| /* | 
 |  *  linux/arch/x86-64/kernel/setup.c | 
 |  * | 
 |  *  Copyright (C) 1995  Linus Torvalds | 
 |  * | 
 |  *  Nov 2001 Dave Jones <davej@suse.de> | 
 |  *  Forked from i386 setup code. | 
 |  */ | 
 |  | 
 | /* | 
 |  * This file handles the architecture-dependent parts of initialization | 
 |  */ | 
 |  | 
 | #include <linux/errno.h> | 
 | #include <linux/sched.h> | 
 | #include <linux/kernel.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/stddef.h> | 
 | #include <linux/unistd.h> | 
 | #include <linux/ptrace.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/user.h> | 
 | #include <linux/a.out.h> | 
 | #include <linux/screen_info.h> | 
 | #include <linux/ioport.h> | 
 | #include <linux/delay.h> | 
 | #include <linux/init.h> | 
 | #include <linux/initrd.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/bootmem.h> | 
 | #include <linux/module.h> | 
 | #include <asm/processor.h> | 
 | #include <linux/console.h> | 
 | #include <linux/seq_file.h> | 
 | #include <linux/crash_dump.h> | 
 | #include <linux/root_dev.h> | 
 | #include <linux/pci.h> | 
 | #include <linux/acpi.h> | 
 | #include <linux/kallsyms.h> | 
 | #include <linux/edd.h> | 
 | #include <linux/mmzone.h> | 
 | #include <linux/kexec.h> | 
 | #include <linux/cpufreq.h> | 
 | #include <linux/dmi.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include <linux/ctype.h> | 
 |  | 
 | #include <asm/mtrr.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/system.h> | 
 | #include <asm/io.h> | 
 | #include <asm/smp.h> | 
 | #include <asm/msr.h> | 
 | #include <asm/desc.h> | 
 | #include <video/edid.h> | 
 | #include <asm/e820.h> | 
 | #include <asm/dma.h> | 
 | #include <asm/mpspec.h> | 
 | #include <asm/mmu_context.h> | 
 | #include <asm/bootsetup.h> | 
 | #include <asm/proto.h> | 
 | #include <asm/setup.h> | 
 | #include <asm/mach_apic.h> | 
 | #include <asm/numa.h> | 
 | #include <asm/sections.h> | 
 | #include <asm/dmi.h> | 
 |  | 
 | /* | 
 |  * Machine setup.. | 
 |  */ | 
 |  | 
 | struct cpuinfo_x86 boot_cpu_data __read_mostly; | 
 | EXPORT_SYMBOL(boot_cpu_data); | 
 |  | 
 | unsigned long mmu_cr4_features; | 
 |  | 
 | /* Boot loader ID as an integer, for the benefit of proc_dointvec */ | 
 | int bootloader_type; | 
 |  | 
 | unsigned long saved_video_mode; | 
 |  | 
 | int force_mwait __cpuinitdata; | 
 |  | 
 | /*  | 
 |  * Early DMI memory | 
 |  */ | 
 | int dmi_alloc_index; | 
 | char dmi_alloc_data[DMI_MAX_DATA]; | 
 |  | 
 | /* | 
 |  * Setup options | 
 |  */ | 
 | struct screen_info screen_info; | 
 | EXPORT_SYMBOL(screen_info); | 
 | struct sys_desc_table_struct { | 
 | 	unsigned short length; | 
 | 	unsigned char table[0]; | 
 | }; | 
 |  | 
 | struct edid_info edid_info; | 
 | EXPORT_SYMBOL_GPL(edid_info); | 
 |  | 
 | extern int root_mountflags; | 
 |  | 
 | char __initdata command_line[COMMAND_LINE_SIZE]; | 
 |  | 
 | struct resource standard_io_resources[] = { | 
 | 	{ .name = "dma1", .start = 0x00, .end = 0x1f, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "pic1", .start = 0x20, .end = 0x21, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "timer0", .start = 0x40, .end = 0x43, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "timer1", .start = 0x50, .end = 0x53, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "keyboard", .start = 0x60, .end = 0x6f, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "dma page reg", .start = 0x80, .end = 0x8f, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "pic2", .start = 0xa0, .end = 0xa1, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "dma2", .start = 0xc0, .end = 0xdf, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO }, | 
 | 	{ .name = "fpu", .start = 0xf0, .end = 0xff, | 
 | 		.flags = IORESOURCE_BUSY | IORESOURCE_IO } | 
 | }; | 
 |  | 
 | #define IORESOURCE_RAM (IORESOURCE_BUSY | IORESOURCE_MEM) | 
 |  | 
 | struct resource data_resource = { | 
 | 	.name = "Kernel data", | 
 | 	.start = 0, | 
 | 	.end = 0, | 
 | 	.flags = IORESOURCE_RAM, | 
 | }; | 
 | struct resource code_resource = { | 
 | 	.name = "Kernel code", | 
 | 	.start = 0, | 
 | 	.end = 0, | 
 | 	.flags = IORESOURCE_RAM, | 
 | }; | 
 |  | 
 | #ifdef CONFIG_PROC_VMCORE | 
 | /* elfcorehdr= specifies the location of elf core header | 
 |  * stored by the crashed kernel. This option will be passed | 
 |  * by kexec loader to the capture kernel. | 
 |  */ | 
 | static int __init setup_elfcorehdr(char *arg) | 
 | { | 
 | 	char *end; | 
 | 	if (!arg) | 
 | 		return -EINVAL; | 
 | 	elfcorehdr_addr = memparse(arg, &end); | 
 | 	return end > arg ? 0 : -EINVAL; | 
 | } | 
 | early_param("elfcorehdr", setup_elfcorehdr); | 
 | #endif | 
 |  | 
 | #ifndef CONFIG_NUMA | 
 | static void __init | 
 | contig_initmem_init(unsigned long start_pfn, unsigned long end_pfn) | 
 | { | 
 | 	unsigned long bootmap_size, bootmap; | 
 |  | 
 | 	bootmap_size = bootmem_bootmap_pages(end_pfn)<<PAGE_SHIFT; | 
 | 	bootmap = find_e820_area(0, end_pfn<<PAGE_SHIFT, bootmap_size); | 
 | 	if (bootmap == -1L) | 
 | 		panic("Cannot find bootmem map of size %ld\n",bootmap_size); | 
 | 	bootmap_size = init_bootmem(bootmap >> PAGE_SHIFT, end_pfn); | 
 | 	e820_register_active_regions(0, start_pfn, end_pfn); | 
 | 	free_bootmem_with_active_regions(0, end_pfn); | 
 | 	reserve_bootmem(bootmap, bootmap_size); | 
 | }  | 
 | #endif | 
 |  | 
 | #if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE) | 
 | struct edd edd; | 
 | #ifdef CONFIG_EDD_MODULE | 
 | EXPORT_SYMBOL(edd); | 
 | #endif | 
 | /** | 
 |  * copy_edd() - Copy the BIOS EDD information | 
 |  *              from boot_params into a safe place. | 
 |  * | 
 |  */ | 
 | static inline void copy_edd(void) | 
 | { | 
 |      memcpy(edd.mbr_signature, EDD_MBR_SIGNATURE, sizeof(edd.mbr_signature)); | 
 |      memcpy(edd.edd_info, EDD_BUF, sizeof(edd.edd_info)); | 
 |      edd.mbr_signature_nr = EDD_MBR_SIG_NR; | 
 |      edd.edd_info_nr = EDD_NR; | 
 | } | 
 | #else | 
 | static inline void copy_edd(void) | 
 | { | 
 | } | 
 | #endif | 
 |  | 
 | #define EBDA_ADDR_POINTER 0x40E | 
 |  | 
 | unsigned __initdata ebda_addr; | 
 | unsigned __initdata ebda_size; | 
 |  | 
 | static void discover_ebda(void) | 
 | { | 
 | 	/* | 
 | 	 * there is a real-mode segmented pointer pointing to the  | 
 | 	 * 4K EBDA area at 0x40E | 
 | 	 */ | 
 | 	ebda_addr = *(unsigned short *)__va(EBDA_ADDR_POINTER); | 
 | 	ebda_addr <<= 4; | 
 |  | 
 | 	ebda_size = *(unsigned short *)__va(ebda_addr); | 
 |  | 
 | 	/* Round EBDA up to pages */ | 
 | 	if (ebda_size == 0) | 
 | 		ebda_size = 1; | 
 | 	ebda_size <<= 10; | 
 | 	ebda_size = round_up(ebda_size + (ebda_addr & ~PAGE_MASK), PAGE_SIZE); | 
 | 	if (ebda_size > 64*1024) | 
 | 		ebda_size = 64*1024; | 
 | } | 
 |  | 
 | void __init setup_arch(char **cmdline_p) | 
 | { | 
 | 	printk(KERN_INFO "Command line: %s\n", boot_command_line); | 
 |  | 
 |  	ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV); | 
 |  	screen_info = SCREEN_INFO; | 
 | 	edid_info = EDID_INFO; | 
 | 	saved_video_mode = SAVED_VIDEO_MODE; | 
 | 	bootloader_type = LOADER_TYPE; | 
 |  | 
 | #ifdef CONFIG_BLK_DEV_RAM | 
 | 	rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK; | 
 | 	rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0); | 
 | 	rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0); | 
 | #endif | 
 | 	setup_memory_region(); | 
 | 	copy_edd(); | 
 |  | 
 | 	if (!MOUNT_ROOT_RDONLY) | 
 | 		root_mountflags &= ~MS_RDONLY; | 
 | 	init_mm.start_code = (unsigned long) &_text; | 
 | 	init_mm.end_code = (unsigned long) &_etext; | 
 | 	init_mm.end_data = (unsigned long) &_edata; | 
 | 	init_mm.brk = (unsigned long) &_end; | 
 |  | 
 | 	code_resource.start = virt_to_phys(&_text); | 
 | 	code_resource.end = virt_to_phys(&_etext)-1; | 
 | 	data_resource.start = virt_to_phys(&_etext); | 
 | 	data_resource.end = virt_to_phys(&_edata)-1; | 
 |  | 
 | 	early_identify_cpu(&boot_cpu_data); | 
 |  | 
 | 	strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE); | 
 | 	*cmdline_p = command_line; | 
 |  | 
 | 	parse_early_param(); | 
 |  | 
 | 	finish_e820_parsing(); | 
 |  | 
 | 	e820_register_active_regions(0, 0, -1UL); | 
 | 	/* | 
 | 	 * partially used pages are not usable - thus | 
 | 	 * we are rounding upwards: | 
 | 	 */ | 
 | 	end_pfn = e820_end_of_ram(); | 
 | 	num_physpages = end_pfn; | 
 |  | 
 | 	check_efer(); | 
 |  | 
 | 	discover_ebda(); | 
 |  | 
 | 	init_memory_mapping(0, (end_pfn_map << PAGE_SHIFT)); | 
 |  | 
 | 	dmi_scan_machine(); | 
 |  | 
 | #ifdef CONFIG_ACPI | 
 | 	/* | 
 | 	 * Initialize the ACPI boot-time table parser (gets the RSDP and SDT). | 
 | 	 * Call this early for SRAT node setup. | 
 | 	 */ | 
 | 	acpi_boot_table_init(); | 
 | #endif | 
 |  | 
 | 	/* How many end-of-memory variables you have, grandma! */ | 
 | 	max_low_pfn = end_pfn; | 
 | 	max_pfn = end_pfn; | 
 | 	high_memory = (void *)__va(end_pfn * PAGE_SIZE - 1) + 1; | 
 |  | 
 | 	/* Remove active ranges so rediscovery with NUMA-awareness happens */ | 
 | 	remove_all_active_ranges(); | 
 |  | 
 | #ifdef CONFIG_ACPI_NUMA | 
 | 	/* | 
 | 	 * Parse SRAT to discover nodes. | 
 | 	 */ | 
 | 	acpi_numa_init(); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | 	numa_initmem_init(0, end_pfn);  | 
 | #else | 
 | 	contig_initmem_init(0, end_pfn); | 
 | #endif | 
 |  | 
 | 	/* Reserve direct mapping */ | 
 | 	reserve_bootmem_generic(table_start << PAGE_SHIFT,  | 
 | 				(table_end - table_start) << PAGE_SHIFT); | 
 |  | 
 | 	/* reserve kernel */ | 
 | 	reserve_bootmem_generic(__pa_symbol(&_text), | 
 | 				__pa_symbol(&_end) - __pa_symbol(&_text)); | 
 |  | 
 | 	/* | 
 | 	 * reserve physical page 0 - it's a special BIOS page on many boxes, | 
 | 	 * enabling clean reboots, SMP operation, laptop functions. | 
 | 	 */ | 
 | 	reserve_bootmem_generic(0, PAGE_SIZE); | 
 |  | 
 | 	/* reserve ebda region */ | 
 | 	if (ebda_addr) | 
 | 		reserve_bootmem_generic(ebda_addr, ebda_size); | 
 | #ifdef CONFIG_NUMA | 
 | 	/* reserve nodemap region */ | 
 | 	if (nodemap_addr) | 
 | 		reserve_bootmem_generic(nodemap_addr, nodemap_size); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	/* Reserve SMP trampoline */ | 
 | 	reserve_bootmem_generic(SMP_TRAMPOLINE_BASE, 2*PAGE_SIZE); | 
 | #endif | 
 |  | 
 | #ifdef CONFIG_ACPI_SLEEP | 
 |        /* | 
 |         * Reserve low memory region for sleep support. | 
 |         */ | 
 |        acpi_reserve_bootmem(); | 
 | #endif | 
 | 	/* | 
 | 	 * Find and reserve possible boot-time SMP configuration: | 
 | 	 */ | 
 | 	find_smp_config(); | 
 | #ifdef CONFIG_BLK_DEV_INITRD | 
 | 	if (LOADER_TYPE && INITRD_START) { | 
 | 		if (INITRD_START + INITRD_SIZE <= (end_pfn << PAGE_SHIFT)) { | 
 | 			reserve_bootmem_generic(INITRD_START, INITRD_SIZE); | 
 | 			initrd_start = INITRD_START + PAGE_OFFSET; | 
 | 			initrd_end = initrd_start+INITRD_SIZE; | 
 | 		} | 
 | 		else { | 
 | 			printk(KERN_ERR "initrd extends beyond end of memory " | 
 | 			    "(0x%08lx > 0x%08lx)\ndisabling initrd\n", | 
 | 			    (unsigned long)(INITRD_START + INITRD_SIZE), | 
 | 			    (unsigned long)(end_pfn << PAGE_SHIFT)); | 
 | 			initrd_start = 0; | 
 | 		} | 
 | 	} | 
 | #endif | 
 | #ifdef CONFIG_KEXEC | 
 | 	if (crashk_res.start != crashk_res.end) { | 
 | 		reserve_bootmem_generic(crashk_res.start, | 
 | 			crashk_res.end - crashk_res.start + 1); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	paging_init(); | 
 |  | 
 | #ifdef CONFIG_PCI | 
 | 	early_quirks(); | 
 | #endif | 
 |  | 
 | 	/* | 
 | 	 * set this early, so we dont allocate cpu0 | 
 | 	 * if MADT list doesnt list BSP first | 
 | 	 * mpparse.c/MP_processor_info() allocates logical cpu numbers. | 
 | 	 */ | 
 | 	cpu_set(0, cpu_present_map); | 
 | #ifdef CONFIG_ACPI | 
 | 	/* | 
 | 	 * Read APIC and some other early information from ACPI tables. | 
 | 	 */ | 
 | 	acpi_boot_init(); | 
 | #endif | 
 |  | 
 | 	init_cpu_to_node(); | 
 |  | 
 | 	/* | 
 | 	 * get boot-time SMP configuration: | 
 | 	 */ | 
 | 	if (smp_found_config) | 
 | 		get_smp_config(); | 
 | 	init_apic_mappings(); | 
 |  | 
 | 	/* | 
 | 	 * We trust e820 completely. No explicit ROM probing in memory. | 
 |  	 */ | 
 | 	e820_reserve_resources();  | 
 | 	e820_mark_nosave_regions(); | 
 |  | 
 | 	{ | 
 | 	unsigned i; | 
 | 	/* request I/O space for devices used on all i[345]86 PCs */ | 
 | 	for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++) | 
 | 		request_resource(&ioport_resource, &standard_io_resources[i]); | 
 | 	} | 
 |  | 
 | 	e820_setup_gap(); | 
 |  | 
 | #ifdef CONFIG_VT | 
 | #if defined(CONFIG_VGA_CONSOLE) | 
 | 	conswitchp = &vga_con; | 
 | #elif defined(CONFIG_DUMMY_CONSOLE) | 
 | 	conswitchp = &dummy_con; | 
 | #endif | 
 | #endif | 
 | } | 
 |  | 
 | static int __cpuinit get_model_name(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned int *v; | 
 |  | 
 | 	if (c->extended_cpuid_level < 0x80000004) | 
 | 		return 0; | 
 |  | 
 | 	v = (unsigned int *) c->x86_model_id; | 
 | 	cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]); | 
 | 	cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]); | 
 | 	cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]); | 
 | 	c->x86_model_id[48] = 0; | 
 | 	return 1; | 
 | } | 
 |  | 
 |  | 
 | static void __cpuinit display_cacheinfo(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned int n, dummy, eax, ebx, ecx, edx; | 
 |  | 
 | 	n = c->extended_cpuid_level; | 
 |  | 
 | 	if (n >= 0x80000005) { | 
 | 		cpuid(0x80000005, &dummy, &ebx, &ecx, &edx); | 
 | 		printk(KERN_INFO "CPU: L1 I Cache: %dK (%d bytes/line), D cache %dK (%d bytes/line)\n", | 
 | 			edx>>24, edx&0xFF, ecx>>24, ecx&0xFF); | 
 | 		c->x86_cache_size=(ecx>>24)+(edx>>24); | 
 | 		/* On K8 L1 TLB is inclusive, so don't count it */ | 
 | 		c->x86_tlbsize = 0; | 
 | 	} | 
 |  | 
 | 	if (n >= 0x80000006) { | 
 | 		cpuid(0x80000006, &dummy, &ebx, &ecx, &edx); | 
 | 		ecx = cpuid_ecx(0x80000006); | 
 | 		c->x86_cache_size = ecx >> 16; | 
 | 		c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff); | 
 |  | 
 | 		printk(KERN_INFO "CPU: L2 Cache: %dK (%d bytes/line)\n", | 
 | 		c->x86_cache_size, ecx & 0xFF); | 
 | 	} | 
 |  | 
 | 	if (n >= 0x80000007) | 
 | 		cpuid(0x80000007, &dummy, &dummy, &dummy, &c->x86_power);  | 
 | 	if (n >= 0x80000008) { | 
 | 		cpuid(0x80000008, &eax, &dummy, &dummy, &dummy);  | 
 | 		c->x86_virt_bits = (eax >> 8) & 0xff; | 
 | 		c->x86_phys_bits = eax & 0xff; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 | static int nearby_node(int apicid) | 
 | { | 
 | 	int i; | 
 | 	for (i = apicid - 1; i >= 0; i--) { | 
 | 		int node = apicid_to_node[i]; | 
 | 		if (node != NUMA_NO_NODE && node_online(node)) | 
 | 			return node; | 
 | 	} | 
 | 	for (i = apicid + 1; i < MAX_LOCAL_APIC; i++) { | 
 | 		int node = apicid_to_node[i]; | 
 | 		if (node != NUMA_NO_NODE && node_online(node)) | 
 | 			return node; | 
 | 	} | 
 | 	return first_node(node_online_map); /* Shouldn't happen */ | 
 | } | 
 | #endif | 
 |  | 
 | /* | 
 |  * On a AMD dual core setup the lower bits of the APIC id distingush the cores. | 
 |  * Assumes number of cores is a power of two. | 
 |  */ | 
 | static void __init amd_detect_cmp(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned bits; | 
 | #ifdef CONFIG_NUMA | 
 | 	int cpu = smp_processor_id(); | 
 | 	int node = 0; | 
 | 	unsigned apicid = hard_smp_processor_id(); | 
 | #endif | 
 | 	unsigned ecx = cpuid_ecx(0x80000008); | 
 |  | 
 | 	c->x86_max_cores = (ecx & 0xff) + 1; | 
 |  | 
 | 	/* CPU telling us the core id bits shift? */ | 
 | 	bits = (ecx >> 12) & 0xF; | 
 |  | 
 | 	/* Otherwise recompute */ | 
 | 	if (bits == 0) { | 
 | 		while ((1 << bits) < c->x86_max_cores) | 
 | 			bits++; | 
 | 	} | 
 |  | 
 | 	/* Low order bits define the core id (index of core in socket) */ | 
 | 	c->cpu_core_id = c->phys_proc_id & ((1 << bits)-1); | 
 | 	/* Convert the APIC ID into the socket ID */ | 
 | 	c->phys_proc_id = phys_pkg_id(bits); | 
 |  | 
 | #ifdef CONFIG_NUMA | 
 |   	node = c->phys_proc_id; | 
 |  	if (apicid_to_node[apicid] != NUMA_NO_NODE) | 
 |  		node = apicid_to_node[apicid]; | 
 |  	if (!node_online(node)) { | 
 |  		/* Two possibilities here: | 
 |  		   - The CPU is missing memory and no node was created. | 
 |  		   In that case try picking one from a nearby CPU | 
 |  		   - The APIC IDs differ from the HyperTransport node IDs | 
 |  		   which the K8 northbridge parsing fills in. | 
 |  		   Assume they are all increased by a constant offset, | 
 |  		   but in the same order as the HT nodeids. | 
 |  		   If that doesn't result in a usable node fall back to the | 
 |  		   path for the previous case.  */ | 
 |  		int ht_nodeid = apicid - (cpu_data[0].phys_proc_id << bits); | 
 |  		if (ht_nodeid >= 0 && | 
 |  		    apicid_to_node[ht_nodeid] != NUMA_NO_NODE) | 
 |  			node = apicid_to_node[ht_nodeid]; | 
 |  		/* Pick a nearby node */ | 
 |  		if (!node_online(node)) | 
 |  			node = nearby_node(apicid); | 
 |  	} | 
 | 	numa_set_node(cpu, node); | 
 |  | 
 | 	printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node); | 
 | #endif | 
 | #endif | 
 | } | 
 |  | 
 | static void __cpuinit init_amd(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned level; | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	unsigned long value; | 
 |  | 
 | 	/* | 
 | 	 * Disable TLB flush filter by setting HWCR.FFDIS on K8 | 
 | 	 * bit 6 of msr C001_0015 | 
 |  	 * | 
 | 	 * Errata 63 for SH-B3 steppings | 
 | 	 * Errata 122 for all steppings (F+ have it disabled by default) | 
 | 	 */ | 
 | 	if (c->x86 == 15) { | 
 | 		rdmsrl(MSR_K8_HWCR, value); | 
 | 		value |= 1 << 6; | 
 | 		wrmsrl(MSR_K8_HWCR, value); | 
 | 	} | 
 | #endif | 
 |  | 
 | 	/* Bit 31 in normal CPUID used for nonstandard 3DNow ID; | 
 | 	   3DNow is IDd by bit 31 in extended CPUID (1*32+31) anyway */ | 
 | 	clear_bit(0*32+31, &c->x86_capability); | 
 | 	 | 
 | 	/* On C+ stepping K8 rep microcode works well for copy/memset */ | 
 | 	level = cpuid_eax(1); | 
 | 	if (c->x86 == 15 && ((level >= 0x0f48 && level < 0x0f50) || level >= 0x0f58)) | 
 | 		set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); | 
 |  | 
 | 	/* Enable workaround for FXSAVE leak */ | 
 | 	if (c->x86 >= 6) | 
 | 		set_bit(X86_FEATURE_FXSAVE_LEAK, &c->x86_capability); | 
 |  | 
 | 	level = get_model_name(c); | 
 | 	if (!level) { | 
 | 		switch (c->x86) {  | 
 | 		case 15: | 
 | 			/* Should distinguish Models here, but this is only | 
 | 			   a fallback anyways. */ | 
 | 			strcpy(c->x86_model_id, "Hammer"); | 
 | 			break;  | 
 | 		}  | 
 | 	}  | 
 | 	display_cacheinfo(c); | 
 |  | 
 | 	/* c->x86_power is 8000_0007 edx. Bit 8 is constant TSC */ | 
 | 	if (c->x86_power & (1<<8)) | 
 | 		set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability); | 
 |  | 
 | 	/* Multi core CPU? */ | 
 | 	if (c->extended_cpuid_level >= 0x80000008) | 
 | 		amd_detect_cmp(c); | 
 |  | 
 | 	/* Fix cpuid4 emulation for more */ | 
 | 	num_cache_leaves = 3; | 
 |  | 
 | 	/* RDTSC can be speculated around */ | 
 | 	clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); | 
 |  | 
 | 	/* Family 10 doesn't support C states in MWAIT so don't use it */ | 
 | 	if (c->x86 == 0x10 && !force_mwait) | 
 | 		clear_bit(X86_FEATURE_MWAIT, &c->x86_capability); | 
 | } | 
 |  | 
 | static void __cpuinit detect_ht(struct cpuinfo_x86 *c) | 
 | { | 
 | #ifdef CONFIG_SMP | 
 | 	u32 	eax, ebx, ecx, edx; | 
 | 	int 	index_msb, core_bits; | 
 |  | 
 | 	cpuid(1, &eax, &ebx, &ecx, &edx); | 
 |  | 
 |  | 
 | 	if (!cpu_has(c, X86_FEATURE_HT)) | 
 | 		return; | 
 |  	if (cpu_has(c, X86_FEATURE_CMP_LEGACY)) | 
 | 		goto out; | 
 |  | 
 | 	smp_num_siblings = (ebx & 0xff0000) >> 16; | 
 |  | 
 | 	if (smp_num_siblings == 1) { | 
 | 		printk(KERN_INFO  "CPU: Hyper-Threading is disabled\n"); | 
 | 	} else if (smp_num_siblings > 1 ) { | 
 |  | 
 | 		if (smp_num_siblings > NR_CPUS) { | 
 | 			printk(KERN_WARNING "CPU: Unsupported number of the siblings %d", smp_num_siblings); | 
 | 			smp_num_siblings = 1; | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		index_msb = get_count_order(smp_num_siblings); | 
 | 		c->phys_proc_id = phys_pkg_id(index_msb); | 
 |  | 
 | 		smp_num_siblings = smp_num_siblings / c->x86_max_cores; | 
 |  | 
 | 		index_msb = get_count_order(smp_num_siblings) ; | 
 |  | 
 | 		core_bits = get_count_order(c->x86_max_cores); | 
 |  | 
 | 		c->cpu_core_id = phys_pkg_id(index_msb) & | 
 | 					       ((1 << core_bits) - 1); | 
 | 	} | 
 | out: | 
 | 	if ((c->x86_max_cores * smp_num_siblings) > 1) { | 
 | 		printk(KERN_INFO  "CPU: Physical Processor ID: %d\n", c->phys_proc_id); | 
 | 		printk(KERN_INFO  "CPU: Processor Core ID: %d\n", c->cpu_core_id); | 
 | 	} | 
 |  | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * find out the number of processor cores on the die | 
 |  */ | 
 | static int __cpuinit intel_num_cpu_cores(struct cpuinfo_x86 *c) | 
 | { | 
 | 	unsigned int eax, t; | 
 |  | 
 | 	if (c->cpuid_level < 4) | 
 | 		return 1; | 
 |  | 
 | 	cpuid_count(4, 0, &eax, &t, &t, &t); | 
 |  | 
 | 	if (eax & 0x1f) | 
 | 		return ((eax >> 26) + 1); | 
 | 	else | 
 | 		return 1; | 
 | } | 
 |  | 
 | static void srat_detect_node(void) | 
 | { | 
 | #ifdef CONFIG_NUMA | 
 | 	unsigned node; | 
 | 	int cpu = smp_processor_id(); | 
 | 	int apicid = hard_smp_processor_id(); | 
 |  | 
 | 	/* Don't do the funky fallback heuristics the AMD version employs | 
 | 	   for now. */ | 
 | 	node = apicid_to_node[apicid]; | 
 | 	if (node == NUMA_NO_NODE) | 
 | 		node = first_node(node_online_map); | 
 | 	numa_set_node(cpu, node); | 
 |  | 
 | 	printk(KERN_INFO "CPU %d/%x -> Node %d\n", cpu, apicid, node); | 
 | #endif | 
 | } | 
 |  | 
 | static void __cpuinit init_intel(struct cpuinfo_x86 *c) | 
 | { | 
 | 	/* Cache sizes */ | 
 | 	unsigned n; | 
 |  | 
 | 	init_intel_cacheinfo(c); | 
 | 	if (c->cpuid_level > 9 ) { | 
 | 		unsigned eax = cpuid_eax(10); | 
 | 		/* Check for version and the number of counters */ | 
 | 		if ((eax & 0xff) && (((eax>>8) & 0xff) > 1)) | 
 | 			set_bit(X86_FEATURE_ARCH_PERFMON, &c->x86_capability); | 
 | 	} | 
 |  | 
 | 	if (cpu_has_ds) { | 
 | 		unsigned int l1, l2; | 
 | 		rdmsr(MSR_IA32_MISC_ENABLE, l1, l2); | 
 | 		if (!(l1 & (1<<11))) | 
 | 			set_bit(X86_FEATURE_BTS, c->x86_capability); | 
 | 		if (!(l1 & (1<<12))) | 
 | 			set_bit(X86_FEATURE_PEBS, c->x86_capability); | 
 | 	} | 
 |  | 
 | 	n = c->extended_cpuid_level; | 
 | 	if (n >= 0x80000008) { | 
 | 		unsigned eax = cpuid_eax(0x80000008); | 
 | 		c->x86_virt_bits = (eax >> 8) & 0xff; | 
 | 		c->x86_phys_bits = eax & 0xff; | 
 | 		/* CPUID workaround for Intel 0F34 CPU */ | 
 | 		if (c->x86_vendor == X86_VENDOR_INTEL && | 
 | 		    c->x86 == 0xF && c->x86_model == 0x3 && | 
 | 		    c->x86_mask == 0x4) | 
 | 			c->x86_phys_bits = 36; | 
 | 	} | 
 |  | 
 | 	if (c->x86 == 15) | 
 | 		c->x86_cache_alignment = c->x86_clflush_size * 2; | 
 | 	if ((c->x86 == 0xf && c->x86_model >= 0x03) || | 
 | 	    (c->x86 == 0x6 && c->x86_model >= 0x0e)) | 
 | 		set_bit(X86_FEATURE_CONSTANT_TSC, &c->x86_capability); | 
 | 	if (c->x86 == 6) | 
 | 		set_bit(X86_FEATURE_REP_GOOD, &c->x86_capability); | 
 | 	if (c->x86 == 15) | 
 | 		set_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); | 
 | 	else | 
 | 		clear_bit(X86_FEATURE_SYNC_RDTSC, &c->x86_capability); | 
 |  	c->x86_max_cores = intel_num_cpu_cores(c); | 
 |  | 
 | 	srat_detect_node(); | 
 | } | 
 |  | 
 | static void __cpuinit get_cpu_vendor(struct cpuinfo_x86 *c) | 
 | { | 
 | 	char *v = c->x86_vendor_id; | 
 |  | 
 | 	if (!strcmp(v, "AuthenticAMD")) | 
 | 		c->x86_vendor = X86_VENDOR_AMD; | 
 | 	else if (!strcmp(v, "GenuineIntel")) | 
 | 		c->x86_vendor = X86_VENDOR_INTEL; | 
 | 	else | 
 | 		c->x86_vendor = X86_VENDOR_UNKNOWN; | 
 | } | 
 |  | 
 | struct cpu_model_info { | 
 | 	int vendor; | 
 | 	int family; | 
 | 	char *model_names[16]; | 
 | }; | 
 |  | 
 | /* Do some early cpuid on the boot CPU to get some parameter that are | 
 |    needed before check_bugs. Everything advanced is in identify_cpu | 
 |    below. */ | 
 | void __cpuinit early_identify_cpu(struct cpuinfo_x86 *c) | 
 | { | 
 | 	u32 tfms; | 
 |  | 
 | 	c->loops_per_jiffy = loops_per_jiffy; | 
 | 	c->x86_cache_size = -1; | 
 | 	c->x86_vendor = X86_VENDOR_UNKNOWN; | 
 | 	c->x86_model = c->x86_mask = 0;	/* So far unknown... */ | 
 | 	c->x86_vendor_id[0] = '\0'; /* Unset */ | 
 | 	c->x86_model_id[0] = '\0';  /* Unset */ | 
 | 	c->x86_clflush_size = 64; | 
 | 	c->x86_cache_alignment = c->x86_clflush_size; | 
 | 	c->x86_max_cores = 1; | 
 | 	c->extended_cpuid_level = 0; | 
 | 	memset(&c->x86_capability, 0, sizeof c->x86_capability); | 
 |  | 
 | 	/* Get vendor name */ | 
 | 	cpuid(0x00000000, (unsigned int *)&c->cpuid_level, | 
 | 	      (unsigned int *)&c->x86_vendor_id[0], | 
 | 	      (unsigned int *)&c->x86_vendor_id[8], | 
 | 	      (unsigned int *)&c->x86_vendor_id[4]); | 
 | 		 | 
 | 	get_cpu_vendor(c); | 
 |  | 
 | 	/* Initialize the standard set of capabilities */ | 
 | 	/* Note that the vendor-specific code below might override */ | 
 |  | 
 | 	/* Intel-defined flags: level 0x00000001 */ | 
 | 	if (c->cpuid_level >= 0x00000001) { | 
 | 		__u32 misc; | 
 | 		cpuid(0x00000001, &tfms, &misc, &c->x86_capability[4], | 
 | 		      &c->x86_capability[0]); | 
 | 		c->x86 = (tfms >> 8) & 0xf; | 
 | 		c->x86_model = (tfms >> 4) & 0xf; | 
 | 		c->x86_mask = tfms & 0xf; | 
 | 		if (c->x86 == 0xf) | 
 | 			c->x86 += (tfms >> 20) & 0xff; | 
 | 		if (c->x86 >= 0x6) | 
 | 			c->x86_model += ((tfms >> 16) & 0xF) << 4; | 
 | 		if (c->x86_capability[0] & (1<<19))  | 
 | 			c->x86_clflush_size = ((misc >> 8) & 0xff) * 8; | 
 | 	} else { | 
 | 		/* Have CPUID level 0 only - unheard of */ | 
 | 		c->x86 = 4; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	c->phys_proc_id = (cpuid_ebx(1) >> 24) & 0xff; | 
 | #endif | 
 | } | 
 |  | 
 | /* | 
 |  * This does the hard work of actually picking apart the CPU stuff... | 
 |  */ | 
 | void __cpuinit identify_cpu(struct cpuinfo_x86 *c) | 
 | { | 
 | 	int i; | 
 | 	u32 xlvl; | 
 |  | 
 | 	early_identify_cpu(c); | 
 |  | 
 | 	/* AMD-defined flags: level 0x80000001 */ | 
 | 	xlvl = cpuid_eax(0x80000000); | 
 | 	c->extended_cpuid_level = xlvl; | 
 | 	if ((xlvl & 0xffff0000) == 0x80000000) { | 
 | 		if (xlvl >= 0x80000001) { | 
 | 			c->x86_capability[1] = cpuid_edx(0x80000001); | 
 | 			c->x86_capability[6] = cpuid_ecx(0x80000001); | 
 | 		} | 
 | 		if (xlvl >= 0x80000004) | 
 | 			get_model_name(c); /* Default name */ | 
 | 	} | 
 |  | 
 | 	/* Transmeta-defined flags: level 0x80860001 */ | 
 | 	xlvl = cpuid_eax(0x80860000); | 
 | 	if ((xlvl & 0xffff0000) == 0x80860000) { | 
 | 		/* Don't set x86_cpuid_level here for now to not confuse. */ | 
 | 		if (xlvl >= 0x80860001) | 
 | 			c->x86_capability[2] = cpuid_edx(0x80860001); | 
 | 	} | 
 |  | 
 | 	c->apicid = phys_pkg_id(0); | 
 |  | 
 | 	/* | 
 | 	 * Vendor-specific initialization.  In this section we | 
 | 	 * canonicalize the feature flags, meaning if there are | 
 | 	 * features a certain CPU supports which CPUID doesn't | 
 | 	 * tell us, CPUID claiming incorrect flags, or other bugs, | 
 | 	 * we handle them here. | 
 | 	 * | 
 | 	 * At the end of this section, c->x86_capability better | 
 | 	 * indicate the features this CPU genuinely supports! | 
 | 	 */ | 
 | 	switch (c->x86_vendor) { | 
 | 	case X86_VENDOR_AMD: | 
 | 		init_amd(c); | 
 | 		break; | 
 |  | 
 | 	case X86_VENDOR_INTEL: | 
 | 		init_intel(c); | 
 | 		break; | 
 |  | 
 | 	case X86_VENDOR_UNKNOWN: | 
 | 	default: | 
 | 		display_cacheinfo(c); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	select_idle_routine(c); | 
 | 	detect_ht(c);  | 
 |  | 
 | 	/* | 
 | 	 * On SMP, boot_cpu_data holds the common feature set between | 
 | 	 * all CPUs; so make sure that we indicate which features are | 
 | 	 * common between the CPUs.  The first time this routine gets | 
 | 	 * executed, c == &boot_cpu_data. | 
 | 	 */ | 
 | 	if (c != &boot_cpu_data) { | 
 | 		/* AND the already accumulated flags with these */ | 
 | 		for (i = 0 ; i < NCAPINTS ; i++) | 
 | 			boot_cpu_data.x86_capability[i] &= c->x86_capability[i]; | 
 | 	} | 
 |  | 
 | #ifdef CONFIG_X86_MCE | 
 | 	mcheck_init(c); | 
 | #endif | 
 | 	if (c != &boot_cpu_data) | 
 | 		mtrr_ap_init(); | 
 | #ifdef CONFIG_NUMA | 
 | 	numa_add_cpu(smp_processor_id()); | 
 | #endif | 
 | } | 
 |   | 
 |  | 
 | void __cpuinit print_cpu_info(struct cpuinfo_x86 *c) | 
 | { | 
 | 	if (c->x86_model_id[0]) | 
 | 		printk("%s", c->x86_model_id); | 
 |  | 
 | 	if (c->x86_mask || c->cpuid_level >= 0)  | 
 | 		printk(" stepping %02x\n", c->x86_mask); | 
 | 	else | 
 | 		printk("\n"); | 
 | } | 
 |  | 
 | /* | 
 |  *	Get CPU information for use by the procfs. | 
 |  */ | 
 |  | 
 | static int show_cpuinfo(struct seq_file *m, void *v) | 
 | { | 
 | 	struct cpuinfo_x86 *c = v; | 
 |  | 
 | 	/*  | 
 | 	 * These flag bits must match the definitions in <asm/cpufeature.h>. | 
 | 	 * NULL means this bit is undefined or reserved; either way it doesn't | 
 | 	 * have meaning as far as Linux is concerned.  Note that it's important | 
 | 	 * to realize there is a difference between this table and CPUID -- if | 
 | 	 * applications want to get the raw CPUID data, they should access | 
 | 	 * /dev/cpu/<cpu_nr>/cpuid instead. | 
 | 	 */ | 
 | 	static char *x86_cap_flags[] = { | 
 | 		/* Intel-defined */ | 
 | 	        "fpu", "vme", "de", "pse", "tsc", "msr", "pae", "mce", | 
 | 	        "cx8", "apic", NULL, "sep", "mtrr", "pge", "mca", "cmov", | 
 | 	        "pat", "pse36", "pn", "clflush", NULL, "dts", "acpi", "mmx", | 
 | 	        "fxsr", "sse", "sse2", "ss", "ht", "tm", "ia64", NULL, | 
 |  | 
 | 		/* AMD-defined */ | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, "syscall", NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, "nx", NULL, "mmxext", NULL, | 
 | 		NULL, "fxsr_opt", "pdpe1gb", "rdtscp", NULL, "lm", | 
 | 		"3dnowext", "3dnow", | 
 |  | 
 | 		/* Transmeta-defined */ | 
 | 		"recovery", "longrun", NULL, "lrti", NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 |  | 
 | 		/* Other (Linux-defined) */ | 
 | 		"cxmmx", NULL, "cyrix_arr", "centaur_mcr", NULL, | 
 | 		"constant_tsc", NULL, NULL, | 
 | 		"up", NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 |  | 
 | 		/* Intel-defined (#2) */ | 
 | 		"pni", NULL, NULL, "monitor", "ds_cpl", "vmx", "smx", "est", | 
 | 		"tm2", "ssse3", "cid", NULL, NULL, "cx16", "xtpr", NULL, | 
 | 		NULL, NULL, "dca", NULL, NULL, NULL, NULL, "popcnt", | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 |  | 
 | 		/* VIA/Cyrix/Centaur-defined */ | 
 | 		NULL, NULL, "rng", "rng_en", NULL, NULL, "ace", "ace_en", | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 |  | 
 | 		/* AMD-defined (#2) */ | 
 | 		"lahf_lm", "cmp_legacy", "svm", "extapic", "cr8_legacy", | 
 | 		"altmovcr8", "abm", "sse4a", | 
 | 		"misalignsse", "3dnowprefetch", | 
 | 		"osvw", "ibs", NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 		NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, | 
 | 	}; | 
 | 	static char *x86_power_flags[] = {  | 
 | 		"ts",	/* temperature sensor */ | 
 | 		"fid",  /* frequency id control */ | 
 | 		"vid",  /* voltage id control */ | 
 | 		"ttp",  /* thermal trip */ | 
 | 		"tm", | 
 | 		"stc", | 
 | 		"100mhzsteps", | 
 | 		"hwpstate", | 
 | 		"",	/* tsc invariant mapped to constant_tsc */ | 
 | 		/* nothing */ | 
 | 	}; | 
 |  | 
 |  | 
 | #ifdef CONFIG_SMP | 
 | 	if (!cpu_online(c-cpu_data)) | 
 | 		return 0; | 
 | #endif | 
 |  | 
 | 	seq_printf(m,"processor\t: %u\n" | 
 | 		     "vendor_id\t: %s\n" | 
 | 		     "cpu family\t: %d\n" | 
 | 		     "model\t\t: %d\n" | 
 | 		     "model name\t: %s\n", | 
 | 		     (unsigned)(c-cpu_data), | 
 | 		     c->x86_vendor_id[0] ? c->x86_vendor_id : "unknown", | 
 | 		     c->x86, | 
 | 		     (int)c->x86_model, | 
 | 		     c->x86_model_id[0] ? c->x86_model_id : "unknown"); | 
 | 	 | 
 | 	if (c->x86_mask || c->cpuid_level >= 0) | 
 | 		seq_printf(m, "stepping\t: %d\n", c->x86_mask); | 
 | 	else | 
 | 		seq_printf(m, "stepping\t: unknown\n"); | 
 | 	 | 
 | 	if (cpu_has(c,X86_FEATURE_TSC)) { | 
 | 		unsigned int freq = cpufreq_quick_get((unsigned)(c-cpu_data)); | 
 | 		if (!freq) | 
 | 			freq = cpu_khz; | 
 | 		seq_printf(m, "cpu MHz\t\t: %u.%03u\n", | 
 | 			     freq / 1000, (freq % 1000)); | 
 | 	} | 
 |  | 
 | 	/* Cache size */ | 
 | 	if (c->x86_cache_size >= 0)  | 
 | 		seq_printf(m, "cache size\t: %d KB\n", c->x86_cache_size); | 
 | 	 | 
 | #ifdef CONFIG_SMP | 
 | 	if (smp_num_siblings * c->x86_max_cores > 1) { | 
 | 		int cpu = c - cpu_data; | 
 | 		seq_printf(m, "physical id\t: %d\n", c->phys_proc_id); | 
 | 		seq_printf(m, "siblings\t: %d\n", cpus_weight(cpu_core_map[cpu])); | 
 | 		seq_printf(m, "core id\t\t: %d\n", c->cpu_core_id); | 
 | 		seq_printf(m, "cpu cores\t: %d\n", c->booted_cores); | 
 | 	} | 
 | #endif	 | 
 |  | 
 | 	seq_printf(m, | 
 | 	        "fpu\t\t: yes\n" | 
 | 	        "fpu_exception\t: yes\n" | 
 | 	        "cpuid level\t: %d\n" | 
 | 	        "wp\t\t: yes\n" | 
 | 	        "flags\t\t:", | 
 | 		   c->cpuid_level); | 
 |  | 
 | 	{  | 
 | 		int i;  | 
 | 		for ( i = 0 ; i < 32*NCAPINTS ; i++ ) | 
 | 			if (cpu_has(c, i) && x86_cap_flags[i] != NULL) | 
 | 				seq_printf(m, " %s", x86_cap_flags[i]); | 
 | 	} | 
 | 		 | 
 | 	seq_printf(m, "\nbogomips\t: %lu.%02lu\n", | 
 | 		   c->loops_per_jiffy/(500000/HZ), | 
 | 		   (c->loops_per_jiffy/(5000/HZ)) % 100); | 
 |  | 
 | 	if (c->x86_tlbsize > 0)  | 
 | 		seq_printf(m, "TLB size\t: %d 4K pages\n", c->x86_tlbsize); | 
 | 	seq_printf(m, "clflush size\t: %d\n", c->x86_clflush_size); | 
 | 	seq_printf(m, "cache_alignment\t: %d\n", c->x86_cache_alignment); | 
 |  | 
 | 	seq_printf(m, "address sizes\t: %u bits physical, %u bits virtual\n",  | 
 | 		   c->x86_phys_bits, c->x86_virt_bits); | 
 |  | 
 | 	seq_printf(m, "power management:"); | 
 | 	{ | 
 | 		unsigned i; | 
 | 		for (i = 0; i < 32; i++)  | 
 | 			if (c->x86_power & (1 << i)) { | 
 | 				if (i < ARRAY_SIZE(x86_power_flags) && | 
 | 					x86_power_flags[i]) | 
 | 					seq_printf(m, "%s%s", | 
 | 						x86_power_flags[i][0]?" ":"", | 
 | 						x86_power_flags[i]); | 
 | 				else | 
 | 					seq_printf(m, " [%d]", i); | 
 | 			} | 
 | 	} | 
 |  | 
 | 	seq_printf(m, "\n\n"); | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void *c_start(struct seq_file *m, loff_t *pos) | 
 | { | 
 | 	return *pos < NR_CPUS ? cpu_data + *pos : NULL; | 
 | } | 
 |  | 
 | static void *c_next(struct seq_file *m, void *v, loff_t *pos) | 
 | { | 
 | 	++*pos; | 
 | 	return c_start(m, pos); | 
 | } | 
 |  | 
 | static void c_stop(struct seq_file *m, void *v) | 
 | { | 
 | } | 
 |  | 
 | struct seq_operations cpuinfo_op = { | 
 | 	.start =c_start, | 
 | 	.next =	c_next, | 
 | 	.stop =	c_stop, | 
 | 	.show =	show_cpuinfo, | 
 | }; |