| /* | 
 |  * Kernel-based Virtual Machine driver for Linux | 
 |  * | 
 |  * This module enables machines with Intel VT-x extensions to run virtual | 
 |  * machines without emulation or binary translation. | 
 |  * | 
 |  * MMU support | 
 |  * | 
 |  * Copyright (C) 2006 Qumranet, Inc. | 
 |  * | 
 |  * Authors: | 
 |  *   Yaniv Kamay  <yaniv@qumranet.com> | 
 |  *   Avi Kivity   <avi@qumranet.com> | 
 |  * | 
 |  * This work is licensed under the terms of the GNU GPL, version 2.  See | 
 |  * the COPYING file in the top-level directory. | 
 |  * | 
 |  */ | 
 | #include <linux/types.h> | 
 | #include <linux/string.h> | 
 | #include <asm/page.h> | 
 | #include <linux/mm.h> | 
 | #include <linux/highmem.h> | 
 | #include <linux/module.h> | 
 |  | 
 | #include "vmx.h" | 
 | #include "kvm.h" | 
 |  | 
 | #undef MMU_DEBUG | 
 |  | 
 | #undef AUDIT | 
 |  | 
 | #ifdef AUDIT | 
 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg); | 
 | #else | 
 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) {} | 
 | #endif | 
 |  | 
 | #ifdef MMU_DEBUG | 
 |  | 
 | #define pgprintk(x...) do { if (dbg) printk(x); } while (0) | 
 | #define rmap_printk(x...) do { if (dbg) printk(x); } while (0) | 
 |  | 
 | #else | 
 |  | 
 | #define pgprintk(x...) do { } while (0) | 
 | #define rmap_printk(x...) do { } while (0) | 
 |  | 
 | #endif | 
 |  | 
 | #if defined(MMU_DEBUG) || defined(AUDIT) | 
 | static int dbg = 1; | 
 | #endif | 
 |  | 
 | #ifndef MMU_DEBUG | 
 | #define ASSERT(x) do { } while (0) | 
 | #else | 
 | #define ASSERT(x)							\ | 
 | 	if (!(x)) {							\ | 
 | 		printk(KERN_WARNING "assertion failed %s:%d: %s\n",	\ | 
 | 		       __FILE__, __LINE__, #x);				\ | 
 | 	} | 
 | #endif | 
 |  | 
 | #define PT64_PT_BITS 9 | 
 | #define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS) | 
 | #define PT32_PT_BITS 10 | 
 | #define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS) | 
 |  | 
 | #define PT_WRITABLE_SHIFT 1 | 
 |  | 
 | #define PT_PRESENT_MASK (1ULL << 0) | 
 | #define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT) | 
 | #define PT_USER_MASK (1ULL << 2) | 
 | #define PT_PWT_MASK (1ULL << 3) | 
 | #define PT_PCD_MASK (1ULL << 4) | 
 | #define PT_ACCESSED_MASK (1ULL << 5) | 
 | #define PT_DIRTY_MASK (1ULL << 6) | 
 | #define PT_PAGE_SIZE_MASK (1ULL << 7) | 
 | #define PT_PAT_MASK (1ULL << 7) | 
 | #define PT_GLOBAL_MASK (1ULL << 8) | 
 | #define PT64_NX_MASK (1ULL << 63) | 
 |  | 
 | #define PT_PAT_SHIFT 7 | 
 | #define PT_DIR_PAT_SHIFT 12 | 
 | #define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT) | 
 |  | 
 | #define PT32_DIR_PSE36_SIZE 4 | 
 | #define PT32_DIR_PSE36_SHIFT 13 | 
 | #define PT32_DIR_PSE36_MASK (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT) | 
 |  | 
 |  | 
 | #define PT32_PTE_COPY_MASK \ | 
 | 	(PT_PRESENT_MASK | PT_ACCESSED_MASK | PT_DIRTY_MASK | PT_GLOBAL_MASK) | 
 |  | 
 | #define PT64_PTE_COPY_MASK (PT64_NX_MASK | PT32_PTE_COPY_MASK) | 
 |  | 
 | #define PT_FIRST_AVAIL_BITS_SHIFT 9 | 
 | #define PT64_SECOND_AVAIL_BITS_SHIFT 52 | 
 |  | 
 | #define PT_SHADOW_PS_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | 
 | #define PT_SHADOW_IO_MARK (1ULL << PT_FIRST_AVAIL_BITS_SHIFT) | 
 |  | 
 | #define PT_SHADOW_WRITABLE_SHIFT (PT_FIRST_AVAIL_BITS_SHIFT + 1) | 
 | #define PT_SHADOW_WRITABLE_MASK (1ULL << PT_SHADOW_WRITABLE_SHIFT) | 
 |  | 
 | #define PT_SHADOW_USER_SHIFT (PT_SHADOW_WRITABLE_SHIFT + 1) | 
 | #define PT_SHADOW_USER_MASK (1ULL << (PT_SHADOW_USER_SHIFT)) | 
 |  | 
 | #define PT_SHADOW_BITS_OFFSET (PT_SHADOW_WRITABLE_SHIFT - PT_WRITABLE_SHIFT) | 
 |  | 
 | #define VALID_PAGE(x) ((x) != INVALID_PAGE) | 
 |  | 
 | #define PT64_LEVEL_BITS 9 | 
 |  | 
 | #define PT64_LEVEL_SHIFT(level) \ | 
 | 		( PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS ) | 
 |  | 
 | #define PT64_LEVEL_MASK(level) \ | 
 | 		(((1ULL << PT64_LEVEL_BITS) - 1) << PT64_LEVEL_SHIFT(level)) | 
 |  | 
 | #define PT64_INDEX(address, level)\ | 
 | 	(((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1)) | 
 |  | 
 |  | 
 | #define PT32_LEVEL_BITS 10 | 
 |  | 
 | #define PT32_LEVEL_SHIFT(level) \ | 
 | 		( PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS ) | 
 |  | 
 | #define PT32_LEVEL_MASK(level) \ | 
 | 		(((1ULL << PT32_LEVEL_BITS) - 1) << PT32_LEVEL_SHIFT(level)) | 
 |  | 
 | #define PT32_INDEX(address, level)\ | 
 | 	(((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1)) | 
 |  | 
 |  | 
 | #define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)) | 
 | #define PT64_DIR_BASE_ADDR_MASK \ | 
 | 	(PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1)) | 
 |  | 
 | #define PT32_BASE_ADDR_MASK PAGE_MASK | 
 | #define PT32_DIR_BASE_ADDR_MASK \ | 
 | 	(PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1)) | 
 |  | 
 |  | 
 | #define PFERR_PRESENT_MASK (1U << 0) | 
 | #define PFERR_WRITE_MASK (1U << 1) | 
 | #define PFERR_USER_MASK (1U << 2) | 
 | #define PFERR_FETCH_MASK (1U << 4) | 
 |  | 
 | #define PT64_ROOT_LEVEL 4 | 
 | #define PT32_ROOT_LEVEL 2 | 
 | #define PT32E_ROOT_LEVEL 3 | 
 |  | 
 | #define PT_DIRECTORY_LEVEL 2 | 
 | #define PT_PAGE_TABLE_LEVEL 1 | 
 |  | 
 | #define RMAP_EXT 4 | 
 |  | 
 | struct kvm_rmap_desc { | 
 | 	u64 *shadow_ptes[RMAP_EXT]; | 
 | 	struct kvm_rmap_desc *more; | 
 | }; | 
 |  | 
 | static struct kmem_cache *pte_chain_cache; | 
 | static struct kmem_cache *rmap_desc_cache; | 
 |  | 
 | static int is_write_protection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->cr0 & CR0_WP_MASK; | 
 | } | 
 |  | 
 | static int is_cpuid_PSE36(void) | 
 | { | 
 | 	return 1; | 
 | } | 
 |  | 
 | static int is_nx(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return vcpu->shadow_efer & EFER_NX; | 
 | } | 
 |  | 
 | static int is_present_pte(unsigned long pte) | 
 | { | 
 | 	return pte & PT_PRESENT_MASK; | 
 | } | 
 |  | 
 | static int is_writeble_pte(unsigned long pte) | 
 | { | 
 | 	return pte & PT_WRITABLE_MASK; | 
 | } | 
 |  | 
 | static int is_io_pte(unsigned long pte) | 
 | { | 
 | 	return pte & PT_SHADOW_IO_MARK; | 
 | } | 
 |  | 
 | static int is_rmap_pte(u64 pte) | 
 | { | 
 | 	return (pte & (PT_WRITABLE_MASK | PT_PRESENT_MASK)) | 
 | 		== (PT_WRITABLE_MASK | PT_PRESENT_MASK); | 
 | } | 
 |  | 
 | static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache, | 
 | 				  struct kmem_cache *base_cache, int min, | 
 | 				  gfp_t gfp_flags) | 
 | { | 
 | 	void *obj; | 
 |  | 
 | 	if (cache->nobjs >= min) | 
 | 		return 0; | 
 | 	while (cache->nobjs < ARRAY_SIZE(cache->objects)) { | 
 | 		obj = kmem_cache_zalloc(base_cache, gfp_flags); | 
 | 		if (!obj) | 
 | 			return -ENOMEM; | 
 | 		cache->objects[cache->nobjs++] = obj; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc) | 
 | { | 
 | 	while (mc->nobjs) | 
 | 		kfree(mc->objects[--mc->nobjs]); | 
 | } | 
 |  | 
 | static int __mmu_topup_memory_caches(struct kvm_vcpu *vcpu, gfp_t gfp_flags) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = mmu_topup_memory_cache(&vcpu->mmu_pte_chain_cache, | 
 | 				   pte_chain_cache, 4, gfp_flags); | 
 | 	if (r) | 
 | 		goto out; | 
 | 	r = mmu_topup_memory_cache(&vcpu->mmu_rmap_desc_cache, | 
 | 				   rmap_desc_cache, 1, gfp_flags); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	r = __mmu_topup_memory_caches(vcpu, GFP_NOWAIT); | 
 | 	if (r < 0) { | 
 | 		spin_unlock(&vcpu->kvm->lock); | 
 | 		kvm_arch_ops->vcpu_put(vcpu); | 
 | 		r = __mmu_topup_memory_caches(vcpu, GFP_KERNEL); | 
 | 		kvm_arch_ops->vcpu_load(vcpu); | 
 | 		spin_lock(&vcpu->kvm->lock); | 
 | 	} | 
 | 	return r; | 
 | } | 
 |  | 
 | static void mmu_free_memory_caches(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	mmu_free_memory_cache(&vcpu->mmu_pte_chain_cache); | 
 | 	mmu_free_memory_cache(&vcpu->mmu_rmap_desc_cache); | 
 | } | 
 |  | 
 | static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc, | 
 | 				    size_t size) | 
 | { | 
 | 	void *p; | 
 |  | 
 | 	BUG_ON(!mc->nobjs); | 
 | 	p = mc->objects[--mc->nobjs]; | 
 | 	memset(p, 0, size); | 
 | 	return p; | 
 | } | 
 |  | 
 | static void mmu_memory_cache_free(struct kvm_mmu_memory_cache *mc, void *obj) | 
 | { | 
 | 	if (mc->nobjs < KVM_NR_MEM_OBJS) | 
 | 		mc->objects[mc->nobjs++] = obj; | 
 | 	else | 
 | 		kfree(obj); | 
 | } | 
 |  | 
 | static struct kvm_pte_chain *mmu_alloc_pte_chain(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return mmu_memory_cache_alloc(&vcpu->mmu_pte_chain_cache, | 
 | 				      sizeof(struct kvm_pte_chain)); | 
 | } | 
 |  | 
 | static void mmu_free_pte_chain(struct kvm_vcpu *vcpu, | 
 | 			       struct kvm_pte_chain *pc) | 
 | { | 
 | 	mmu_memory_cache_free(&vcpu->mmu_pte_chain_cache, pc); | 
 | } | 
 |  | 
 | static struct kvm_rmap_desc *mmu_alloc_rmap_desc(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return mmu_memory_cache_alloc(&vcpu->mmu_rmap_desc_cache, | 
 | 				      sizeof(struct kvm_rmap_desc)); | 
 | } | 
 |  | 
 | static void mmu_free_rmap_desc(struct kvm_vcpu *vcpu, | 
 | 			       struct kvm_rmap_desc *rd) | 
 | { | 
 | 	mmu_memory_cache_free(&vcpu->mmu_rmap_desc_cache, rd); | 
 | } | 
 |  | 
 | /* | 
 |  * Reverse mapping data structures: | 
 |  * | 
 |  * If page->private bit zero is zero, then page->private points to the | 
 |  * shadow page table entry that points to page_address(page). | 
 |  * | 
 |  * If page->private bit zero is one, (then page->private & ~1) points | 
 |  * to a struct kvm_rmap_desc containing more mappings. | 
 |  */ | 
 | static void rmap_add(struct kvm_vcpu *vcpu, u64 *spte) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kvm_rmap_desc *desc; | 
 | 	int i; | 
 |  | 
 | 	if (!is_rmap_pte(*spte)) | 
 | 		return; | 
 | 	page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); | 
 | 	if (!page_private(page)) { | 
 | 		rmap_printk("rmap_add: %p %llx 0->1\n", spte, *spte); | 
 | 		set_page_private(page,(unsigned long)spte); | 
 | 	} else if (!(page_private(page) & 1)) { | 
 | 		rmap_printk("rmap_add: %p %llx 1->many\n", spte, *spte); | 
 | 		desc = mmu_alloc_rmap_desc(vcpu); | 
 | 		desc->shadow_ptes[0] = (u64 *)page_private(page); | 
 | 		desc->shadow_ptes[1] = spte; | 
 | 		set_page_private(page,(unsigned long)desc | 1); | 
 | 	} else { | 
 | 		rmap_printk("rmap_add: %p %llx many->many\n", spte, *spte); | 
 | 		desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul); | 
 | 		while (desc->shadow_ptes[RMAP_EXT-1] && desc->more) | 
 | 			desc = desc->more; | 
 | 		if (desc->shadow_ptes[RMAP_EXT-1]) { | 
 | 			desc->more = mmu_alloc_rmap_desc(vcpu); | 
 | 			desc = desc->more; | 
 | 		} | 
 | 		for (i = 0; desc->shadow_ptes[i]; ++i) | 
 | 			; | 
 | 		desc->shadow_ptes[i] = spte; | 
 | 	} | 
 | } | 
 |  | 
 | static void rmap_desc_remove_entry(struct kvm_vcpu *vcpu, | 
 | 				   struct page *page, | 
 | 				   struct kvm_rmap_desc *desc, | 
 | 				   int i, | 
 | 				   struct kvm_rmap_desc *prev_desc) | 
 | { | 
 | 	int j; | 
 |  | 
 | 	for (j = RMAP_EXT - 1; !desc->shadow_ptes[j] && j > i; --j) | 
 | 		; | 
 | 	desc->shadow_ptes[i] = desc->shadow_ptes[j]; | 
 | 	desc->shadow_ptes[j] = NULL; | 
 | 	if (j != 0) | 
 | 		return; | 
 | 	if (!prev_desc && !desc->more) | 
 | 		set_page_private(page,(unsigned long)desc->shadow_ptes[0]); | 
 | 	else | 
 | 		if (prev_desc) | 
 | 			prev_desc->more = desc->more; | 
 | 		else | 
 | 			set_page_private(page,(unsigned long)desc->more | 1); | 
 | 	mmu_free_rmap_desc(vcpu, desc); | 
 | } | 
 |  | 
 | static void rmap_remove(struct kvm_vcpu *vcpu, u64 *spte) | 
 | { | 
 | 	struct page *page; | 
 | 	struct kvm_rmap_desc *desc; | 
 | 	struct kvm_rmap_desc *prev_desc; | 
 | 	int i; | 
 |  | 
 | 	if (!is_rmap_pte(*spte)) | 
 | 		return; | 
 | 	page = pfn_to_page((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT); | 
 | 	if (!page_private(page)) { | 
 | 		printk(KERN_ERR "rmap_remove: %p %llx 0->BUG\n", spte, *spte); | 
 | 		BUG(); | 
 | 	} else if (!(page_private(page) & 1)) { | 
 | 		rmap_printk("rmap_remove:  %p %llx 1->0\n", spte, *spte); | 
 | 		if ((u64 *)page_private(page) != spte) { | 
 | 			printk(KERN_ERR "rmap_remove:  %p %llx 1->BUG\n", | 
 | 			       spte, *spte); | 
 | 			BUG(); | 
 | 		} | 
 | 		set_page_private(page,0); | 
 | 	} else { | 
 | 		rmap_printk("rmap_remove:  %p %llx many->many\n", spte, *spte); | 
 | 		desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul); | 
 | 		prev_desc = NULL; | 
 | 		while (desc) { | 
 | 			for (i = 0; i < RMAP_EXT && desc->shadow_ptes[i]; ++i) | 
 | 				if (desc->shadow_ptes[i] == spte) { | 
 | 					rmap_desc_remove_entry(vcpu, page, | 
 | 							       desc, i, | 
 | 							       prev_desc); | 
 | 					return; | 
 | 				} | 
 | 			prev_desc = desc; | 
 | 			desc = desc->more; | 
 | 		} | 
 | 		BUG(); | 
 | 	} | 
 | } | 
 |  | 
 | static void rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	struct page *page; | 
 | 	struct kvm_rmap_desc *desc; | 
 | 	u64 *spte; | 
 |  | 
 | 	page = gfn_to_page(kvm, gfn); | 
 | 	BUG_ON(!page); | 
 |  | 
 | 	while (page_private(page)) { | 
 | 		if (!(page_private(page) & 1)) | 
 | 			spte = (u64 *)page_private(page); | 
 | 		else { | 
 | 			desc = (struct kvm_rmap_desc *)(page_private(page) & ~1ul); | 
 | 			spte = desc->shadow_ptes[0]; | 
 | 		} | 
 | 		BUG_ON(!spte); | 
 | 		BUG_ON((*spte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT | 
 | 		       != page_to_pfn(page)); | 
 | 		BUG_ON(!(*spte & PT_PRESENT_MASK)); | 
 | 		BUG_ON(!(*spte & PT_WRITABLE_MASK)); | 
 | 		rmap_printk("rmap_write_protect: spte %p %llx\n", spte, *spte); | 
 | 		rmap_remove(vcpu, spte); | 
 | 		kvm_arch_ops->tlb_flush(vcpu); | 
 | 		*spte &= ~(u64)PT_WRITABLE_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | #ifdef MMU_DEBUG | 
 | static int is_empty_shadow_page(hpa_t page_hpa) | 
 | { | 
 | 	u64 *pos; | 
 | 	u64 *end; | 
 |  | 
 | 	for (pos = __va(page_hpa), end = pos + PAGE_SIZE / sizeof(u64); | 
 | 		      pos != end; pos++) | 
 | 		if (*pos != 0) { | 
 | 			printk(KERN_ERR "%s: %p %llx\n", __FUNCTION__, | 
 | 			       pos, *pos); | 
 | 			return 0; | 
 | 		} | 
 | 	return 1; | 
 | } | 
 | #endif | 
 |  | 
 | static void kvm_mmu_free_page(struct kvm_vcpu *vcpu, hpa_t page_hpa) | 
 | { | 
 | 	struct kvm_mmu_page *page_head = page_header(page_hpa); | 
 |  | 
 | 	ASSERT(is_empty_shadow_page(page_hpa)); | 
 | 	page_head->page_hpa = page_hpa; | 
 | 	list_move(&page_head->link, &vcpu->free_pages); | 
 | 	++vcpu->kvm->n_free_mmu_pages; | 
 | } | 
 |  | 
 | static unsigned kvm_page_table_hashfn(gfn_t gfn) | 
 | { | 
 | 	return gfn; | 
 | } | 
 |  | 
 | static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, | 
 | 					       u64 *parent_pte) | 
 | { | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | 	if (list_empty(&vcpu->free_pages)) | 
 | 		return NULL; | 
 |  | 
 | 	page = list_entry(vcpu->free_pages.next, struct kvm_mmu_page, link); | 
 | 	list_move(&page->link, &vcpu->kvm->active_mmu_pages); | 
 | 	ASSERT(is_empty_shadow_page(page->page_hpa)); | 
 | 	page->slot_bitmap = 0; | 
 | 	page->multimapped = 0; | 
 | 	page->parent_pte = parent_pte; | 
 | 	--vcpu->kvm->n_free_mmu_pages; | 
 | 	return page; | 
 | } | 
 |  | 
 | static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu, | 
 | 				    struct kvm_mmu_page *page, u64 *parent_pte) | 
 | { | 
 | 	struct kvm_pte_chain *pte_chain; | 
 | 	struct hlist_node *node; | 
 | 	int i; | 
 |  | 
 | 	if (!parent_pte) | 
 | 		return; | 
 | 	if (!page->multimapped) { | 
 | 		u64 *old = page->parent_pte; | 
 |  | 
 | 		if (!old) { | 
 | 			page->parent_pte = parent_pte; | 
 | 			return; | 
 | 		} | 
 | 		page->multimapped = 1; | 
 | 		pte_chain = mmu_alloc_pte_chain(vcpu); | 
 | 		INIT_HLIST_HEAD(&page->parent_ptes); | 
 | 		hlist_add_head(&pte_chain->link, &page->parent_ptes); | 
 | 		pte_chain->parent_ptes[0] = old; | 
 | 	} | 
 | 	hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) { | 
 | 		if (pte_chain->parent_ptes[NR_PTE_CHAIN_ENTRIES-1]) | 
 | 			continue; | 
 | 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) | 
 | 			if (!pte_chain->parent_ptes[i]) { | 
 | 				pte_chain->parent_ptes[i] = parent_pte; | 
 | 				return; | 
 | 			} | 
 | 	} | 
 | 	pte_chain = mmu_alloc_pte_chain(vcpu); | 
 | 	BUG_ON(!pte_chain); | 
 | 	hlist_add_head(&pte_chain->link, &page->parent_ptes); | 
 | 	pte_chain->parent_ptes[0] = parent_pte; | 
 | } | 
 |  | 
 | static void mmu_page_remove_parent_pte(struct kvm_vcpu *vcpu, | 
 | 				       struct kvm_mmu_page *page, | 
 | 				       u64 *parent_pte) | 
 | { | 
 | 	struct kvm_pte_chain *pte_chain; | 
 | 	struct hlist_node *node; | 
 | 	int i; | 
 |  | 
 | 	if (!page->multimapped) { | 
 | 		BUG_ON(page->parent_pte != parent_pte); | 
 | 		page->parent_pte = NULL; | 
 | 		return; | 
 | 	} | 
 | 	hlist_for_each_entry(pte_chain, node, &page->parent_ptes, link) | 
 | 		for (i = 0; i < NR_PTE_CHAIN_ENTRIES; ++i) { | 
 | 			if (!pte_chain->parent_ptes[i]) | 
 | 				break; | 
 | 			if (pte_chain->parent_ptes[i] != parent_pte) | 
 | 				continue; | 
 | 			while (i + 1 < NR_PTE_CHAIN_ENTRIES | 
 | 				&& pte_chain->parent_ptes[i + 1]) { | 
 | 				pte_chain->parent_ptes[i] | 
 | 					= pte_chain->parent_ptes[i + 1]; | 
 | 				++i; | 
 | 			} | 
 | 			pte_chain->parent_ptes[i] = NULL; | 
 | 			if (i == 0) { | 
 | 				hlist_del(&pte_chain->link); | 
 | 				mmu_free_pte_chain(vcpu, pte_chain); | 
 | 				if (hlist_empty(&page->parent_ptes)) { | 
 | 					page->multimapped = 0; | 
 | 					page->parent_pte = NULL; | 
 | 				} | 
 | 			} | 
 | 			return; | 
 | 		} | 
 | 	BUG(); | 
 | } | 
 |  | 
 | static struct kvm_mmu_page *kvm_mmu_lookup_page(struct kvm_vcpu *vcpu, | 
 | 						gfn_t gfn) | 
 | { | 
 | 	unsigned index; | 
 | 	struct hlist_head *bucket; | 
 | 	struct kvm_mmu_page *page; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); | 
 | 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | 
 | 	bucket = &vcpu->kvm->mmu_page_hash[index]; | 
 | 	hlist_for_each_entry(page, node, bucket, hash_link) | 
 | 		if (page->gfn == gfn && !page->role.metaphysical) { | 
 | 			pgprintk("%s: found role %x\n", | 
 | 				 __FUNCTION__, page->role.word); | 
 | 			return page; | 
 | 		} | 
 | 	return NULL; | 
 | } | 
 |  | 
 | static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu, | 
 | 					     gfn_t gfn, | 
 | 					     gva_t gaddr, | 
 | 					     unsigned level, | 
 | 					     int metaphysical, | 
 | 					     unsigned hugepage_access, | 
 | 					     u64 *parent_pte) | 
 | { | 
 | 	union kvm_mmu_page_role role; | 
 | 	unsigned index; | 
 | 	unsigned quadrant; | 
 | 	struct hlist_head *bucket; | 
 | 	struct kvm_mmu_page *page; | 
 | 	struct hlist_node *node; | 
 |  | 
 | 	role.word = 0; | 
 | 	role.glevels = vcpu->mmu.root_level; | 
 | 	role.level = level; | 
 | 	role.metaphysical = metaphysical; | 
 | 	role.hugepage_access = hugepage_access; | 
 | 	if (vcpu->mmu.root_level <= PT32_ROOT_LEVEL) { | 
 | 		quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level)); | 
 | 		quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1; | 
 | 		role.quadrant = quadrant; | 
 | 	} | 
 | 	pgprintk("%s: looking gfn %lx role %x\n", __FUNCTION__, | 
 | 		 gfn, role.word); | 
 | 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | 
 | 	bucket = &vcpu->kvm->mmu_page_hash[index]; | 
 | 	hlist_for_each_entry(page, node, bucket, hash_link) | 
 | 		if (page->gfn == gfn && page->role.word == role.word) { | 
 | 			mmu_page_add_parent_pte(vcpu, page, parent_pte); | 
 | 			pgprintk("%s: found\n", __FUNCTION__); | 
 | 			return page; | 
 | 		} | 
 | 	page = kvm_mmu_alloc_page(vcpu, parent_pte); | 
 | 	if (!page) | 
 | 		return page; | 
 | 	pgprintk("%s: adding gfn %lx role %x\n", __FUNCTION__, gfn, role.word); | 
 | 	page->gfn = gfn; | 
 | 	page->role = role; | 
 | 	hlist_add_head(&page->hash_link, bucket); | 
 | 	if (!metaphysical) | 
 | 		rmap_write_protect(vcpu, gfn); | 
 | 	return page; | 
 | } | 
 |  | 
 | static void kvm_mmu_page_unlink_children(struct kvm_vcpu *vcpu, | 
 | 					 struct kvm_mmu_page *page) | 
 | { | 
 | 	unsigned i; | 
 | 	u64 *pt; | 
 | 	u64 ent; | 
 |  | 
 | 	pt = __va(page->page_hpa); | 
 |  | 
 | 	if (page->role.level == PT_PAGE_TABLE_LEVEL) { | 
 | 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
 | 			if (pt[i] & PT_PRESENT_MASK) | 
 | 				rmap_remove(vcpu, &pt[i]); | 
 | 			pt[i] = 0; | 
 | 		} | 
 | 		kvm_arch_ops->tlb_flush(vcpu); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
 | 		ent = pt[i]; | 
 |  | 
 | 		pt[i] = 0; | 
 | 		if (!(ent & PT_PRESENT_MASK)) | 
 | 			continue; | 
 | 		ent &= PT64_BASE_ADDR_MASK; | 
 | 		mmu_page_remove_parent_pte(vcpu, page_header(ent), &pt[i]); | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_mmu_put_page(struct kvm_vcpu *vcpu, | 
 | 			     struct kvm_mmu_page *page, | 
 | 			     u64 *parent_pte) | 
 | { | 
 | 	mmu_page_remove_parent_pte(vcpu, page, parent_pte); | 
 | } | 
 |  | 
 | static void kvm_mmu_zap_page(struct kvm_vcpu *vcpu, | 
 | 			     struct kvm_mmu_page *page) | 
 | { | 
 | 	u64 *parent_pte; | 
 |  | 
 | 	while (page->multimapped || page->parent_pte) { | 
 | 		if (!page->multimapped) | 
 | 			parent_pte = page->parent_pte; | 
 | 		else { | 
 | 			struct kvm_pte_chain *chain; | 
 |  | 
 | 			chain = container_of(page->parent_ptes.first, | 
 | 					     struct kvm_pte_chain, link); | 
 | 			parent_pte = chain->parent_ptes[0]; | 
 | 		} | 
 | 		BUG_ON(!parent_pte); | 
 | 		kvm_mmu_put_page(vcpu, page, parent_pte); | 
 | 		*parent_pte = 0; | 
 | 	} | 
 | 	kvm_mmu_page_unlink_children(vcpu, page); | 
 | 	if (!page->root_count) { | 
 | 		hlist_del(&page->hash_link); | 
 | 		kvm_mmu_free_page(vcpu, page->page_hpa); | 
 | 	} else | 
 | 		list_move(&page->link, &vcpu->kvm->active_mmu_pages); | 
 | } | 
 |  | 
 | static int kvm_mmu_unprotect_page(struct kvm_vcpu *vcpu, gfn_t gfn) | 
 | { | 
 | 	unsigned index; | 
 | 	struct hlist_head *bucket; | 
 | 	struct kvm_mmu_page *page; | 
 | 	struct hlist_node *node, *n; | 
 | 	int r; | 
 |  | 
 | 	pgprintk("%s: looking for gfn %lx\n", __FUNCTION__, gfn); | 
 | 	r = 0; | 
 | 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | 
 | 	bucket = &vcpu->kvm->mmu_page_hash[index]; | 
 | 	hlist_for_each_entry_safe(page, node, n, bucket, hash_link) | 
 | 		if (page->gfn == gfn && !page->role.metaphysical) { | 
 | 			pgprintk("%s: gfn %lx role %x\n", __FUNCTION__, gfn, | 
 | 				 page->role.word); | 
 | 			kvm_mmu_zap_page(vcpu, page); | 
 | 			r = 1; | 
 | 		} | 
 | 	return r; | 
 | } | 
 |  | 
 | static void page_header_update_slot(struct kvm *kvm, void *pte, gpa_t gpa) | 
 | { | 
 | 	int slot = memslot_id(kvm, gfn_to_memslot(kvm, gpa >> PAGE_SHIFT)); | 
 | 	struct kvm_mmu_page *page_head = page_header(__pa(pte)); | 
 |  | 
 | 	__set_bit(slot, &page_head->slot_bitmap); | 
 | } | 
 |  | 
 | hpa_t safe_gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa) | 
 | { | 
 | 	hpa_t hpa = gpa_to_hpa(vcpu, gpa); | 
 |  | 
 | 	return is_error_hpa(hpa) ? bad_page_address | (gpa & ~PAGE_MASK): hpa; | 
 | } | 
 |  | 
 | hpa_t gpa_to_hpa(struct kvm_vcpu *vcpu, gpa_t gpa) | 
 | { | 
 | 	struct page *page; | 
 |  | 
 | 	ASSERT((gpa & HPA_ERR_MASK) == 0); | 
 | 	page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT); | 
 | 	if (!page) | 
 | 		return gpa | HPA_ERR_MASK; | 
 | 	return ((hpa_t)page_to_pfn(page) << PAGE_SHIFT) | 
 | 		| (gpa & (PAGE_SIZE-1)); | 
 | } | 
 |  | 
 | hpa_t gva_to_hpa(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | 	gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); | 
 |  | 
 | 	if (gpa == UNMAPPED_GVA) | 
 | 		return UNMAPPED_GVA; | 
 | 	return gpa_to_hpa(vcpu, gpa); | 
 | } | 
 |  | 
 | struct page *gva_to_page(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | 	gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); | 
 |  | 
 | 	if (gpa == UNMAPPED_GVA) | 
 | 		return NULL; | 
 | 	return pfn_to_page(gpa_to_hpa(vcpu, gpa) >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | static void nonpaging_new_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | } | 
 |  | 
 | static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, hpa_t p) | 
 | { | 
 | 	int level = PT32E_ROOT_LEVEL; | 
 | 	hpa_t table_addr = vcpu->mmu.root_hpa; | 
 |  | 
 | 	for (; ; level--) { | 
 | 		u32 index = PT64_INDEX(v, level); | 
 | 		u64 *table; | 
 | 		u64 pte; | 
 |  | 
 | 		ASSERT(VALID_PAGE(table_addr)); | 
 | 		table = __va(table_addr); | 
 |  | 
 | 		if (level == 1) { | 
 | 			pte = table[index]; | 
 | 			if (is_present_pte(pte) && is_writeble_pte(pte)) | 
 | 				return 0; | 
 | 			mark_page_dirty(vcpu->kvm, v >> PAGE_SHIFT); | 
 | 			page_header_update_slot(vcpu->kvm, table, v); | 
 | 			table[index] = p | PT_PRESENT_MASK | PT_WRITABLE_MASK | | 
 | 								PT_USER_MASK; | 
 | 			rmap_add(vcpu, &table[index]); | 
 | 			return 0; | 
 | 		} | 
 |  | 
 | 		if (table[index] == 0) { | 
 | 			struct kvm_mmu_page *new_table; | 
 | 			gfn_t pseudo_gfn; | 
 |  | 
 | 			pseudo_gfn = (v & PT64_DIR_BASE_ADDR_MASK) | 
 | 				>> PAGE_SHIFT; | 
 | 			new_table = kvm_mmu_get_page(vcpu, pseudo_gfn, | 
 | 						     v, level - 1, | 
 | 						     1, 0, &table[index]); | 
 | 			if (!new_table) { | 
 | 				pgprintk("nonpaging_map: ENOMEM\n"); | 
 | 				return -ENOMEM; | 
 | 			} | 
 |  | 
 | 			table[index] = new_table->page_hpa | PT_PRESENT_MASK | 
 | 				| PT_WRITABLE_MASK | PT_USER_MASK; | 
 | 		} | 
 | 		table_addr = table[index] & PT64_BASE_ADDR_MASK; | 
 | 	} | 
 | } | 
 |  | 
 | static void mmu_free_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
 | 		hpa_t root = vcpu->mmu.root_hpa; | 
 |  | 
 | 		ASSERT(VALID_PAGE(root)); | 
 | 		page = page_header(root); | 
 | 		--page->root_count; | 
 | 		vcpu->mmu.root_hpa = INVALID_PAGE; | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	for (i = 0; i < 4; ++i) { | 
 | 		hpa_t root = vcpu->mmu.pae_root[i]; | 
 |  | 
 | 		if (root) { | 
 | 			ASSERT(VALID_PAGE(root)); | 
 | 			root &= PT64_BASE_ADDR_MASK; | 
 | 			page = page_header(root); | 
 | 			--page->root_count; | 
 | 		} | 
 | 		vcpu->mmu.pae_root[i] = INVALID_PAGE; | 
 | 	} | 
 | 	vcpu->mmu.root_hpa = INVALID_PAGE; | 
 | } | 
 |  | 
 | static void mmu_alloc_roots(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int i; | 
 | 	gfn_t root_gfn; | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | 	root_gfn = vcpu->cr3 >> PAGE_SHIFT; | 
 |  | 
 | #ifdef CONFIG_X86_64 | 
 | 	if (vcpu->mmu.shadow_root_level == PT64_ROOT_LEVEL) { | 
 | 		hpa_t root = vcpu->mmu.root_hpa; | 
 |  | 
 | 		ASSERT(!VALID_PAGE(root)); | 
 | 		page = kvm_mmu_get_page(vcpu, root_gfn, 0, | 
 | 					PT64_ROOT_LEVEL, 0, 0, NULL); | 
 | 		root = page->page_hpa; | 
 | 		++page->root_count; | 
 | 		vcpu->mmu.root_hpa = root; | 
 | 		return; | 
 | 	} | 
 | #endif | 
 | 	for (i = 0; i < 4; ++i) { | 
 | 		hpa_t root = vcpu->mmu.pae_root[i]; | 
 |  | 
 | 		ASSERT(!VALID_PAGE(root)); | 
 | 		if (vcpu->mmu.root_level == PT32E_ROOT_LEVEL) { | 
 | 			if (!is_present_pte(vcpu->pdptrs[i])) { | 
 | 				vcpu->mmu.pae_root[i] = 0; | 
 | 				continue; | 
 | 			} | 
 | 			root_gfn = vcpu->pdptrs[i] >> PAGE_SHIFT; | 
 | 		} else if (vcpu->mmu.root_level == 0) | 
 | 			root_gfn = 0; | 
 | 		page = kvm_mmu_get_page(vcpu, root_gfn, i << 30, | 
 | 					PT32_ROOT_LEVEL, !is_paging(vcpu), | 
 | 					0, NULL); | 
 | 		root = page->page_hpa; | 
 | 		++page->root_count; | 
 | 		vcpu->mmu.pae_root[i] = root | PT_PRESENT_MASK; | 
 | 	} | 
 | 	vcpu->mmu.root_hpa = __pa(vcpu->mmu.pae_root); | 
 | } | 
 |  | 
 | static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr) | 
 | { | 
 | 	return vaddr; | 
 | } | 
 |  | 
 | static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva, | 
 | 			       u32 error_code) | 
 | { | 
 | 	gpa_t addr = gva; | 
 | 	hpa_t paddr; | 
 | 	int r; | 
 |  | 
 | 	r = mmu_topup_memory_caches(vcpu); | 
 | 	if (r) | 
 | 		return r; | 
 |  | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(VALID_PAGE(vcpu->mmu.root_hpa)); | 
 |  | 
 |  | 
 | 	paddr = gpa_to_hpa(vcpu , addr & PT64_BASE_ADDR_MASK); | 
 |  | 
 | 	if (is_error_hpa(paddr)) | 
 | 		return 1; | 
 |  | 
 | 	return nonpaging_map(vcpu, addr & PAGE_MASK, paddr); | 
 | } | 
 |  | 
 | static void nonpaging_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	mmu_free_roots(vcpu); | 
 | } | 
 |  | 
 | static int nonpaging_init_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu *context = &vcpu->mmu; | 
 |  | 
 | 	context->new_cr3 = nonpaging_new_cr3; | 
 | 	context->page_fault = nonpaging_page_fault; | 
 | 	context->gva_to_gpa = nonpaging_gva_to_gpa; | 
 | 	context->free = nonpaging_free; | 
 | 	context->root_level = 0; | 
 | 	context->shadow_root_level = PT32E_ROOT_LEVEL; | 
 | 	mmu_alloc_roots(vcpu); | 
 | 	ASSERT(VALID_PAGE(context->root_hpa)); | 
 | 	kvm_arch_ops->set_cr3(vcpu, context->root_hpa); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	++vcpu->stat.tlb_flush; | 
 | 	kvm_arch_ops->tlb_flush(vcpu); | 
 | } | 
 |  | 
 | static void paging_new_cr3(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	pgprintk("%s: cr3 %lx\n", __FUNCTION__, vcpu->cr3); | 
 | 	mmu_free_roots(vcpu); | 
 | 	if (unlikely(vcpu->kvm->n_free_mmu_pages < KVM_MIN_FREE_MMU_PAGES)) | 
 | 		kvm_mmu_free_some_pages(vcpu); | 
 | 	mmu_alloc_roots(vcpu); | 
 | 	kvm_mmu_flush_tlb(vcpu); | 
 | 	kvm_arch_ops->set_cr3(vcpu, vcpu->mmu.root_hpa); | 
 | } | 
 |  | 
 | static inline void set_pte_common(struct kvm_vcpu *vcpu, | 
 | 			     u64 *shadow_pte, | 
 | 			     gpa_t gaddr, | 
 | 			     int dirty, | 
 | 			     u64 access_bits, | 
 | 			     gfn_t gfn) | 
 | { | 
 | 	hpa_t paddr; | 
 |  | 
 | 	*shadow_pte |= access_bits << PT_SHADOW_BITS_OFFSET; | 
 | 	if (!dirty) | 
 | 		access_bits &= ~PT_WRITABLE_MASK; | 
 |  | 
 | 	paddr = gpa_to_hpa(vcpu, gaddr & PT64_BASE_ADDR_MASK); | 
 |  | 
 | 	*shadow_pte |= access_bits; | 
 |  | 
 | 	if (is_error_hpa(paddr)) { | 
 | 		*shadow_pte |= gaddr; | 
 | 		*shadow_pte |= PT_SHADOW_IO_MARK; | 
 | 		*shadow_pte &= ~PT_PRESENT_MASK; | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	*shadow_pte |= paddr; | 
 |  | 
 | 	if (access_bits & PT_WRITABLE_MASK) { | 
 | 		struct kvm_mmu_page *shadow; | 
 |  | 
 | 		shadow = kvm_mmu_lookup_page(vcpu, gfn); | 
 | 		if (shadow) { | 
 | 			pgprintk("%s: found shadow page for %lx, marking ro\n", | 
 | 				 __FUNCTION__, gfn); | 
 | 			access_bits &= ~PT_WRITABLE_MASK; | 
 | 			if (is_writeble_pte(*shadow_pte)) { | 
 | 				    *shadow_pte &= ~PT_WRITABLE_MASK; | 
 | 				    kvm_arch_ops->tlb_flush(vcpu); | 
 | 			} | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (access_bits & PT_WRITABLE_MASK) | 
 | 		mark_page_dirty(vcpu->kvm, gaddr >> PAGE_SHIFT); | 
 |  | 
 | 	page_header_update_slot(vcpu->kvm, shadow_pte, gaddr); | 
 | 	rmap_add(vcpu, shadow_pte); | 
 | } | 
 |  | 
 | static void inject_page_fault(struct kvm_vcpu *vcpu, | 
 | 			      u64 addr, | 
 | 			      u32 err_code) | 
 | { | 
 | 	kvm_arch_ops->inject_page_fault(vcpu, addr, err_code); | 
 | } | 
 |  | 
 | static inline int fix_read_pf(u64 *shadow_ent) | 
 | { | 
 | 	if ((*shadow_ent & PT_SHADOW_USER_MASK) && | 
 | 	    !(*shadow_ent & PT_USER_MASK)) { | 
 | 		/* | 
 | 		 * If supervisor write protect is disabled, we shadow kernel | 
 | 		 * pages as user pages so we can trap the write access. | 
 | 		 */ | 
 | 		*shadow_ent |= PT_USER_MASK; | 
 | 		*shadow_ent &= ~PT_WRITABLE_MASK; | 
 |  | 
 | 		return 1; | 
 |  | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | static void paging_free(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	nonpaging_free(vcpu); | 
 | } | 
 |  | 
 | #define PTTYPE 64 | 
 | #include "paging_tmpl.h" | 
 | #undef PTTYPE | 
 |  | 
 | #define PTTYPE 32 | 
 | #include "paging_tmpl.h" | 
 | #undef PTTYPE | 
 |  | 
 | static int paging64_init_context_common(struct kvm_vcpu *vcpu, int level) | 
 | { | 
 | 	struct kvm_mmu *context = &vcpu->mmu; | 
 |  | 
 | 	ASSERT(is_pae(vcpu)); | 
 | 	context->new_cr3 = paging_new_cr3; | 
 | 	context->page_fault = paging64_page_fault; | 
 | 	context->gva_to_gpa = paging64_gva_to_gpa; | 
 | 	context->free = paging_free; | 
 | 	context->root_level = level; | 
 | 	context->shadow_root_level = level; | 
 | 	mmu_alloc_roots(vcpu); | 
 | 	ASSERT(VALID_PAGE(context->root_hpa)); | 
 | 	kvm_arch_ops->set_cr3(vcpu, context->root_hpa | | 
 | 		    (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int paging64_init_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return paging64_init_context_common(vcpu, PT64_ROOT_LEVEL); | 
 | } | 
 |  | 
 | static int paging32_init_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu *context = &vcpu->mmu; | 
 |  | 
 | 	context->new_cr3 = paging_new_cr3; | 
 | 	context->page_fault = paging32_page_fault; | 
 | 	context->gva_to_gpa = paging32_gva_to_gpa; | 
 | 	context->free = paging_free; | 
 | 	context->root_level = PT32_ROOT_LEVEL; | 
 | 	context->shadow_root_level = PT32E_ROOT_LEVEL; | 
 | 	mmu_alloc_roots(vcpu); | 
 | 	ASSERT(VALID_PAGE(context->root_hpa)); | 
 | 	kvm_arch_ops->set_cr3(vcpu, context->root_hpa | | 
 | 		    (vcpu->cr3 & (CR3_PCD_MASK | CR3_WPT_MASK))); | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int paging32E_init_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	return paging64_init_context_common(vcpu, PT32E_ROOT_LEVEL); | 
 | } | 
 |  | 
 | static int init_kvm_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); | 
 |  | 
 | 	if (!is_paging(vcpu)) | 
 | 		return nonpaging_init_context(vcpu); | 
 | 	else if (is_long_mode(vcpu)) | 
 | 		return paging64_init_context(vcpu); | 
 | 	else if (is_pae(vcpu)) | 
 | 		return paging32E_init_context(vcpu); | 
 | 	else | 
 | 		return paging32_init_context(vcpu); | 
 | } | 
 |  | 
 | static void destroy_kvm_mmu(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 | 	if (VALID_PAGE(vcpu->mmu.root_hpa)) { | 
 | 		vcpu->mmu.free(vcpu); | 
 | 		vcpu->mmu.root_hpa = INVALID_PAGE; | 
 | 	} | 
 | } | 
 |  | 
 | int kvm_mmu_reset_context(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int r; | 
 |  | 
 | 	destroy_kvm_mmu(vcpu); | 
 | 	r = init_kvm_mmu(vcpu); | 
 | 	if (r < 0) | 
 | 		goto out; | 
 | 	r = mmu_topup_memory_caches(vcpu); | 
 | out: | 
 | 	return r; | 
 | } | 
 |  | 
 | static void mmu_pre_write_zap_pte(struct kvm_vcpu *vcpu, | 
 | 				  struct kvm_mmu_page *page, | 
 | 				  u64 *spte) | 
 | { | 
 | 	u64 pte; | 
 | 	struct kvm_mmu_page *child; | 
 |  | 
 | 	pte = *spte; | 
 | 	if (is_present_pte(pte)) { | 
 | 		if (page->role.level == PT_PAGE_TABLE_LEVEL) | 
 | 			rmap_remove(vcpu, spte); | 
 | 		else { | 
 | 			child = page_header(pte & PT64_BASE_ADDR_MASK); | 
 | 			mmu_page_remove_parent_pte(vcpu, child, spte); | 
 | 		} | 
 | 	} | 
 | 	*spte = 0; | 
 | } | 
 |  | 
 | void kvm_mmu_pre_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes) | 
 | { | 
 | 	gfn_t gfn = gpa >> PAGE_SHIFT; | 
 | 	struct kvm_mmu_page *page; | 
 | 	struct hlist_node *node, *n; | 
 | 	struct hlist_head *bucket; | 
 | 	unsigned index; | 
 | 	u64 *spte; | 
 | 	unsigned offset = offset_in_page(gpa); | 
 | 	unsigned pte_size; | 
 | 	unsigned page_offset; | 
 | 	unsigned misaligned; | 
 | 	int level; | 
 | 	int flooded = 0; | 
 | 	int npte; | 
 |  | 
 | 	pgprintk("%s: gpa %llx bytes %d\n", __FUNCTION__, gpa, bytes); | 
 | 	if (gfn == vcpu->last_pt_write_gfn) { | 
 | 		++vcpu->last_pt_write_count; | 
 | 		if (vcpu->last_pt_write_count >= 3) | 
 | 			flooded = 1; | 
 | 	} else { | 
 | 		vcpu->last_pt_write_gfn = gfn; | 
 | 		vcpu->last_pt_write_count = 1; | 
 | 	} | 
 | 	index = kvm_page_table_hashfn(gfn) % KVM_NUM_MMU_PAGES; | 
 | 	bucket = &vcpu->kvm->mmu_page_hash[index]; | 
 | 	hlist_for_each_entry_safe(page, node, n, bucket, hash_link) { | 
 | 		if (page->gfn != gfn || page->role.metaphysical) | 
 | 			continue; | 
 | 		pte_size = page->role.glevels == PT32_ROOT_LEVEL ? 4 : 8; | 
 | 		misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1); | 
 | 		if (misaligned || flooded) { | 
 | 			/* | 
 | 			 * Misaligned accesses are too much trouble to fix | 
 | 			 * up; also, they usually indicate a page is not used | 
 | 			 * as a page table. | 
 | 			 * | 
 | 			 * If we're seeing too many writes to a page, | 
 | 			 * it may no longer be a page table, or we may be | 
 | 			 * forking, in which case it is better to unmap the | 
 | 			 * page. | 
 | 			 */ | 
 | 			pgprintk("misaligned: gpa %llx bytes %d role %x\n", | 
 | 				 gpa, bytes, page->role.word); | 
 | 			kvm_mmu_zap_page(vcpu, page); | 
 | 			continue; | 
 | 		} | 
 | 		page_offset = offset; | 
 | 		level = page->role.level; | 
 | 		npte = 1; | 
 | 		if (page->role.glevels == PT32_ROOT_LEVEL) { | 
 | 			page_offset <<= 1;	/* 32->64 */ | 
 | 			/* | 
 | 			 * A 32-bit pde maps 4MB while the shadow pdes map | 
 | 			 * only 2MB.  So we need to double the offset again | 
 | 			 * and zap two pdes instead of one. | 
 | 			 */ | 
 | 			if (level == PT32_ROOT_LEVEL) { | 
 | 				page_offset &= ~7; /* kill rounding error */ | 
 | 				page_offset <<= 1; | 
 | 				npte = 2; | 
 | 			} | 
 | 			page_offset &= ~PAGE_MASK; | 
 | 		} | 
 | 		spte = __va(page->page_hpa); | 
 | 		spte += page_offset / sizeof(*spte); | 
 | 		while (npte--) { | 
 | 			mmu_pre_write_zap_pte(vcpu, page, spte); | 
 | 			++spte; | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_mmu_post_write(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes) | 
 | { | 
 | } | 
 |  | 
 | int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva) | 
 | { | 
 | 	gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, gva); | 
 |  | 
 | 	return kvm_mmu_unprotect_page(vcpu, gpa >> PAGE_SHIFT); | 
 | } | 
 |  | 
 | void kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	while (vcpu->kvm->n_free_mmu_pages < KVM_REFILL_PAGES) { | 
 | 		struct kvm_mmu_page *page; | 
 |  | 
 | 		page = container_of(vcpu->kvm->active_mmu_pages.prev, | 
 | 				    struct kvm_mmu_page, link); | 
 | 		kvm_mmu_zap_page(vcpu, page); | 
 | 	} | 
 | } | 
 | EXPORT_SYMBOL_GPL(kvm_mmu_free_some_pages); | 
 |  | 
 | static void free_mmu_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | 	while (!list_empty(&vcpu->kvm->active_mmu_pages)) { | 
 | 		page = container_of(vcpu->kvm->active_mmu_pages.next, | 
 | 				    struct kvm_mmu_page, link); | 
 | 		kvm_mmu_zap_page(vcpu, page); | 
 | 	} | 
 | 	while (!list_empty(&vcpu->free_pages)) { | 
 | 		page = list_entry(vcpu->free_pages.next, | 
 | 				  struct kvm_mmu_page, link); | 
 | 		list_del(&page->link); | 
 | 		__free_page(pfn_to_page(page->page_hpa >> PAGE_SHIFT)); | 
 | 		page->page_hpa = INVALID_PAGE; | 
 | 	} | 
 | 	free_page((unsigned long)vcpu->mmu.pae_root); | 
 | } | 
 |  | 
 | static int alloc_mmu_pages(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct page *page; | 
 | 	int i; | 
 |  | 
 | 	ASSERT(vcpu); | 
 |  | 
 | 	for (i = 0; i < KVM_NUM_MMU_PAGES; i++) { | 
 | 		struct kvm_mmu_page *page_header = &vcpu->page_header_buf[i]; | 
 |  | 
 | 		INIT_LIST_HEAD(&page_header->link); | 
 | 		if ((page = alloc_page(GFP_KERNEL)) == NULL) | 
 | 			goto error_1; | 
 | 		set_page_private(page, (unsigned long)page_header); | 
 | 		page_header->page_hpa = (hpa_t)page_to_pfn(page) << PAGE_SHIFT; | 
 | 		memset(__va(page_header->page_hpa), 0, PAGE_SIZE); | 
 | 		list_add(&page_header->link, &vcpu->free_pages); | 
 | 		++vcpu->kvm->n_free_mmu_pages; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64. | 
 | 	 * Therefore we need to allocate shadow page tables in the first | 
 | 	 * 4GB of memory, which happens to fit the DMA32 zone. | 
 | 	 */ | 
 | 	page = alloc_page(GFP_KERNEL | __GFP_DMA32); | 
 | 	if (!page) | 
 | 		goto error_1; | 
 | 	vcpu->mmu.pae_root = page_address(page); | 
 | 	for (i = 0; i < 4; ++i) | 
 | 		vcpu->mmu.pae_root[i] = INVALID_PAGE; | 
 |  | 
 | 	return 0; | 
 |  | 
 | error_1: | 
 | 	free_mmu_pages(vcpu); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | int kvm_mmu_create(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); | 
 | 	ASSERT(list_empty(&vcpu->free_pages)); | 
 |  | 
 | 	return alloc_mmu_pages(vcpu); | 
 | } | 
 |  | 
 | int kvm_mmu_setup(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 | 	ASSERT(!VALID_PAGE(vcpu->mmu.root_hpa)); | 
 | 	ASSERT(!list_empty(&vcpu->free_pages)); | 
 |  | 
 | 	return init_kvm_mmu(vcpu); | 
 | } | 
 |  | 
 | void kvm_mmu_destroy(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	ASSERT(vcpu); | 
 |  | 
 | 	destroy_kvm_mmu(vcpu); | 
 | 	free_mmu_pages(vcpu); | 
 | 	mmu_free_memory_caches(vcpu); | 
 | } | 
 |  | 
 | void kvm_mmu_slot_remove_write_access(struct kvm_vcpu *vcpu, int slot) | 
 | { | 
 | 	struct kvm *kvm = vcpu->kvm; | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | 	list_for_each_entry(page, &kvm->active_mmu_pages, link) { | 
 | 		int i; | 
 | 		u64 *pt; | 
 |  | 
 | 		if (!test_bit(slot, &page->slot_bitmap)) | 
 | 			continue; | 
 |  | 
 | 		pt = __va(page->page_hpa); | 
 | 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) | 
 | 			/* avoid RMW */ | 
 | 			if (pt[i] & PT_WRITABLE_MASK) { | 
 | 				rmap_remove(vcpu, &pt[i]); | 
 | 				pt[i] &= ~PT_WRITABLE_MASK; | 
 | 			} | 
 | 	} | 
 | } | 
 |  | 
 | void kvm_mmu_zap_all(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	destroy_kvm_mmu(vcpu); | 
 |  | 
 | 	while (!list_empty(&vcpu->kvm->active_mmu_pages)) { | 
 | 		struct kvm_mmu_page *page; | 
 |  | 
 | 		page = container_of(vcpu->kvm->active_mmu_pages.next, | 
 | 				    struct kvm_mmu_page, link); | 
 | 		kvm_mmu_zap_page(vcpu, page); | 
 | 	} | 
 |  | 
 | 	mmu_free_memory_caches(vcpu); | 
 | 	kvm_arch_ops->tlb_flush(vcpu); | 
 | 	init_kvm_mmu(vcpu); | 
 | } | 
 |  | 
 | void kvm_mmu_module_exit(void) | 
 | { | 
 | 	if (pte_chain_cache) | 
 | 		kmem_cache_destroy(pte_chain_cache); | 
 | 	if (rmap_desc_cache) | 
 | 		kmem_cache_destroy(rmap_desc_cache); | 
 | } | 
 |  | 
 | int kvm_mmu_module_init(void) | 
 | { | 
 | 	pte_chain_cache = kmem_cache_create("kvm_pte_chain", | 
 | 					    sizeof(struct kvm_pte_chain), | 
 | 					    0, 0, NULL, NULL); | 
 | 	if (!pte_chain_cache) | 
 | 		goto nomem; | 
 | 	rmap_desc_cache = kmem_cache_create("kvm_rmap_desc", | 
 | 					    sizeof(struct kvm_rmap_desc), | 
 | 					    0, 0, NULL, NULL); | 
 | 	if (!rmap_desc_cache) | 
 | 		goto nomem; | 
 |  | 
 | 	return 0; | 
 |  | 
 | nomem: | 
 | 	kvm_mmu_module_exit(); | 
 | 	return -ENOMEM; | 
 | } | 
 |  | 
 | #ifdef AUDIT | 
 |  | 
 | static const char *audit_msg; | 
 |  | 
 | static gva_t canonicalize(gva_t gva) | 
 | { | 
 | #ifdef CONFIG_X86_64 | 
 | 	gva = (long long)(gva << 16) >> 16; | 
 | #endif | 
 | 	return gva; | 
 | } | 
 |  | 
 | static void audit_mappings_page(struct kvm_vcpu *vcpu, u64 page_pte, | 
 | 				gva_t va, int level) | 
 | { | 
 | 	u64 *pt = __va(page_pte & PT64_BASE_ADDR_MASK); | 
 | 	int i; | 
 | 	gva_t va_delta = 1ul << (PAGE_SHIFT + 9 * (level - 1)); | 
 |  | 
 | 	for (i = 0; i < PT64_ENT_PER_PAGE; ++i, va += va_delta) { | 
 | 		u64 ent = pt[i]; | 
 |  | 
 | 		if (!(ent & PT_PRESENT_MASK)) | 
 | 			continue; | 
 |  | 
 | 		va = canonicalize(va); | 
 | 		if (level > 1) | 
 | 			audit_mappings_page(vcpu, ent, va, level - 1); | 
 | 		else { | 
 | 			gpa_t gpa = vcpu->mmu.gva_to_gpa(vcpu, va); | 
 | 			hpa_t hpa = gpa_to_hpa(vcpu, gpa); | 
 |  | 
 | 			if ((ent & PT_PRESENT_MASK) | 
 | 			    && (ent & PT64_BASE_ADDR_MASK) != hpa) | 
 | 				printk(KERN_ERR "audit error: (%s) levels %d" | 
 | 				       " gva %lx gpa %llx hpa %llx ent %llx\n", | 
 | 				       audit_msg, vcpu->mmu.root_level, | 
 | 				       va, gpa, hpa, ent); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | static void audit_mappings(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	unsigned i; | 
 |  | 
 | 	if (vcpu->mmu.root_level == 4) | 
 | 		audit_mappings_page(vcpu, vcpu->mmu.root_hpa, 0, 4); | 
 | 	else | 
 | 		for (i = 0; i < 4; ++i) | 
 | 			if (vcpu->mmu.pae_root[i] & PT_PRESENT_MASK) | 
 | 				audit_mappings_page(vcpu, | 
 | 						    vcpu->mmu.pae_root[i], | 
 | 						    i << 30, | 
 | 						    2); | 
 | } | 
 |  | 
 | static int count_rmaps(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int nmaps = 0; | 
 | 	int i, j, k; | 
 |  | 
 | 	for (i = 0; i < KVM_MEMORY_SLOTS; ++i) { | 
 | 		struct kvm_memory_slot *m = &vcpu->kvm->memslots[i]; | 
 | 		struct kvm_rmap_desc *d; | 
 |  | 
 | 		for (j = 0; j < m->npages; ++j) { | 
 | 			struct page *page = m->phys_mem[j]; | 
 |  | 
 | 			if (!page->private) | 
 | 				continue; | 
 | 			if (!(page->private & 1)) { | 
 | 				++nmaps; | 
 | 				continue; | 
 | 			} | 
 | 			d = (struct kvm_rmap_desc *)(page->private & ~1ul); | 
 | 			while (d) { | 
 | 				for (k = 0; k < RMAP_EXT; ++k) | 
 | 					if (d->shadow_ptes[k]) | 
 | 						++nmaps; | 
 | 					else | 
 | 						break; | 
 | 				d = d->more; | 
 | 			} | 
 | 		} | 
 | 	} | 
 | 	return nmaps; | 
 | } | 
 |  | 
 | static int count_writable_mappings(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int nmaps = 0; | 
 | 	struct kvm_mmu_page *page; | 
 | 	int i; | 
 |  | 
 | 	list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) { | 
 | 		u64 *pt = __va(page->page_hpa); | 
 |  | 
 | 		if (page->role.level != PT_PAGE_TABLE_LEVEL) | 
 | 			continue; | 
 |  | 
 | 		for (i = 0; i < PT64_ENT_PER_PAGE; ++i) { | 
 | 			u64 ent = pt[i]; | 
 |  | 
 | 			if (!(ent & PT_PRESENT_MASK)) | 
 | 				continue; | 
 | 			if (!(ent & PT_WRITABLE_MASK)) | 
 | 				continue; | 
 | 			++nmaps; | 
 | 		} | 
 | 	} | 
 | 	return nmaps; | 
 | } | 
 |  | 
 | static void audit_rmap(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	int n_rmap = count_rmaps(vcpu); | 
 | 	int n_actual = count_writable_mappings(vcpu); | 
 |  | 
 | 	if (n_rmap != n_actual) | 
 | 		printk(KERN_ERR "%s: (%s) rmap %d actual %d\n", | 
 | 		       __FUNCTION__, audit_msg, n_rmap, n_actual); | 
 | } | 
 |  | 
 | static void audit_write_protection(struct kvm_vcpu *vcpu) | 
 | { | 
 | 	struct kvm_mmu_page *page; | 
 |  | 
 | 	list_for_each_entry(page, &vcpu->kvm->active_mmu_pages, link) { | 
 | 		hfn_t hfn; | 
 | 		struct page *pg; | 
 |  | 
 | 		if (page->role.metaphysical) | 
 | 			continue; | 
 |  | 
 | 		hfn = gpa_to_hpa(vcpu, (gpa_t)page->gfn << PAGE_SHIFT) | 
 | 			>> PAGE_SHIFT; | 
 | 		pg = pfn_to_page(hfn); | 
 | 		if (pg->private) | 
 | 			printk(KERN_ERR "%s: (%s) shadow page has writable" | 
 | 			       " mappings: gfn %lx role %x\n", | 
 | 			       __FUNCTION__, audit_msg, page->gfn, | 
 | 			       page->role.word); | 
 | 	} | 
 | } | 
 |  | 
 | static void kvm_mmu_audit(struct kvm_vcpu *vcpu, const char *msg) | 
 | { | 
 | 	int olddbg = dbg; | 
 |  | 
 | 	dbg = 0; | 
 | 	audit_msg = msg; | 
 | 	audit_rmap(vcpu); | 
 | 	audit_write_protection(vcpu); | 
 | 	audit_mappings(vcpu); | 
 | 	dbg = olddbg; | 
 | } | 
 |  | 
 | #endif |