|  | /* | 
|  | *  linux/kernel/time.c | 
|  | * | 
|  | *  Copyright (C) 1991, 1992  Linus Torvalds | 
|  | * | 
|  | *  This file contains the interface functions for the various | 
|  | *  time related system calls: time, stime, gettimeofday, settimeofday, | 
|  | *			       adjtime | 
|  | */ | 
|  | /* | 
|  | * Modification history kernel/time.c | 
|  | * | 
|  | * 1993-09-02    Philip Gladstone | 
|  | *      Created file with time related functions from sched.c and adjtimex() | 
|  | * 1993-10-08    Torsten Duwe | 
|  | *      adjtime interface update and CMOS clock write code | 
|  | * 1995-08-13    Torsten Duwe | 
|  | *      kernel PLL updated to 1994-12-13 specs (rfc-1589) | 
|  | * 1999-01-16    Ulrich Windl | 
|  | *	Introduced error checking for many cases in adjtimex(). | 
|  | *	Updated NTP code according to technical memorandum Jan '96 | 
|  | *	"A Kernel Model for Precision Timekeeping" by Dave Mills | 
|  | *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10) | 
|  | *	(Even though the technical memorandum forbids it) | 
|  | * 2004-07-14	 Christoph Lameter | 
|  | *	Added getnstimeofday to allow the posix timer functions to return | 
|  | *	with nanosecond accuracy | 
|  | */ | 
|  |  | 
|  | #include <linux/module.h> | 
|  | #include <linux/timex.h> | 
|  | #include <linux/capability.h> | 
|  | #include <linux/errno.h> | 
|  | #include <linux/smp_lock.h> | 
|  | #include <linux/syscalls.h> | 
|  | #include <linux/security.h> | 
|  | #include <linux/fs.h> | 
|  | #include <linux/module.h> | 
|  |  | 
|  | #include <asm/uaccess.h> | 
|  | #include <asm/unistd.h> | 
|  |  | 
|  | /* | 
|  | * The timezone where the local system is located.  Used as a default by some | 
|  | * programs who obtain this value by using gettimeofday. | 
|  | */ | 
|  | struct timezone sys_tz; | 
|  |  | 
|  | EXPORT_SYMBOL(sys_tz); | 
|  |  | 
|  | #ifdef __ARCH_WANT_SYS_TIME | 
|  |  | 
|  | /* | 
|  | * sys_time() can be implemented in user-level using | 
|  | * sys_gettimeofday().  Is this for backwards compatibility?  If so, | 
|  | * why not move it into the appropriate arch directory (for those | 
|  | * architectures that need it). | 
|  | */ | 
|  | asmlinkage long sys_time(time_t __user * tloc) | 
|  | { | 
|  | time_t i; | 
|  | struct timeval tv; | 
|  |  | 
|  | do_gettimeofday(&tv); | 
|  | i = tv.tv_sec; | 
|  |  | 
|  | if (tloc) { | 
|  | if (put_user(i,tloc)) | 
|  | i = -EFAULT; | 
|  | } | 
|  | return i; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * sys_stime() can be implemented in user-level using | 
|  | * sys_settimeofday().  Is this for backwards compatibility?  If so, | 
|  | * why not move it into the appropriate arch directory (for those | 
|  | * architectures that need it). | 
|  | */ | 
|  |  | 
|  | asmlinkage long sys_stime(time_t __user *tptr) | 
|  | { | 
|  | struct timespec tv; | 
|  | int err; | 
|  |  | 
|  | if (get_user(tv.tv_sec, tptr)) | 
|  | return -EFAULT; | 
|  |  | 
|  | tv.tv_nsec = 0; | 
|  |  | 
|  | err = security_settime(&tv, NULL); | 
|  | if (err) | 
|  | return err; | 
|  |  | 
|  | do_settimeofday(&tv); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | #endif /* __ARCH_WANT_SYS_TIME */ | 
|  |  | 
|  | asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz) | 
|  | { | 
|  | if (likely(tv != NULL)) { | 
|  | struct timeval ktv; | 
|  | do_gettimeofday(&ktv); | 
|  | if (copy_to_user(tv, &ktv, sizeof(ktv))) | 
|  | return -EFAULT; | 
|  | } | 
|  | if (unlikely(tz != NULL)) { | 
|  | if (copy_to_user(tz, &sys_tz, sizeof(sys_tz))) | 
|  | return -EFAULT; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adjust the time obtained from the CMOS to be UTC time instead of | 
|  | * local time. | 
|  | * | 
|  | * This is ugly, but preferable to the alternatives.  Otherwise we | 
|  | * would either need to write a program to do it in /etc/rc (and risk | 
|  | * confusion if the program gets run more than once; it would also be | 
|  | * hard to make the program warp the clock precisely n hours)  or | 
|  | * compile in the timezone information into the kernel.  Bad, bad.... | 
|  | * | 
|  | *              				- TYT, 1992-01-01 | 
|  | * | 
|  | * The best thing to do is to keep the CMOS clock in universal time (UTC) | 
|  | * as real UNIX machines always do it. This avoids all headaches about | 
|  | * daylight saving times and warping kernel clocks. | 
|  | */ | 
|  | static inline void warp_clock(void) | 
|  | { | 
|  | write_seqlock_irq(&xtime_lock); | 
|  | wall_to_monotonic.tv_sec -= sys_tz.tz_minuteswest * 60; | 
|  | xtime.tv_sec += sys_tz.tz_minuteswest * 60; | 
|  | time_interpolator_reset(); | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  | clock_was_set(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case for some reason the CMOS clock has not already been running | 
|  | * in UTC, but in some local time: The first time we set the timezone, | 
|  | * we will warp the clock so that it is ticking UTC time instead of | 
|  | * local time. Presumably, if someone is setting the timezone then we | 
|  | * are running in an environment where the programs understand about | 
|  | * timezones. This should be done at boot time in the /etc/rc script, | 
|  | * as soon as possible, so that the clock can be set right. Otherwise, | 
|  | * various programs will get confused when the clock gets warped. | 
|  | */ | 
|  |  | 
|  | int do_sys_settimeofday(struct timespec *tv, struct timezone *tz) | 
|  | { | 
|  | static int firsttime = 1; | 
|  | int error = 0; | 
|  |  | 
|  | if (tv && !timespec_valid(tv)) | 
|  | return -EINVAL; | 
|  |  | 
|  | error = security_settime(tv, tz); | 
|  | if (error) | 
|  | return error; | 
|  |  | 
|  | if (tz) { | 
|  | /* SMP safe, global irq locking makes it work. */ | 
|  | sys_tz = *tz; | 
|  | if (firsttime) { | 
|  | firsttime = 0; | 
|  | if (!tv) | 
|  | warp_clock(); | 
|  | } | 
|  | } | 
|  | if (tv) | 
|  | { | 
|  | /* SMP safe, again the code in arch/foo/time.c should | 
|  | * globally block out interrupts when it runs. | 
|  | */ | 
|  | return do_settimeofday(tv); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_settimeofday(struct timeval __user *tv, | 
|  | struct timezone __user *tz) | 
|  | { | 
|  | struct timeval user_tv; | 
|  | struct timespec	new_ts; | 
|  | struct timezone new_tz; | 
|  |  | 
|  | if (tv) { | 
|  | if (copy_from_user(&user_tv, tv, sizeof(*tv))) | 
|  | return -EFAULT; | 
|  | new_ts.tv_sec = user_tv.tv_sec; | 
|  | new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC; | 
|  | } | 
|  | if (tz) { | 
|  | if (copy_from_user(&new_tz, tz, sizeof(*tz))) | 
|  | return -EFAULT; | 
|  | } | 
|  |  | 
|  | return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL); | 
|  | } | 
|  |  | 
|  | /* we call this to notify the arch when the clock is being | 
|  | * controlled.  If no such arch routine, do nothing. | 
|  | */ | 
|  | void __attribute__ ((weak)) notify_arch_cmos_timer(void) | 
|  | { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* adjtimex mainly allows reading (and writing, if superuser) of | 
|  | * kernel time-keeping variables. used by xntpd. | 
|  | */ | 
|  | int do_adjtimex(struct timex *txc) | 
|  | { | 
|  | long ltemp, mtemp, save_adjust; | 
|  | int result; | 
|  |  | 
|  | /* In order to modify anything, you gotta be super-user! */ | 
|  | if (txc->modes && !capable(CAP_SYS_TIME)) | 
|  | return -EPERM; | 
|  |  | 
|  | /* Now we validate the data before disabling interrupts */ | 
|  |  | 
|  | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | 
|  | /* singleshot must not be used with any other mode bits */ | 
|  | if (txc->modes != ADJ_OFFSET_SINGLESHOT) | 
|  | return -EINVAL; | 
|  |  | 
|  | if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET)) | 
|  | /* adjustment Offset limited to +- .512 seconds */ | 
|  | if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE ) | 
|  | return -EINVAL; | 
|  |  | 
|  | /* if the quartz is off by more than 10% something is VERY wrong ! */ | 
|  | if (txc->modes & ADJ_TICK) | 
|  | if (txc->tick <  900000/USER_HZ || | 
|  | txc->tick > 1100000/USER_HZ) | 
|  | return -EINVAL; | 
|  |  | 
|  | write_seqlock_irq(&xtime_lock); | 
|  | result = time_state;	/* mostly `TIME_OK' */ | 
|  |  | 
|  | /* Save for later - semantics of adjtime is to return old value */ | 
|  | save_adjust = time_next_adjust ? time_next_adjust : time_adjust; | 
|  |  | 
|  | #if 0	/* STA_CLOCKERR is never set yet */ | 
|  | time_status &= ~STA_CLOCKERR;		/* reset STA_CLOCKERR */ | 
|  | #endif | 
|  | /* If there are input parameters, then process them */ | 
|  | if (txc->modes) | 
|  | { | 
|  | if (txc->modes & ADJ_STATUS)	/* only set allowed bits */ | 
|  | time_status =  (txc->status & ~STA_RONLY) | | 
|  | (time_status & STA_RONLY); | 
|  |  | 
|  | if (txc->modes & ADJ_FREQUENCY) {	/* p. 22 */ | 
|  | if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) { | 
|  | result = -EINVAL; | 
|  | goto leave; | 
|  | } | 
|  | time_freq = txc->freq; | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_MAXERROR) { | 
|  | if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) { | 
|  | result = -EINVAL; | 
|  | goto leave; | 
|  | } | 
|  | time_maxerror = txc->maxerror; | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_ESTERROR) { | 
|  | if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) { | 
|  | result = -EINVAL; | 
|  | goto leave; | 
|  | } | 
|  | time_esterror = txc->esterror; | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_TIMECONST) {	/* p. 24 */ | 
|  | if (txc->constant < 0) {	/* NTP v4 uses values > 6 */ | 
|  | result = -EINVAL; | 
|  | goto leave; | 
|  | } | 
|  | time_constant = txc->constant; | 
|  | } | 
|  |  | 
|  | if (txc->modes & ADJ_OFFSET) {	/* values checked earlier */ | 
|  | if (txc->modes == ADJ_OFFSET_SINGLESHOT) { | 
|  | /* adjtime() is independent from ntp_adjtime() */ | 
|  | if ((time_next_adjust = txc->offset) == 0) | 
|  | time_adjust = 0; | 
|  | } | 
|  | else if (time_status & STA_PLL) { | 
|  | ltemp = txc->offset; | 
|  |  | 
|  | /* | 
|  | * Scale the phase adjustment and | 
|  | * clamp to the operating range. | 
|  | */ | 
|  | if (ltemp > MAXPHASE) | 
|  | time_offset = MAXPHASE << SHIFT_UPDATE; | 
|  | else if (ltemp < -MAXPHASE) | 
|  | time_offset = -(MAXPHASE << SHIFT_UPDATE); | 
|  | else | 
|  | time_offset = ltemp << SHIFT_UPDATE; | 
|  |  | 
|  | /* | 
|  | * Select whether the frequency is to be controlled | 
|  | * and in which mode (PLL or FLL). Clamp to the operating | 
|  | * range. Ugly multiply/divide should be replaced someday. | 
|  | */ | 
|  |  | 
|  | if (time_status & STA_FREQHOLD || time_reftime == 0) | 
|  | time_reftime = xtime.tv_sec; | 
|  | mtemp = xtime.tv_sec - time_reftime; | 
|  | time_reftime = xtime.tv_sec; | 
|  | if (time_status & STA_FLL) { | 
|  | if (mtemp >= MINSEC) { | 
|  | ltemp = (time_offset / mtemp) << (SHIFT_USEC - | 
|  | SHIFT_UPDATE); | 
|  | time_freq += shift_right(ltemp, SHIFT_KH); | 
|  | } else /* calibration interval too short (p. 12) */ | 
|  | result = TIME_ERROR; | 
|  | } else {	/* PLL mode */ | 
|  | if (mtemp < MAXSEC) { | 
|  | ltemp *= mtemp; | 
|  | time_freq += shift_right(ltemp,(time_constant + | 
|  | time_constant + | 
|  | SHIFT_KF - SHIFT_USEC)); | 
|  | } else /* calibration interval too long (p. 12) */ | 
|  | result = TIME_ERROR; | 
|  | } | 
|  | time_freq = min(time_freq, time_tolerance); | 
|  | time_freq = max(time_freq, -time_tolerance); | 
|  | } /* STA_PLL */ | 
|  | } /* txc->modes & ADJ_OFFSET */ | 
|  | if (txc->modes & ADJ_TICK) { | 
|  | tick_usec = txc->tick; | 
|  | tick_nsec = TICK_USEC_TO_NSEC(tick_usec); | 
|  | } | 
|  | } /* txc->modes */ | 
|  | leave:	if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0) | 
|  | result = TIME_ERROR; | 
|  |  | 
|  | if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) | 
|  | txc->offset	   = save_adjust; | 
|  | else { | 
|  | txc->offset = shift_right(time_offset, SHIFT_UPDATE); | 
|  | } | 
|  | txc->freq	   = time_freq; | 
|  | txc->maxerror	   = time_maxerror; | 
|  | txc->esterror	   = time_esterror; | 
|  | txc->status	   = time_status; | 
|  | txc->constant	   = time_constant; | 
|  | txc->precision	   = time_precision; | 
|  | txc->tolerance	   = time_tolerance; | 
|  | txc->tick	   = tick_usec; | 
|  |  | 
|  | /* PPS is not implemented, so these are zero */ | 
|  | txc->ppsfreq	   = 0; | 
|  | txc->jitter	   = 0; | 
|  | txc->shift	   = 0; | 
|  | txc->stabil	   = 0; | 
|  | txc->jitcnt	   = 0; | 
|  | txc->calcnt	   = 0; | 
|  | txc->errcnt	   = 0; | 
|  | txc->stbcnt	   = 0; | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  | do_gettimeofday(&txc->time); | 
|  | notify_arch_cmos_timer(); | 
|  | return(result); | 
|  | } | 
|  |  | 
|  | asmlinkage long sys_adjtimex(struct timex __user *txc_p) | 
|  | { | 
|  | struct timex txc;		/* Local copy of parameter */ | 
|  | int ret; | 
|  |  | 
|  | /* Copy the user data space into the kernel copy | 
|  | * structure. But bear in mind that the structures | 
|  | * may change | 
|  | */ | 
|  | if(copy_from_user(&txc, txc_p, sizeof(struct timex))) | 
|  | return -EFAULT; | 
|  | ret = do_adjtimex(&txc); | 
|  | return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret; | 
|  | } | 
|  |  | 
|  | inline struct timespec current_kernel_time(void) | 
|  | { | 
|  | struct timespec now; | 
|  | unsigned long seq; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  |  | 
|  | now = xtime; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  |  | 
|  | return now; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(current_kernel_time); | 
|  |  | 
|  | /** | 
|  | * current_fs_time - Return FS time | 
|  | * @sb: Superblock. | 
|  | * | 
|  | * Return the current time truncated to the time granularity supported by | 
|  | * the fs. | 
|  | */ | 
|  | struct timespec current_fs_time(struct super_block *sb) | 
|  | { | 
|  | struct timespec now = current_kernel_time(); | 
|  | return timespec_trunc(now, sb->s_time_gran); | 
|  | } | 
|  | EXPORT_SYMBOL(current_fs_time); | 
|  |  | 
|  | /** | 
|  | * timespec_trunc - Truncate timespec to a granularity | 
|  | * @t: Timespec | 
|  | * @gran: Granularity in ns. | 
|  | * | 
|  | * Truncate a timespec to a granularity. gran must be smaller than a second. | 
|  | * Always rounds down. | 
|  | * | 
|  | * This function should be only used for timestamps returned by | 
|  | * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because | 
|  | * it doesn't handle the better resolution of the later. | 
|  | */ | 
|  | struct timespec timespec_trunc(struct timespec t, unsigned gran) | 
|  | { | 
|  | /* | 
|  | * Division is pretty slow so avoid it for common cases. | 
|  | * Currently current_kernel_time() never returns better than | 
|  | * jiffies resolution. Exploit that. | 
|  | */ | 
|  | if (gran <= jiffies_to_usecs(1) * 1000) { | 
|  | /* nothing */ | 
|  | } else if (gran == 1000000000) { | 
|  | t.tv_nsec = 0; | 
|  | } else { | 
|  | t.tv_nsec -= t.tv_nsec % gran; | 
|  | } | 
|  | return t; | 
|  | } | 
|  | EXPORT_SYMBOL(timespec_trunc); | 
|  |  | 
|  | #ifdef CONFIG_TIME_INTERPOLATION | 
|  | void getnstimeofday (struct timespec *tv) | 
|  | { | 
|  | unsigned long seq,sec,nsec; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | sec = xtime.tv_sec; | 
|  | nsec = xtime.tv_nsec+time_interpolator_get_offset(); | 
|  | } while (unlikely(read_seqretry(&xtime_lock, seq))); | 
|  |  | 
|  | while (unlikely(nsec >= NSEC_PER_SEC)) { | 
|  | nsec -= NSEC_PER_SEC; | 
|  | ++sec; | 
|  | } | 
|  | tv->tv_sec = sec; | 
|  | tv->tv_nsec = nsec; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(getnstimeofday); | 
|  |  | 
|  | int do_settimeofday (struct timespec *tv) | 
|  | { | 
|  | time_t wtm_sec, sec = tv->tv_sec; | 
|  | long wtm_nsec, nsec = tv->tv_nsec; | 
|  |  | 
|  | if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC) | 
|  | return -EINVAL; | 
|  |  | 
|  | write_seqlock_irq(&xtime_lock); | 
|  | { | 
|  | wtm_sec  = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec); | 
|  | wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec); | 
|  |  | 
|  | set_normalized_timespec(&xtime, sec, nsec); | 
|  | set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec); | 
|  |  | 
|  | time_adjust = 0;		/* stop active adjtime() */ | 
|  | time_status |= STA_UNSYNC; | 
|  | time_maxerror = NTP_PHASE_LIMIT; | 
|  | time_esterror = NTP_PHASE_LIMIT; | 
|  | time_interpolator_reset(); | 
|  | } | 
|  | write_sequnlock_irq(&xtime_lock); | 
|  | clock_was_set(); | 
|  | return 0; | 
|  | } | 
|  | EXPORT_SYMBOL(do_settimeofday); | 
|  |  | 
|  | void do_gettimeofday (struct timeval *tv) | 
|  | { | 
|  | unsigned long seq, nsec, usec, sec, offset; | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | offset = time_interpolator_get_offset(); | 
|  | sec = xtime.tv_sec; | 
|  | nsec = xtime.tv_nsec; | 
|  | } while (unlikely(read_seqretry(&xtime_lock, seq))); | 
|  |  | 
|  | usec = (nsec + offset) / 1000; | 
|  |  | 
|  | while (unlikely(usec >= USEC_PER_SEC)) { | 
|  | usec -= USEC_PER_SEC; | 
|  | ++sec; | 
|  | } | 
|  |  | 
|  | tv->tv_sec = sec; | 
|  | tv->tv_usec = usec; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(do_gettimeofday); | 
|  |  | 
|  |  | 
|  | #else | 
|  | #ifndef CONFIG_GENERIC_TIME | 
|  | /* | 
|  | * Simulate gettimeofday using do_gettimeofday which only allows a timeval | 
|  | * and therefore only yields usec accuracy | 
|  | */ | 
|  | void getnstimeofday(struct timespec *tv) | 
|  | { | 
|  | struct timeval x; | 
|  |  | 
|  | do_gettimeofday(&x); | 
|  | tv->tv_sec = x.tv_sec; | 
|  | tv->tv_nsec = x.tv_usec * NSEC_PER_USEC; | 
|  | } | 
|  | EXPORT_SYMBOL_GPL(getnstimeofday); | 
|  | #endif | 
|  | #endif | 
|  |  | 
|  | /* Converts Gregorian date to seconds since 1970-01-01 00:00:00. | 
|  | * Assumes input in normal date format, i.e. 1980-12-31 23:59:59 | 
|  | * => year=1980, mon=12, day=31, hour=23, min=59, sec=59. | 
|  | * | 
|  | * [For the Julian calendar (which was used in Russia before 1917, | 
|  | * Britain & colonies before 1752, anywhere else before 1582, | 
|  | * and is still in use by some communities) leave out the | 
|  | * -year/100+year/400 terms, and add 10.] | 
|  | * | 
|  | * This algorithm was first published by Gauss (I think). | 
|  | * | 
|  | * WARNING: this function will overflow on 2106-02-07 06:28:16 on | 
|  | * machines were long is 32-bit! (However, as time_t is signed, we | 
|  | * will already get problems at other places on 2038-01-19 03:14:08) | 
|  | */ | 
|  | unsigned long | 
|  | mktime(const unsigned int year0, const unsigned int mon0, | 
|  | const unsigned int day, const unsigned int hour, | 
|  | const unsigned int min, const unsigned int sec) | 
|  | { | 
|  | unsigned int mon = mon0, year = year0; | 
|  |  | 
|  | /* 1..12 -> 11,12,1..10 */ | 
|  | if (0 >= (int) (mon -= 2)) { | 
|  | mon += 12;	/* Puts Feb last since it has leap day */ | 
|  | year -= 1; | 
|  | } | 
|  |  | 
|  | return ((((unsigned long) | 
|  | (year/4 - year/100 + year/400 + 367*mon/12 + day) + | 
|  | year*365 - 719499 | 
|  | )*24 + hour /* now have hours */ | 
|  | )*60 + min /* now have minutes */ | 
|  | )*60 + sec; /* finally seconds */ | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(mktime); | 
|  |  | 
|  | /** | 
|  | * set_normalized_timespec - set timespec sec and nsec parts and normalize | 
|  | * | 
|  | * @ts:		pointer to timespec variable to be set | 
|  | * @sec:	seconds to set | 
|  | * @nsec:	nanoseconds to set | 
|  | * | 
|  | * Set seconds and nanoseconds field of a timespec variable and | 
|  | * normalize to the timespec storage format | 
|  | * | 
|  | * Note: The tv_nsec part is always in the range of | 
|  | * 	0 <= tv_nsec < NSEC_PER_SEC | 
|  | * For negative values only the tv_sec field is negative ! | 
|  | */ | 
|  | void set_normalized_timespec(struct timespec *ts, time_t sec, long nsec) | 
|  | { | 
|  | while (nsec >= NSEC_PER_SEC) { | 
|  | nsec -= NSEC_PER_SEC; | 
|  | ++sec; | 
|  | } | 
|  | while (nsec < 0) { | 
|  | nsec += NSEC_PER_SEC; | 
|  | --sec; | 
|  | } | 
|  | ts->tv_sec = sec; | 
|  | ts->tv_nsec = nsec; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ns_to_timespec - Convert nanoseconds to timespec | 
|  | * @nsec:       the nanoseconds value to be converted | 
|  | * | 
|  | * Returns the timespec representation of the nsec parameter. | 
|  | */ | 
|  | struct timespec ns_to_timespec(const s64 nsec) | 
|  | { | 
|  | struct timespec ts; | 
|  |  | 
|  | if (!nsec) | 
|  | return (struct timespec) {0, 0}; | 
|  |  | 
|  | ts.tv_sec = div_long_long_rem_signed(nsec, NSEC_PER_SEC, &ts.tv_nsec); | 
|  | if (unlikely(nsec < 0)) | 
|  | set_normalized_timespec(&ts, ts.tv_sec, ts.tv_nsec); | 
|  |  | 
|  | return ts; | 
|  | } | 
|  |  | 
|  | /** | 
|  | * ns_to_timeval - Convert nanoseconds to timeval | 
|  | * @nsec:       the nanoseconds value to be converted | 
|  | * | 
|  | * Returns the timeval representation of the nsec parameter. | 
|  | */ | 
|  | struct timeval ns_to_timeval(const s64 nsec) | 
|  | { | 
|  | struct timespec ts = ns_to_timespec(nsec); | 
|  | struct timeval tv; | 
|  |  | 
|  | tv.tv_sec = ts.tv_sec; | 
|  | tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000; | 
|  |  | 
|  | return tv; | 
|  | } | 
|  |  | 
|  | #if (BITS_PER_LONG < 64) | 
|  | u64 get_jiffies_64(void) | 
|  | { | 
|  | unsigned long seq; | 
|  | u64 ret; | 
|  |  | 
|  | do { | 
|  | seq = read_seqbegin(&xtime_lock); | 
|  | ret = jiffies_64; | 
|  | } while (read_seqretry(&xtime_lock, seq)); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | EXPORT_SYMBOL(get_jiffies_64); | 
|  | #endif | 
|  |  | 
|  | EXPORT_SYMBOL(jiffies); |