| /* | 
 |  * Copyright (c) 2005-2007 Chelsio, Inc. All rights reserved. | 
 |  * | 
 |  * This software is available to you under a choice of one of two | 
 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 |  * General Public License (GPL) Version 2, available from the file | 
 |  * COPYING in the main directory of this source tree, or the | 
 |  * OpenIB.org BSD license below: | 
 |  * | 
 |  *     Redistribution and use in source and binary forms, with or | 
 |  *     without modification, are permitted provided that the following | 
 |  *     conditions are met: | 
 |  * | 
 |  *      - Redistributions of source code must retain the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer. | 
 |  * | 
 |  *      - Redistributions in binary form must reproduce the above | 
 |  *        copyright notice, this list of conditions and the following | 
 |  *        disclaimer in the documentation and/or other materials | 
 |  *        provided with the distribution. | 
 |  * | 
 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 |  * SOFTWARE. | 
 |  */ | 
 | #include <linux/skbuff.h> | 
 | #include <linux/netdevice.h> | 
 | #include <linux/etherdevice.h> | 
 | #include <linux/if_vlan.h> | 
 | #include <linux/ip.h> | 
 | #include <linux/tcp.h> | 
 | #include <linux/dma-mapping.h> | 
 | #include "common.h" | 
 | #include "regs.h" | 
 | #include "sge_defs.h" | 
 | #include "t3_cpl.h" | 
 | #include "firmware_exports.h" | 
 |  | 
 | #define USE_GTS 0 | 
 |  | 
 | #define SGE_RX_SM_BUF_SIZE 1536 | 
 |  | 
 | #define SGE_RX_COPY_THRES  256 | 
 | #define SGE_RX_PULL_LEN    128 | 
 |  | 
 | /* | 
 |  * Page chunk size for FL0 buffers if FL0 is to be populated with page chunks. | 
 |  * It must be a divisor of PAGE_SIZE.  If set to 0 FL0 will use sk_buffs | 
 |  * directly. | 
 |  */ | 
 | #define FL0_PG_CHUNK_SIZE  2048 | 
 |  | 
 | #define SGE_RX_DROP_THRES 16 | 
 |  | 
 | /* | 
 |  * Period of the Tx buffer reclaim timer.  This timer does not need to run | 
 |  * frequently as Tx buffers are usually reclaimed by new Tx packets. | 
 |  */ | 
 | #define TX_RECLAIM_PERIOD (HZ / 4) | 
 |  | 
 | /* WR size in bytes */ | 
 | #define WR_LEN (WR_FLITS * 8) | 
 |  | 
 | /* | 
 |  * Types of Tx queues in each queue set.  Order here matters, do not change. | 
 |  */ | 
 | enum { TXQ_ETH, TXQ_OFLD, TXQ_CTRL }; | 
 |  | 
 | /* Values for sge_txq.flags */ | 
 | enum { | 
 | 	TXQ_RUNNING = 1 << 0,	/* fetch engine is running */ | 
 | 	TXQ_LAST_PKT_DB = 1 << 1,	/* last packet rang the doorbell */ | 
 | }; | 
 |  | 
 | struct tx_desc { | 
 | 	__be64 flit[TX_DESC_FLITS]; | 
 | }; | 
 |  | 
 | struct rx_desc { | 
 | 	__be32 addr_lo; | 
 | 	__be32 len_gen; | 
 | 	__be32 gen2; | 
 | 	__be32 addr_hi; | 
 | }; | 
 |  | 
 | struct tx_sw_desc {		/* SW state per Tx descriptor */ | 
 | 	struct sk_buff *skb; | 
 | }; | 
 |  | 
 | struct rx_sw_desc {                /* SW state per Rx descriptor */ | 
 | 	union { | 
 | 		struct sk_buff *skb; | 
 | 		struct fl_pg_chunk pg_chunk; | 
 | 	}; | 
 | 	DECLARE_PCI_UNMAP_ADDR(dma_addr); | 
 | }; | 
 |  | 
 | struct rsp_desc {		/* response queue descriptor */ | 
 | 	struct rss_header rss_hdr; | 
 | 	__be32 flags; | 
 | 	__be32 len_cq; | 
 | 	u8 imm_data[47]; | 
 | 	u8 intr_gen; | 
 | }; | 
 |  | 
 | struct unmap_info {		/* packet unmapping info, overlays skb->cb */ | 
 | 	int sflit;		/* start flit of first SGL entry in Tx descriptor */ | 
 | 	u16 fragidx;		/* first page fragment in current Tx descriptor */ | 
 | 	u16 addr_idx;		/* buffer index of first SGL entry in descriptor */ | 
 | 	u32 len;		/* mapped length of skb main body */ | 
 | }; | 
 |  | 
 | /* | 
 |  * Holds unmapping information for Tx packets that need deferred unmapping. | 
 |  * This structure lives at skb->head and must be allocated by callers. | 
 |  */ | 
 | struct deferred_unmap_info { | 
 | 	struct pci_dev *pdev; | 
 | 	dma_addr_t addr[MAX_SKB_FRAGS + 1]; | 
 | }; | 
 |  | 
 | /* | 
 |  * Maps a number of flits to the number of Tx descriptors that can hold them. | 
 |  * The formula is | 
 |  * | 
 |  * desc = 1 + (flits - 2) / (WR_FLITS - 1). | 
 |  * | 
 |  * HW allows up to 4 descriptors to be combined into a WR. | 
 |  */ | 
 | static u8 flit_desc_map[] = { | 
 | 	0, | 
 | #if SGE_NUM_GENBITS == 1 | 
 | 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 
 | 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | 
 | 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | 
 | 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 | 
 | #elif SGE_NUM_GENBITS == 2 | 
 | 	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, | 
 | 	2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, | 
 | 	3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, | 
 | 	4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, | 
 | #else | 
 | # error "SGE_NUM_GENBITS must be 1 or 2" | 
 | #endif | 
 | }; | 
 |  | 
 | static inline struct sge_qset *fl_to_qset(const struct sge_fl *q, int qidx) | 
 | { | 
 | 	return container_of(q, struct sge_qset, fl[qidx]); | 
 | } | 
 |  | 
 | static inline struct sge_qset *rspq_to_qset(const struct sge_rspq *q) | 
 | { | 
 | 	return container_of(q, struct sge_qset, rspq); | 
 | } | 
 |  | 
 | static inline struct sge_qset *txq_to_qset(const struct sge_txq *q, int qidx) | 
 | { | 
 | 	return container_of(q, struct sge_qset, txq[qidx]); | 
 | } | 
 |  | 
 | /** | 
 |  *	refill_rspq - replenish an SGE response queue | 
 |  *	@adapter: the adapter | 
 |  *	@q: the response queue to replenish | 
 |  *	@credits: how many new responses to make available | 
 |  * | 
 |  *	Replenishes a response queue by making the supplied number of responses | 
 |  *	available to HW. | 
 |  */ | 
 | static inline void refill_rspq(struct adapter *adapter, | 
 | 			       const struct sge_rspq *q, unsigned int credits) | 
 | { | 
 | 	t3_write_reg(adapter, A_SG_RSPQ_CREDIT_RETURN, | 
 | 		     V_RSPQ(q->cntxt_id) | V_CREDITS(credits)); | 
 | } | 
 |  | 
 | /** | 
 |  *	need_skb_unmap - does the platform need unmapping of sk_buffs? | 
 |  * | 
 |  *	Returns true if the platfrom needs sk_buff unmapping.  The compiler | 
 |  *	optimizes away unecessary code if this returns true. | 
 |  */ | 
 | static inline int need_skb_unmap(void) | 
 | { | 
 | 	/* | 
 | 	 * This structure is used to tell if the platfrom needs buffer | 
 | 	 * unmapping by checking if DECLARE_PCI_UNMAP_ADDR defines anything. | 
 | 	 */ | 
 | 	struct dummy { | 
 | 		DECLARE_PCI_UNMAP_ADDR(addr); | 
 | 	}; | 
 |  | 
 | 	return sizeof(struct dummy) != 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	unmap_skb - unmap a packet main body and its page fragments | 
 |  *	@skb: the packet | 
 |  *	@q: the Tx queue containing Tx descriptors for the packet | 
 |  *	@cidx: index of Tx descriptor | 
 |  *	@pdev: the PCI device | 
 |  * | 
 |  *	Unmap the main body of an sk_buff and its page fragments, if any. | 
 |  *	Because of the fairly complicated structure of our SGLs and the desire | 
 |  *	to conserve space for metadata, we keep the information necessary to | 
 |  *	unmap an sk_buff partly in the sk_buff itself (in its cb), and partly | 
 |  *	in the Tx descriptors (the physical addresses of the various data | 
 |  *	buffers).  The send functions initialize the state in skb->cb so we | 
 |  *	can unmap the buffers held in the first Tx descriptor here, and we | 
 |  *	have enough information at this point to update the state for the next | 
 |  *	Tx descriptor. | 
 |  */ | 
 | static inline void unmap_skb(struct sk_buff *skb, struct sge_txq *q, | 
 | 			     unsigned int cidx, struct pci_dev *pdev) | 
 | { | 
 | 	const struct sg_ent *sgp; | 
 | 	struct unmap_info *ui = (struct unmap_info *)skb->cb; | 
 | 	int nfrags, frag_idx, curflit, j = ui->addr_idx; | 
 |  | 
 | 	sgp = (struct sg_ent *)&q->desc[cidx].flit[ui->sflit]; | 
 |  | 
 | 	if (ui->len) { | 
 | 		pci_unmap_single(pdev, be64_to_cpu(sgp->addr[0]), ui->len, | 
 | 				 PCI_DMA_TODEVICE); | 
 | 		ui->len = 0;	/* so we know for next descriptor for this skb */ | 
 | 		j = 1; | 
 | 	} | 
 |  | 
 | 	frag_idx = ui->fragidx; | 
 | 	curflit = ui->sflit + 1 + j; | 
 | 	nfrags = skb_shinfo(skb)->nr_frags; | 
 |  | 
 | 	while (frag_idx < nfrags && curflit < WR_FLITS) { | 
 | 		pci_unmap_page(pdev, be64_to_cpu(sgp->addr[j]), | 
 | 			       skb_shinfo(skb)->frags[frag_idx].size, | 
 | 			       PCI_DMA_TODEVICE); | 
 | 		j ^= 1; | 
 | 		if (j == 0) { | 
 | 			sgp++; | 
 | 			curflit++; | 
 | 		} | 
 | 		curflit++; | 
 | 		frag_idx++; | 
 | 	} | 
 |  | 
 | 	if (frag_idx < nfrags) {	/* SGL continues into next Tx descriptor */ | 
 | 		ui->fragidx = frag_idx; | 
 | 		ui->addr_idx = j; | 
 | 		ui->sflit = curflit - WR_FLITS - j;	/* sflit can be -1 */ | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	free_tx_desc - reclaims Tx descriptors and their buffers | 
 |  *	@adapter: the adapter | 
 |  *	@q: the Tx queue to reclaim descriptors from | 
 |  *	@n: the number of descriptors to reclaim | 
 |  * | 
 |  *	Reclaims Tx descriptors from an SGE Tx queue and frees the associated | 
 |  *	Tx buffers.  Called with the Tx queue lock held. | 
 |  */ | 
 | static void free_tx_desc(struct adapter *adapter, struct sge_txq *q, | 
 | 			 unsigned int n) | 
 | { | 
 | 	struct tx_sw_desc *d; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 | 	unsigned int cidx = q->cidx; | 
 |  | 
 | 	const int need_unmap = need_skb_unmap() && | 
 | 			       q->cntxt_id >= FW_TUNNEL_SGEEC_START; | 
 |  | 
 | 	d = &q->sdesc[cidx]; | 
 | 	while (n--) { | 
 | 		if (d->skb) {	/* an SGL is present */ | 
 | 			if (need_unmap) | 
 | 				unmap_skb(d->skb, q, cidx, pdev); | 
 | 			if (d->skb->priority == cidx) | 
 | 				kfree_skb(d->skb); | 
 | 		} | 
 | 		++d; | 
 | 		if (++cidx == q->size) { | 
 | 			cidx = 0; | 
 | 			d = q->sdesc; | 
 | 		} | 
 | 	} | 
 | 	q->cidx = cidx; | 
 | } | 
 |  | 
 | /** | 
 |  *	reclaim_completed_tx - reclaims completed Tx descriptors | 
 |  *	@adapter: the adapter | 
 |  *	@q: the Tx queue to reclaim completed descriptors from | 
 |  * | 
 |  *	Reclaims Tx descriptors that the SGE has indicated it has processed, | 
 |  *	and frees the associated buffers if possible.  Called with the Tx | 
 |  *	queue's lock held. | 
 |  */ | 
 | static inline void reclaim_completed_tx(struct adapter *adapter, | 
 | 					struct sge_txq *q) | 
 | { | 
 | 	unsigned int reclaim = q->processed - q->cleaned; | 
 |  | 
 | 	if (reclaim) { | 
 | 		free_tx_desc(adapter, q, reclaim); | 
 | 		q->cleaned += reclaim; | 
 | 		q->in_use -= reclaim; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	should_restart_tx - are there enough resources to restart a Tx queue? | 
 |  *	@q: the Tx queue | 
 |  * | 
 |  *	Checks if there are enough descriptors to restart a suspended Tx queue. | 
 |  */ | 
 | static inline int should_restart_tx(const struct sge_txq *q) | 
 | { | 
 | 	unsigned int r = q->processed - q->cleaned; | 
 |  | 
 | 	return q->in_use - r < (q->size >> 1); | 
 | } | 
 |  | 
 | /** | 
 |  *	free_rx_bufs - free the Rx buffers on an SGE free list | 
 |  *	@pdev: the PCI device associated with the adapter | 
 |  *	@rxq: the SGE free list to clean up | 
 |  * | 
 |  *	Release the buffers on an SGE free-buffer Rx queue.  HW fetching from | 
 |  *	this queue should be stopped before calling this function. | 
 |  */ | 
 | static void free_rx_bufs(struct pci_dev *pdev, struct sge_fl *q) | 
 | { | 
 | 	unsigned int cidx = q->cidx; | 
 |  | 
 | 	while (q->credits--) { | 
 | 		struct rx_sw_desc *d = &q->sdesc[cidx]; | 
 |  | 
 | 		pci_unmap_single(pdev, pci_unmap_addr(d, dma_addr), | 
 | 				 q->buf_size, PCI_DMA_FROMDEVICE); | 
 | 		if (q->use_pages) { | 
 | 			put_page(d->pg_chunk.page); | 
 | 			d->pg_chunk.page = NULL; | 
 | 		} else { | 
 | 			kfree_skb(d->skb); | 
 | 			d->skb = NULL; | 
 | 		} | 
 | 		if (++cidx == q->size) | 
 | 			cidx = 0; | 
 | 	} | 
 |  | 
 | 	if (q->pg_chunk.page) { | 
 | 		__free_page(q->pg_chunk.page); | 
 | 		q->pg_chunk.page = NULL; | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	add_one_rx_buf - add a packet buffer to a free-buffer list | 
 |  *	@va:  buffer start VA | 
 |  *	@len: the buffer length | 
 |  *	@d: the HW Rx descriptor to write | 
 |  *	@sd: the SW Rx descriptor to write | 
 |  *	@gen: the generation bit value | 
 |  *	@pdev: the PCI device associated with the adapter | 
 |  * | 
 |  *	Add a buffer of the given length to the supplied HW and SW Rx | 
 |  *	descriptors. | 
 |  */ | 
 | static inline void add_one_rx_buf(void *va, unsigned int len, | 
 | 				  struct rx_desc *d, struct rx_sw_desc *sd, | 
 | 				  unsigned int gen, struct pci_dev *pdev) | 
 | { | 
 | 	dma_addr_t mapping; | 
 |  | 
 | 	mapping = pci_map_single(pdev, va, len, PCI_DMA_FROMDEVICE); | 
 | 	pci_unmap_addr_set(sd, dma_addr, mapping); | 
 |  | 
 | 	d->addr_lo = cpu_to_be32(mapping); | 
 | 	d->addr_hi = cpu_to_be32((u64) mapping >> 32); | 
 | 	wmb(); | 
 | 	d->len_gen = cpu_to_be32(V_FLD_GEN1(gen)); | 
 | 	d->gen2 = cpu_to_be32(V_FLD_GEN2(gen)); | 
 | } | 
 |  | 
 | static int alloc_pg_chunk(struct sge_fl *q, struct rx_sw_desc *sd, gfp_t gfp) | 
 | { | 
 | 	if (!q->pg_chunk.page) { | 
 | 		q->pg_chunk.page = alloc_page(gfp); | 
 | 		if (unlikely(!q->pg_chunk.page)) | 
 | 			return -ENOMEM; | 
 | 		q->pg_chunk.va = page_address(q->pg_chunk.page); | 
 | 		q->pg_chunk.offset = 0; | 
 | 	} | 
 | 	sd->pg_chunk = q->pg_chunk; | 
 |  | 
 | 	q->pg_chunk.offset += q->buf_size; | 
 | 	if (q->pg_chunk.offset == PAGE_SIZE) | 
 | 		q->pg_chunk.page = NULL; | 
 | 	else { | 
 | 		q->pg_chunk.va += q->buf_size; | 
 | 		get_page(q->pg_chunk.page); | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	refill_fl - refill an SGE free-buffer list | 
 |  *	@adapter: the adapter | 
 |  *	@q: the free-list to refill | 
 |  *	@n: the number of new buffers to allocate | 
 |  *	@gfp: the gfp flags for allocating new buffers | 
 |  * | 
 |  *	(Re)populate an SGE free-buffer list with up to @n new packet buffers, | 
 |  *	allocated with the supplied gfp flags.  The caller must assure that | 
 |  *	@n does not exceed the queue's capacity. | 
 |  */ | 
 | static void refill_fl(struct adapter *adap, struct sge_fl *q, int n, gfp_t gfp) | 
 | { | 
 | 	void *buf_start; | 
 | 	struct rx_sw_desc *sd = &q->sdesc[q->pidx]; | 
 | 	struct rx_desc *d = &q->desc[q->pidx]; | 
 |  | 
 | 	while (n--) { | 
 | 		if (q->use_pages) { | 
 | 			if (unlikely(alloc_pg_chunk(q, sd, gfp))) { | 
 | nomem:				q->alloc_failed++; | 
 | 				break; | 
 | 			} | 
 | 			buf_start = sd->pg_chunk.va; | 
 | 		} else { | 
 | 			struct sk_buff *skb = alloc_skb(q->buf_size, gfp); | 
 |  | 
 | 			if (!skb) | 
 | 				goto nomem; | 
 |  | 
 | 			sd->skb = skb; | 
 | 			buf_start = skb->data; | 
 | 		} | 
 |  | 
 | 		add_one_rx_buf(buf_start, q->buf_size, d, sd, q->gen, | 
 | 			       adap->pdev); | 
 | 		d++; | 
 | 		sd++; | 
 | 		if (++q->pidx == q->size) { | 
 | 			q->pidx = 0; | 
 | 			q->gen ^= 1; | 
 | 			sd = q->sdesc; | 
 | 			d = q->desc; | 
 | 		} | 
 | 		q->credits++; | 
 | 	} | 
 |  | 
 | 	t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); | 
 | } | 
 |  | 
 | static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) | 
 | { | 
 | 	refill_fl(adap, fl, min(16U, fl->size - fl->credits), GFP_ATOMIC); | 
 | } | 
 |  | 
 | /** | 
 |  *	recycle_rx_buf - recycle a receive buffer | 
 |  *	@adapter: the adapter | 
 |  *	@q: the SGE free list | 
 |  *	@idx: index of buffer to recycle | 
 |  * | 
 |  *	Recycles the specified buffer on the given free list by adding it at | 
 |  *	the next available slot on the list. | 
 |  */ | 
 | static void recycle_rx_buf(struct adapter *adap, struct sge_fl *q, | 
 | 			   unsigned int idx) | 
 | { | 
 | 	struct rx_desc *from = &q->desc[idx]; | 
 | 	struct rx_desc *to = &q->desc[q->pidx]; | 
 |  | 
 | 	q->sdesc[q->pidx] = q->sdesc[idx]; | 
 | 	to->addr_lo = from->addr_lo;	/* already big endian */ | 
 | 	to->addr_hi = from->addr_hi;	/* likewise */ | 
 | 	wmb(); | 
 | 	to->len_gen = cpu_to_be32(V_FLD_GEN1(q->gen)); | 
 | 	to->gen2 = cpu_to_be32(V_FLD_GEN2(q->gen)); | 
 | 	q->credits++; | 
 |  | 
 | 	if (++q->pidx == q->size) { | 
 | 		q->pidx = 0; | 
 | 		q->gen ^= 1; | 
 | 	} | 
 | 	t3_write_reg(adap, A_SG_KDOORBELL, V_EGRCNTX(q->cntxt_id)); | 
 | } | 
 |  | 
 | /** | 
 |  *	alloc_ring - allocate resources for an SGE descriptor ring | 
 |  *	@pdev: the PCI device | 
 |  *	@nelem: the number of descriptors | 
 |  *	@elem_size: the size of each descriptor | 
 |  *	@sw_size: the size of the SW state associated with each ring element | 
 |  *	@phys: the physical address of the allocated ring | 
 |  *	@metadata: address of the array holding the SW state for the ring | 
 |  * | 
 |  *	Allocates resources for an SGE descriptor ring, such as Tx queues, | 
 |  *	free buffer lists, or response queues.  Each SGE ring requires | 
 |  *	space for its HW descriptors plus, optionally, space for the SW state | 
 |  *	associated with each HW entry (the metadata).  The function returns | 
 |  *	three values: the virtual address for the HW ring (the return value | 
 |  *	of the function), the physical address of the HW ring, and the address | 
 |  *	of the SW ring. | 
 |  */ | 
 | static void *alloc_ring(struct pci_dev *pdev, size_t nelem, size_t elem_size, | 
 | 			size_t sw_size, dma_addr_t * phys, void *metadata) | 
 | { | 
 | 	size_t len = nelem * elem_size; | 
 | 	void *s = NULL; | 
 | 	void *p = dma_alloc_coherent(&pdev->dev, len, phys, GFP_KERNEL); | 
 |  | 
 | 	if (!p) | 
 | 		return NULL; | 
 | 	if (sw_size) { | 
 | 		s = kcalloc(nelem, sw_size, GFP_KERNEL); | 
 |  | 
 | 		if (!s) { | 
 | 			dma_free_coherent(&pdev->dev, len, p, *phys); | 
 | 			return NULL; | 
 | 		} | 
 | 	} | 
 | 	if (metadata) | 
 | 		*(void **)metadata = s; | 
 | 	memset(p, 0, len); | 
 | 	return p; | 
 | } | 
 |  | 
 | /** | 
 |  *	free_qset - free the resources of an SGE queue set | 
 |  *	@adapter: the adapter owning the queue set | 
 |  *	@q: the queue set | 
 |  * | 
 |  *	Release the HW and SW resources associated with an SGE queue set, such | 
 |  *	as HW contexts, packet buffers, and descriptor rings.  Traffic to the | 
 |  *	queue set must be quiesced prior to calling this. | 
 |  */ | 
 | static void t3_free_qset(struct adapter *adapter, struct sge_qset *q) | 
 | { | 
 | 	int i; | 
 | 	struct pci_dev *pdev = adapter->pdev; | 
 |  | 
 | 	if (q->tx_reclaim_timer.function) | 
 | 		del_timer_sync(&q->tx_reclaim_timer); | 
 |  | 
 | 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) | 
 | 		if (q->fl[i].desc) { | 
 | 			spin_lock(&adapter->sge.reg_lock); | 
 | 			t3_sge_disable_fl(adapter, q->fl[i].cntxt_id); | 
 | 			spin_unlock(&adapter->sge.reg_lock); | 
 | 			free_rx_bufs(pdev, &q->fl[i]); | 
 | 			kfree(q->fl[i].sdesc); | 
 | 			dma_free_coherent(&pdev->dev, | 
 | 					  q->fl[i].size * | 
 | 					  sizeof(struct rx_desc), q->fl[i].desc, | 
 | 					  q->fl[i].phys_addr); | 
 | 		} | 
 |  | 
 | 	for (i = 0; i < SGE_TXQ_PER_SET; ++i) | 
 | 		if (q->txq[i].desc) { | 
 | 			spin_lock(&adapter->sge.reg_lock); | 
 | 			t3_sge_enable_ecntxt(adapter, q->txq[i].cntxt_id, 0); | 
 | 			spin_unlock(&adapter->sge.reg_lock); | 
 | 			if (q->txq[i].sdesc) { | 
 | 				free_tx_desc(adapter, &q->txq[i], | 
 | 					     q->txq[i].in_use); | 
 | 				kfree(q->txq[i].sdesc); | 
 | 			} | 
 | 			dma_free_coherent(&pdev->dev, | 
 | 					  q->txq[i].size * | 
 | 					  sizeof(struct tx_desc), | 
 | 					  q->txq[i].desc, q->txq[i].phys_addr); | 
 | 			__skb_queue_purge(&q->txq[i].sendq); | 
 | 		} | 
 |  | 
 | 	if (q->rspq.desc) { | 
 | 		spin_lock(&adapter->sge.reg_lock); | 
 | 		t3_sge_disable_rspcntxt(adapter, q->rspq.cntxt_id); | 
 | 		spin_unlock(&adapter->sge.reg_lock); | 
 | 		dma_free_coherent(&pdev->dev, | 
 | 				  q->rspq.size * sizeof(struct rsp_desc), | 
 | 				  q->rspq.desc, q->rspq.phys_addr); | 
 | 	} | 
 |  | 
 | 	memset(q, 0, sizeof(*q)); | 
 | } | 
 |  | 
 | /** | 
 |  *	init_qset_cntxt - initialize an SGE queue set context info | 
 |  *	@qs: the queue set | 
 |  *	@id: the queue set id | 
 |  * | 
 |  *	Initializes the TIDs and context ids for the queues of a queue set. | 
 |  */ | 
 | static void init_qset_cntxt(struct sge_qset *qs, unsigned int id) | 
 | { | 
 | 	qs->rspq.cntxt_id = id; | 
 | 	qs->fl[0].cntxt_id = 2 * id; | 
 | 	qs->fl[1].cntxt_id = 2 * id + 1; | 
 | 	qs->txq[TXQ_ETH].cntxt_id = FW_TUNNEL_SGEEC_START + id; | 
 | 	qs->txq[TXQ_ETH].token = FW_TUNNEL_TID_START + id; | 
 | 	qs->txq[TXQ_OFLD].cntxt_id = FW_OFLD_SGEEC_START + id; | 
 | 	qs->txq[TXQ_CTRL].cntxt_id = FW_CTRL_SGEEC_START + id; | 
 | 	qs->txq[TXQ_CTRL].token = FW_CTRL_TID_START + id; | 
 | } | 
 |  | 
 | /** | 
 |  *	sgl_len - calculates the size of an SGL of the given capacity | 
 |  *	@n: the number of SGL entries | 
 |  * | 
 |  *	Calculates the number of flits needed for a scatter/gather list that | 
 |  *	can hold the given number of entries. | 
 |  */ | 
 | static inline unsigned int sgl_len(unsigned int n) | 
 | { | 
 | 	/* alternatively: 3 * (n / 2) + 2 * (n & 1) */ | 
 | 	return (3 * n) / 2 + (n & 1); | 
 | } | 
 |  | 
 | /** | 
 |  *	flits_to_desc - returns the num of Tx descriptors for the given flits | 
 |  *	@n: the number of flits | 
 |  * | 
 |  *	Calculates the number of Tx descriptors needed for the supplied number | 
 |  *	of flits. | 
 |  */ | 
 | static inline unsigned int flits_to_desc(unsigned int n) | 
 | { | 
 | 	BUG_ON(n >= ARRAY_SIZE(flit_desc_map)); | 
 | 	return flit_desc_map[n]; | 
 | } | 
 |  | 
 | /** | 
 |  *	get_packet - return the next ingress packet buffer from a free list | 
 |  *	@adap: the adapter that received the packet | 
 |  *	@fl: the SGE free list holding the packet | 
 |  *	@len: the packet length including any SGE padding | 
 |  *	@drop_thres: # of remaining buffers before we start dropping packets | 
 |  * | 
 |  *	Get the next packet from a free list and complete setup of the | 
 |  *	sk_buff.  If the packet is small we make a copy and recycle the | 
 |  *	original buffer, otherwise we use the original buffer itself.  If a | 
 |  *	positive drop threshold is supplied packets are dropped and their | 
 |  *	buffers recycled if (a) the number of remaining buffers is under the | 
 |  *	threshold and the packet is too big to copy, or (b) the packet should | 
 |  *	be copied but there is no memory for the copy. | 
 |  */ | 
 | static struct sk_buff *get_packet(struct adapter *adap, struct sge_fl *fl, | 
 | 				  unsigned int len, unsigned int drop_thres) | 
 | { | 
 | 	struct sk_buff *skb = NULL; | 
 | 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; | 
 |  | 
 | 	prefetch(sd->skb->data); | 
 | 	fl->credits--; | 
 |  | 
 | 	if (len <= SGE_RX_COPY_THRES) { | 
 | 		skb = alloc_skb(len, GFP_ATOMIC); | 
 | 		if (likely(skb != NULL)) { | 
 | 			__skb_put(skb, len); | 
 | 			pci_dma_sync_single_for_cpu(adap->pdev, | 
 | 					    pci_unmap_addr(sd, dma_addr), len, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 			memcpy(skb->data, sd->skb->data, len); | 
 | 			pci_dma_sync_single_for_device(adap->pdev, | 
 | 					    pci_unmap_addr(sd, dma_addr), len, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 		} else if (!drop_thres) | 
 | 			goto use_orig_buf; | 
 | recycle: | 
 | 		recycle_rx_buf(adap, fl, fl->cidx); | 
 | 		return skb; | 
 | 	} | 
 |  | 
 | 	if (unlikely(fl->credits < drop_thres)) | 
 | 		goto recycle; | 
 |  | 
 | use_orig_buf: | 
 | 	pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr), | 
 | 			 fl->buf_size, PCI_DMA_FROMDEVICE); | 
 | 	skb = sd->skb; | 
 | 	skb_put(skb, len); | 
 | 	__refill_fl(adap, fl); | 
 | 	return skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	get_packet_pg - return the next ingress packet buffer from a free list | 
 |  *	@adap: the adapter that received the packet | 
 |  *	@fl: the SGE free list holding the packet | 
 |  *	@len: the packet length including any SGE padding | 
 |  *	@drop_thres: # of remaining buffers before we start dropping packets | 
 |  * | 
 |  *	Get the next packet from a free list populated with page chunks. | 
 |  *	If the packet is small we make a copy and recycle the original buffer, | 
 |  *	otherwise we attach the original buffer as a page fragment to a fresh | 
 |  *	sk_buff.  If a positive drop threshold is supplied packets are dropped | 
 |  *	and their buffers recycled if (a) the number of remaining buffers is | 
 |  *	under the threshold and the packet is too big to copy, or (b) there's | 
 |  *	no system memory. | 
 |  * | 
 |  * 	Note: this function is similar to @get_packet but deals with Rx buffers | 
 |  * 	that are page chunks rather than sk_buffs. | 
 |  */ | 
 | static struct sk_buff *get_packet_pg(struct adapter *adap, struct sge_fl *fl, | 
 | 				     unsigned int len, unsigned int drop_thres) | 
 | { | 
 | 	struct sk_buff *skb = NULL; | 
 | 	struct rx_sw_desc *sd = &fl->sdesc[fl->cidx]; | 
 |  | 
 | 	if (len <= SGE_RX_COPY_THRES) { | 
 | 		skb = alloc_skb(len, GFP_ATOMIC); | 
 | 		if (likely(skb != NULL)) { | 
 | 			__skb_put(skb, len); | 
 | 			pci_dma_sync_single_for_cpu(adap->pdev, | 
 | 					    pci_unmap_addr(sd, dma_addr), len, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 			memcpy(skb->data, sd->pg_chunk.va, len); | 
 | 			pci_dma_sync_single_for_device(adap->pdev, | 
 | 					    pci_unmap_addr(sd, dma_addr), len, | 
 | 					    PCI_DMA_FROMDEVICE); | 
 | 		} else if (!drop_thres) | 
 | 			return NULL; | 
 | recycle: | 
 | 		fl->credits--; | 
 | 		recycle_rx_buf(adap, fl, fl->cidx); | 
 | 		return skb; | 
 | 	} | 
 |  | 
 | 	if (unlikely(fl->credits <= drop_thres)) | 
 | 		goto recycle; | 
 |  | 
 | 	skb = alloc_skb(SGE_RX_PULL_LEN, GFP_ATOMIC); | 
 | 	if (unlikely(!skb)) { | 
 | 		if (!drop_thres) | 
 | 			return NULL; | 
 | 		goto recycle; | 
 | 	} | 
 |  | 
 | 	pci_unmap_single(adap->pdev, pci_unmap_addr(sd, dma_addr), | 
 | 			 fl->buf_size, PCI_DMA_FROMDEVICE); | 
 | 	__skb_put(skb, SGE_RX_PULL_LEN); | 
 | 	memcpy(skb->data, sd->pg_chunk.va, SGE_RX_PULL_LEN); | 
 | 	skb_fill_page_desc(skb, 0, sd->pg_chunk.page, | 
 | 			   sd->pg_chunk.offset + SGE_RX_PULL_LEN, | 
 | 			   len - SGE_RX_PULL_LEN); | 
 | 	skb->len = len; | 
 | 	skb->data_len = len - SGE_RX_PULL_LEN; | 
 | 	skb->truesize += skb->data_len; | 
 |  | 
 | 	fl->credits--; | 
 | 	/* | 
 | 	 * We do not refill FLs here, we let the caller do it to overlap a | 
 | 	 * prefetch. | 
 | 	 */ | 
 | 	return skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	get_imm_packet - return the next ingress packet buffer from a response | 
 |  *	@resp: the response descriptor containing the packet data | 
 |  * | 
 |  *	Return a packet containing the immediate data of the given response. | 
 |  */ | 
 | static inline struct sk_buff *get_imm_packet(const struct rsp_desc *resp) | 
 | { | 
 | 	struct sk_buff *skb = alloc_skb(IMMED_PKT_SIZE, GFP_ATOMIC); | 
 |  | 
 | 	if (skb) { | 
 | 		__skb_put(skb, IMMED_PKT_SIZE); | 
 | 		skb_copy_to_linear_data(skb, resp->imm_data, IMMED_PKT_SIZE); | 
 | 	} | 
 | 	return skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	calc_tx_descs - calculate the number of Tx descriptors for a packet | 
 |  *	@skb: the packet | 
 |  * | 
 |  * 	Returns the number of Tx descriptors needed for the given Ethernet | 
 |  * 	packet.  Ethernet packets require addition of WR and CPL headers. | 
 |  */ | 
 | static inline unsigned int calc_tx_descs(const struct sk_buff *skb) | 
 | { | 
 | 	unsigned int flits; | 
 |  | 
 | 	if (skb->len <= WR_LEN - sizeof(struct cpl_tx_pkt)) | 
 | 		return 1; | 
 |  | 
 | 	flits = sgl_len(skb_shinfo(skb)->nr_frags + 1) + 2; | 
 | 	if (skb_shinfo(skb)->gso_size) | 
 | 		flits++; | 
 | 	return flits_to_desc(flits); | 
 | } | 
 |  | 
 | /** | 
 |  *	make_sgl - populate a scatter/gather list for a packet | 
 |  *	@skb: the packet | 
 |  *	@sgp: the SGL to populate | 
 |  *	@start: start address of skb main body data to include in the SGL | 
 |  *	@len: length of skb main body data to include in the SGL | 
 |  *	@pdev: the PCI device | 
 |  * | 
 |  *	Generates a scatter/gather list for the buffers that make up a packet | 
 |  *	and returns the SGL size in 8-byte words.  The caller must size the SGL | 
 |  *	appropriately. | 
 |  */ | 
 | static inline unsigned int make_sgl(const struct sk_buff *skb, | 
 | 				    struct sg_ent *sgp, unsigned char *start, | 
 | 				    unsigned int len, struct pci_dev *pdev) | 
 | { | 
 | 	dma_addr_t mapping; | 
 | 	unsigned int i, j = 0, nfrags; | 
 |  | 
 | 	if (len) { | 
 | 		mapping = pci_map_single(pdev, start, len, PCI_DMA_TODEVICE); | 
 | 		sgp->len[0] = cpu_to_be32(len); | 
 | 		sgp->addr[0] = cpu_to_be64(mapping); | 
 | 		j = 1; | 
 | 	} | 
 |  | 
 | 	nfrags = skb_shinfo(skb)->nr_frags; | 
 | 	for (i = 0; i < nfrags; i++) { | 
 | 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; | 
 |  | 
 | 		mapping = pci_map_page(pdev, frag->page, frag->page_offset, | 
 | 				       frag->size, PCI_DMA_TODEVICE); | 
 | 		sgp->len[j] = cpu_to_be32(frag->size); | 
 | 		sgp->addr[j] = cpu_to_be64(mapping); | 
 | 		j ^= 1; | 
 | 		if (j == 0) | 
 | 			++sgp; | 
 | 	} | 
 | 	if (j) | 
 | 		sgp->len[j] = 0; | 
 | 	return ((nfrags + (len != 0)) * 3) / 2 + j; | 
 | } | 
 |  | 
 | /** | 
 |  *	check_ring_tx_db - check and potentially ring a Tx queue's doorbell | 
 |  *	@adap: the adapter | 
 |  *	@q: the Tx queue | 
 |  * | 
 |  *	Ring the doorbel if a Tx queue is asleep.  There is a natural race, | 
 |  *	where the HW is going to sleep just after we checked, however, | 
 |  *	then the interrupt handler will detect the outstanding TX packet | 
 |  *	and ring the doorbell for us. | 
 |  * | 
 |  *	When GTS is disabled we unconditionally ring the doorbell. | 
 |  */ | 
 | static inline void check_ring_tx_db(struct adapter *adap, struct sge_txq *q) | 
 | { | 
 | #if USE_GTS | 
 | 	clear_bit(TXQ_LAST_PKT_DB, &q->flags); | 
 | 	if (test_and_set_bit(TXQ_RUNNING, &q->flags) == 0) { | 
 | 		set_bit(TXQ_LAST_PKT_DB, &q->flags); | 
 | 		t3_write_reg(adap, A_SG_KDOORBELL, | 
 | 			     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | 
 | 	} | 
 | #else | 
 | 	wmb();			/* write descriptors before telling HW */ | 
 | 	t3_write_reg(adap, A_SG_KDOORBELL, | 
 | 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | 
 | #endif | 
 | } | 
 |  | 
 | static inline void wr_gen2(struct tx_desc *d, unsigned int gen) | 
 | { | 
 | #if SGE_NUM_GENBITS == 2 | 
 | 	d->flit[TX_DESC_FLITS - 1] = cpu_to_be64(gen); | 
 | #endif | 
 | } | 
 |  | 
 | /** | 
 |  *	write_wr_hdr_sgl - write a WR header and, optionally, SGL | 
 |  *	@ndesc: number of Tx descriptors spanned by the SGL | 
 |  *	@skb: the packet corresponding to the WR | 
 |  *	@d: first Tx descriptor to be written | 
 |  *	@pidx: index of above descriptors | 
 |  *	@q: the SGE Tx queue | 
 |  *	@sgl: the SGL | 
 |  *	@flits: number of flits to the start of the SGL in the first descriptor | 
 |  *	@sgl_flits: the SGL size in flits | 
 |  *	@gen: the Tx descriptor generation | 
 |  *	@wr_hi: top 32 bits of WR header based on WR type (big endian) | 
 |  *	@wr_lo: low 32 bits of WR header based on WR type (big endian) | 
 |  * | 
 |  *	Write a work request header and an associated SGL.  If the SGL is | 
 |  *	small enough to fit into one Tx descriptor it has already been written | 
 |  *	and we just need to write the WR header.  Otherwise we distribute the | 
 |  *	SGL across the number of descriptors it spans. | 
 |  */ | 
 | static void write_wr_hdr_sgl(unsigned int ndesc, struct sk_buff *skb, | 
 | 			     struct tx_desc *d, unsigned int pidx, | 
 | 			     const struct sge_txq *q, | 
 | 			     const struct sg_ent *sgl, | 
 | 			     unsigned int flits, unsigned int sgl_flits, | 
 | 			     unsigned int gen, __be32 wr_hi, | 
 | 			     __be32 wr_lo) | 
 | { | 
 | 	struct work_request_hdr *wrp = (struct work_request_hdr *)d; | 
 | 	struct tx_sw_desc *sd = &q->sdesc[pidx]; | 
 |  | 
 | 	sd->skb = skb; | 
 | 	if (need_skb_unmap()) { | 
 | 		struct unmap_info *ui = (struct unmap_info *)skb->cb; | 
 |  | 
 | 		ui->fragidx = 0; | 
 | 		ui->addr_idx = 0; | 
 | 		ui->sflit = flits; | 
 | 	} | 
 |  | 
 | 	if (likely(ndesc == 1)) { | 
 | 		skb->priority = pidx; | 
 | 		wrp->wr_hi = htonl(F_WR_SOP | F_WR_EOP | V_WR_DATATYPE(1) | | 
 | 				   V_WR_SGLSFLT(flits)) | wr_hi; | 
 | 		wmb(); | 
 | 		wrp->wr_lo = htonl(V_WR_LEN(flits + sgl_flits) | | 
 | 				   V_WR_GEN(gen)) | wr_lo; | 
 | 		wr_gen2(d, gen); | 
 | 	} else { | 
 | 		unsigned int ogen = gen; | 
 | 		const u64 *fp = (const u64 *)sgl; | 
 | 		struct work_request_hdr *wp = wrp; | 
 |  | 
 | 		wrp->wr_hi = htonl(F_WR_SOP | V_WR_DATATYPE(1) | | 
 | 				   V_WR_SGLSFLT(flits)) | wr_hi; | 
 |  | 
 | 		while (sgl_flits) { | 
 | 			unsigned int avail = WR_FLITS - flits; | 
 |  | 
 | 			if (avail > sgl_flits) | 
 | 				avail = sgl_flits; | 
 | 			memcpy(&d->flit[flits], fp, avail * sizeof(*fp)); | 
 | 			sgl_flits -= avail; | 
 | 			ndesc--; | 
 | 			if (!sgl_flits) | 
 | 				break; | 
 |  | 
 | 			fp += avail; | 
 | 			d++; | 
 | 			sd++; | 
 | 			if (++pidx == q->size) { | 
 | 				pidx = 0; | 
 | 				gen ^= 1; | 
 | 				d = q->desc; | 
 | 				sd = q->sdesc; | 
 | 			} | 
 |  | 
 | 			sd->skb = skb; | 
 | 			wrp = (struct work_request_hdr *)d; | 
 | 			wrp->wr_hi = htonl(V_WR_DATATYPE(1) | | 
 | 					   V_WR_SGLSFLT(1)) | wr_hi; | 
 | 			wrp->wr_lo = htonl(V_WR_LEN(min(WR_FLITS, | 
 | 							sgl_flits + 1)) | | 
 | 					   V_WR_GEN(gen)) | wr_lo; | 
 | 			wr_gen2(d, gen); | 
 | 			flits = 1; | 
 | 		} | 
 | 		skb->priority = pidx; | 
 | 		wrp->wr_hi |= htonl(F_WR_EOP); | 
 | 		wmb(); | 
 | 		wp->wr_lo = htonl(V_WR_LEN(WR_FLITS) | V_WR_GEN(ogen)) | wr_lo; | 
 | 		wr_gen2((struct tx_desc *)wp, ogen); | 
 | 		WARN_ON(ndesc != 0); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	write_tx_pkt_wr - write a TX_PKT work request | 
 |  *	@adap: the adapter | 
 |  *	@skb: the packet to send | 
 |  *	@pi: the egress interface | 
 |  *	@pidx: index of the first Tx descriptor to write | 
 |  *	@gen: the generation value to use | 
 |  *	@q: the Tx queue | 
 |  *	@ndesc: number of descriptors the packet will occupy | 
 |  *	@compl: the value of the COMPL bit to use | 
 |  * | 
 |  *	Generate a TX_PKT work request to send the supplied packet. | 
 |  */ | 
 | static void write_tx_pkt_wr(struct adapter *adap, struct sk_buff *skb, | 
 | 			    const struct port_info *pi, | 
 | 			    unsigned int pidx, unsigned int gen, | 
 | 			    struct sge_txq *q, unsigned int ndesc, | 
 | 			    unsigned int compl) | 
 | { | 
 | 	unsigned int flits, sgl_flits, cntrl, tso_info; | 
 | 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; | 
 | 	struct tx_desc *d = &q->desc[pidx]; | 
 | 	struct cpl_tx_pkt *cpl = (struct cpl_tx_pkt *)d; | 
 |  | 
 | 	cpl->len = htonl(skb->len | 0x80000000); | 
 | 	cntrl = V_TXPKT_INTF(pi->port_id); | 
 |  | 
 | 	if (vlan_tx_tag_present(skb) && pi->vlan_grp) | 
 | 		cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(vlan_tx_tag_get(skb)); | 
 |  | 
 | 	tso_info = V_LSO_MSS(skb_shinfo(skb)->gso_size); | 
 | 	if (tso_info) { | 
 | 		int eth_type; | 
 | 		struct cpl_tx_pkt_lso *hdr = (struct cpl_tx_pkt_lso *)cpl; | 
 |  | 
 | 		d->flit[2] = 0; | 
 | 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT_LSO); | 
 | 		hdr->cntrl = htonl(cntrl); | 
 | 		eth_type = skb_network_offset(skb) == ETH_HLEN ? | 
 | 		    CPL_ETH_II : CPL_ETH_II_VLAN; | 
 | 		tso_info |= V_LSO_ETH_TYPE(eth_type) | | 
 | 		    V_LSO_IPHDR_WORDS(ip_hdr(skb)->ihl) | | 
 | 		    V_LSO_TCPHDR_WORDS(tcp_hdr(skb)->doff); | 
 | 		hdr->lso_info = htonl(tso_info); | 
 | 		flits = 3; | 
 | 	} else { | 
 | 		cntrl |= V_TXPKT_OPCODE(CPL_TX_PKT); | 
 | 		cntrl |= F_TXPKT_IPCSUM_DIS;	/* SW calculates IP csum */ | 
 | 		cntrl |= V_TXPKT_L4CSUM_DIS(skb->ip_summed != CHECKSUM_PARTIAL); | 
 | 		cpl->cntrl = htonl(cntrl); | 
 |  | 
 | 		if (skb->len <= WR_LEN - sizeof(*cpl)) { | 
 | 			q->sdesc[pidx].skb = NULL; | 
 | 			if (!skb->data_len) | 
 | 				skb_copy_from_linear_data(skb, &d->flit[2], | 
 | 							  skb->len); | 
 | 			else | 
 | 				skb_copy_bits(skb, 0, &d->flit[2], skb->len); | 
 |  | 
 | 			flits = (skb->len + 7) / 8 + 2; | 
 | 			cpl->wr.wr_hi = htonl(V_WR_BCNTLFLT(skb->len & 7) | | 
 | 					      V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | 
 | 					      | F_WR_SOP | F_WR_EOP | compl); | 
 | 			wmb(); | 
 | 			cpl->wr.wr_lo = htonl(V_WR_LEN(flits) | V_WR_GEN(gen) | | 
 | 					      V_WR_TID(q->token)); | 
 | 			wr_gen2(d, gen); | 
 | 			kfree_skb(skb); | 
 | 			return; | 
 | 		} | 
 |  | 
 | 		flits = 2; | 
 | 	} | 
 |  | 
 | 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; | 
 | 	sgl_flits = make_sgl(skb, sgp, skb->data, skb_headlen(skb), adap->pdev); | 
 | 	if (need_skb_unmap()) | 
 | 		((struct unmap_info *)skb->cb)->len = skb_headlen(skb); | 
 |  | 
 | 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, gen, | 
 | 			 htonl(V_WR_OP(FW_WROPCODE_TUNNEL_TX_PKT) | compl), | 
 | 			 htonl(V_WR_TID(q->token))); | 
 | } | 
 |  | 
 | /** | 
 |  *	eth_xmit - add a packet to the Ethernet Tx queue | 
 |  *	@skb: the packet | 
 |  *	@dev: the egress net device | 
 |  * | 
 |  *	Add a packet to an SGE Tx queue.  Runs with softirqs disabled. | 
 |  */ | 
 | int t3_eth_xmit(struct sk_buff *skb, struct net_device *dev) | 
 | { | 
 | 	unsigned int ndesc, pidx, credits, gen, compl; | 
 | 	const struct port_info *pi = netdev_priv(dev); | 
 | 	struct adapter *adap = pi->adapter; | 
 | 	struct sge_qset *qs = pi->qs; | 
 | 	struct sge_txq *q = &qs->txq[TXQ_ETH]; | 
 |  | 
 | 	/* | 
 | 	 * The chip min packet length is 9 octets but play safe and reject | 
 | 	 * anything shorter than an Ethernet header. | 
 | 	 */ | 
 | 	if (unlikely(skb->len < ETH_HLEN)) { | 
 | 		dev_kfree_skb(skb); | 
 | 		return NETDEV_TX_OK; | 
 | 	} | 
 |  | 
 | 	spin_lock(&q->lock); | 
 | 	reclaim_completed_tx(adap, q); | 
 |  | 
 | 	credits = q->size - q->in_use; | 
 | 	ndesc = calc_tx_descs(skb); | 
 |  | 
 | 	if (unlikely(credits < ndesc)) { | 
 | 		if (!netif_queue_stopped(dev)) { | 
 | 			netif_stop_queue(dev); | 
 | 			set_bit(TXQ_ETH, &qs->txq_stopped); | 
 | 			q->stops++; | 
 | 			dev_err(&adap->pdev->dev, | 
 | 				"%s: Tx ring %u full while queue awake!\n", | 
 | 				dev->name, q->cntxt_id & 7); | 
 | 		} | 
 | 		spin_unlock(&q->lock); | 
 | 		return NETDEV_TX_BUSY; | 
 | 	} | 
 |  | 
 | 	q->in_use += ndesc; | 
 | 	if (unlikely(credits - ndesc < q->stop_thres)) { | 
 | 		q->stops++; | 
 | 		netif_stop_queue(dev); | 
 | 		set_bit(TXQ_ETH, &qs->txq_stopped); | 
 | #if !USE_GTS | 
 | 		if (should_restart_tx(q) && | 
 | 		    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { | 
 | 			q->restarts++; | 
 | 			netif_wake_queue(dev); | 
 | 		} | 
 | #endif | 
 | 	} | 
 |  | 
 | 	gen = q->gen; | 
 | 	q->unacked += ndesc; | 
 | 	compl = (q->unacked & 8) << (S_WR_COMPL - 3); | 
 | 	q->unacked &= 7; | 
 | 	pidx = q->pidx; | 
 | 	q->pidx += ndesc; | 
 | 	if (q->pidx >= q->size) { | 
 | 		q->pidx -= q->size; | 
 | 		q->gen ^= 1; | 
 | 	} | 
 |  | 
 | 	/* update port statistics */ | 
 | 	if (skb->ip_summed == CHECKSUM_COMPLETE) | 
 | 		qs->port_stats[SGE_PSTAT_TX_CSUM]++; | 
 | 	if (skb_shinfo(skb)->gso_size) | 
 | 		qs->port_stats[SGE_PSTAT_TSO]++; | 
 | 	if (vlan_tx_tag_present(skb) && pi->vlan_grp) | 
 | 		qs->port_stats[SGE_PSTAT_VLANINS]++; | 
 |  | 
 | 	dev->trans_start = jiffies; | 
 | 	spin_unlock(&q->lock); | 
 |  | 
 | 	/* | 
 | 	 * We do not use Tx completion interrupts to free DMAd Tx packets. | 
 | 	 * This is good for performamce but means that we rely on new Tx | 
 | 	 * packets arriving to run the destructors of completed packets, | 
 | 	 * which open up space in their sockets' send queues.  Sometimes | 
 | 	 * we do not get such new packets causing Tx to stall.  A single | 
 | 	 * UDP transmitter is a good example of this situation.  We have | 
 | 	 * a clean up timer that periodically reclaims completed packets | 
 | 	 * but it doesn't run often enough (nor do we want it to) to prevent | 
 | 	 * lengthy stalls.  A solution to this problem is to run the | 
 | 	 * destructor early, after the packet is queued but before it's DMAd. | 
 | 	 * A cons is that we lie to socket memory accounting, but the amount | 
 | 	 * of extra memory is reasonable (limited by the number of Tx | 
 | 	 * descriptors), the packets do actually get freed quickly by new | 
 | 	 * packets almost always, and for protocols like TCP that wait for | 
 | 	 * acks to really free up the data the extra memory is even less. | 
 | 	 * On the positive side we run the destructors on the sending CPU | 
 | 	 * rather than on a potentially different completing CPU, usually a | 
 | 	 * good thing.  We also run them without holding our Tx queue lock, | 
 | 	 * unlike what reclaim_completed_tx() would otherwise do. | 
 | 	 * | 
 | 	 * Run the destructor before telling the DMA engine about the packet | 
 | 	 * to make sure it doesn't complete and get freed prematurely. | 
 | 	 */ | 
 | 	if (likely(!skb_shared(skb))) | 
 | 		skb_orphan(skb); | 
 |  | 
 | 	write_tx_pkt_wr(adap, skb, pi, pidx, gen, q, ndesc, compl); | 
 | 	check_ring_tx_db(adap, q); | 
 | 	return NETDEV_TX_OK; | 
 | } | 
 |  | 
 | /** | 
 |  *	write_imm - write a packet into a Tx descriptor as immediate data | 
 |  *	@d: the Tx descriptor to write | 
 |  *	@skb: the packet | 
 |  *	@len: the length of packet data to write as immediate data | 
 |  *	@gen: the generation bit value to write | 
 |  * | 
 |  *	Writes a packet as immediate data into a Tx descriptor.  The packet | 
 |  *	contains a work request at its beginning.  We must write the packet | 
 |  *	carefully so the SGE doesn't read it accidentally before it's written | 
 |  *	in its entirety. | 
 |  */ | 
 | static inline void write_imm(struct tx_desc *d, struct sk_buff *skb, | 
 | 			     unsigned int len, unsigned int gen) | 
 | { | 
 | 	struct work_request_hdr *from = (struct work_request_hdr *)skb->data; | 
 | 	struct work_request_hdr *to = (struct work_request_hdr *)d; | 
 |  | 
 | 	if (likely(!skb->data_len)) | 
 | 		memcpy(&to[1], &from[1], len - sizeof(*from)); | 
 | 	else | 
 | 		skb_copy_bits(skb, sizeof(*from), &to[1], len - sizeof(*from)); | 
 |  | 
 | 	to->wr_hi = from->wr_hi | htonl(F_WR_SOP | F_WR_EOP | | 
 | 					V_WR_BCNTLFLT(len & 7)); | 
 | 	wmb(); | 
 | 	to->wr_lo = from->wr_lo | htonl(V_WR_GEN(gen) | | 
 | 					V_WR_LEN((len + 7) / 8)); | 
 | 	wr_gen2(d, gen); | 
 | 	kfree_skb(skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	check_desc_avail - check descriptor availability on a send queue | 
 |  *	@adap: the adapter | 
 |  *	@q: the send queue | 
 |  *	@skb: the packet needing the descriptors | 
 |  *	@ndesc: the number of Tx descriptors needed | 
 |  *	@qid: the Tx queue number in its queue set (TXQ_OFLD or TXQ_CTRL) | 
 |  * | 
 |  *	Checks if the requested number of Tx descriptors is available on an | 
 |  *	SGE send queue.  If the queue is already suspended or not enough | 
 |  *	descriptors are available the packet is queued for later transmission. | 
 |  *	Must be called with the Tx queue locked. | 
 |  * | 
 |  *	Returns 0 if enough descriptors are available, 1 if there aren't | 
 |  *	enough descriptors and the packet has been queued, and 2 if the caller | 
 |  *	needs to retry because there weren't enough descriptors at the | 
 |  *	beginning of the call but some freed up in the mean time. | 
 |  */ | 
 | static inline int check_desc_avail(struct adapter *adap, struct sge_txq *q, | 
 | 				   struct sk_buff *skb, unsigned int ndesc, | 
 | 				   unsigned int qid) | 
 | { | 
 | 	if (unlikely(!skb_queue_empty(&q->sendq))) { | 
 | 	      addq_exit:__skb_queue_tail(&q->sendq, skb); | 
 | 		return 1; | 
 | 	} | 
 | 	if (unlikely(q->size - q->in_use < ndesc)) { | 
 | 		struct sge_qset *qs = txq_to_qset(q, qid); | 
 |  | 
 | 		set_bit(qid, &qs->txq_stopped); | 
 | 		smp_mb__after_clear_bit(); | 
 |  | 
 | 		if (should_restart_tx(q) && | 
 | 		    test_and_clear_bit(qid, &qs->txq_stopped)) | 
 | 			return 2; | 
 |  | 
 | 		q->stops++; | 
 | 		goto addq_exit; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	reclaim_completed_tx_imm - reclaim completed control-queue Tx descs | 
 |  *	@q: the SGE control Tx queue | 
 |  * | 
 |  *	This is a variant of reclaim_completed_tx() that is used for Tx queues | 
 |  *	that send only immediate data (presently just the control queues) and | 
 |  *	thus do not have any sk_buffs to release. | 
 |  */ | 
 | static inline void reclaim_completed_tx_imm(struct sge_txq *q) | 
 | { | 
 | 	unsigned int reclaim = q->processed - q->cleaned; | 
 |  | 
 | 	q->in_use -= reclaim; | 
 | 	q->cleaned += reclaim; | 
 | } | 
 |  | 
 | static inline int immediate(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->len <= WR_LEN; | 
 | } | 
 |  | 
 | /** | 
 |  *	ctrl_xmit - send a packet through an SGE control Tx queue | 
 |  *	@adap: the adapter | 
 |  *	@q: the control queue | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Send a packet through an SGE control Tx queue.  Packets sent through | 
 |  *	a control queue must fit entirely as immediate data in a single Tx | 
 |  *	descriptor and have no page fragments. | 
 |  */ | 
 | static int ctrl_xmit(struct adapter *adap, struct sge_txq *q, | 
 | 		     struct sk_buff *skb) | 
 | { | 
 | 	int ret; | 
 | 	struct work_request_hdr *wrp = (struct work_request_hdr *)skb->data; | 
 |  | 
 | 	if (unlikely(!immediate(skb))) { | 
 | 		WARN_ON(1); | 
 | 		dev_kfree_skb(skb); | 
 | 		return NET_XMIT_SUCCESS; | 
 | 	} | 
 |  | 
 | 	wrp->wr_hi |= htonl(F_WR_SOP | F_WR_EOP); | 
 | 	wrp->wr_lo = htonl(V_WR_TID(q->token)); | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |       again:reclaim_completed_tx_imm(q); | 
 |  | 
 | 	ret = check_desc_avail(adap, q, skb, 1, TXQ_CTRL); | 
 | 	if (unlikely(ret)) { | 
 | 		if (ret == 1) { | 
 | 			spin_unlock(&q->lock); | 
 | 			return NET_XMIT_CN; | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); | 
 |  | 
 | 	q->in_use++; | 
 | 	if (++q->pidx >= q->size) { | 
 | 		q->pidx = 0; | 
 | 		q->gen ^= 1; | 
 | 	} | 
 | 	spin_unlock(&q->lock); | 
 | 	wmb(); | 
 | 	t3_write_reg(adap, A_SG_KDOORBELL, | 
 | 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | 
 | 	return NET_XMIT_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *	restart_ctrlq - restart a suspended control queue | 
 |  *	@qs: the queue set cotaining the control queue | 
 |  * | 
 |  *	Resumes transmission on a suspended Tx control queue. | 
 |  */ | 
 | static void restart_ctrlq(unsigned long data) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	struct sge_qset *qs = (struct sge_qset *)data; | 
 | 	struct sge_txq *q = &qs->txq[TXQ_CTRL]; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |       again:reclaim_completed_tx_imm(q); | 
 |  | 
 | 	while (q->in_use < q->size && | 
 | 	       (skb = __skb_dequeue(&q->sendq)) != NULL) { | 
 |  | 
 | 		write_imm(&q->desc[q->pidx], skb, skb->len, q->gen); | 
 |  | 
 | 		if (++q->pidx >= q->size) { | 
 | 			q->pidx = 0; | 
 | 			q->gen ^= 1; | 
 | 		} | 
 | 		q->in_use++; | 
 | 	} | 
 |  | 
 | 	if (!skb_queue_empty(&q->sendq)) { | 
 | 		set_bit(TXQ_CTRL, &qs->txq_stopped); | 
 | 		smp_mb__after_clear_bit(); | 
 |  | 
 | 		if (should_restart_tx(q) && | 
 | 		    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) | 
 | 			goto again; | 
 | 		q->stops++; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&q->lock); | 
 | 	t3_write_reg(qs->adap, A_SG_KDOORBELL, | 
 | 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | 
 | } | 
 |  | 
 | /* | 
 |  * Send a management message through control queue 0 | 
 |  */ | 
 | int t3_mgmt_tx(struct adapter *adap, struct sk_buff *skb) | 
 | { | 
 | 	return ctrl_xmit(adap, &adap->sge.qs[0].txq[TXQ_CTRL], skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	deferred_unmap_destructor - unmap a packet when it is freed | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	This is the packet destructor used for Tx packets that need to remain | 
 |  *	mapped until they are freed rather than until their Tx descriptors are | 
 |  *	freed. | 
 |  */ | 
 | static void deferred_unmap_destructor(struct sk_buff *skb) | 
 | { | 
 | 	int i; | 
 | 	const dma_addr_t *p; | 
 | 	const struct skb_shared_info *si; | 
 | 	const struct deferred_unmap_info *dui; | 
 | 	const struct unmap_info *ui = (struct unmap_info *)skb->cb; | 
 |  | 
 | 	dui = (struct deferred_unmap_info *)skb->head; | 
 | 	p = dui->addr; | 
 |  | 
 | 	if (ui->len) | 
 | 		pci_unmap_single(dui->pdev, *p++, ui->len, PCI_DMA_TODEVICE); | 
 |  | 
 | 	si = skb_shinfo(skb); | 
 | 	for (i = 0; i < si->nr_frags; i++) | 
 | 		pci_unmap_page(dui->pdev, *p++, si->frags[i].size, | 
 | 			       PCI_DMA_TODEVICE); | 
 | } | 
 |  | 
 | static void setup_deferred_unmapping(struct sk_buff *skb, struct pci_dev *pdev, | 
 | 				     const struct sg_ent *sgl, int sgl_flits) | 
 | { | 
 | 	dma_addr_t *p; | 
 | 	struct deferred_unmap_info *dui; | 
 |  | 
 | 	dui = (struct deferred_unmap_info *)skb->head; | 
 | 	dui->pdev = pdev; | 
 | 	for (p = dui->addr; sgl_flits >= 3; sgl++, sgl_flits -= 3) { | 
 | 		*p++ = be64_to_cpu(sgl->addr[0]); | 
 | 		*p++ = be64_to_cpu(sgl->addr[1]); | 
 | 	} | 
 | 	if (sgl_flits) | 
 | 		*p = be64_to_cpu(sgl->addr[0]); | 
 | } | 
 |  | 
 | /** | 
 |  *	write_ofld_wr - write an offload work request | 
 |  *	@adap: the adapter | 
 |  *	@skb: the packet to send | 
 |  *	@q: the Tx queue | 
 |  *	@pidx: index of the first Tx descriptor to write | 
 |  *	@gen: the generation value to use | 
 |  *	@ndesc: number of descriptors the packet will occupy | 
 |  * | 
 |  *	Write an offload work request to send the supplied packet.  The packet | 
 |  *	data already carry the work request with most fields populated. | 
 |  */ | 
 | static void write_ofld_wr(struct adapter *adap, struct sk_buff *skb, | 
 | 			  struct sge_txq *q, unsigned int pidx, | 
 | 			  unsigned int gen, unsigned int ndesc) | 
 | { | 
 | 	unsigned int sgl_flits, flits; | 
 | 	struct work_request_hdr *from; | 
 | 	struct sg_ent *sgp, sgl[MAX_SKB_FRAGS / 2 + 1]; | 
 | 	struct tx_desc *d = &q->desc[pidx]; | 
 |  | 
 | 	if (immediate(skb)) { | 
 | 		q->sdesc[pidx].skb = NULL; | 
 | 		write_imm(d, skb, skb->len, gen); | 
 | 		return; | 
 | 	} | 
 |  | 
 | 	/* Only TX_DATA builds SGLs */ | 
 |  | 
 | 	from = (struct work_request_hdr *)skb->data; | 
 | 	memcpy(&d->flit[1], &from[1], | 
 | 	       skb_transport_offset(skb) - sizeof(*from)); | 
 |  | 
 | 	flits = skb_transport_offset(skb) / 8; | 
 | 	sgp = ndesc == 1 ? (struct sg_ent *)&d->flit[flits] : sgl; | 
 | 	sgl_flits = make_sgl(skb, sgp, skb_transport_header(skb), | 
 | 			     skb->tail - skb->transport_header, | 
 | 			     adap->pdev); | 
 | 	if (need_skb_unmap()) { | 
 | 		setup_deferred_unmapping(skb, adap->pdev, sgp, sgl_flits); | 
 | 		skb->destructor = deferred_unmap_destructor; | 
 | 		((struct unmap_info *)skb->cb)->len = (skb->tail - | 
 | 						       skb->transport_header); | 
 | 	} | 
 |  | 
 | 	write_wr_hdr_sgl(ndesc, skb, d, pidx, q, sgl, flits, sgl_flits, | 
 | 			 gen, from->wr_hi, from->wr_lo); | 
 | } | 
 |  | 
 | /** | 
 |  *	calc_tx_descs_ofld - calculate # of Tx descriptors for an offload packet | 
 |  *	@skb: the packet | 
 |  * | 
 |  * 	Returns the number of Tx descriptors needed for the given offload | 
 |  * 	packet.  These packets are already fully constructed. | 
 |  */ | 
 | static inline unsigned int calc_tx_descs_ofld(const struct sk_buff *skb) | 
 | { | 
 | 	unsigned int flits, cnt; | 
 |  | 
 | 	if (skb->len <= WR_LEN) | 
 | 		return 1;	/* packet fits as immediate data */ | 
 |  | 
 | 	flits = skb_transport_offset(skb) / 8;	/* headers */ | 
 | 	cnt = skb_shinfo(skb)->nr_frags; | 
 | 	if (skb->tail != skb->transport_header) | 
 | 		cnt++; | 
 | 	return flits_to_desc(flits + sgl_len(cnt)); | 
 | } | 
 |  | 
 | /** | 
 |  *	ofld_xmit - send a packet through an offload queue | 
 |  *	@adap: the adapter | 
 |  *	@q: the Tx offload queue | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Send an offload packet through an SGE offload queue. | 
 |  */ | 
 | static int ofld_xmit(struct adapter *adap, struct sge_txq *q, | 
 | 		     struct sk_buff *skb) | 
 | { | 
 | 	int ret; | 
 | 	unsigned int ndesc = calc_tx_descs_ofld(skb), pidx, gen; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |       again:reclaim_completed_tx(adap, q); | 
 |  | 
 | 	ret = check_desc_avail(adap, q, skb, ndesc, TXQ_OFLD); | 
 | 	if (unlikely(ret)) { | 
 | 		if (ret == 1) { | 
 | 			skb->priority = ndesc;	/* save for restart */ | 
 | 			spin_unlock(&q->lock); | 
 | 			return NET_XMIT_CN; | 
 | 		} | 
 | 		goto again; | 
 | 	} | 
 |  | 
 | 	gen = q->gen; | 
 | 	q->in_use += ndesc; | 
 | 	pidx = q->pidx; | 
 | 	q->pidx += ndesc; | 
 | 	if (q->pidx >= q->size) { | 
 | 		q->pidx -= q->size; | 
 | 		q->gen ^= 1; | 
 | 	} | 
 | 	spin_unlock(&q->lock); | 
 |  | 
 | 	write_ofld_wr(adap, skb, q, pidx, gen, ndesc); | 
 | 	check_ring_tx_db(adap, q); | 
 | 	return NET_XMIT_SUCCESS; | 
 | } | 
 |  | 
 | /** | 
 |  *	restart_offloadq - restart a suspended offload queue | 
 |  *	@qs: the queue set cotaining the offload queue | 
 |  * | 
 |  *	Resumes transmission on a suspended Tx offload queue. | 
 |  */ | 
 | static void restart_offloadq(unsigned long data) | 
 | { | 
 | 	struct sk_buff *skb; | 
 | 	struct sge_qset *qs = (struct sge_qset *)data; | 
 | 	struct sge_txq *q = &qs->txq[TXQ_OFLD]; | 
 | 	const struct port_info *pi = netdev_priv(qs->netdev); | 
 | 	struct adapter *adap = pi->adapter; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |       again:reclaim_completed_tx(adap, q); | 
 |  | 
 | 	while ((skb = skb_peek(&q->sendq)) != NULL) { | 
 | 		unsigned int gen, pidx; | 
 | 		unsigned int ndesc = skb->priority; | 
 |  | 
 | 		if (unlikely(q->size - q->in_use < ndesc)) { | 
 | 			set_bit(TXQ_OFLD, &qs->txq_stopped); | 
 | 			smp_mb__after_clear_bit(); | 
 |  | 
 | 			if (should_restart_tx(q) && | 
 | 			    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) | 
 | 				goto again; | 
 | 			q->stops++; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		gen = q->gen; | 
 | 		q->in_use += ndesc; | 
 | 		pidx = q->pidx; | 
 | 		q->pidx += ndesc; | 
 | 		if (q->pidx >= q->size) { | 
 | 			q->pidx -= q->size; | 
 | 			q->gen ^= 1; | 
 | 		} | 
 | 		__skb_unlink(skb, &q->sendq); | 
 | 		spin_unlock(&q->lock); | 
 |  | 
 | 		write_ofld_wr(adap, skb, q, pidx, gen, ndesc); | 
 | 		spin_lock(&q->lock); | 
 | 	} | 
 | 	spin_unlock(&q->lock); | 
 |  | 
 | #if USE_GTS | 
 | 	set_bit(TXQ_RUNNING, &q->flags); | 
 | 	set_bit(TXQ_LAST_PKT_DB, &q->flags); | 
 | #endif | 
 | 	t3_write_reg(adap, A_SG_KDOORBELL, | 
 | 		     F_SELEGRCNTX | V_EGRCNTX(q->cntxt_id)); | 
 | } | 
 |  | 
 | /** | 
 |  *	queue_set - return the queue set a packet should use | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Maps a packet to the SGE queue set it should use.  The desired queue | 
 |  *	set is carried in bits 1-3 in the packet's priority. | 
 |  */ | 
 | static inline int queue_set(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->priority >> 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	is_ctrl_pkt - return whether an offload packet is a control packet | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Determines whether an offload packet should use an OFLD or a CTRL | 
 |  *	Tx queue.  This is indicated by bit 0 in the packet's priority. | 
 |  */ | 
 | static inline int is_ctrl_pkt(const struct sk_buff *skb) | 
 | { | 
 | 	return skb->priority & 1; | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_offload_tx - send an offload packet | 
 |  *	@tdev: the offload device to send to | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Sends an offload packet.  We use the packet priority to select the | 
 |  *	appropriate Tx queue as follows: bit 0 indicates whether the packet | 
 |  *	should be sent as regular or control, bits 1-3 select the queue set. | 
 |  */ | 
 | int t3_offload_tx(struct t3cdev *tdev, struct sk_buff *skb) | 
 | { | 
 | 	struct adapter *adap = tdev2adap(tdev); | 
 | 	struct sge_qset *qs = &adap->sge.qs[queue_set(skb)]; | 
 |  | 
 | 	if (unlikely(is_ctrl_pkt(skb))) | 
 | 		return ctrl_xmit(adap, &qs->txq[TXQ_CTRL], skb); | 
 |  | 
 | 	return ofld_xmit(adap, &qs->txq[TXQ_OFLD], skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	offload_enqueue - add an offload packet to an SGE offload receive queue | 
 |  *	@q: the SGE response queue | 
 |  *	@skb: the packet | 
 |  * | 
 |  *	Add a new offload packet to an SGE response queue's offload packet | 
 |  *	queue.  If the packet is the first on the queue it schedules the RX | 
 |  *	softirq to process the queue. | 
 |  */ | 
 | static inline void offload_enqueue(struct sge_rspq *q, struct sk_buff *skb) | 
 | { | 
 | 	skb->next = skb->prev = NULL; | 
 | 	if (q->rx_tail) | 
 | 		q->rx_tail->next = skb; | 
 | 	else { | 
 | 		struct sge_qset *qs = rspq_to_qset(q); | 
 |  | 
 | 		napi_schedule(&qs->napi); | 
 | 		q->rx_head = skb; | 
 | 	} | 
 | 	q->rx_tail = skb; | 
 | } | 
 |  | 
 | /** | 
 |  *	deliver_partial_bundle - deliver a (partial) bundle of Rx offload pkts | 
 |  *	@tdev: the offload device that will be receiving the packets | 
 |  *	@q: the SGE response queue that assembled the bundle | 
 |  *	@skbs: the partial bundle | 
 |  *	@n: the number of packets in the bundle | 
 |  * | 
 |  *	Delivers a (partial) bundle of Rx offload packets to an offload device. | 
 |  */ | 
 | static inline void deliver_partial_bundle(struct t3cdev *tdev, | 
 | 					  struct sge_rspq *q, | 
 | 					  struct sk_buff *skbs[], int n) | 
 | { | 
 | 	if (n) { | 
 | 		q->offload_bundles++; | 
 | 		tdev->recv(tdev, skbs, n); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	ofld_poll - NAPI handler for offload packets in interrupt mode | 
 |  *	@dev: the network device doing the polling | 
 |  *	@budget: polling budget | 
 |  * | 
 |  *	The NAPI handler for offload packets when a response queue is serviced | 
 |  *	by the hard interrupt handler, i.e., when it's operating in non-polling | 
 |  *	mode.  Creates small packet batches and sends them through the offload | 
 |  *	receive handler.  Batches need to be of modest size as we do prefetches | 
 |  *	on the packets in each. | 
 |  */ | 
 | static int ofld_poll(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi); | 
 | 	struct sge_rspq *q = &qs->rspq; | 
 | 	struct adapter *adapter = qs->adap; | 
 | 	int work_done = 0; | 
 |  | 
 | 	while (work_done < budget) { | 
 | 		struct sk_buff *head, *tail, *skbs[RX_BUNDLE_SIZE]; | 
 | 		int ngathered; | 
 |  | 
 | 		spin_lock_irq(&q->lock); | 
 | 		head = q->rx_head; | 
 | 		if (!head) { | 
 | 			napi_complete(napi); | 
 | 			spin_unlock_irq(&q->lock); | 
 | 			return work_done; | 
 | 		} | 
 |  | 
 | 		tail = q->rx_tail; | 
 | 		q->rx_head = q->rx_tail = NULL; | 
 | 		spin_unlock_irq(&q->lock); | 
 |  | 
 | 		for (ngathered = 0; work_done < budget && head; work_done++) { | 
 | 			prefetch(head->data); | 
 | 			skbs[ngathered] = head; | 
 | 			head = head->next; | 
 | 			skbs[ngathered]->next = NULL; | 
 | 			if (++ngathered == RX_BUNDLE_SIZE) { | 
 | 				q->offload_bundles++; | 
 | 				adapter->tdev.recv(&adapter->tdev, skbs, | 
 | 						   ngathered); | 
 | 				ngathered = 0; | 
 | 			} | 
 | 		} | 
 | 		if (head) {	/* splice remaining packets back onto Rx queue */ | 
 | 			spin_lock_irq(&q->lock); | 
 | 			tail->next = q->rx_head; | 
 | 			if (!q->rx_head) | 
 | 				q->rx_tail = tail; | 
 | 			q->rx_head = head; | 
 | 			spin_unlock_irq(&q->lock); | 
 | 		} | 
 | 		deliver_partial_bundle(&adapter->tdev, q, skbs, ngathered); | 
 | 	} | 
 |  | 
 | 	return work_done; | 
 | } | 
 |  | 
 | /** | 
 |  *	rx_offload - process a received offload packet | 
 |  *	@tdev: the offload device receiving the packet | 
 |  *	@rq: the response queue that received the packet | 
 |  *	@skb: the packet | 
 |  *	@rx_gather: a gather list of packets if we are building a bundle | 
 |  *	@gather_idx: index of the next available slot in the bundle | 
 |  * | 
 |  *	Process an ingress offload pakcet and add it to the offload ingress | 
 |  *	queue. 	Returns the index of the next available slot in the bundle. | 
 |  */ | 
 | static inline int rx_offload(struct t3cdev *tdev, struct sge_rspq *rq, | 
 | 			     struct sk_buff *skb, struct sk_buff *rx_gather[], | 
 | 			     unsigned int gather_idx) | 
 | { | 
 | 	rq->offload_pkts++; | 
 | 	skb_reset_mac_header(skb); | 
 | 	skb_reset_network_header(skb); | 
 | 	skb_reset_transport_header(skb); | 
 |  | 
 | 	if (rq->polling) { | 
 | 		rx_gather[gather_idx++] = skb; | 
 | 		if (gather_idx == RX_BUNDLE_SIZE) { | 
 | 			tdev->recv(tdev, rx_gather, RX_BUNDLE_SIZE); | 
 | 			gather_idx = 0; | 
 | 			rq->offload_bundles++; | 
 | 		} | 
 | 	} else | 
 | 		offload_enqueue(rq, skb); | 
 |  | 
 | 	return gather_idx; | 
 | } | 
 |  | 
 | /** | 
 |  *	restart_tx - check whether to restart suspended Tx queues | 
 |  *	@qs: the queue set to resume | 
 |  * | 
 |  *	Restarts suspended Tx queues of an SGE queue set if they have enough | 
 |  *	free resources to resume operation. | 
 |  */ | 
 | static void restart_tx(struct sge_qset *qs) | 
 | { | 
 | 	if (test_bit(TXQ_ETH, &qs->txq_stopped) && | 
 | 	    should_restart_tx(&qs->txq[TXQ_ETH]) && | 
 | 	    test_and_clear_bit(TXQ_ETH, &qs->txq_stopped)) { | 
 | 		qs->txq[TXQ_ETH].restarts++; | 
 | 		if (netif_running(qs->netdev)) | 
 | 			netif_wake_queue(qs->netdev); | 
 | 	} | 
 |  | 
 | 	if (test_bit(TXQ_OFLD, &qs->txq_stopped) && | 
 | 	    should_restart_tx(&qs->txq[TXQ_OFLD]) && | 
 | 	    test_and_clear_bit(TXQ_OFLD, &qs->txq_stopped)) { | 
 | 		qs->txq[TXQ_OFLD].restarts++; | 
 | 		tasklet_schedule(&qs->txq[TXQ_OFLD].qresume_tsk); | 
 | 	} | 
 | 	if (test_bit(TXQ_CTRL, &qs->txq_stopped) && | 
 | 	    should_restart_tx(&qs->txq[TXQ_CTRL]) && | 
 | 	    test_and_clear_bit(TXQ_CTRL, &qs->txq_stopped)) { | 
 | 		qs->txq[TXQ_CTRL].restarts++; | 
 | 		tasklet_schedule(&qs->txq[TXQ_CTRL].qresume_tsk); | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	rx_eth - process an ingress ethernet packet | 
 |  *	@adap: the adapter | 
 |  *	@rq: the response queue that received the packet | 
 |  *	@skb: the packet | 
 |  *	@pad: amount of padding at the start of the buffer | 
 |  * | 
 |  *	Process an ingress ethernet pakcet and deliver it to the stack. | 
 |  *	The padding is 2 if the packet was delivered in an Rx buffer and 0 | 
 |  *	if it was immediate data in a response. | 
 |  */ | 
 | static void rx_eth(struct adapter *adap, struct sge_rspq *rq, | 
 | 		   struct sk_buff *skb, int pad) | 
 | { | 
 | 	struct cpl_rx_pkt *p = (struct cpl_rx_pkt *)(skb->data + pad); | 
 | 	struct port_info *pi; | 
 |  | 
 | 	skb_pull(skb, sizeof(*p) + pad); | 
 | 	skb->protocol = eth_type_trans(skb, adap->port[p->iff]); | 
 | 	skb->dev->last_rx = jiffies; | 
 | 	pi = netdev_priv(skb->dev); | 
 | 	if (pi->rx_csum_offload && p->csum_valid && p->csum == 0xffff && | 
 | 	    !p->fragment) { | 
 | 		rspq_to_qset(rq)->port_stats[SGE_PSTAT_RX_CSUM_GOOD]++; | 
 | 		skb->ip_summed = CHECKSUM_UNNECESSARY; | 
 | 	} else | 
 | 		skb->ip_summed = CHECKSUM_NONE; | 
 |  | 
 | 	if (unlikely(p->vlan_valid)) { | 
 | 		struct vlan_group *grp = pi->vlan_grp; | 
 |  | 
 | 		rspq_to_qset(rq)->port_stats[SGE_PSTAT_VLANEX]++; | 
 | 		if (likely(grp)) | 
 | 			__vlan_hwaccel_rx(skb, grp, ntohs(p->vlan), | 
 | 					  rq->polling); | 
 | 		else | 
 | 			dev_kfree_skb_any(skb); | 
 | 	} else if (rq->polling) | 
 | 		netif_receive_skb(skb); | 
 | 	else | 
 | 		netif_rx(skb); | 
 | } | 
 |  | 
 | /** | 
 |  *	handle_rsp_cntrl_info - handles control information in a response | 
 |  *	@qs: the queue set corresponding to the response | 
 |  *	@flags: the response control flags | 
 |  * | 
 |  *	Handles the control information of an SGE response, such as GTS | 
 |  *	indications and completion credits for the queue set's Tx queues. | 
 |  *	HW coalesces credits, we don't do any extra SW coalescing. | 
 |  */ | 
 | static inline void handle_rsp_cntrl_info(struct sge_qset *qs, u32 flags) | 
 | { | 
 | 	unsigned int credits; | 
 |  | 
 | #if USE_GTS | 
 | 	if (flags & F_RSPD_TXQ0_GTS) | 
 | 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_ETH].flags); | 
 | #endif | 
 |  | 
 | 	credits = G_RSPD_TXQ0_CR(flags); | 
 | 	if (credits) | 
 | 		qs->txq[TXQ_ETH].processed += credits; | 
 |  | 
 | 	credits = G_RSPD_TXQ2_CR(flags); | 
 | 	if (credits) | 
 | 		qs->txq[TXQ_CTRL].processed += credits; | 
 |  | 
 | # if USE_GTS | 
 | 	if (flags & F_RSPD_TXQ1_GTS) | 
 | 		clear_bit(TXQ_RUNNING, &qs->txq[TXQ_OFLD].flags); | 
 | # endif | 
 | 	credits = G_RSPD_TXQ1_CR(flags); | 
 | 	if (credits) | 
 | 		qs->txq[TXQ_OFLD].processed += credits; | 
 | } | 
 |  | 
 | /** | 
 |  *	check_ring_db - check if we need to ring any doorbells | 
 |  *	@adapter: the adapter | 
 |  *	@qs: the queue set whose Tx queues are to be examined | 
 |  *	@sleeping: indicates which Tx queue sent GTS | 
 |  * | 
 |  *	Checks if some of a queue set's Tx queues need to ring their doorbells | 
 |  *	to resume transmission after idling while they still have unprocessed | 
 |  *	descriptors. | 
 |  */ | 
 | static void check_ring_db(struct adapter *adap, struct sge_qset *qs, | 
 | 			  unsigned int sleeping) | 
 | { | 
 | 	if (sleeping & F_RSPD_TXQ0_GTS) { | 
 | 		struct sge_txq *txq = &qs->txq[TXQ_ETH]; | 
 |  | 
 | 		if (txq->cleaned + txq->in_use != txq->processed && | 
 | 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { | 
 | 			set_bit(TXQ_RUNNING, &txq->flags); | 
 | 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | | 
 | 				     V_EGRCNTX(txq->cntxt_id)); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	if (sleeping & F_RSPD_TXQ1_GTS) { | 
 | 		struct sge_txq *txq = &qs->txq[TXQ_OFLD]; | 
 |  | 
 | 		if (txq->cleaned + txq->in_use != txq->processed && | 
 | 		    !test_and_set_bit(TXQ_LAST_PKT_DB, &txq->flags)) { | 
 | 			set_bit(TXQ_RUNNING, &txq->flags); | 
 | 			t3_write_reg(adap, A_SG_KDOORBELL, F_SELEGRCNTX | | 
 | 				     V_EGRCNTX(txq->cntxt_id)); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	is_new_response - check if a response is newly written | 
 |  *	@r: the response descriptor | 
 |  *	@q: the response queue | 
 |  * | 
 |  *	Returns true if a response descriptor contains a yet unprocessed | 
 |  *	response. | 
 |  */ | 
 | static inline int is_new_response(const struct rsp_desc *r, | 
 | 				  const struct sge_rspq *q) | 
 | { | 
 | 	return (r->intr_gen & F_RSPD_GEN2) == q->gen; | 
 | } | 
 |  | 
 | #define RSPD_GTS_MASK  (F_RSPD_TXQ0_GTS | F_RSPD_TXQ1_GTS) | 
 | #define RSPD_CTRL_MASK (RSPD_GTS_MASK | \ | 
 | 			V_RSPD_TXQ0_CR(M_RSPD_TXQ0_CR) | \ | 
 | 			V_RSPD_TXQ1_CR(M_RSPD_TXQ1_CR) | \ | 
 | 			V_RSPD_TXQ2_CR(M_RSPD_TXQ2_CR)) | 
 |  | 
 | /* How long to delay the next interrupt in case of memory shortage, in 0.1us. */ | 
 | #define NOMEM_INTR_DELAY 2500 | 
 |  | 
 | /** | 
 |  *	process_responses - process responses from an SGE response queue | 
 |  *	@adap: the adapter | 
 |  *	@qs: the queue set to which the response queue belongs | 
 |  *	@budget: how many responses can be processed in this round | 
 |  * | 
 |  *	Process responses from an SGE response queue up to the supplied budget. | 
 |  *	Responses include received packets as well as credits and other events | 
 |  *	for the queues that belong to the response queue's queue set. | 
 |  *	A negative budget is effectively unlimited. | 
 |  * | 
 |  *	Additionally choose the interrupt holdoff time for the next interrupt | 
 |  *	on this queue.  If the system is under memory shortage use a fairly | 
 |  *	long delay to help recovery. | 
 |  */ | 
 | static int process_responses(struct adapter *adap, struct sge_qset *qs, | 
 | 			     int budget) | 
 | { | 
 | 	struct sge_rspq *q = &qs->rspq; | 
 | 	struct rsp_desc *r = &q->desc[q->cidx]; | 
 | 	int budget_left = budget; | 
 | 	unsigned int sleeping = 0; | 
 | 	struct sk_buff *offload_skbs[RX_BUNDLE_SIZE]; | 
 | 	int ngathered = 0; | 
 |  | 
 | 	q->next_holdoff = q->holdoff_tmr; | 
 |  | 
 | 	while (likely(budget_left && is_new_response(r, q))) { | 
 | 		int eth, ethpad = 2; | 
 | 		struct sk_buff *skb = NULL; | 
 | 		u32 len, flags = ntohl(r->flags); | 
 | 		u32 rss_hi = *(const u32 *)r, rss_lo = r->rss_hdr.rss_hash_val; | 
 |  | 
 | 		eth = r->rss_hdr.opcode == CPL_RX_PKT; | 
 |  | 
 | 		if (unlikely(flags & F_RSPD_ASYNC_NOTIF)) { | 
 | 			skb = alloc_skb(AN_PKT_SIZE, GFP_ATOMIC); | 
 | 			if (!skb) | 
 | 				goto no_mem; | 
 |  | 
 | 			memcpy(__skb_put(skb, AN_PKT_SIZE), r, AN_PKT_SIZE); | 
 | 			skb->data[0] = CPL_ASYNC_NOTIF; | 
 | 			rss_hi = htonl(CPL_ASYNC_NOTIF << 24); | 
 | 			q->async_notif++; | 
 | 		} else if (flags & F_RSPD_IMM_DATA_VALID) { | 
 | 			skb = get_imm_packet(r); | 
 | 			if (unlikely(!skb)) { | 
 | no_mem: | 
 | 				q->next_holdoff = NOMEM_INTR_DELAY; | 
 | 				q->nomem++; | 
 | 				/* consume one credit since we tried */ | 
 | 				budget_left--; | 
 | 				break; | 
 | 			} | 
 | 			q->imm_data++; | 
 | 			ethpad = 0; | 
 | 		} else if ((len = ntohl(r->len_cq)) != 0) { | 
 | 			struct sge_fl *fl; | 
 |  | 
 | 			fl = (len & F_RSPD_FLQ) ? &qs->fl[1] : &qs->fl[0]; | 
 | 			if (fl->use_pages) { | 
 | 				void *addr = fl->sdesc[fl->cidx].pg_chunk.va; | 
 |  | 
 | 				prefetch(addr); | 
 | #if L1_CACHE_BYTES < 128 | 
 | 				prefetch(addr + L1_CACHE_BYTES); | 
 | #endif | 
 | 				__refill_fl(adap, fl); | 
 |  | 
 | 				skb = get_packet_pg(adap, fl, G_RSPD_LEN(len), | 
 | 						 eth ? SGE_RX_DROP_THRES : 0); | 
 | 			} else | 
 | 				skb = get_packet(adap, fl, G_RSPD_LEN(len), | 
 | 						 eth ? SGE_RX_DROP_THRES : 0); | 
 | 			if (unlikely(!skb)) { | 
 | 				if (!eth) | 
 | 					goto no_mem; | 
 | 				q->rx_drops++; | 
 | 			} else if (unlikely(r->rss_hdr.opcode == CPL_TRACE_PKT)) | 
 | 				__skb_pull(skb, 2); | 
 |  | 
 | 			if (++fl->cidx == fl->size) | 
 | 				fl->cidx = 0; | 
 | 		} else | 
 | 			q->pure_rsps++; | 
 |  | 
 | 		if (flags & RSPD_CTRL_MASK) { | 
 | 			sleeping |= flags & RSPD_GTS_MASK; | 
 | 			handle_rsp_cntrl_info(qs, flags); | 
 | 		} | 
 |  | 
 | 		r++; | 
 | 		if (unlikely(++q->cidx == q->size)) { | 
 | 			q->cidx = 0; | 
 | 			q->gen ^= 1; | 
 | 			r = q->desc; | 
 | 		} | 
 | 		prefetch(r); | 
 |  | 
 | 		if (++q->credits >= (q->size / 4)) { | 
 | 			refill_rspq(adap, q, q->credits); | 
 | 			q->credits = 0; | 
 | 		} | 
 |  | 
 | 		if (likely(skb != NULL)) { | 
 | 			if (eth) | 
 | 				rx_eth(adap, q, skb, ethpad); | 
 | 			else { | 
 | 				/* Preserve the RSS info in csum & priority */ | 
 | 				skb->csum = rss_hi; | 
 | 				skb->priority = rss_lo; | 
 | 				ngathered = rx_offload(&adap->tdev, q, skb, | 
 | 						       offload_skbs, | 
 | 						       ngathered); | 
 | 			} | 
 | 		} | 
 | 		--budget_left; | 
 | 	} | 
 |  | 
 | 	deliver_partial_bundle(&adap->tdev, q, offload_skbs, ngathered); | 
 | 	if (sleeping) | 
 | 		check_ring_db(adap, qs, sleeping); | 
 |  | 
 | 	smp_mb();		/* commit Tx queue .processed updates */ | 
 | 	if (unlikely(qs->txq_stopped != 0)) | 
 | 		restart_tx(qs); | 
 |  | 
 | 	budget -= budget_left; | 
 | 	return budget; | 
 | } | 
 |  | 
 | static inline int is_pure_response(const struct rsp_desc *r) | 
 | { | 
 | 	u32 n = ntohl(r->flags) & (F_RSPD_ASYNC_NOTIF | F_RSPD_IMM_DATA_VALID); | 
 |  | 
 | 	return (n | r->len_cq) == 0; | 
 | } | 
 |  | 
 | /** | 
 |  *	napi_rx_handler - the NAPI handler for Rx processing | 
 |  *	@napi: the napi instance | 
 |  *	@budget: how many packets we can process in this round | 
 |  * | 
 |  *	Handler for new data events when using NAPI. | 
 |  */ | 
 | static int napi_rx_handler(struct napi_struct *napi, int budget) | 
 | { | 
 | 	struct sge_qset *qs = container_of(napi, struct sge_qset, napi); | 
 | 	struct adapter *adap = qs->adap; | 
 | 	int work_done = process_responses(adap, qs, budget); | 
 |  | 
 | 	if (likely(work_done < budget)) { | 
 | 		napi_complete(napi); | 
 |  | 
 | 		/* | 
 | 		 * Because we don't atomically flush the following | 
 | 		 * write it is possible that in very rare cases it can | 
 | 		 * reach the device in a way that races with a new | 
 | 		 * response being written plus an error interrupt | 
 | 		 * causing the NAPI interrupt handler below to return | 
 | 		 * unhandled status to the OS.  To protect against | 
 | 		 * this would require flushing the write and doing | 
 | 		 * both the write and the flush with interrupts off. | 
 | 		 * Way too expensive and unjustifiable given the | 
 | 		 * rarity of the race. | 
 | 		 * | 
 | 		 * The race cannot happen at all with MSI-X. | 
 | 		 */ | 
 | 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(qs->rspq.cntxt_id) | | 
 | 			     V_NEWTIMER(qs->rspq.next_holdoff) | | 
 | 			     V_NEWINDEX(qs->rspq.cidx)); | 
 | 	} | 
 | 	return work_done; | 
 | } | 
 |  | 
 | /* | 
 |  * Returns true if the device is already scheduled for polling. | 
 |  */ | 
 | static inline int napi_is_scheduled(struct napi_struct *napi) | 
 | { | 
 | 	return test_bit(NAPI_STATE_SCHED, &napi->state); | 
 | } | 
 |  | 
 | /** | 
 |  *	process_pure_responses - process pure responses from a response queue | 
 |  *	@adap: the adapter | 
 |  *	@qs: the queue set owning the response queue | 
 |  *	@r: the first pure response to process | 
 |  * | 
 |  *	A simpler version of process_responses() that handles only pure (i.e., | 
 |  *	non data-carrying) responses.  Such respones are too light-weight to | 
 |  *	justify calling a softirq under NAPI, so we handle them specially in | 
 |  *	the interrupt handler.  The function is called with a pointer to a | 
 |  *	response, which the caller must ensure is a valid pure response. | 
 |  * | 
 |  *	Returns 1 if it encounters a valid data-carrying response, 0 otherwise. | 
 |  */ | 
 | static int process_pure_responses(struct adapter *adap, struct sge_qset *qs, | 
 | 				  struct rsp_desc *r) | 
 | { | 
 | 	struct sge_rspq *q = &qs->rspq; | 
 | 	unsigned int sleeping = 0; | 
 |  | 
 | 	do { | 
 | 		u32 flags = ntohl(r->flags); | 
 |  | 
 | 		r++; | 
 | 		if (unlikely(++q->cidx == q->size)) { | 
 | 			q->cidx = 0; | 
 | 			q->gen ^= 1; | 
 | 			r = q->desc; | 
 | 		} | 
 | 		prefetch(r); | 
 |  | 
 | 		if (flags & RSPD_CTRL_MASK) { | 
 | 			sleeping |= flags & RSPD_GTS_MASK; | 
 | 			handle_rsp_cntrl_info(qs, flags); | 
 | 		} | 
 |  | 
 | 		q->pure_rsps++; | 
 | 		if (++q->credits >= (q->size / 4)) { | 
 | 			refill_rspq(adap, q, q->credits); | 
 | 			q->credits = 0; | 
 | 		} | 
 | 	} while (is_new_response(r, q) && is_pure_response(r)); | 
 |  | 
 | 	if (sleeping) | 
 | 		check_ring_db(adap, qs, sleeping); | 
 |  | 
 | 	smp_mb();		/* commit Tx queue .processed updates */ | 
 | 	if (unlikely(qs->txq_stopped != 0)) | 
 | 		restart_tx(qs); | 
 |  | 
 | 	return is_new_response(r, q); | 
 | } | 
 |  | 
 | /** | 
 |  *	handle_responses - decide what to do with new responses in NAPI mode | 
 |  *	@adap: the adapter | 
 |  *	@q: the response queue | 
 |  * | 
 |  *	This is used by the NAPI interrupt handlers to decide what to do with | 
 |  *	new SGE responses.  If there are no new responses it returns -1.  If | 
 |  *	there are new responses and they are pure (i.e., non-data carrying) | 
 |  *	it handles them straight in hard interrupt context as they are very | 
 |  *	cheap and don't deliver any packets.  Finally, if there are any data | 
 |  *	signaling responses it schedules the NAPI handler.  Returns 1 if it | 
 |  *	schedules NAPI, 0 if all new responses were pure. | 
 |  * | 
 |  *	The caller must ascertain NAPI is not already running. | 
 |  */ | 
 | static inline int handle_responses(struct adapter *adap, struct sge_rspq *q) | 
 | { | 
 | 	struct sge_qset *qs = rspq_to_qset(q); | 
 | 	struct rsp_desc *r = &q->desc[q->cidx]; | 
 |  | 
 | 	if (!is_new_response(r, q)) | 
 | 		return -1; | 
 | 	if (is_pure_response(r) && process_pure_responses(adap, qs, r) == 0) { | 
 | 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | 
 | 			     V_NEWTIMER(q->holdoff_tmr) | V_NEWINDEX(q->cidx)); | 
 | 		return 0; | 
 | 	} | 
 | 	napi_schedule(&qs->napi); | 
 | 	return 1; | 
 | } | 
 |  | 
 | /* | 
 |  * The MSI-X interrupt handler for an SGE response queue for the non-NAPI case | 
 |  * (i.e., response queue serviced in hard interrupt). | 
 |  */ | 
 | irqreturn_t t3_sge_intr_msix(int irq, void *cookie) | 
 | { | 
 | 	struct sge_qset *qs = cookie; | 
 | 	struct adapter *adap = qs->adap; | 
 | 	struct sge_rspq *q = &qs->rspq; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 | 	if (process_responses(adap, qs, -1) == 0) | 
 | 		q->unhandled_irqs++; | 
 | 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | 
 | 		     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); | 
 | 	spin_unlock(&q->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * The MSI-X interrupt handler for an SGE response queue for the NAPI case | 
 |  * (i.e., response queue serviced by NAPI polling). | 
 |  */ | 
 | static irqreturn_t t3_sge_intr_msix_napi(int irq, void *cookie) | 
 | { | 
 | 	struct sge_qset *qs = cookie; | 
 | 	struct sge_rspq *q = &qs->rspq; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |  | 
 | 	if (handle_responses(qs->adap, q) < 0) | 
 | 		q->unhandled_irqs++; | 
 | 	spin_unlock(&q->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * The non-NAPI MSI interrupt handler.  This needs to handle data events from | 
 |  * SGE response queues as well as error and other async events as they all use | 
 |  * the same MSI vector.  We use one SGE response queue per port in this mode | 
 |  * and protect all response queues with queue 0's lock. | 
 |  */ | 
 | static irqreturn_t t3_intr_msi(int irq, void *cookie) | 
 | { | 
 | 	int new_packets = 0; | 
 | 	struct adapter *adap = cookie; | 
 | 	struct sge_rspq *q = &adap->sge.qs[0].rspq; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |  | 
 | 	if (process_responses(adap, &adap->sge.qs[0], -1)) { | 
 | 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q->cntxt_id) | | 
 | 			     V_NEWTIMER(q->next_holdoff) | V_NEWINDEX(q->cidx)); | 
 | 		new_packets = 1; | 
 | 	} | 
 |  | 
 | 	if (adap->params.nports == 2 && | 
 | 	    process_responses(adap, &adap->sge.qs[1], -1)) { | 
 | 		struct sge_rspq *q1 = &adap->sge.qs[1].rspq; | 
 |  | 
 | 		t3_write_reg(adap, A_SG_GTS, V_RSPQ(q1->cntxt_id) | | 
 | 			     V_NEWTIMER(q1->next_holdoff) | | 
 | 			     V_NEWINDEX(q1->cidx)); | 
 | 		new_packets = 1; | 
 | 	} | 
 |  | 
 | 	if (!new_packets && t3_slow_intr_handler(adap) == 0) | 
 | 		q->unhandled_irqs++; | 
 |  | 
 | 	spin_unlock(&q->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | static int rspq_check_napi(struct sge_qset *qs) | 
 | { | 
 | 	struct sge_rspq *q = &qs->rspq; | 
 |  | 
 | 	if (!napi_is_scheduled(&qs->napi) && | 
 | 	    is_new_response(&q->desc[q->cidx], q)) { | 
 | 		napi_schedule(&qs->napi); | 
 | 		return 1; | 
 | 	} | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * The MSI interrupt handler for the NAPI case (i.e., response queues serviced | 
 |  * by NAPI polling).  Handles data events from SGE response queues as well as | 
 |  * error and other async events as they all use the same MSI vector.  We use | 
 |  * one SGE response queue per port in this mode and protect all response | 
 |  * queues with queue 0's lock. | 
 |  */ | 
 | static irqreturn_t t3_intr_msi_napi(int irq, void *cookie) | 
 | { | 
 | 	int new_packets; | 
 | 	struct adapter *adap = cookie; | 
 | 	struct sge_rspq *q = &adap->sge.qs[0].rspq; | 
 |  | 
 | 	spin_lock(&q->lock); | 
 |  | 
 | 	new_packets = rspq_check_napi(&adap->sge.qs[0]); | 
 | 	if (adap->params.nports == 2) | 
 | 		new_packets += rspq_check_napi(&adap->sge.qs[1]); | 
 | 	if (!new_packets && t3_slow_intr_handler(adap) == 0) | 
 | 		q->unhandled_irqs++; | 
 |  | 
 | 	spin_unlock(&q->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * A helper function that processes responses and issues GTS. | 
 |  */ | 
 | static inline int process_responses_gts(struct adapter *adap, | 
 | 					struct sge_rspq *rq) | 
 | { | 
 | 	int work; | 
 |  | 
 | 	work = process_responses(adap, rspq_to_qset(rq), -1); | 
 | 	t3_write_reg(adap, A_SG_GTS, V_RSPQ(rq->cntxt_id) | | 
 | 		     V_NEWTIMER(rq->next_holdoff) | V_NEWINDEX(rq->cidx)); | 
 | 	return work; | 
 | } | 
 |  | 
 | /* | 
 |  * The legacy INTx interrupt handler.  This needs to handle data events from | 
 |  * SGE response queues as well as error and other async events as they all use | 
 |  * the same interrupt pin.  We use one SGE response queue per port in this mode | 
 |  * and protect all response queues with queue 0's lock. | 
 |  */ | 
 | static irqreturn_t t3_intr(int irq, void *cookie) | 
 | { | 
 | 	int work_done, w0, w1; | 
 | 	struct adapter *adap = cookie; | 
 | 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | 
 | 	struct sge_rspq *q1 = &adap->sge.qs[1].rspq; | 
 |  | 
 | 	spin_lock(&q0->lock); | 
 |  | 
 | 	w0 = is_new_response(&q0->desc[q0->cidx], q0); | 
 | 	w1 = adap->params.nports == 2 && | 
 | 	    is_new_response(&q1->desc[q1->cidx], q1); | 
 |  | 
 | 	if (likely(w0 | w1)) { | 
 | 		t3_write_reg(adap, A_PL_CLI, 0); | 
 | 		t3_read_reg(adap, A_PL_CLI);	/* flush */ | 
 |  | 
 | 		if (likely(w0)) | 
 | 			process_responses_gts(adap, q0); | 
 |  | 
 | 		if (w1) | 
 | 			process_responses_gts(adap, q1); | 
 |  | 
 | 		work_done = w0 | w1; | 
 | 	} else | 
 | 		work_done = t3_slow_intr_handler(adap); | 
 |  | 
 | 	spin_unlock(&q0->lock); | 
 | 	return IRQ_RETVAL(work_done != 0); | 
 | } | 
 |  | 
 | /* | 
 |  * Interrupt handler for legacy INTx interrupts for T3B-based cards. | 
 |  * Handles data events from SGE response queues as well as error and other | 
 |  * async events as they all use the same interrupt pin.  We use one SGE | 
 |  * response queue per port in this mode and protect all response queues with | 
 |  * queue 0's lock. | 
 |  */ | 
 | static irqreturn_t t3b_intr(int irq, void *cookie) | 
 | { | 
 | 	u32 map; | 
 | 	struct adapter *adap = cookie; | 
 | 	struct sge_rspq *q0 = &adap->sge.qs[0].rspq; | 
 |  | 
 | 	t3_write_reg(adap, A_PL_CLI, 0); | 
 | 	map = t3_read_reg(adap, A_SG_DATA_INTR); | 
 |  | 
 | 	if (unlikely(!map))	/* shared interrupt, most likely */ | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	spin_lock(&q0->lock); | 
 |  | 
 | 	if (unlikely(map & F_ERRINTR)) | 
 | 		t3_slow_intr_handler(adap); | 
 |  | 
 | 	if (likely(map & 1)) | 
 | 		process_responses_gts(adap, q0); | 
 |  | 
 | 	if (map & 2) | 
 | 		process_responses_gts(adap, &adap->sge.qs[1].rspq); | 
 |  | 
 | 	spin_unlock(&q0->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /* | 
 |  * NAPI interrupt handler for legacy INTx interrupts for T3B-based cards. | 
 |  * Handles data events from SGE response queues as well as error and other | 
 |  * async events as they all use the same interrupt pin.  We use one SGE | 
 |  * response queue per port in this mode and protect all response queues with | 
 |  * queue 0's lock. | 
 |  */ | 
 | static irqreturn_t t3b_intr_napi(int irq, void *cookie) | 
 | { | 
 | 	u32 map; | 
 | 	struct adapter *adap = cookie; | 
 | 	struct sge_qset *qs0 = &adap->sge.qs[0]; | 
 | 	struct sge_rspq *q0 = &qs0->rspq; | 
 |  | 
 | 	t3_write_reg(adap, A_PL_CLI, 0); | 
 | 	map = t3_read_reg(adap, A_SG_DATA_INTR); | 
 |  | 
 | 	if (unlikely(!map))	/* shared interrupt, most likely */ | 
 | 		return IRQ_NONE; | 
 |  | 
 | 	spin_lock(&q0->lock); | 
 |  | 
 | 	if (unlikely(map & F_ERRINTR)) | 
 | 		t3_slow_intr_handler(adap); | 
 |  | 
 | 	if (likely(map & 1)) | 
 | 		napi_schedule(&qs0->napi); | 
 |  | 
 | 	if (map & 2) | 
 | 		napi_schedule(&adap->sge.qs[1].napi); | 
 |  | 
 | 	spin_unlock(&q0->lock); | 
 | 	return IRQ_HANDLED; | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_intr_handler - select the top-level interrupt handler | 
 |  *	@adap: the adapter | 
 |  *	@polling: whether using NAPI to service response queues | 
 |  * | 
 |  *	Selects the top-level interrupt handler based on the type of interrupts | 
 |  *	(MSI-X, MSI, or legacy) and whether NAPI will be used to service the | 
 |  *	response queues. | 
 |  */ | 
 | irq_handler_t t3_intr_handler(struct adapter *adap, int polling) | 
 | { | 
 | 	if (adap->flags & USING_MSIX) | 
 | 		return polling ? t3_sge_intr_msix_napi : t3_sge_intr_msix; | 
 | 	if (adap->flags & USING_MSI) | 
 | 		return polling ? t3_intr_msi_napi : t3_intr_msi; | 
 | 	if (adap->params.rev > 0) | 
 | 		return polling ? t3b_intr_napi : t3b_intr; | 
 | 	return t3_intr; | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_sge_err_intr_handler - SGE async event interrupt handler | 
 |  *	@adapter: the adapter | 
 |  * | 
 |  *	Interrupt handler for SGE asynchronous (non-data) events. | 
 |  */ | 
 | void t3_sge_err_intr_handler(struct adapter *adapter) | 
 | { | 
 | 	unsigned int v, status = t3_read_reg(adapter, A_SG_INT_CAUSE); | 
 |  | 
 | 	if (status & F_RSPQCREDITOVERFOW) | 
 | 		CH_ALERT(adapter, "SGE response queue credit overflow\n"); | 
 |  | 
 | 	if (status & F_RSPQDISABLED) { | 
 | 		v = t3_read_reg(adapter, A_SG_RSPQ_FL_STATUS); | 
 |  | 
 | 		CH_ALERT(adapter, | 
 | 			 "packet delivered to disabled response queue " | 
 | 			 "(0x%x)\n", (v >> S_RSPQ0DISABLED) & 0xff); | 
 | 	} | 
 |  | 
 | 	if (status & (F_HIPIODRBDROPERR | F_LOPIODRBDROPERR)) | 
 | 		CH_ALERT(adapter, "SGE dropped %s priority doorbell\n", | 
 | 			 status & F_HIPIODRBDROPERR ? "high" : "lo"); | 
 |  | 
 | 	t3_write_reg(adapter, A_SG_INT_CAUSE, status); | 
 | 	if (status & (F_RSPQCREDITOVERFOW | F_RSPQDISABLED)) | 
 | 		t3_fatal_err(adapter); | 
 | } | 
 |  | 
 | /** | 
 |  *	sge_timer_cb - perform periodic maintenance of an SGE qset | 
 |  *	@data: the SGE queue set to maintain | 
 |  * | 
 |  *	Runs periodically from a timer to perform maintenance of an SGE queue | 
 |  *	set.  It performs two tasks: | 
 |  * | 
 |  *	a) Cleans up any completed Tx descriptors that may still be pending. | 
 |  *	Normal descriptor cleanup happens when new packets are added to a Tx | 
 |  *	queue so this timer is relatively infrequent and does any cleanup only | 
 |  *	if the Tx queue has not seen any new packets in a while.  We make a | 
 |  *	best effort attempt to reclaim descriptors, in that we don't wait | 
 |  *	around if we cannot get a queue's lock (which most likely is because | 
 |  *	someone else is queueing new packets and so will also handle the clean | 
 |  *	up).  Since control queues use immediate data exclusively we don't | 
 |  *	bother cleaning them up here. | 
 |  * | 
 |  *	b) Replenishes Rx queues that have run out due to memory shortage. | 
 |  *	Normally new Rx buffers are added when existing ones are consumed but | 
 |  *	when out of memory a queue can become empty.  We try to add only a few | 
 |  *	buffers here, the queue will be replenished fully as these new buffers | 
 |  *	are used up if memory shortage has subsided. | 
 |  */ | 
 | static void sge_timer_cb(unsigned long data) | 
 | { | 
 | 	spinlock_t *lock; | 
 | 	struct sge_qset *qs = (struct sge_qset *)data; | 
 | 	struct adapter *adap = qs->adap; | 
 |  | 
 | 	if (spin_trylock(&qs->txq[TXQ_ETH].lock)) { | 
 | 		reclaim_completed_tx(adap, &qs->txq[TXQ_ETH]); | 
 | 		spin_unlock(&qs->txq[TXQ_ETH].lock); | 
 | 	} | 
 | 	if (spin_trylock(&qs->txq[TXQ_OFLD].lock)) { | 
 | 		reclaim_completed_tx(adap, &qs->txq[TXQ_OFLD]); | 
 | 		spin_unlock(&qs->txq[TXQ_OFLD].lock); | 
 | 	} | 
 | 	lock = (adap->flags & USING_MSIX) ? &qs->rspq.lock : | 
 | 					    &adap->sge.qs[0].rspq.lock; | 
 | 	if (spin_trylock_irq(lock)) { | 
 | 		if (!napi_is_scheduled(&qs->napi)) { | 
 | 			u32 status = t3_read_reg(adap, A_SG_RSPQ_FL_STATUS); | 
 |  | 
 | 			if (qs->fl[0].credits < qs->fl[0].size) | 
 | 				__refill_fl(adap, &qs->fl[0]); | 
 | 			if (qs->fl[1].credits < qs->fl[1].size) | 
 | 				__refill_fl(adap, &qs->fl[1]); | 
 |  | 
 | 			if (status & (1 << qs->rspq.cntxt_id)) { | 
 | 				qs->rspq.starved++; | 
 | 				if (qs->rspq.credits) { | 
 | 					refill_rspq(adap, &qs->rspq, 1); | 
 | 					qs->rspq.credits--; | 
 | 					qs->rspq.restarted++; | 
 | 					t3_write_reg(adap, A_SG_RSPQ_FL_STATUS, | 
 | 						     1 << qs->rspq.cntxt_id); | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		spin_unlock_irq(lock); | 
 | 	} | 
 | 	mod_timer(&qs->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_update_qset_coalesce - update coalescing settings for a queue set | 
 |  *	@qs: the SGE queue set | 
 |  *	@p: new queue set parameters | 
 |  * | 
 |  *	Update the coalescing settings for an SGE queue set.  Nothing is done | 
 |  *	if the queue set is not initialized yet. | 
 |  */ | 
 | void t3_update_qset_coalesce(struct sge_qset *qs, const struct qset_params *p) | 
 | { | 
 | 	qs->rspq.holdoff_tmr = max(p->coalesce_usecs * 10, 1U);/* can't be 0 */ | 
 | 	qs->rspq.polling = p->polling; | 
 | 	qs->napi.poll = p->polling ? napi_rx_handler : ofld_poll; | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_sge_alloc_qset - initialize an SGE queue set | 
 |  *	@adapter: the adapter | 
 |  *	@id: the queue set id | 
 |  *	@nports: how many Ethernet ports will be using this queue set | 
 |  *	@irq_vec_idx: the IRQ vector index for response queue interrupts | 
 |  *	@p: configuration parameters for this queue set | 
 |  *	@ntxq: number of Tx queues for the queue set | 
 |  *	@netdev: net device associated with this queue set | 
 |  * | 
 |  *	Allocate resources and initialize an SGE queue set.  A queue set | 
 |  *	comprises a response queue, two Rx free-buffer queues, and up to 3 | 
 |  *	Tx queues.  The Tx queues are assigned roles in the order Ethernet | 
 |  *	queue, offload queue, and control queue. | 
 |  */ | 
 | int t3_sge_alloc_qset(struct adapter *adapter, unsigned int id, int nports, | 
 | 		      int irq_vec_idx, const struct qset_params *p, | 
 | 		      int ntxq, struct net_device *dev) | 
 | { | 
 | 	int i, ret = -ENOMEM; | 
 | 	struct sge_qset *q = &adapter->sge.qs[id]; | 
 |  | 
 | 	init_qset_cntxt(q, id); | 
 | 	init_timer(&q->tx_reclaim_timer); | 
 | 	q->tx_reclaim_timer.data = (unsigned long)q; | 
 | 	q->tx_reclaim_timer.function = sge_timer_cb; | 
 |  | 
 | 	q->fl[0].desc = alloc_ring(adapter->pdev, p->fl_size, | 
 | 				   sizeof(struct rx_desc), | 
 | 				   sizeof(struct rx_sw_desc), | 
 | 				   &q->fl[0].phys_addr, &q->fl[0].sdesc); | 
 | 	if (!q->fl[0].desc) | 
 | 		goto err; | 
 |  | 
 | 	q->fl[1].desc = alloc_ring(adapter->pdev, p->jumbo_size, | 
 | 				   sizeof(struct rx_desc), | 
 | 				   sizeof(struct rx_sw_desc), | 
 | 				   &q->fl[1].phys_addr, &q->fl[1].sdesc); | 
 | 	if (!q->fl[1].desc) | 
 | 		goto err; | 
 |  | 
 | 	q->rspq.desc = alloc_ring(adapter->pdev, p->rspq_size, | 
 | 				  sizeof(struct rsp_desc), 0, | 
 | 				  &q->rspq.phys_addr, NULL); | 
 | 	if (!q->rspq.desc) | 
 | 		goto err; | 
 |  | 
 | 	for (i = 0; i < ntxq; ++i) { | 
 | 		/* | 
 | 		 * The control queue always uses immediate data so does not | 
 | 		 * need to keep track of any sk_buffs. | 
 | 		 */ | 
 | 		size_t sz = i == TXQ_CTRL ? 0 : sizeof(struct tx_sw_desc); | 
 |  | 
 | 		q->txq[i].desc = alloc_ring(adapter->pdev, p->txq_size[i], | 
 | 					    sizeof(struct tx_desc), sz, | 
 | 					    &q->txq[i].phys_addr, | 
 | 					    &q->txq[i].sdesc); | 
 | 		if (!q->txq[i].desc) | 
 | 			goto err; | 
 |  | 
 | 		q->txq[i].gen = 1; | 
 | 		q->txq[i].size = p->txq_size[i]; | 
 | 		spin_lock_init(&q->txq[i].lock); | 
 | 		skb_queue_head_init(&q->txq[i].sendq); | 
 | 	} | 
 |  | 
 | 	tasklet_init(&q->txq[TXQ_OFLD].qresume_tsk, restart_offloadq, | 
 | 		     (unsigned long)q); | 
 | 	tasklet_init(&q->txq[TXQ_CTRL].qresume_tsk, restart_ctrlq, | 
 | 		     (unsigned long)q); | 
 |  | 
 | 	q->fl[0].gen = q->fl[1].gen = 1; | 
 | 	q->fl[0].size = p->fl_size; | 
 | 	q->fl[1].size = p->jumbo_size; | 
 |  | 
 | 	q->rspq.gen = 1; | 
 | 	q->rspq.size = p->rspq_size; | 
 | 	spin_lock_init(&q->rspq.lock); | 
 |  | 
 | 	q->txq[TXQ_ETH].stop_thres = nports * | 
 | 	    flits_to_desc(sgl_len(MAX_SKB_FRAGS + 1) + 3); | 
 |  | 
 | #if FL0_PG_CHUNK_SIZE > 0 | 
 | 	q->fl[0].buf_size = FL0_PG_CHUNK_SIZE; | 
 | #else | 
 | 	q->fl[0].buf_size = SGE_RX_SM_BUF_SIZE + sizeof(struct cpl_rx_data); | 
 | #endif | 
 | 	q->fl[0].use_pages = FL0_PG_CHUNK_SIZE > 0; | 
 | 	q->fl[1].buf_size = is_offload(adapter) ? | 
 | 		(16 * 1024) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) : | 
 | 		MAX_FRAME_SIZE + 2 + sizeof(struct cpl_rx_pkt); | 
 |  | 
 | 	spin_lock(&adapter->sge.reg_lock); | 
 |  | 
 | 	/* FL threshold comparison uses < */ | 
 | 	ret = t3_sge_init_rspcntxt(adapter, q->rspq.cntxt_id, irq_vec_idx, | 
 | 				   q->rspq.phys_addr, q->rspq.size, | 
 | 				   q->fl[0].buf_size, 1, 0); | 
 | 	if (ret) | 
 | 		goto err_unlock; | 
 |  | 
 | 	for (i = 0; i < SGE_RXQ_PER_SET; ++i) { | 
 | 		ret = t3_sge_init_flcntxt(adapter, q->fl[i].cntxt_id, 0, | 
 | 					  q->fl[i].phys_addr, q->fl[i].size, | 
 | 					  q->fl[i].buf_size, p->cong_thres, 1, | 
 | 					  0); | 
 | 		if (ret) | 
 | 			goto err_unlock; | 
 | 	} | 
 |  | 
 | 	ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_ETH].cntxt_id, USE_GTS, | 
 | 				 SGE_CNTXT_ETH, id, q->txq[TXQ_ETH].phys_addr, | 
 | 				 q->txq[TXQ_ETH].size, q->txq[TXQ_ETH].token, | 
 | 				 1, 0); | 
 | 	if (ret) | 
 | 		goto err_unlock; | 
 |  | 
 | 	if (ntxq > 1) { | 
 | 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_OFLD].cntxt_id, | 
 | 					 USE_GTS, SGE_CNTXT_OFLD, id, | 
 | 					 q->txq[TXQ_OFLD].phys_addr, | 
 | 					 q->txq[TXQ_OFLD].size, 0, 1, 0); | 
 | 		if (ret) | 
 | 			goto err_unlock; | 
 | 	} | 
 |  | 
 | 	if (ntxq > 2) { | 
 | 		ret = t3_sge_init_ecntxt(adapter, q->txq[TXQ_CTRL].cntxt_id, 0, | 
 | 					 SGE_CNTXT_CTRL, id, | 
 | 					 q->txq[TXQ_CTRL].phys_addr, | 
 | 					 q->txq[TXQ_CTRL].size, | 
 | 					 q->txq[TXQ_CTRL].token, 1, 0); | 
 | 		if (ret) | 
 | 			goto err_unlock; | 
 | 	} | 
 |  | 
 | 	spin_unlock(&adapter->sge.reg_lock); | 
 |  | 
 | 	q->adap = adapter; | 
 | 	q->netdev = dev; | 
 | 	t3_update_qset_coalesce(q, p); | 
 |  | 
 | 	refill_fl(adapter, &q->fl[0], q->fl[0].size, GFP_KERNEL); | 
 | 	refill_fl(adapter, &q->fl[1], q->fl[1].size, GFP_KERNEL); | 
 | 	refill_rspq(adapter, &q->rspq, q->rspq.size - 1); | 
 |  | 
 | 	t3_write_reg(adapter, A_SG_GTS, V_RSPQ(q->rspq.cntxt_id) | | 
 | 		     V_NEWTIMER(q->rspq.holdoff_tmr)); | 
 |  | 
 | 	mod_timer(&q->tx_reclaim_timer, jiffies + TX_RECLAIM_PERIOD); | 
 | 	return 0; | 
 |  | 
 |       err_unlock: | 
 | 	spin_unlock(&adapter->sge.reg_lock); | 
 |       err: | 
 | 	t3_free_qset(adapter, q); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_free_sge_resources - free SGE resources | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	Frees resources used by the SGE queue sets. | 
 |  */ | 
 | void t3_free_sge_resources(struct adapter *adap) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < SGE_QSETS; ++i) | 
 | 		t3_free_qset(adap, &adap->sge.qs[i]); | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_sge_start - enable SGE | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	Enables the SGE for DMAs.  This is the last step in starting packet | 
 |  *	transfers. | 
 |  */ | 
 | void t3_sge_start(struct adapter *adap) | 
 | { | 
 | 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, F_GLOBALENABLE); | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_sge_stop - disable SGE operation | 
 |  *	@adap: the adapter | 
 |  * | 
 |  *	Disables the DMA engine.  This can be called in emeregencies (e.g., | 
 |  *	from error interrupts) or from normal process context.  In the latter | 
 |  *	case it also disables any pending queue restart tasklets.  Note that | 
 |  *	if it is called in interrupt context it cannot disable the restart | 
 |  *	tasklets as it cannot wait, however the tasklets will have no effect | 
 |  *	since the doorbells are disabled and the driver will call this again | 
 |  *	later from process context, at which time the tasklets will be stopped | 
 |  *	if they are still running. | 
 |  */ | 
 | void t3_sge_stop(struct adapter *adap) | 
 | { | 
 | 	t3_set_reg_field(adap, A_SG_CONTROL, F_GLOBALENABLE, 0); | 
 | 	if (!in_interrupt()) { | 
 | 		int i; | 
 |  | 
 | 		for (i = 0; i < SGE_QSETS; ++i) { | 
 | 			struct sge_qset *qs = &adap->sge.qs[i]; | 
 |  | 
 | 			tasklet_kill(&qs->txq[TXQ_OFLD].qresume_tsk); | 
 | 			tasklet_kill(&qs->txq[TXQ_CTRL].qresume_tsk); | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_sge_init - initialize SGE | 
 |  *	@adap: the adapter | 
 |  *	@p: the SGE parameters | 
 |  * | 
 |  *	Performs SGE initialization needed every time after a chip reset. | 
 |  *	We do not initialize any of the queue sets here, instead the driver | 
 |  *	top-level must request those individually.  We also do not enable DMA | 
 |  *	here, that should be done after the queues have been set up. | 
 |  */ | 
 | void t3_sge_init(struct adapter *adap, struct sge_params *p) | 
 | { | 
 | 	unsigned int ctrl, ups = ffs(pci_resource_len(adap->pdev, 2) >> 12); | 
 |  | 
 | 	ctrl = F_DROPPKT | V_PKTSHIFT(2) | F_FLMODE | F_AVOIDCQOVFL | | 
 | 	    F_CQCRDTCTRL | | 
 | 	    V_HOSTPAGESIZE(PAGE_SHIFT - 11) | F_BIGENDIANINGRESS | | 
 | 	    V_USERSPACESIZE(ups ? ups - 1 : 0) | F_ISCSICOALESCING; | 
 | #if SGE_NUM_GENBITS == 1 | 
 | 	ctrl |= F_EGRGENCTRL; | 
 | #endif | 
 | 	if (adap->params.rev > 0) { | 
 | 		if (!(adap->flags & (USING_MSIX | USING_MSI))) | 
 | 			ctrl |= F_ONEINTMULTQ | F_OPTONEINTMULTQ; | 
 | 		ctrl |= F_CQCRDTCTRL | F_AVOIDCQOVFL; | 
 | 	} | 
 | 	t3_write_reg(adap, A_SG_CONTROL, ctrl); | 
 | 	t3_write_reg(adap, A_SG_EGR_RCQ_DRB_THRSH, V_HIRCQDRBTHRSH(512) | | 
 | 		     V_LORCQDRBTHRSH(512)); | 
 | 	t3_write_reg(adap, A_SG_TIMER_TICK, core_ticks_per_usec(adap) / 10); | 
 | 	t3_write_reg(adap, A_SG_CMDQ_CREDIT_TH, V_THRESHOLD(32) | | 
 | 		     V_TIMEOUT(200 * core_ticks_per_usec(adap))); | 
 | 	t3_write_reg(adap, A_SG_HI_DRB_HI_THRSH, 1000); | 
 | 	t3_write_reg(adap, A_SG_HI_DRB_LO_THRSH, 256); | 
 | 	t3_write_reg(adap, A_SG_LO_DRB_HI_THRSH, 1000); | 
 | 	t3_write_reg(adap, A_SG_LO_DRB_LO_THRSH, 256); | 
 | 	t3_write_reg(adap, A_SG_OCO_BASE, V_BASE1(0xfff)); | 
 | 	t3_write_reg(adap, A_SG_DRB_PRI_THRESH, 63 * 1024); | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_sge_prep - one-time SGE initialization | 
 |  *	@adap: the associated adapter | 
 |  *	@p: SGE parameters | 
 |  * | 
 |  *	Performs one-time initialization of SGE SW state.  Includes determining | 
 |  *	defaults for the assorted SGE parameters, which admins can change until | 
 |  *	they are used to initialize the SGE. | 
 |  */ | 
 | void __devinit t3_sge_prep(struct adapter *adap, struct sge_params *p) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	p->max_pkt_size = (16 * 1024) - sizeof(struct cpl_rx_data) - | 
 | 	    SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); | 
 |  | 
 | 	for (i = 0; i < SGE_QSETS; ++i) { | 
 | 		struct qset_params *q = p->qset + i; | 
 |  | 
 | 		q->polling = adap->params.rev > 0; | 
 | 		q->coalesce_usecs = 5; | 
 | 		q->rspq_size = 1024; | 
 | 		q->fl_size = 1024; | 
 | 		q->jumbo_size = 512; | 
 | 		q->txq_size[TXQ_ETH] = 1024; | 
 | 		q->txq_size[TXQ_OFLD] = 1024; | 
 | 		q->txq_size[TXQ_CTRL] = 256; | 
 | 		q->cong_thres = 0; | 
 | 	} | 
 |  | 
 | 	spin_lock_init(&adap->sge.reg_lock); | 
 | } | 
 |  | 
 | /** | 
 |  *	t3_get_desc - dump an SGE descriptor for debugging purposes | 
 |  *	@qs: the queue set | 
 |  *	@qnum: identifies the specific queue (0..2: Tx, 3:response, 4..5: Rx) | 
 |  *	@idx: the descriptor index in the queue | 
 |  *	@data: where to dump the descriptor contents | 
 |  * | 
 |  *	Dumps the contents of a HW descriptor of an SGE queue.  Returns the | 
 |  *	size of the descriptor. | 
 |  */ | 
 | int t3_get_desc(const struct sge_qset *qs, unsigned int qnum, unsigned int idx, | 
 | 		unsigned char *data) | 
 | { | 
 | 	if (qnum >= 6) | 
 | 		return -EINVAL; | 
 |  | 
 | 	if (qnum < 3) { | 
 | 		if (!qs->txq[qnum].desc || idx >= qs->txq[qnum].size) | 
 | 			return -EINVAL; | 
 | 		memcpy(data, &qs->txq[qnum].desc[idx], sizeof(struct tx_desc)); | 
 | 		return sizeof(struct tx_desc); | 
 | 	} | 
 |  | 
 | 	if (qnum == 3) { | 
 | 		if (!qs->rspq.desc || idx >= qs->rspq.size) | 
 | 			return -EINVAL; | 
 | 		memcpy(data, &qs->rspq.desc[idx], sizeof(struct rsp_desc)); | 
 | 		return sizeof(struct rsp_desc); | 
 | 	} | 
 |  | 
 | 	qnum -= 4; | 
 | 	if (!qs->fl[qnum].desc || idx >= qs->fl[qnum].size) | 
 | 		return -EINVAL; | 
 | 	memcpy(data, &qs->fl[qnum].desc[idx], sizeof(struct rx_desc)); | 
 | 	return sizeof(struct rx_desc); | 
 | } |