 */ | 
 | 		ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
 | 					EXTENT_DAMAGED, GFP_NOFS); | 
 | 		if (ret) { | 
 | 			/* set_extent_bits should give proper error */ | 
 | 			WARN_ON(ret > 0); | 
 | 			if (ret > 0) | 
 | 				ret = -EFAULT; | 
 | 			goto out; | 
 | 		} | 
 |  | 
 | 		ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page, | 
 | 						btrfs_get_extent, | 
 | 						fixup->mirror_num); | 
 | 		wait_on_page_locked(page); | 
 |  | 
 | 		corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset, | 
 | 						end, EXTENT_DAMAGED, 0, NULL); | 
 | 		if (!corrected) | 
 | 			clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end, | 
 | 						EXTENT_DAMAGED, GFP_NOFS); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (page) | 
 | 		put_page(page); | 
 | 	if (inode) | 
 | 		iput(inode); | 
 |  | 
 | 	if (ret < 0) | 
 | 		return ret; | 
 |  | 
 | 	if (ret == 0 && corrected) { | 
 | 		/* | 
 | 		 * we only need to call readpage for one of the inodes belonging | 
 | 		 * to this extent. so make iterate_extent_inodes stop | 
 | 		 */ | 
 | 		return 1; | 
 | 	} | 
 |  | 
 | 	return -EIO; | 
 | } | 
 |  | 
 | static void scrub_fixup_nodatasum(struct btrfs_work *work) | 
 | { | 
 | 	int ret; | 
 | 	struct scrub_fixup_nodatasum *fixup; | 
 | 	struct scrub_dev *sdev; | 
 | 	struct btrfs_trans_handle *trans = NULL; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	struct btrfs_path *path; | 
 | 	int uncorrectable = 0; | 
 |  | 
 | 	fixup = container_of(work, struct scrub_fixup_nodatasum, work); | 
 | 	sdev = fixup->sdev; | 
 | 	fs_info = fixup->root->fs_info; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		++sdev->stat.malloc_errors; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		uncorrectable = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	trans = btrfs_join_transaction(fixup->root); | 
 | 	if (IS_ERR(trans)) { | 
 | 		uncorrectable = 1; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * the idea is to trigger a regular read through the standard path. we | 
 | 	 * read a page from the (failed) logical address by specifying the | 
 | 	 * corresponding copynum of the failed sector. thus, that readpage is | 
 | 	 * expected to fail. | 
 | 	 * that is the point where on-the-fly error correction will kick in | 
 | 	 * (once it's finished) and rewrite the failed sector if a good copy | 
 | 	 * can be found. | 
 | 	 */ | 
 | 	ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info, | 
 | 						path, scrub_fixup_readpage, | 
 | 						fixup); | 
 | 	if (ret < 0) { | 
 | 		uncorrectable = 1; | 
 | 		goto out; | 
 | 	} | 
 | 	WARN_ON(ret != 1); | 
 |  | 
 | 	spin_lock(&sdev->stat_lock); | 
 | 	++sdev->stat.corrected_errors; | 
 | 	spin_unlock(&sdev->stat_lock); | 
 |  | 
 | out: | 
 | 	if (trans && !IS_ERR(trans)) | 
 | 		btrfs_end_transaction(trans, fixup->root); | 
 | 	if (uncorrectable) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		++sdev->stat.uncorrectable_errors; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		printk_ratelimited(KERN_ERR | 
 | 			"btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n", | 
 | 			(unsigned long long)fixup->logical, sdev->dev->name); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 | 	kfree(fixup); | 
 |  | 
 | 	/* see caller why we're pretending to be paused in the scrub counters */ | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	atomic_dec(&fs_info->scrubs_running); | 
 | 	atomic_dec(&fs_info->scrubs_paused); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	atomic_dec(&sdev->fixup_cnt); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 | 	wake_up(&sdev->list_wait); | 
 | } | 
 |  | 
 | /* | 
 |  * scrub_handle_errored_block gets called when either verification of the | 
 |  * pages failed or the bio failed to read, e.g. with EIO. In the latter | 
 |  * case, this function handles all pages in the bio, even though only one | 
 |  * may be bad. | 
 |  * The goal of this function is to repair the errored block by using the | 
 |  * contents of one of the mirrors. | 
 |  */ | 
 | static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) | 
 | { | 
 | 	struct scrub_dev *sdev = sblock_to_check->sdev; | 
 | 	struct btrfs_fs_info *fs_info; | 
 | 	u64 length; | 
 | 	u64 logical; | 
 | 	u64 generation; | 
 | 	unsigned int failed_mirror_index; | 
 | 	unsigned int is_metadata; | 
 | 	unsigned int have_csum; | 
 | 	u8 *csum; | 
 | 	struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */ | 
 | 	struct scrub_block *sblock_bad; | 
 | 	int ret; | 
 | 	int mirror_index; | 
 | 	int page_num; | 
 | 	int success; | 
 | 	static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL, | 
 | 				      DEFAULT_RATELIMIT_BURST); | 
 |  | 
 | 	BUG_ON(sblock_to_check->page_count < 1); | 
 | 	fs_info = sdev->dev->dev_root->fs_info; | 
 | 	length = sblock_to_check->page_count * PAGE_SIZE; | 
 | 	logical = sblock_to_check->pagev[0].logical; | 
 | 	generation = sblock_to_check->pagev[0].generation; | 
 | 	BUG_ON(sblock_to_check->pagev[0].mirror_num < 1); | 
 | 	failed_mirror_index = sblock_to_check->pagev[0].mirror_num - 1; | 
 | 	is_metadata = !(sblock_to_check->pagev[0].flags & | 
 | 			BTRFS_EXTENT_FLAG_DATA); | 
 | 	have_csum = sblock_to_check->pagev[0].have_csum; | 
 | 	csum = sblock_to_check->pagev[0].csum; | 
 |  | 
 | 	/* | 
 | 	 * read all mirrors one after the other. This includes to | 
 | 	 * re-read the extent or metadata block that failed (that was | 
 | 	 * the cause that this fixup code is called) another time, | 
 | 	 * page by page this time in order to know which pages | 
 | 	 * caused I/O errors and which ones are good (for all mirrors). | 
 | 	 * It is the goal to handle the situation when more than one | 
 | 	 * mirror contains I/O errors, but the errors do not | 
 | 	 * overlap, i.e. the data can be repaired by selecting the | 
 | 	 * pages from those mirrors without I/O error on the | 
 | 	 * particular pages. One example (with blocks >= 2 * PAGE_SIZE) | 
 | 	 * would be that mirror #1 has an I/O error on the first page, | 
 | 	 * the second page is good, and mirror #2 has an I/O error on | 
 | 	 * the second page, but the first page is good. | 
 | 	 * Then the first page of the first mirror can be repaired by | 
 | 	 * taking the first page of the second mirror, and the | 
 | 	 * second page of the second mirror can be repaired by | 
 | 	 * copying the contents of the 2nd page of the 1st mirror. | 
 | 	 * One more note: if the pages of one mirror contain I/O | 
 | 	 * errors, the checksum cannot be verified. In order to get | 
 | 	 * the best data for repairing, the first attempt is to find | 
 | 	 * a mirror without I/O errors and with a validated checksum. | 
 | 	 * Only if this is not possible, the pages are picked from | 
 | 	 * mirrors with I/O errors without considering the checksum. | 
 | 	 * If the latter is the case, at the end, the checksum of the | 
 | 	 * repaired area is verified in order to correctly maintain | 
 | 	 * the statistics. | 
 | 	 */ | 
 |  | 
 | 	sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS * | 
 | 				     sizeof(*sblocks_for_recheck), | 
 | 				     GFP_NOFS); | 
 | 	if (!sblocks_for_recheck) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.malloc_errors++; | 
 | 		sdev->stat.read_errors++; | 
 | 		sdev->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* setup the context, map the logical blocks and alloc the pages */ | 
 | 	ret = scrub_setup_recheck_block(sdev, &fs_info->mapping_tree, length, | 
 | 					logical, sblocks_for_recheck); | 
 | 	if (ret) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.read_errors++; | 
 | 		sdev->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		goto out; | 
 | 	} | 
 | 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); | 
 | 	sblock_bad = sblocks_for_recheck + failed_mirror_index; | 
 |  | 
 | 	/* build and submit the bios for the failed mirror, check checksums */ | 
 | 	ret = scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum, | 
 | 				  csum, generation, sdev->csum_size); | 
 | 	if (ret) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.read_errors++; | 
 | 		sdev->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!sblock_bad->header_error && !sblock_bad->checksum_error && | 
 | 	    sblock_bad->no_io_error_seen) { | 
 | 		/* | 
 | 		 * the error disappeared after reading page by page, or | 
 | 		 * the area was part of a huge bio and other parts of the | 
 | 		 * bio caused I/O errors, or the block layer merged several | 
 | 		 * read requests into one and the error is caused by a | 
 | 		 * different bio (usually one of the two latter cases is | 
 | 		 * the cause) | 
 | 		 */ | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.unverified_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 |  | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	if (!sblock_bad->no_io_error_seen) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.read_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		if (__ratelimit(&_rs)) | 
 | 			scrub_print_warning("i/o error", sblock_to_check); | 
 | 	} else if (sblock_bad->checksum_error) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.csum_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		if (__ratelimit(&_rs)) | 
 | 			scrub_print_warning("checksum error", sblock_to_check); | 
 | 	} else if (sblock_bad->header_error) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.verify_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		if (__ratelimit(&_rs)) | 
 | 			scrub_print_warning("checksum/header error", | 
 | 					    sblock_to_check); | 
 | 	} | 
 |  | 
 | 	if (sdev->readonly) | 
 | 		goto did_not_correct_error; | 
 |  | 
 | 	if (!is_metadata && !have_csum) { | 
 | 		struct scrub_fixup_nodatasum *fixup_nodatasum; | 
 |  | 
 | 		/* | 
 | 		 * !is_metadata and !have_csum, this means that the data | 
 | 		 * might not be COW'ed, that it might be modified | 
 | 		 * concurrently. The general strategy to work on the | 
 | 		 * commit root does not help in the case when COW is not | 
 | 		 * used. | 
 | 		 */ | 
 | 		fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS); | 
 | 		if (!fixup_nodatasum) | 
 | 			goto did_not_correct_error; | 
 | 		fixup_nodatasum->sdev = sdev; | 
 | 		fixup_nodatasum->logical = logical; | 
 | 		fixup_nodatasum->root = fs_info->extent_root; | 
 | 		fixup_nodatasum->mirror_num = failed_mirror_index + 1; | 
 | 		/* | 
 | 		 * increment scrubs_running to prevent cancel requests from | 
 | 		 * completing as long as a fixup worker is running. we must also | 
 | 		 * increment scrubs_paused to prevent deadlocking on pause | 
 | 		 * requests used for transactions commits (as the worker uses a | 
 | 		 * transaction context). it is safe to regard the fixup worker | 
 | 		 * as paused for all matters practical. effectively, we only | 
 | 		 * avoid cancellation requests from completing. | 
 | 		 */ | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 		atomic_inc(&fs_info->scrubs_running); | 
 | 		atomic_inc(&fs_info->scrubs_paused); | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		atomic_inc(&sdev->fixup_cnt); | 
 | 		fixup_nodatasum->work.func = scrub_fixup_nodatasum; | 
 | 		btrfs_queue_worker(&fs_info->scrub_workers, | 
 | 				   &fixup_nodatasum->work); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * now build and submit the bios for the other mirrors, check | 
 | 	 * checksums | 
 | 	 */ | 
 | 	for (mirror_index = 0; | 
 | 	     mirror_index < BTRFS_MAX_MIRRORS && | 
 | 	     sblocks_for_recheck[mirror_index].page_count > 0; | 
 | 	     mirror_index++) { | 
 | 		if (mirror_index == failed_mirror_index) | 
 | 			continue; | 
 |  | 
 | 		/* build and submit the bios, check checksums */ | 
 | 		ret = scrub_recheck_block(fs_info, | 
 | 					  sblocks_for_recheck + mirror_index, | 
 | 					  is_metadata, have_csum, csum, | 
 | 					  generation, sdev->csum_size); | 
 | 		if (ret) | 
 | 			goto did_not_correct_error; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * first try to pick the mirror which is completely without I/O | 
 | 	 * errors and also does not have a checksum error. | 
 | 	 * If one is found, and if a checksum is present, the full block | 
 | 	 * that is known to contain an error is rewritten. Afterwards | 
 | 	 * the block is known to be corrected. | 
 | 	 * If a mirror is found which is completely correct, and no | 
 | 	 * checksum is present, only those pages are rewritten that had | 
 | 	 * an I/O error in the block to be repaired, since it cannot be | 
 | 	 * determined, which copy of the other pages is better (and it | 
 | 	 * could happen otherwise that a correct page would be | 
 | 	 * overwritten by a bad one). | 
 | 	 */ | 
 | 	for (mirror_index = 0; | 
 | 	     mirror_index < BTRFS_MAX_MIRRORS && | 
 | 	     sblocks_for_recheck[mirror_index].page_count > 0; | 
 | 	     mirror_index++) { | 
 | 		struct scrub_block *sblock_other = sblocks_for_recheck + | 
 | 						   mirror_index; | 
 |  | 
 | 		if (!sblock_other->header_error && | 
 | 		    !sblock_other->checksum_error && | 
 | 		    sblock_other->no_io_error_seen) { | 
 | 			int force_write = is_metadata || have_csum; | 
 |  | 
 | 			ret = scrub_repair_block_from_good_copy(sblock_bad, | 
 | 								sblock_other, | 
 | 								force_write); | 
 | 			if (0 == ret) | 
 | 				goto corrected_error; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * in case of I/O errors in the area that is supposed to be | 
 | 	 * repaired, continue by picking good copies of those pages. | 
 | 	 * Select the good pages from mirrors to rewrite bad pages from | 
 | 	 * the area to fix. Afterwards verify the checksum of the block | 
 | 	 * that is supposed to be repaired. This verification step is | 
 | 	 * only done for the purpose of statistic counting and for the | 
 | 	 * final scrub report, whether errors remain. | 
 | 	 * A perfect algorithm could make use of the checksum and try | 
 | 	 * all possible combinations of pages from the different mirrors | 
 | 	 * until the checksum verification succeeds. For example, when | 
 | 	 * the 2nd page of mirror #1 faces I/O errors, and the 2nd page | 
 | 	 * of mirror #2 is readable but the final checksum test fails, | 
 | 	 * then the 2nd page of mirror #3 could be tried, whether now | 
 | 	 * the final checksum succeedes. But this would be a rare | 
 | 	 * exception and is therefore not implemented. At least it is | 
 | 	 * avoided that the good copy is overwritten. | 
 | 	 * A more useful improvement would be to pick the sectors | 
 | 	 * without I/O error based on sector sizes (512 bytes on legacy | 
 | 	 * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one | 
 | 	 * mirror could be repaired by taking 512 byte of a different | 
 | 	 * mirror, even if other 512 byte sectors in the same PAGE_SIZE | 
 | 	 * area are unreadable. | 
 | 	 */ | 
 |  | 
 | 	/* can only fix I/O errors from here on */ | 
 | 	if (sblock_bad->no_io_error_seen) | 
 | 		goto did_not_correct_error; | 
 |  | 
 | 	success = 1; | 
 | 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
 | 		struct scrub_page *page_bad = sblock_bad->pagev + page_num; | 
 |  | 
 | 		if (!page_bad->io_error) | 
 | 			continue; | 
 |  | 
 | 		for (mirror_index = 0; | 
 | 		     mirror_index < BTRFS_MAX_MIRRORS && | 
 | 		     sblocks_for_recheck[mirror_index].page_count > 0; | 
 | 		     mirror_index++) { | 
 | 			struct scrub_block *sblock_other = sblocks_for_recheck + | 
 | 							   mirror_index; | 
 | 			struct scrub_page *page_other = sblock_other->pagev + | 
 | 							page_num; | 
 |  | 
 | 			if (!page_other->io_error) { | 
 | 				ret = scrub_repair_page_from_good_copy( | 
 | 					sblock_bad, sblock_other, page_num, 0); | 
 | 				if (0 == ret) { | 
 | 					page_bad->io_error = 0; | 
 | 					break; /* succeeded for this page */ | 
 | 				} | 
 | 			} | 
 | 		} | 
 |  | 
 | 		if (page_bad->io_error) { | 
 | 			/* did not find a mirror to copy the page from */ | 
 | 			success = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (success) { | 
 | 		if (is_metadata || have_csum) { | 
 | 			/* | 
 | 			 * need to verify the checksum now that all | 
 | 			 * sectors on disk are repaired (the write | 
 | 			 * request for data to be repaired is on its way). | 
 | 			 * Just be lazy and use scrub_recheck_block() | 
 | 			 * which re-reads the data before the checksum | 
 | 			 * is verified, but most likely the data comes out | 
 | 			 * of the page cache. | 
 | 			 */ | 
 | 			ret = scrub_recheck_block(fs_info, sblock_bad, | 
 | 						  is_metadata, have_csum, csum, | 
 | 						  generation, sdev->csum_size); | 
 | 			if (!ret && !sblock_bad->header_error && | 
 | 			    !sblock_bad->checksum_error && | 
 | 			    sblock_bad->no_io_error_seen) | 
 | 				goto corrected_error; | 
 | 			else | 
 | 				goto did_not_correct_error; | 
 | 		} else { | 
 | corrected_error: | 
 | 			spin_lock(&sdev->stat_lock); | 
 | 			sdev->stat.corrected_errors++; | 
 | 			spin_unlock(&sdev->stat_lock); | 
 | 			printk_ratelimited(KERN_ERR | 
 | 				"btrfs: fixed up error at logical %llu on dev %s\n", | 
 | 				(unsigned long long)logical, sdev->dev->name); | 
 | 		} | 
 | 	} else { | 
 | did_not_correct_error: | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.uncorrectable_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		printk_ratelimited(KERN_ERR | 
 | 			"btrfs: unable to fixup (regular) error at logical %llu on dev %s\n", | 
 | 			(unsigned long long)logical, sdev->dev->name); | 
 | 	} | 
 |  | 
 | out: | 
 | 	if (sblocks_for_recheck) { | 
 | 		for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; | 
 | 		     mirror_index++) { | 
 | 			struct scrub_block *sblock = sblocks_for_recheck + | 
 | 						     mirror_index; | 
 | 			int page_index; | 
 |  | 
 | 			for (page_index = 0; page_index < SCRUB_PAGES_PER_BIO; | 
 | 			     page_index++) | 
 | 				if (sblock->pagev[page_index].page) | 
 | 					__free_page( | 
 | 						sblock->pagev[page_index].page); | 
 | 		} | 
 | 		kfree(sblocks_for_recheck); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int scrub_setup_recheck_block(struct scrub_dev *sdev, | 
 | 				     struct btrfs_mapping_tree *map_tree, | 
 | 				     u64 length, u64 logical, | 
 | 				     struct scrub_block *sblocks_for_recheck) | 
 | { | 
 | 	int page_index; | 
 | 	int mirror_index; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * note: the three members sdev, ref_count and outstanding_pages | 
 | 	 * are not used (and not set) in the blocks that are used for | 
 | 	 * the recheck procedure | 
 | 	 */ | 
 |  | 
 | 	page_index = 0; | 
 | 	while (length > 0) { | 
 | 		u64 sublen = min_t(u64, length, PAGE_SIZE); | 
 | 		u64 mapped_length = sublen; | 
 | 		struct btrfs_bio *bbio = NULL; | 
 |  | 
 | 		/* | 
 | 		 * with a length of PAGE_SIZE, each returned stripe | 
 | 		 * represents one mirror | 
 | 		 */ | 
 | 		ret = btrfs_map_block(map_tree, WRITE, logical, &mapped_length, | 
 | 				      &bbio, 0); | 
 | 		if (ret || !bbio || mapped_length < sublen) { | 
 | 			kfree(bbio); | 
 | 			return -EIO; | 
 | 		} | 
 |  | 
 | 		BUG_ON(page_index >= SCRUB_PAGES_PER_BIO); | 
 | 		for (mirror_index = 0; mirror_index < (int)bbio->num_stripes; | 
 | 		     mirror_index++) { | 
 | 			struct scrub_block *sblock; | 
 | 			struct scrub_page *page; | 
 |  | 
 | 			if (mirror_index >= BTRFS_MAX_MIRRORS) | 
 | 				continue; | 
 |  | 
 | 			sblock = sblocks_for_recheck + mirror_index; | 
 | 			page = sblock->pagev + page_index; | 
 | 			page->logical = logical; | 
 | 			page->physical = bbio->stripes[mirror_index].physical; | 
 | 			/* for missing devices, bdev is NULL */ | 
 | 			page->bdev = bbio->stripes[mirror_index].dev->bdev; | 
 | 			page->mirror_num = mirror_index + 1; | 
 | 			page->page = alloc_page(GFP_NOFS); | 
 | 			if (!page->page) { | 
 | 				spin_lock(&sdev->stat_lock); | 
 | 				sdev->stat.malloc_errors++; | 
 | 				spin_unlock(&sdev->stat_lock); | 
 | 				return -ENOMEM; | 
 | 			} | 
 | 			sblock->page_count++; | 
 | 		} | 
 | 		kfree(bbio); | 
 | 		length -= sublen; | 
 | 		logical += sublen; | 
 | 		page_index++; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * this function will check the on disk data for checksum errors, header | 
 |  * errors and read I/O errors. If any I/O errors happen, the exact pages | 
 |  * which are errored are marked as being bad. The goal is to enable scrub | 
 |  * to take those pages that are not errored from all the mirrors so that | 
 |  * the pages that are errored in the just handled mirror can be repaired. | 
 |  */ | 
 | static int scrub_recheck_block(struct btrfs_fs_info *fs_info, | 
 | 			       struct scrub_block *sblock, int is_metadata, | 
 | 			       int have_csum, u8 *csum, u64 generation, | 
 | 			       u16 csum_size) | 
 | { | 
 | 	int page_num; | 
 |  | 
 | 	sblock->no_io_error_seen = 1; | 
 | 	sblock->header_error = 0; | 
 | 	sblock->checksum_error = 0; | 
 |  | 
 | 	for (page_num = 0; page_num < sblock->page_count; page_num++) { | 
 | 		struct bio *bio; | 
 | 		int ret; | 
 | 		struct scrub_page *page = sblock->pagev + page_num; | 
 | 		DECLARE_COMPLETION_ONSTACK(complete); | 
 |  | 
 | 		if (page->bdev == NULL) { | 
 | 			page->io_error = 1; | 
 | 			sblock->no_io_error_seen = 0; | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		BUG_ON(!page->page); | 
 | 		bio = bio_alloc(GFP_NOFS, 1); | 
 | 		if (!bio) | 
 | 			return -EIO; | 
 | 		bio->bi_bdev = page->bdev; | 
 | 		bio->bi_sector = page->physical >> 9; | 
 | 		bio->bi_end_io = scrub_complete_bio_end_io; | 
 | 		bio->bi_private = &complete; | 
 |  | 
 | 		ret = bio_add_page(bio, page->page, PAGE_SIZE, 0); | 
 | 		if (PAGE_SIZE != ret) { | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		btrfsic_submit_bio(READ, bio); | 
 |  | 
 | 		/* this will also unplug the queue */ | 
 | 		wait_for_completion(&complete); | 
 |  | 
 | 		page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags); | 
 | 		if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) | 
 | 			sblock->no_io_error_seen = 0; | 
 | 		bio_put(bio); | 
 | 	} | 
 |  | 
 | 	if (sblock->no_io_error_seen) | 
 | 		scrub_recheck_block_checksum(fs_info, sblock, is_metadata, | 
 | 					     have_csum, csum, generation, | 
 | 					     csum_size); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info, | 
 | 					 struct scrub_block *sblock, | 
 | 					 int is_metadata, int have_csum, | 
 | 					 const u8 *csum, u64 generation, | 
 | 					 u16 csum_size) | 
 | { | 
 | 	int page_num; | 
 | 	u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
 | 	u32 crc = ~(u32)0; | 
 | 	struct btrfs_root *root = fs_info->extent_root; | 
 | 	void *mapped_buffer; | 
 |  | 
 | 	BUG_ON(!sblock->pagev[0].page); | 
 | 	if (is_metadata) { | 
 | 		struct btrfs_header *h; | 
 |  | 
 | 		mapped_buffer = kmap_atomic(sblock->pagev[0].page); | 
 | 		h = (struct btrfs_header *)mapped_buffer; | 
 |  | 
 | 		if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr) || | 
 | 		    generation != le64_to_cpu(h->generation) || | 
 | 		    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) || | 
 | 		    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
 | 			   BTRFS_UUID_SIZE)) | 
 | 			sblock->header_error = 1; | 
 | 		csum = h->csum; | 
 | 	} else { | 
 | 		if (!have_csum) | 
 | 			return; | 
 |  | 
 | 		mapped_buffer = kmap_atomic(sblock->pagev[0].page); | 
 | 	} | 
 |  | 
 | 	for (page_num = 0;;) { | 
 | 		if (page_num == 0 && is_metadata) | 
 | 			crc = btrfs_csum_data(root, | 
 | 				((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE, | 
 | 				crc, PAGE_SIZE - BTRFS_CSUM_SIZE); | 
 | 		else | 
 | 			crc = btrfs_csum_data(root, mapped_buffer, crc, | 
 | 					      PAGE_SIZE); | 
 |  | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 		page_num++; | 
 | 		if (page_num >= sblock->page_count) | 
 | 			break; | 
 | 		BUG_ON(!sblock->pagev[page_num].page); | 
 |  | 
 | 		mapped_buffer = kmap_atomic(sblock->pagev[page_num].page); | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, calculated_csum); | 
 | 	if (memcmp(calculated_csum, csum, csum_size)) | 
 | 		sblock->checksum_error = 1; | 
 | } | 
 |  | 
 | static void scrub_complete_bio_end_io(struct bio *bio, int err) | 
 | { | 
 | 	complete((struct completion *)bio->bi_private); | 
 | } | 
 |  | 
 | static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					     struct scrub_block *sblock_good, | 
 | 					     int force_write) | 
 | { | 
 | 	int page_num; | 
 | 	int ret = 0; | 
 |  | 
 | 	for (page_num = 0; page_num < sblock_bad->page_count; page_num++) { | 
 | 		int ret_sub; | 
 |  | 
 | 		ret_sub = scrub_repair_page_from_good_copy(sblock_bad, | 
 | 							   sblock_good, | 
 | 							   page_num, | 
 | 							   force_write); | 
 | 		if (ret_sub) | 
 | 			ret = ret_sub; | 
 | 	} | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad, | 
 | 					    struct scrub_block *sblock_good, | 
 | 					    int page_num, int force_write) | 
 | { | 
 | 	struct scrub_page *page_bad = sblock_bad->pagev + page_num; | 
 | 	struct scrub_page *page_good = sblock_good->pagev + page_num; | 
 |  | 
 | 	BUG_ON(sblock_bad->pagev[page_num].page == NULL); | 
 | 	BUG_ON(sblock_good->pagev[page_num].page == NULL); | 
 | 	if (force_write || sblock_bad->header_error || | 
 | 	    sblock_bad->checksum_error || page_bad->io_error) { | 
 | 		struct bio *bio; | 
 | 		int ret; | 
 | 		DECLARE_COMPLETION_ONSTACK(complete); | 
 |  | 
 | 		bio = bio_alloc(GFP_NOFS, 1); | 
 | 		if (!bio) | 
 | 			return -EIO; | 
 | 		bio->bi_bdev = page_bad->bdev; | 
 | 		bio->bi_sector = page_bad->physical >> 9; | 
 | 		bio->bi_end_io = scrub_complete_bio_end_io; | 
 | 		bio->bi_private = &complete; | 
 |  | 
 | 		ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0); | 
 | 		if (PAGE_SIZE != ret) { | 
 | 			bio_put(bio); | 
 | 			return -EIO; | 
 | 		} | 
 | 		btrfsic_submit_bio(WRITE, bio); | 
 |  | 
 | 		/* this will also unplug the queue */ | 
 | 		wait_for_completion(&complete); | 
 | 		bio_put(bio); | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_checksum(struct scrub_block *sblock) | 
 | { | 
 | 	u64 flags; | 
 | 	int ret; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	flags = sblock->pagev[0].flags; | 
 | 	ret = 0; | 
 | 	if (flags & BTRFS_EXTENT_FLAG_DATA) | 
 | 		ret = scrub_checksum_data(sblock); | 
 | 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) | 
 | 		ret = scrub_checksum_tree_block(sblock); | 
 | 	else if (flags & BTRFS_EXTENT_FLAG_SUPER) | 
 | 		(void)scrub_checksum_super(sblock); | 
 | 	else | 
 | 		WARN_ON(1); | 
 | 	if (ret) | 
 | 		scrub_handle_errored_block(sblock); | 
 | } | 
 |  | 
 | static int scrub_checksum_data(struct scrub_block *sblock) | 
 | { | 
 | 	struct scrub_dev *sdev = sblock->sdev; | 
 | 	u8 csum[BTRFS_CSUM_SIZE]; | 
 | 	u8 *on_disk_csum; | 
 | 	struct page *page; | 
 | 	void *buffer; | 
 | 	u32 crc = ~(u32)0; | 
 | 	int fail = 0; | 
 | 	struct btrfs_root *root = sdev->dev->dev_root; | 
 | 	u64 len; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	if (!sblock->pagev[0].have_csum) | 
 | 		return 0; | 
 |  | 
 | 	on_disk_csum = sblock->pagev[0].csum; | 
 | 	page = sblock->pagev[0].page; | 
 | 	buffer = kmap_atomic(page); | 
 |  | 
 | 	len = sdev->sectorsize; | 
 | 	index = 0; | 
 | 	for (;;) { | 
 | 		u64 l = min_t(u64, len, PAGE_SIZE); | 
 |  | 
 | 		crc = btrfs_csum_data(root, buffer, crc, l); | 
 | 		kunmap_atomic(buffer); | 
 | 		len -= l; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		index++; | 
 | 		BUG_ON(index >= sblock->page_count); | 
 | 		BUG_ON(!sblock->pagev[index].page); | 
 | 		page = sblock->pagev[index].page; | 
 | 		buffer = kmap_atomic(page); | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, csum); | 
 | 	if (memcmp(csum, on_disk_csum, sdev->csum_size)) | 
 | 		fail = 1; | 
 |  | 
 | 	return fail; | 
 | } | 
 |  | 
 | static int scrub_checksum_tree_block(struct scrub_block *sblock) | 
 | { | 
 | 	struct scrub_dev *sdev = sblock->sdev; | 
 | 	struct btrfs_header *h; | 
 | 	struct btrfs_root *root = sdev->dev->dev_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
 | 	u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
 | 	struct page *page; | 
 | 	void *mapped_buffer; | 
 | 	u64 mapped_size; | 
 | 	void *p; | 
 | 	u32 crc = ~(u32)0; | 
 | 	int fail = 0; | 
 | 	int crc_fail = 0; | 
 | 	u64 len; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	page = sblock->pagev[0].page; | 
 | 	mapped_buffer = kmap_atomic(page); | 
 | 	h = (struct btrfs_header *)mapped_buffer; | 
 | 	memcpy(on_disk_csum, h->csum, sdev->csum_size); | 
 |  | 
 | 	/* | 
 | 	 * we don't use the getter functions here, as we | 
 | 	 * a) don't have an extent buffer and | 
 | 	 * b) the page is already kmapped | 
 | 	 */ | 
 |  | 
 | 	if (sblock->pagev[0].logical != le64_to_cpu(h->bytenr)) | 
 | 		++fail; | 
 |  | 
 | 	if (sblock->pagev[0].generation != le64_to_cpu(h->generation)) | 
 | 		++fail; | 
 |  | 
 | 	if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | 
 | 		++fail; | 
 |  | 
 | 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, | 
 | 		   BTRFS_UUID_SIZE)) | 
 | 		++fail; | 
 |  | 
 | 	BUG_ON(sdev->nodesize != sdev->leafsize); | 
 | 	len = sdev->nodesize - BTRFS_CSUM_SIZE; | 
 | 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
 | 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
 | 	index = 0; | 
 | 	for (;;) { | 
 | 		u64 l = min_t(u64, len, mapped_size); | 
 |  | 
 | 		crc = btrfs_csum_data(root, p, crc, l); | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 		len -= l; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		index++; | 
 | 		BUG_ON(index >= sblock->page_count); | 
 | 		BUG_ON(!sblock->pagev[index].page); | 
 | 		page = sblock->pagev[index].page; | 
 | 		mapped_buffer = kmap_atomic(page); | 
 | 		mapped_size = PAGE_SIZE; | 
 | 		p = mapped_buffer; | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, calculated_csum); | 
 | 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) | 
 | 		++crc_fail; | 
 |  | 
 | 	return fail || crc_fail; | 
 | } | 
 |  | 
 | static int scrub_checksum_super(struct scrub_block *sblock) | 
 | { | 
 | 	struct btrfs_super_block *s; | 
 | 	struct scrub_dev *sdev = sblock->sdev; | 
 | 	struct btrfs_root *root = sdev->dev->dev_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u8 calculated_csum[BTRFS_CSUM_SIZE]; | 
 | 	u8 on_disk_csum[BTRFS_CSUM_SIZE]; | 
 | 	struct page *page; | 
 | 	void *mapped_buffer; | 
 | 	u64 mapped_size; | 
 | 	void *p; | 
 | 	u32 crc = ~(u32)0; | 
 | 	int fail = 0; | 
 | 	u64 len; | 
 | 	int index; | 
 |  | 
 | 	BUG_ON(sblock->page_count < 1); | 
 | 	page = sblock->pagev[0].page; | 
 | 	mapped_buffer = kmap_atomic(page); | 
 | 	s = (struct btrfs_super_block *)mapped_buffer; | 
 | 	memcpy(on_disk_csum, s->csum, sdev->csum_size); | 
 |  | 
 | 	if (sblock->pagev[0].logical != le64_to_cpu(s->bytenr)) | 
 | 		++fail; | 
 |  | 
 | 	if (sblock->pagev[0].generation != le64_to_cpu(s->generation)) | 
 | 		++fail; | 
 |  | 
 | 	if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE)) | 
 | 		++fail; | 
 |  | 
 | 	len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE; | 
 | 	mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE; | 
 | 	p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE; | 
 | 	index = 0; | 
 | 	for (;;) { | 
 | 		u64 l = min_t(u64, len, mapped_size); | 
 |  | 
 | 		crc = btrfs_csum_data(root, p, crc, l); | 
 | 		kunmap_atomic(mapped_buffer); | 
 | 		len -= l; | 
 | 		if (len == 0) | 
 | 			break; | 
 | 		index++; | 
 | 		BUG_ON(index >= sblock->page_count); | 
 | 		BUG_ON(!sblock->pagev[index].page); | 
 | 		page = sblock->pagev[index].page; | 
 | 		mapped_buffer = kmap_atomic(page); | 
 | 		mapped_size = PAGE_SIZE; | 
 | 		p = mapped_buffer; | 
 | 	} | 
 |  | 
 | 	btrfs_csum_final(crc, calculated_csum); | 
 | 	if (memcmp(calculated_csum, on_disk_csum, sdev->csum_size)) | 
 | 		++fail; | 
 |  | 
 | 	if (fail) { | 
 | 		/* | 
 | 		 * if we find an error in a super block, we just report it. | 
 | 		 * They will get written with the next transaction commit | 
 | 		 * anyway | 
 | 		 */ | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		++sdev->stat.super_errors; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 	} | 
 |  | 
 | 	return fail; | 
 | } | 
 |  | 
 | static void scrub_block_get(struct scrub_block *sblock) | 
 | { | 
 | 	atomic_inc(&sblock->ref_count); | 
 | } | 
 |  | 
 | static void scrub_block_put(struct scrub_block *sblock) | 
 | { | 
 | 	if (atomic_dec_and_test(&sblock->ref_count)) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < sblock->page_count; i++) | 
 | 			if (sblock->pagev[i].page) | 
 | 				__free_page(sblock->pagev[i].page); | 
 | 		kfree(sblock); | 
 | 	} | 
 | } | 
 |  | 
 | static void scrub_submit(struct scrub_dev *sdev) | 
 | { | 
 | 	struct scrub_bio *sbio; | 
 |  | 
 | 	if (sdev->curr == -1) | 
 | 		return; | 
 |  | 
 | 	sbio = sdev->bios[sdev->curr]; | 
 | 	sdev->curr = -1; | 
 | 	atomic_inc(&sdev->in_flight); | 
 |  | 
 | 	btrfsic_submit_bio(READ, sbio->bio); | 
 | } | 
 |  | 
 | static int scrub_add_page_to_bio(struct scrub_dev *sdev, | 
 | 				 struct scrub_page *spage) | 
 | { | 
 | 	struct scrub_block *sblock = spage->sblock; | 
 | 	struct scrub_bio *sbio; | 
 | 	int ret; | 
 |  | 
 | again: | 
 | 	/* | 
 | 	 * grab a fresh bio or wait for one to become available | 
 | 	 */ | 
 | 	while (sdev->curr == -1) { | 
 | 		spin_lock(&sdev->list_lock); | 
 | 		sdev->curr = sdev->first_free; | 
 | 		if (sdev->curr != -1) { | 
 | 			sdev->first_free = sdev->bios[sdev->curr]->next_free; | 
 | 			sdev->bios[sdev->curr]->next_free = -1; | 
 | 			sdev->bios[sdev->curr]->page_count = 0; | 
 | 			spin_unlock(&sdev->list_lock); | 
 | 		} else { | 
 | 			spin_unlock(&sdev->list_lock); | 
 | 			wait_event(sdev->list_wait, sdev->first_free != -1); | 
 | 		} | 
 | 	} | 
 | 	sbio = sdev->bios[sdev->curr]; | 
 | 	if (sbio->page_count == 0) { | 
 | 		struct bio *bio; | 
 |  | 
 | 		sbio->physical = spage->physical; | 
 | 		sbio->logical = spage->logical; | 
 | 		bio = sbio->bio; | 
 | 		if (!bio) { | 
 | 			bio = bio_alloc(GFP_NOFS, sdev->pages_per_bio); | 
 | 			if (!bio) | 
 | 				return -ENOMEM; | 
 | 			sbio->bio = bio; | 
 | 		} | 
 |  | 
 | 		bio->bi_private = sbio; | 
 | 		bio->bi_end_io = scrub_bio_end_io; | 
 | 		bio->bi_bdev = sdev->dev->bdev; | 
 | 		bio->bi_sector = spage->physical >> 9; | 
 | 		sbio->err = 0; | 
 | 	} else if (sbio->physical + sbio->page_count * PAGE_SIZE != | 
 | 		   spage->physical || | 
 | 		   sbio->logical + sbio->page_count * PAGE_SIZE != | 
 | 		   spage->logical) { | 
 | 		scrub_submit(sdev); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	sbio->pagev[sbio->page_count] = spage; | 
 | 	ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0); | 
 | 	if (ret != PAGE_SIZE) { | 
 | 		if (sbio->page_count < 1) { | 
 | 			bio_put(sbio->bio); | 
 | 			sbio->bio = NULL; | 
 | 			return -EIO; | 
 | 		} | 
 | 		scrub_submit(sdev); | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	scrub_block_get(sblock); /* one for the added page */ | 
 | 	atomic_inc(&sblock->outstanding_pages); | 
 | 	sbio->page_count++; | 
 | 	if (sbio->page_count == sdev->pages_per_bio) | 
 | 		scrub_submit(sdev); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int scrub_pages(struct scrub_dev *sdev, u64 logical, u64 len, | 
 | 		       u64 physical, u64 flags, u64 gen, int mirror_num, | 
 | 		       u8 *csum, int force) | 
 | { | 
 | 	struct scrub_block *sblock; | 
 | 	int index; | 
 |  | 
 | 	sblock = kzalloc(sizeof(*sblock), GFP_NOFS); | 
 | 	if (!sblock) { | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.malloc_errors++; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 		return -ENOMEM; | 
 | 	} | 
 |  | 
 | 	/* one ref inside this function, plus one for each page later on */ | 
 | 	atomic_set(&sblock->ref_count, 1); | 
 | 	sblock->sdev = sdev; | 
 | 	sblock->no_io_error_seen = 1; | 
 |  | 
 | 	for (index = 0; len > 0; index++) { | 
 | 		struct scrub_page *spage = sblock->pagev + index; | 
 | 		u64 l = min_t(u64, len, PAGE_SIZE); | 
 |  | 
 | 		BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK); | 
 | 		spage->page = alloc_page(GFP_NOFS); | 
 | 		if (!spage->page) { | 
 | 			spin_lock(&sdev->stat_lock); | 
 | 			sdev->stat.malloc_errors++; | 
 | 			spin_unlock(&sdev->stat_lock); | 
 | 			while (index > 0) { | 
 | 				index--; | 
 | 				__free_page(sblock->pagev[index].page); | 
 | 			} | 
 | 			kfree(sblock); | 
 | 			return -ENOMEM; | 
 | 		} | 
 | 		spage->sblock = sblock; | 
 | 		spage->bdev = sdev->dev->bdev; | 
 | 		spage->flags = flags; | 
 | 		spage->generation = gen; | 
 | 		spage->logical = logical; | 
 | 		spage->physical = physical; | 
 | 		spage->mirror_num = mirror_num; | 
 | 		if (csum) { | 
 | 			spage->have_csum = 1; | 
 | 			memcpy(spage->csum, csum, sdev->csum_size); | 
 | 		} else { | 
 | 			spage->have_csum = 0; | 
 | 		} | 
 | 		sblock->page_count++; | 
 | 		len -= l; | 
 | 		logical += l; | 
 | 		physical += l; | 
 | 	} | 
 |  | 
 | 	BUG_ON(sblock->page_count == 0); | 
 | 	for (index = 0; index < sblock->page_count; index++) { | 
 | 		struct scrub_page *spage = sblock->pagev + index; | 
 | 		int ret; | 
 |  | 
 | 		ret = scrub_add_page_to_bio(sdev, spage); | 
 | 		if (ret) { | 
 | 			scrub_block_put(sblock); | 
 | 			return ret; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (force) | 
 | 		scrub_submit(sdev); | 
 |  | 
 | 	/* last one frees, either here or in bio completion for last page */ | 
 | 	scrub_block_put(sblock); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void scrub_bio_end_io(struct bio *bio, int err) | 
 | { | 
 | 	struct scrub_bio *sbio = bio->bi_private; | 
 | 	struct scrub_dev *sdev = sbio->sdev; | 
 | 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; | 
 |  | 
 | 	sbio->err = err; | 
 | 	sbio->bio = bio; | 
 |  | 
 | 	btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work); | 
 | } | 
 |  | 
 | static void scrub_bio_end_io_worker(struct btrfs_work *work) | 
 | { | 
 | 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); | 
 | 	struct scrub_dev *sdev = sbio->sdev; | 
 | 	int i; | 
 |  | 
 | 	BUG_ON(sbio->page_count > SCRUB_PAGES_PER_BIO); | 
 | 	if (sbio->err) { | 
 | 		for (i = 0; i < sbio->page_count; i++) { | 
 | 			struct scrub_page *spage = sbio->pagev[i]; | 
 |  | 
 | 			spage->io_error = 1; | 
 | 			spage->sblock->no_io_error_seen = 0; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	/* now complete the scrub_block items that have all pages completed */ | 
 | 	for (i = 0; i < sbio->page_count; i++) { | 
 | 		struct scrub_page *spage = sbio->pagev[i]; | 
 | 		struct scrub_block *sblock = spage->sblock; | 
 |  | 
 | 		if (atomic_dec_and_test(&sblock->outstanding_pages)) | 
 | 			scrub_block_complete(sblock); | 
 | 		scrub_block_put(sblock); | 
 | 	} | 
 |  | 
 | 	if (sbio->err) { | 
 | 		/* what is this good for??? */ | 
 | 		sbio->bio->bi_flags &= ~(BIO_POOL_MASK - 1); | 
 | 		sbio->bio->bi_flags |= 1 << BIO_UPTODATE; | 
 | 		sbio->bio->bi_phys_segments = 0; | 
 | 		sbio->bio->bi_idx = 0; | 
 |  | 
 | 		for (i = 0; i < sbio->page_count; i++) { | 
 | 			struct bio_vec *bi; | 
 | 			bi = &sbio->bio->bi_io_vec[i]; | 
 | 			bi->bv_offset = 0; | 
 | 			bi->bv_len = PAGE_SIZE; | 
 | 		} | 
 | 	} | 
 |  | 
 | 	bio_put(sbio->bio); | 
 | 	sbio->bio = NULL; | 
 | 	spin_lock(&sdev->list_lock); | 
 | 	sbio->next_free = sdev->first_free; | 
 | 	sdev->first_free = sbio->index; | 
 | 	spin_unlock(&sdev->list_lock); | 
 | 	atomic_dec(&sdev->in_flight); | 
 | 	wake_up(&sdev->list_wait); | 
 | } | 
 |  | 
 | static void scrub_block_complete(struct scrub_block *sblock) | 
 | { | 
 | 	if (!sblock->no_io_error_seen) | 
 | 		scrub_handle_errored_block(sblock); | 
 | 	else | 
 | 		scrub_checksum(sblock); | 
 | } | 
 |  | 
 | static int scrub_find_csum(struct scrub_dev *sdev, u64 logical, u64 len, | 
 | 			   u8 *csum) | 
 | { | 
 | 	struct btrfs_ordered_sum *sum = NULL; | 
 | 	int ret = 0; | 
 | 	unsigned long i; | 
 | 	unsigned long num_sectors; | 
 |  | 
 | 	while (!list_empty(&sdev->csum_list)) { | 
 | 		sum = list_first_entry(&sdev->csum_list, | 
 | 				       struct btrfs_ordered_sum, list); | 
 | 		if (sum->bytenr > logical) | 
 | 			return 0; | 
 | 		if (sum->bytenr + sum->len > logical) | 
 | 			break; | 
 |  | 
 | 		++sdev->stat.csum_discards; | 
 | 		list_del(&sum->list); | 
 | 		kfree(sum); | 
 | 		sum = NULL; | 
 | 	} | 
 | 	if (!sum) | 
 | 		return 0; | 
 |  | 
 | 	num_sectors = sum->len / sdev->sectorsize; | 
 | 	for (i = 0; i < num_sectors; ++i) { | 
 | 		if (sum->sums[i].bytenr == logical) { | 
 | 			memcpy(csum, &sum->sums[i].sum, sdev->csum_size); | 
 | 			ret = 1; | 
 | 			break; | 
 | 		} | 
 | 	} | 
 | 	if (ret && i == num_sectors - 1) { | 
 | 		list_del(&sum->list); | 
 | 		kfree(sum); | 
 | 	} | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* scrub extent tries to collect up to 64 kB for each bio */ | 
 | static int scrub_extent(struct scrub_dev *sdev, u64 logical, u64 len, | 
 | 			u64 physical, u64 flags, u64 gen, int mirror_num) | 
 | { | 
 | 	int ret; | 
 | 	u8 csum[BTRFS_CSUM_SIZE]; | 
 | 	u32 blocksize; | 
 |  | 
 | 	if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
 | 		blocksize = sdev->sectorsize; | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.data_extents_scrubbed++; | 
 | 		sdev->stat.data_bytes_scrubbed += len; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { | 
 | 		BUG_ON(sdev->nodesize != sdev->leafsize); | 
 | 		blocksize = sdev->nodesize; | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.tree_extents_scrubbed++; | 
 | 		sdev->stat.tree_bytes_scrubbed += len; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 	} else { | 
 | 		blocksize = sdev->sectorsize; | 
 | 		BUG_ON(1); | 
 | 	} | 
 |  | 
 | 	while (len) { | 
 | 		u64 l = min_t(u64, len, blocksize); | 
 | 		int have_csum = 0; | 
 |  | 
 | 		if (flags & BTRFS_EXTENT_FLAG_DATA) { | 
 | 			/* push csums to sbio */ | 
 | 			have_csum = scrub_find_csum(sdev, logical, l, csum); | 
 | 			if (have_csum == 0) | 
 | 				++sdev->stat.no_csum; | 
 | 		} | 
 | 		ret = scrub_pages(sdev, logical, l, physical, flags, gen, | 
 | 				  mirror_num, have_csum ? csum : NULL, 0); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 		len -= l; | 
 | 		logical += l; | 
 | 		physical += l; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int scrub_stripe(struct scrub_dev *sdev, | 
 | 	struct map_lookup *map, int num, u64 base, u64 length) | 
 | { | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_fs_info *fs_info = sdev->dev->dev_root->fs_info; | 
 | 	struct btrfs_root *root = fs_info->extent_root; | 
 | 	struct btrfs_root *csum_root = fs_info->csum_root; | 
 | 	struct btrfs_extent_item *extent; | 
 | 	struct blk_plug plug; | 
 | 	u64 flags; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	int i; | 
 | 	u64 nstripes; | 
 | 	struct extent_buffer *l; | 
 | 	struct btrfs_key key; | 
 | 	u64 physical; | 
 | 	u64 logical; | 
 | 	u64 generation; | 
 | 	int mirror_num; | 
 | 	struct reada_control *reada1; | 
 | 	struct reada_control *reada2; | 
 | 	struct btrfs_key key_start; | 
 | 	struct btrfs_key key_end; | 
 |  | 
 | 	u64 increment = map->stripe_len; | 
 | 	u64 offset; | 
 |  | 
 | 	nstripes = length; | 
 | 	offset = 0; | 
 | 	do_div(nstripes, map->stripe_len); | 
 | 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) { | 
 | 		offset = map->stripe_len * num; | 
 | 		increment = map->stripe_len * map->num_stripes; | 
 | 		mirror_num = 1; | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { | 
 | 		int factor = map->num_stripes / map->sub_stripes; | 
 | 		offset = map->stripe_len * (num / map->sub_stripes); | 
 | 		increment = map->stripe_len * factor; | 
 | 		mirror_num = num % map->sub_stripes + 1; | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { | 
 | 		increment = map->stripe_len; | 
 | 		mirror_num = num % map->num_stripes + 1; | 
 | 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) { | 
 | 		increment = map->stripe_len; | 
 | 		mirror_num = num % map->num_stripes + 1; | 
 | 	} else { | 
 | 		increment = map->stripe_len; | 
 | 		mirror_num = 1; | 
 | 	} | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	/* | 
 | 	 * work on commit root. The related disk blocks are static as | 
 | 	 * long as COW is applied. This means, it is save to rewrite | 
 | 	 * them to repair disk errors without any race conditions | 
 | 	 */ | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 |  | 
 | 	/* | 
 | 	 * trigger the readahead for extent tree csum tree and wait for | 
 | 	 * completion. During readahead, the scrub is officially paused | 
 | 	 * to not hold off transaction commits | 
 | 	 */ | 
 | 	logical = base + offset; | 
 |  | 
 | 	wait_event(sdev->list_wait, | 
 | 		   atomic_read(&sdev->in_flight) == 0); | 
 | 	atomic_inc(&fs_info->scrubs_paused); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 	/* FIXME it might be better to start readahead at commit root */ | 
 | 	key_start.objectid = logical; | 
 | 	key_start.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key_start.offset = (u64)0; | 
 | 	key_end.objectid = base + offset + nstripes * increment; | 
 | 	key_end.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 	key_end.offset = (u64)0; | 
 | 	reada1 = btrfs_reada_add(root, &key_start, &key_end); | 
 |  | 
 | 	key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
 | 	key_start.type = BTRFS_EXTENT_CSUM_KEY; | 
 | 	key_start.offset = logical; | 
 | 	key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID; | 
 | 	key_end.type = BTRFS_EXTENT_CSUM_KEY; | 
 | 	key_end.offset = base + offset + nstripes * increment; | 
 | 	reada2 = btrfs_reada_add(csum_root, &key_start, &key_end); | 
 |  | 
 | 	if (!IS_ERR(reada1)) | 
 | 		btrfs_reada_wait(reada1); | 
 | 	if (!IS_ERR(reada2)) | 
 | 		btrfs_reada_wait(reada2); | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	while (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 		   atomic_read(&fs_info->scrub_pause_req) == 0); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	atomic_dec(&fs_info->scrubs_paused); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 	/* | 
 | 	 * collect all data csums for the stripe to avoid seeking during | 
 | 	 * the scrub. This might currently (crc32) end up to be about 1MB | 
 | 	 */ | 
 | 	blk_start_plug(&plug); | 
 |  | 
 | 	/* | 
 | 	 * now find all extents for each stripe and scrub them | 
 | 	 */ | 
 | 	logical = base + offset; | 
 | 	physical = map->stripes[num].physical; | 
 | 	ret = 0; | 
 | 	for (i = 0; i < nstripes; ++i) { | 
 | 		/* | 
 | 		 * canceled? | 
 | 		 */ | 
 | 		if (atomic_read(&fs_info->scrub_cancel_req) || | 
 | 		    atomic_read(&sdev->cancel_req)) { | 
 | 			ret = -ECANCELED; | 
 | 			goto out; | 
 | 		} | 
 | 		/* | 
 | 		 * check to see if we have to pause | 
 | 		 */ | 
 | 		if (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 			/* push queued extents */ | 
 | 			scrub_submit(sdev); | 
 | 			wait_event(sdev->list_wait, | 
 | 				   atomic_read(&sdev->in_flight) == 0); | 
 | 			atomic_inc(&fs_info->scrubs_paused); | 
 | 			wake_up(&fs_info->scrub_pause_wait); | 
 | 			mutex_lock(&fs_info->scrub_lock); | 
 | 			while (atomic_read(&fs_info->scrub_pause_req)) { | 
 | 				mutex_unlock(&fs_info->scrub_lock); | 
 | 				wait_event(fs_info->scrub_pause_wait, | 
 | 				   atomic_read(&fs_info->scrub_pause_req) == 0); | 
 | 				mutex_lock(&fs_info->scrub_lock); | 
 | 			} | 
 | 			atomic_dec(&fs_info->scrubs_paused); | 
 | 			mutex_unlock(&fs_info->scrub_lock); | 
 | 			wake_up(&fs_info->scrub_pause_wait); | 
 | 		} | 
 |  | 
 | 		ret = btrfs_lookup_csums_range(csum_root, logical, | 
 | 					       logical + map->stripe_len - 1, | 
 | 					       &sdev->csum_list, 1); | 
 | 		if (ret) | 
 | 			goto out; | 
 |  | 
 | 		key.objectid = logical; | 
 | 		key.type = BTRFS_EXTENT_ITEM_KEY; | 
 | 		key.offset = (u64)0; | 
 |  | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			goto out; | 
 | 		if (ret > 0) { | 
 | 			ret = btrfs_previous_item(root, path, 0, | 
 | 						  BTRFS_EXTENT_ITEM_KEY); | 
 | 			if (ret < 0) | 
 | 				goto out; | 
 | 			if (ret > 0) { | 
 | 				/* there's no smaller item, so stick with the | 
 | 				 * larger one */ | 
 | 				btrfs_release_path(path); | 
 | 				ret = btrfs_search_slot(NULL, root, &key, | 
 | 							path, 0, 0); | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		while (1) { | 
 | 			l = path->nodes[0]; | 
 | 			slot = path->slots[0]; | 
 | 			if (slot >= btrfs_header_nritems(l)) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret == 0) | 
 | 					continue; | 
 | 				if (ret < 0) | 
 | 					goto out; | 
 |  | 
 | 				break; | 
 | 			} | 
 | 			btrfs_item_key_to_cpu(l, &key, slot); | 
 |  | 
 | 			if (key.objectid + key.offset <= logical) | 
 | 				goto next; | 
 |  | 
 | 			if (key.objectid >= logical + map->stripe_len) | 
 | 				break; | 
 |  | 
 | 			if (btrfs_key_type(&key) != BTRFS_EXTENT_ITEM_KEY) | 
 | 				goto next; | 
 |  | 
 | 			extent = btrfs_item_ptr(l, slot, | 
 | 						struct btrfs_extent_item); | 
 | 			flags = btrfs_extent_flags(l, extent); | 
 | 			generation = btrfs_extent_generation(l, extent); | 
 |  | 
 | 			if (key.objectid < logical && | 
 | 			    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) { | 
 | 				printk(KERN_ERR | 
 | 				       "btrfs scrub: tree block %llu spanning " | 
 | 				       "stripes, ignored. logical=%llu\n", | 
 | 				       (unsigned long long)key.objectid, | 
 | 				       (unsigned long long)logical); | 
 | 				goto next; | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * trim extent to this stripe | 
 | 			 */ | 
 | 			if (key.objectid < logical) { | 
 | 				key.offset -= logical - key.objectid; | 
 | 				key.objectid = logical; | 
 | 			} | 
 | 			if (key.objectid + key.offset > | 
 | 			    logical + map->stripe_len) { | 
 | 				key.offset = logical + map->stripe_len - | 
 | 					     key.objectid; | 
 | 			} | 
 |  | 
 | 			ret = scrub_extent(sdev, key.objectid, key.offset, | 
 | 					   key.objectid - logical + physical, | 
 | 					   flags, generation, mirror_num); | 
 | 			if (ret) | 
 | 				goto out; | 
 |  | 
 | next: | 
 | 			path->slots[0]++; | 
 | 		} | 
 | 		btrfs_release_path(path); | 
 | 		logical += increment; | 
 | 		physical += map->stripe_len; | 
 | 		spin_lock(&sdev->stat_lock); | 
 | 		sdev->stat.last_physical = physical; | 
 | 		spin_unlock(&sdev->stat_lock); | 
 | 	} | 
 | 	/* push queued extents */ | 
 | 	scrub_submit(sdev); | 
 |  | 
 | out: | 
 | 	blk_finish_plug(&plug); | 
 | 	btrfs_free_path(path); | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int scrub_chunk(struct scrub_dev *sdev, | 
 | 	u64 chunk_tree, u64 chunk_objectid, u64 chunk_offset, u64 length, | 
 | 	u64 dev_offset) | 
 | { | 
 | 	struct btrfs_mapping_tree *map_tree = | 
 | 		&sdev->dev->dev_root->fs_info->mapping_tree; | 
 | 	struct map_lookup *map; | 
 | 	struct extent_map *em; | 
 | 	int i; | 
 | 	int ret = -EINVAL; | 
 |  | 
 | 	read_lock(&map_tree->map_tree.lock); | 
 | 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); | 
 | 	read_unlock(&map_tree->map_tree.lock); | 
 |  | 
 | 	if (!em) | 
 | 		return -EINVAL; | 
 |  | 
 | 	map = (struct map_lookup *)em->bdev; | 
 | 	if (em->start != chunk_offset) | 
 | 		goto out; | 
 |  | 
 | 	if (em->len < length) | 
 | 		goto out; | 
 |  | 
 | 	for (i = 0; i < map->num_stripes; ++i) { | 
 | 		if (map->stripes[i].dev == sdev->dev && | 
 | 		    map->stripes[i].physical == dev_offset) { | 
 | 			ret = scrub_stripe(sdev, map, i, chunk_offset, length); | 
 | 			if (ret) | 
 | 				goto out; | 
 | 		} | 
 | 	} | 
 | out: | 
 | 	free_extent_map(em); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack | 
 | int scrub_enumerate_chunks(struct scrub_dev *sdev, u64 start, u64 end) | 
 | { | 
 | 	struct btrfs_dev_extent *dev_extent = NULL; | 
 | 	struct btrfs_path *path; | 
 | 	struct btrfs_root *root = sdev->dev->dev_root; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	u64 length; | 
 | 	u64 chunk_tree; | 
 | 	u64 chunk_objectid; | 
 | 	u64 chunk_offset; | 
 | 	int ret; | 
 | 	int slot; | 
 | 	struct extent_buffer *l; | 
 | 	struct btrfs_key key; | 
 | 	struct btrfs_key found_key; | 
 | 	struct btrfs_block_group_cache *cache; | 
 |  | 
 | 	path = btrfs_alloc_path(); | 
 | 	if (!path) | 
 | 		return -ENOMEM; | 
 |  | 
 | 	path->reada = 2; | 
 | 	path->search_commit_root = 1; | 
 | 	path->skip_locking = 1; | 
 |  | 
 | 	key.objectid = sdev->dev->devid; | 
 | 	key.offset = 0ull; | 
 | 	key.type = BTRFS_DEV_EXTENT_KEY; | 
 |  | 
 |  | 
 | 	while (1) { | 
 | 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); | 
 | 		if (ret < 0) | 
 | 			break; | 
 | 		if (ret > 0) { | 
 | 			if (path->slots[0] >= | 
 | 			    btrfs_header_nritems(path->nodes[0])) { | 
 | 				ret = btrfs_next_leaf(root, path); | 
 | 				if (ret) | 
 | 					break; | 
 | 			} | 
 | 		} | 
 |  | 
 | 		l = path->nodes[0]; | 
 | 		slot = path->slots[0]; | 
 |  | 
 | 		btrfs_item_key_to_cpu(l, &found_key, slot); | 
 |  | 
 | 		if (found_key.objectid != sdev->dev->devid) | 
 | 			break; | 
 |  | 
 | 		if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY) | 
 | 			break; | 
 |  | 
 | 		if (found_key.offset >= end) | 
 | 			break; | 
 |  | 
 | 		if (found_key.offset < key.offset) | 
 | 			break; | 
 |  | 
 | 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); | 
 | 		length = btrfs_dev_extent_length(l, dev_extent); | 
 |  | 
 | 		if (found_key.offset + length <= start) { | 
 | 			key.offset = found_key.offset + length; | 
 | 			btrfs_release_path(path); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); | 
 | 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); | 
 | 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); | 
 |  | 
 | 		/* | 
 | 		 * get a reference on the corresponding block group to prevent | 
 | 		 * the chunk from going away while we scrub it | 
 | 		 */ | 
 | 		cache = btrfs_lookup_block_group(fs_info, chunk_offset); | 
 | 		if (!cache) { | 
 | 			ret = -ENOENT; | 
 | 			break; | 
 | 		} | 
 | 		ret = scrub_chunk(sdev, chunk_tree, chunk_objectid, | 
 | 				  chunk_offset, length, found_key.offset); | 
 | 		btrfs_put_block_group(cache); | 
 | 		if (ret) | 
 | 			break; | 
 |  | 
 | 		key.offset = found_key.offset + length; | 
 | 		btrfs_release_path(path); | 
 | 	} | 
 |  | 
 | 	btrfs_free_path(path); | 
 |  | 
 | 	/* | 
 | 	 * ret can still be 1 from search_slot or next_leaf, | 
 | 	 * that's not an error | 
 | 	 */ | 
 | 	return ret < 0 ? ret : 0; | 
 | } | 
 |  | 
 | static noinline_for_stack int scrub_supers(struct scrub_dev *sdev) | 
 | { | 
 | 	int	i; | 
 | 	u64	bytenr; | 
 | 	u64	gen; | 
 | 	int	ret; | 
 | 	struct btrfs_device *device = sdev->dev; | 
 | 	struct btrfs_root *root = device->dev_root; | 
 |  | 
 | 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) | 
 | 		return -EIO; | 
 |  | 
 | 	gen = root->fs_info->last_trans_committed; | 
 |  | 
 | 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { | 
 | 		bytenr = btrfs_sb_offset(i); | 
 | 		if (bytenr + BTRFS_SUPER_INFO_SIZE > device->total_bytes) | 
 | 			break; | 
 |  | 
 | 		ret = scrub_pages(sdev, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, | 
 | 				     BTRFS_EXTENT_FLAG_SUPER, gen, i, NULL, 1); | 
 | 		if (ret) | 
 | 			return ret; | 
 | 	} | 
 | 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * get a reference count on fs_info->scrub_workers. start worker if necessary | 
 |  */ | 
 | static noinline_for_stack int scrub_workers_get(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret = 0; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	if (fs_info->scrub_workers_refcnt == 0) { | 
 | 		btrfs_init_workers(&fs_info->scrub_workers, "scrub", | 
 | 			   fs_info->thread_pool_size, &fs_info->generic_worker); | 
 | 		fs_info->scrub_workers.idle_thresh = 4; | 
 | 		ret = btrfs_start_workers(&fs_info->scrub_workers); | 
 | 		if (ret) | 
 | 			goto out; | 
 | 	} | 
 | 	++fs_info->scrub_workers_refcnt; | 
 | out: | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | static noinline_for_stack void scrub_workers_put(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	if (--fs_info->scrub_workers_refcnt == 0) | 
 | 		btrfs_stop_workers(&fs_info->scrub_workers); | 
 | 	WARN_ON(fs_info->scrub_workers_refcnt < 0); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | } | 
 |  | 
 |  | 
 | int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end, | 
 | 		    struct btrfs_scrub_progress *progress, int readonly) | 
 | { | 
 | 	struct scrub_dev *sdev; | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	int ret; | 
 | 	struct btrfs_device *dev; | 
 |  | 
 | 	if (btrfs_fs_closing(root->fs_info)) | 
 | 		return -EINVAL; | 
 |  | 
 | 	/* | 
 | 	 * check some assumptions | 
 | 	 */ | 
 | 	if (root->nodesize != root->leafsize) { | 
 | 		printk(KERN_ERR | 
 | 		       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n", | 
 | 		       root->nodesize, root->leafsize); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (root->nodesize > BTRFS_STRIPE_LEN) { | 
 | 		/* | 
 | 		 * in this case scrub is unable to calculate the checksum | 
 | 		 * the way scrub is implemented. Do not handle this | 
 | 		 * situation at all because it won't ever happen. | 
 | 		 */ | 
 | 		printk(KERN_ERR | 
 | 		       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n", | 
 | 		       root->nodesize, BTRFS_STRIPE_LEN); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	if (root->sectorsize != PAGE_SIZE) { | 
 | 		/* not supported for data w/o checksums */ | 
 | 		printk(KERN_ERR | 
 | 		       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n", | 
 | 		       root->sectorsize, (unsigned long long)PAGE_SIZE); | 
 | 		return -EINVAL; | 
 | 	} | 
 |  | 
 | 	ret = scrub_workers_get(root); | 
 | 	if (ret) | 
 | 		return ret; | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(root, devid, NULL, NULL); | 
 | 	if (!dev || dev->missing) { | 
 | 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(root); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 |  | 
 | 	if (!dev->in_fs_metadata) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(root); | 
 | 		return -ENODEV; | 
 | 	} | 
 |  | 
 | 	if (dev->scrub_device) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(root); | 
 | 		return -EINPROGRESS; | 
 | 	} | 
 | 	sdev = scrub_setup_dev(dev); | 
 | 	if (IS_ERR(sdev)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 		scrub_workers_put(root); | 
 | 		return PTR_ERR(sdev); | 
 | 	} | 
 | 	sdev->readonly = readonly; | 
 | 	dev->scrub_device = sdev; | 
 |  | 
 | 	atomic_inc(&fs_info->scrubs_running); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	down_read(&fs_info->scrub_super_lock); | 
 | 	ret = scrub_supers(sdev); | 
 | 	up_read(&fs_info->scrub_super_lock); | 
 |  | 
 | 	if (!ret) | 
 | 		ret = scrub_enumerate_chunks(sdev, start, end); | 
 |  | 
 | 	wait_event(sdev->list_wait, atomic_read(&sdev->in_flight) == 0); | 
 | 	atomic_dec(&fs_info->scrubs_running); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 |  | 
 | 	wait_event(sdev->list_wait, atomic_read(&sdev->fixup_cnt) == 0); | 
 |  | 
 | 	if (progress) | 
 | 		memcpy(progress, &sdev->stat, sizeof(*progress)); | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	dev->scrub_device = NULL; | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	scrub_free_dev(sdev); | 
 | 	scrub_workers_put(root); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | void btrfs_scrub_pause(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	atomic_inc(&fs_info->scrub_pause_req); | 
 | 	while (atomic_read(&fs_info->scrubs_paused) != | 
 | 	       atomic_read(&fs_info->scrubs_running)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 			   atomic_read(&fs_info->scrubs_paused) == | 
 | 			   atomic_read(&fs_info->scrubs_running)); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 | } | 
 |  | 
 | void btrfs_scrub_continue(struct btrfs_root *root) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 |  | 
 | 	atomic_dec(&fs_info->scrub_pause_req); | 
 | 	wake_up(&fs_info->scrub_pause_wait); | 
 | } | 
 |  | 
 | void btrfs_scrub_pause_super(struct btrfs_root *root) | 
 | { | 
 | 	down_write(&root->fs_info->scrub_super_lock); | 
 | } | 
 |  | 
 | void btrfs_scrub_continue_super(struct btrfs_root *root) | 
 | { | 
 | 	up_write(&root->fs_info->scrub_super_lock); | 
 | } | 
 |  | 
 | int __btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) | 
 | { | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	if (!atomic_read(&fs_info->scrubs_running)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		return -ENOTCONN; | 
 | 	} | 
 |  | 
 | 	atomic_inc(&fs_info->scrub_cancel_req); | 
 | 	while (atomic_read(&fs_info->scrubs_running)) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 			   atomic_read(&fs_info->scrubs_running) == 0); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	atomic_dec(&fs_info->scrub_cancel_req); | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_scrub_cancel(struct btrfs_root *root) | 
 | { | 
 | 	return __btrfs_scrub_cancel(root->fs_info); | 
 | } | 
 |  | 
 | int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct scrub_dev *sdev; | 
 |  | 
 | 	mutex_lock(&fs_info->scrub_lock); | 
 | 	sdev = dev->scrub_device; | 
 | 	if (!sdev) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		return -ENOTCONN; | 
 | 	} | 
 | 	atomic_inc(&sdev->cancel_req); | 
 | 	while (dev->scrub_device) { | 
 | 		mutex_unlock(&fs_info->scrub_lock); | 
 | 		wait_event(fs_info->scrub_pause_wait, | 
 | 			   dev->scrub_device == NULL); | 
 | 		mutex_lock(&fs_info->scrub_lock); | 
 | 	} | 
 | 	mutex_unlock(&fs_info->scrub_lock); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid) | 
 | { | 
 | 	struct btrfs_fs_info *fs_info = root->fs_info; | 
 | 	struct btrfs_device *dev; | 
 | 	int ret; | 
 |  | 
 | 	/* | 
 | 	 * we have to hold the device_list_mutex here so the device | 
 | 	 * does not go away in cancel_dev. FIXME: find a better solution | 
 | 	 */ | 
 | 	mutex_lock(&fs_info->fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(root, devid, NULL, NULL); | 
 | 	if (!dev) { | 
 | 		mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 | 		return -ENODEV; | 
 | 	} | 
 | 	ret = btrfs_scrub_cancel_dev(root, dev); | 
 | 	mutex_unlock(&fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	return ret; | 
 | } | 
 |  | 
 | int btrfs_scrub_progress(struct btrfs_root *root, u64 devid, | 
 | 			 struct btrfs_scrub_progress *progress) | 
 | { | 
 | 	struct btrfs_device *dev; | 
 | 	struct scrub_dev *sdev = NULL; | 
 |  | 
 | 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex); | 
 | 	dev = btrfs_find_device(root, devid, NULL, NULL); | 
 | 	if (dev) | 
 | 		sdev = dev->scrub_device; | 
 | 	if (sdev) | 
 | 		memcpy(progress, &sdev->stat, sizeof(*progress)); | 
 | 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); | 
 |  | 
 | 	return dev ? (sdev ? 0 : -ENOTCONN) : -ENODEV; | 
 | } |