| /* | 
 |  * drivers/sbus/char/jsflash.c | 
 |  * | 
 |  *  Copyright (C) 1991, 1992  Linus Torvalds	(drivers/char/mem.c) | 
 |  *  Copyright (C) 1997  Eddie C. Dost		(drivers/sbus/char/flash.c) | 
 |  *  Copyright (C) 1997-2000 Pavel Machek <pavel@ucw.cz>   (drivers/block/nbd.c) | 
 |  *  Copyright (C) 1999-2000 Pete Zaitcev | 
 |  * | 
 |  * This driver is used to program OS into a Flash SIMM on | 
 |  * Krups and Espresso platforms. | 
 |  * | 
 |  * TODO: do not allow erase/programming if file systems are mounted. | 
 |  * TODO: Erase/program both banks of a 8MB SIMM. | 
 |  * | 
 |  * It is anticipated that programming an OS Flash will be a routine | 
 |  * procedure. In the same time it is exeedingly dangerous because | 
 |  * a user can program its OBP flash with OS image and effectively | 
 |  * kill the machine. | 
 |  * | 
 |  * This driver uses an interface different from Eddie's flash.c | 
 |  * as a silly safeguard. | 
 |  * | 
 |  * XXX The flash.c manipulates page caching characteristics in a certain | 
 |  * dubious way; also it assumes that remap_pfn_range() can remap | 
 |  * PCI bus locations, which may be false. ioremap() must be used | 
 |  * instead. We should discuss this. | 
 |  */ | 
 |  | 
 | #include <linux/module.h> | 
 | #include <linux/smp_lock.h> | 
 | #include <linux/types.h> | 
 | #include <linux/errno.h> | 
 | #include <linux/miscdevice.h> | 
 | #include <linux/slab.h> | 
 | #include <linux/fcntl.h> | 
 | #include <linux/poll.h> | 
 | #include <linux/init.h> | 
 | #include <linux/string.h> | 
 | #include <linux/genhd.h> | 
 | #include <linux/blkdev.h> | 
 | #include <asm/uaccess.h> | 
 | #include <asm/pgtable.h> | 
 | #include <asm/io.h> | 
 | #include <asm/pcic.h> | 
 | #include <asm/oplib.h> | 
 |  | 
 | #include <asm/jsflash.h>		/* ioctl arguments. <linux/> ?? */ | 
 | #define JSFIDSZ		(sizeof(struct jsflash_ident_arg)) | 
 | #define JSFPRGSZ	(sizeof(struct jsflash_program_arg)) | 
 |  | 
 | /* | 
 |  * Our device numbers have no business in system headers. | 
 |  * The only thing a user knows is the device name /dev/jsflash. | 
 |  * | 
 |  * Block devices are laid out like this: | 
 |  *   minor+0	- Bootstrap, for 8MB SIMM 0x20400000[0x800000] | 
 |  *   minor+1	- Filesystem to mount, normally 0x20400400[0x7ffc00] | 
 |  *   minor+2	- Whole flash area for any case... 0x20000000[0x01000000] | 
 |  * Total 3 minors per flash device. | 
 |  * | 
 |  * It is easier to have static size vectors, so we define | 
 |  * a total minor range JSF_MAX, which must cover all minors. | 
 |  */ | 
 | /* character device */ | 
 | #define JSF_MINOR	178	/* 178 is registered with hpa */ | 
 | /* block device */ | 
 | #define JSF_MAX		 3	/* 3 minors wasted total so far. */ | 
 | #define JSF_NPART	 3	/* 3 minors per flash device */ | 
 | #define JSF_PART_BITS	 2	/* 2 bits of minors to cover JSF_NPART */ | 
 | #define JSF_PART_MASK	 0x3	/* 2 bits mask */ | 
 |  | 
 | /* | 
 |  * Access functions. | 
 |  * We could ioremap(), but it's easier this way. | 
 |  */ | 
 | static unsigned int jsf_inl(unsigned long addr) | 
 | { | 
 | 	unsigned long retval; | 
 |  | 
 | 	__asm__ __volatile__("lda [%1] %2, %0\n\t" : | 
 | 				"=r" (retval) : | 
 | 				"r" (addr), "i" (ASI_M_BYPASS)); | 
 |         return retval; | 
 | } | 
 |  | 
 | static void jsf_outl(unsigned long addr, __u32 data) | 
 | { | 
 |  | 
 | 	__asm__ __volatile__("sta %0, [%1] %2\n\t" : : | 
 | 				"r" (data), "r" (addr), "i" (ASI_M_BYPASS) : | 
 | 				"memory"); | 
 | } | 
 |  | 
 | /* | 
 |  * soft carrier | 
 |  */ | 
 |  | 
 | struct jsfd_part { | 
 | 	unsigned long dbase; | 
 | 	unsigned long dsize; | 
 | }; | 
 |  | 
 | struct jsflash { | 
 | 	unsigned long base; | 
 | 	unsigned long size; | 
 | 	unsigned long busy;		/* In use? */ | 
 | 	struct jsflash_ident_arg id; | 
 | 	/* int mbase; */		/* Minor base, typically zero */ | 
 | 	struct jsfd_part dv[JSF_NPART]; | 
 | }; | 
 |  | 
 | /* | 
 |  * We do not map normal memory or obio as a safety precaution. | 
 |  * But offsets are real, for ease of userland programming. | 
 |  */ | 
 | #define JSF_BASE_TOP	0x30000000 | 
 | #define JSF_BASE_ALL	0x20000000 | 
 |  | 
 | #define JSF_BASE_JK	0x20400000 | 
 |  | 
 | /* | 
 |  */ | 
 | static struct gendisk *jsfd_disk[JSF_MAX]; | 
 |  | 
 | /* | 
 |  * Let's pretend we may have several of these... | 
 |  */ | 
 | static struct jsflash jsf0; | 
 |  | 
 | /* | 
 |  * Wait for AMD to finish its embedded algorithm. | 
 |  * We use the Toggle bit DQ6 (0x40) because it does not | 
 |  * depend on the data value as /DATA bit DQ7 does. | 
 |  * | 
 |  * XXX Do we need any timeout here? So far it never hanged, beware broken hw. | 
 |  */ | 
 | static void jsf_wait(unsigned long p) { | 
 | 	unsigned int x1, x2; | 
 |  | 
 | 	for (;;) { | 
 | 		x1 = jsf_inl(p); | 
 | 		x2 = jsf_inl(p); | 
 | 		if ((x1 & 0x40404040) == (x2 & 0x40404040)) return; | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * Programming will only work if Flash is clean, | 
 |  * we leave it to the programmer application. | 
 |  * | 
 |  * AMD must be programmed one byte at a time; | 
 |  * thus, Simple Tech SIMM must be written 4 bytes at a time. | 
 |  * | 
 |  * Write waits for the chip to become ready after the write | 
 |  * was finished. This is done so that application would read | 
 |  * consistent data after the write is done. | 
 |  */ | 
 | static void jsf_write4(unsigned long fa, u32 data) { | 
 |  | 
 | 	jsf_outl(fa, 0xAAAAAAAA);		/* Unlock 1 Write 1 */ | 
 | 	jsf_outl(fa, 0x55555555);		/* Unlock 1 Write 2 */ | 
 | 	jsf_outl(fa, 0xA0A0A0A0);		/* Byte Program */ | 
 | 	jsf_outl(fa, data); | 
 |  | 
 | 	jsf_wait(fa); | 
 | } | 
 |  | 
 | /* | 
 |  */ | 
 | static void jsfd_read(char *buf, unsigned long p, size_t togo) { | 
 | 	union byte4 { | 
 | 		char s[4]; | 
 | 		unsigned int n; | 
 | 	} b; | 
 |  | 
 | 	while (togo >= 4) { | 
 | 		togo -= 4; | 
 | 		b.n = jsf_inl(p); | 
 | 		memcpy(buf, b.s, 4); | 
 | 		p += 4; | 
 | 		buf += 4; | 
 | 	} | 
 | } | 
 |  | 
 | static void jsfd_do_request(struct request_queue *q) | 
 | { | 
 | 	struct request *req; | 
 |  | 
 | 	while ((req = elv_next_request(q)) != NULL) { | 
 | 		struct jsfd_part *jdp = req->rq_disk->private_data; | 
 | 		unsigned long offset = req->sector << 9; | 
 | 		size_t len = req->current_nr_sectors << 9; | 
 |  | 
 | 		if ((offset + len) > jdp->dsize) { | 
 |                		end_request(req, 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if (rq_data_dir(req) != READ) { | 
 | 			printk(KERN_ERR "jsfd: write\n"); | 
 | 			end_request(req, 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		if ((jdp->dbase & 0xff000000) != 0x20000000) { | 
 | 			printk(KERN_ERR "jsfd: bad base %x\n", (int)jdp->dbase); | 
 | 			end_request(req, 0); | 
 | 			continue; | 
 | 		} | 
 |  | 
 | 		jsfd_read(req->buffer, jdp->dbase + offset, len); | 
 |  | 
 | 		end_request(req, 1); | 
 | 	} | 
 | } | 
 |  | 
 | /* | 
 |  * The memory devices use the full 32/64 bits of the offset, and so we cannot | 
 |  * check against negative addresses: they are ok. The return value is weird, | 
 |  * though, in that case (0). | 
 |  * | 
 |  * also note that seeking relative to the "end of file" isn't supported: | 
 |  * it has no meaning, so it returns -EINVAL. | 
 |  */ | 
 | static loff_t jsf_lseek(struct file * file, loff_t offset, int orig) | 
 | { | 
 | 	loff_t ret; | 
 |  | 
 | 	lock_kernel(); | 
 | 	switch (orig) { | 
 | 		case 0: | 
 | 			file->f_pos = offset; | 
 | 			ret = file->f_pos; | 
 | 			break; | 
 | 		case 1: | 
 | 			file->f_pos += offset; | 
 | 			ret = file->f_pos; | 
 | 			break; | 
 | 		default: | 
 | 			ret = -EINVAL; | 
 | 	} | 
 | 	unlock_kernel(); | 
 | 	return ret; | 
 | } | 
 |  | 
 | /* | 
 |  * OS SIMM Cannot be read in other size but a 32bits word. | 
 |  */ | 
 | static ssize_t jsf_read(struct file * file, char __user * buf,  | 
 |     size_t togo, loff_t *ppos) | 
 | { | 
 | 	unsigned long p = *ppos; | 
 | 	char __user *tmp = buf; | 
 |  | 
 | 	union byte4 { | 
 | 		char s[4]; | 
 | 		unsigned int n; | 
 | 	} b; | 
 |  | 
 | 	if (p < JSF_BASE_ALL || p >= JSF_BASE_TOP) { | 
 | 		return 0; | 
 | 	} | 
 |  | 
 | 	if ((p + togo) < p	/* wrap */ | 
 | 	   || (p + togo) >= JSF_BASE_TOP) { | 
 | 		togo = JSF_BASE_TOP - p; | 
 | 	} | 
 |  | 
 | 	if (p < JSF_BASE_ALL && togo != 0) { | 
 | #if 0 /* __bzero XXX */ | 
 | 		size_t x = JSF_BASE_ALL - p; | 
 | 		if (x > togo) x = togo; | 
 | 		clear_user(tmp, x); | 
 | 		tmp += x; | 
 | 		p += x; | 
 | 		togo -= x; | 
 | #else | 
 | 		/* | 
 | 		 * Implementation of clear_user() calls __bzero | 
 | 		 * without regard to modversions, | 
 | 		 * so we cannot build a module. | 
 | 		 */ | 
 | 		return 0; | 
 | #endif | 
 | 	} | 
 |  | 
 | 	while (togo >= 4) { | 
 | 		togo -= 4; | 
 | 		b.n = jsf_inl(p); | 
 | 		if (copy_to_user(tmp, b.s, 4)) | 
 | 			return -EFAULT; | 
 | 		tmp += 4; | 
 | 		p += 4; | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * XXX Small togo may remain if 1 byte is ordered. | 
 | 	 * It would be nice if we did a word size read and unpacked it. | 
 | 	 */ | 
 |  | 
 | 	*ppos = p; | 
 | 	return tmp-buf; | 
 | } | 
 |  | 
 | static ssize_t jsf_write(struct file * file, const char __user * buf, | 
 |     size_t count, loff_t *ppos) | 
 | { | 
 | 	return -ENOSPC; | 
 | } | 
 |  | 
 | /* | 
 |  */ | 
 | static int jsf_ioctl_erase(unsigned long arg) | 
 | { | 
 | 	unsigned long p; | 
 |  | 
 | 	/* p = jsf0.base;	hits wrong bank */ | 
 | 	p = 0x20400000; | 
 |  | 
 | 	jsf_outl(p, 0xAAAAAAAA);		/* Unlock 1 Write 1 */ | 
 | 	jsf_outl(p, 0x55555555);		/* Unlock 1 Write 2 */ | 
 | 	jsf_outl(p, 0x80808080);		/* Erase setup */ | 
 | 	jsf_outl(p, 0xAAAAAAAA);		/* Unlock 2 Write 1 */ | 
 | 	jsf_outl(p, 0x55555555);		/* Unlock 2 Write 2 */ | 
 | 	jsf_outl(p, 0x10101010);		/* Chip erase */ | 
 |  | 
 | #if 0 | 
 | 	/* | 
 | 	 * This code is ok, except that counter based timeout | 
 | 	 * has no place in this world. Let's just drop timeouts... | 
 | 	 */ | 
 | 	{ | 
 | 		int i; | 
 | 		__u32 x; | 
 | 		for (i = 0; i < 1000000; i++) { | 
 | 			x = jsf_inl(p); | 
 | 			if ((x & 0x80808080) == 0x80808080) break; | 
 | 		} | 
 | 		if ((x & 0x80808080) != 0x80808080) { | 
 | 			printk("jsf0: erase timeout with 0x%08x\n", x); | 
 | 		} else { | 
 | 			printk("jsf0: erase done with 0x%08x\n", x); | 
 | 		} | 
 | 	} | 
 | #else | 
 | 	jsf_wait(p); | 
 | #endif | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | /* | 
 |  * Program a block of flash. | 
 |  * Very simple because we can do it byte by byte anyway. | 
 |  */ | 
 | static int jsf_ioctl_program(void __user *arg) | 
 | { | 
 | 	struct jsflash_program_arg abuf; | 
 | 	char __user *uptr; | 
 | 	unsigned long p; | 
 | 	unsigned int togo; | 
 | 	union { | 
 | 		unsigned int n; | 
 | 		char s[4]; | 
 | 	} b; | 
 |  | 
 | 	if (copy_from_user(&abuf, arg, JSFPRGSZ)) | 
 | 		return -EFAULT;  | 
 | 	p = abuf.off; | 
 | 	togo = abuf.size; | 
 | 	if ((togo & 3) || (p & 3)) return -EINVAL; | 
 |  | 
 | 	uptr = (char __user *) (unsigned long) abuf.data; | 
 | 	while (togo != 0) { | 
 | 		togo -= 4; | 
 | 		if (copy_from_user(&b.s[0], uptr, 4)) | 
 | 			return -EFAULT; | 
 | 		jsf_write4(p, b.n); | 
 | 		p += 4; | 
 | 		uptr += 4; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static int jsf_ioctl(struct inode *inode, struct file *f, unsigned int cmd, | 
 |     unsigned long arg) | 
 | { | 
 | 	int error = -ENOTTY; | 
 | 	void __user *argp = (void __user *)arg; | 
 |  | 
 | 	if (!capable(CAP_SYS_ADMIN)) | 
 | 		return -EPERM; | 
 | 	switch (cmd) { | 
 | 	case JSFLASH_IDENT: | 
 | 		if (copy_to_user(argp, &jsf0.id, JSFIDSZ)) | 
 | 			return -EFAULT; | 
 | 		break; | 
 | 	case JSFLASH_ERASE: | 
 | 		error = jsf_ioctl_erase(arg); | 
 | 		break; | 
 | 	case JSFLASH_PROGRAM: | 
 | 		error = jsf_ioctl_program(argp); | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return error; | 
 | } | 
 |  | 
 | static int jsf_mmap(struct file * file, struct vm_area_struct * vma) | 
 | { | 
 | 	return -ENXIO; | 
 | } | 
 |  | 
 | static int jsf_open(struct inode * inode, struct file * filp) | 
 | { | 
 | 	lock_kernel(); | 
 | 	if (jsf0.base == 0) { | 
 | 		unlock_kernel(); | 
 | 		return -ENXIO; | 
 | 	} | 
 | 	if (test_and_set_bit(0, (void *)&jsf0.busy) != 0) { | 
 | 		unlock_kernel(); | 
 | 		return -EBUSY; | 
 | 	} | 
 |  | 
 | 	unlock_kernel(); | 
 | 	return 0;	/* XXX What security? */ | 
 | } | 
 |  | 
 | static int jsf_release(struct inode *inode, struct file *file) | 
 | { | 
 | 	jsf0.busy = 0; | 
 | 	return 0; | 
 | } | 
 |  | 
 | static const struct file_operations jsf_fops = { | 
 | 	.owner =	THIS_MODULE, | 
 | 	.llseek =	jsf_lseek, | 
 | 	.read =		jsf_read, | 
 | 	.write =	jsf_write, | 
 | 	.ioctl =	jsf_ioctl, | 
 | 	.mmap =		jsf_mmap, | 
 | 	.open =		jsf_open, | 
 | 	.release =	jsf_release, | 
 | }; | 
 |  | 
 | static struct miscdevice jsf_dev = { JSF_MINOR, "jsflash", &jsf_fops }; | 
 |  | 
 | static struct block_device_operations jsfd_fops = { | 
 | 	.owner =	THIS_MODULE, | 
 | }; | 
 |  | 
 | static int jsflash_init(void) | 
 | { | 
 | 	int rc; | 
 | 	struct jsflash *jsf; | 
 | 	int node; | 
 | 	char banner[128]; | 
 | 	struct linux_prom_registers reg0; | 
 |  | 
 | 	node = prom_getchild(prom_root_node); | 
 | 	node = prom_searchsiblings(node, "flash-memory"); | 
 | 	if (node != 0 && node != -1) { | 
 | 		if (prom_getproperty(node, "reg", | 
 | 		    (char *)®0, sizeof(reg0)) == -1) { | 
 | 			printk("jsflash: no \"reg\" property\n"); | 
 | 			return -ENXIO; | 
 | 		} | 
 | 		if (reg0.which_io != 0) { | 
 | 			printk("jsflash: bus number nonzero: 0x%x:%x\n", | 
 | 			    reg0.which_io, reg0.phys_addr); | 
 | 			return -ENXIO; | 
 | 		} | 
 | 		/* | 
 | 		 * Flash may be somewhere else, for instance on Ebus. | 
 | 		 * So, don't do the following check for IIep flash space. | 
 | 		 */ | 
 | #if 0 | 
 | 		if ((reg0.phys_addr >> 24) != 0x20) { | 
 | 			printk("jsflash: suspicious address: 0x%x:%x\n", | 
 | 			    reg0.which_io, reg0.phys_addr); | 
 | 			return -ENXIO; | 
 | 		} | 
 | #endif | 
 | 		if ((int)reg0.reg_size <= 0) { | 
 | 			printk("jsflash: bad size 0x%x\n", (int)reg0.reg_size); | 
 | 			return -ENXIO; | 
 | 		} | 
 | 	} else { | 
 | 		/* XXX Remove this code once PROLL ID12 got widespread */ | 
 | 		printk("jsflash: no /flash-memory node, use PROLL >= 12\n"); | 
 | 		prom_getproperty(prom_root_node, "banner-name", banner, 128); | 
 | 		if (strcmp (banner, "JavaStation-NC") != 0 && | 
 | 		    strcmp (banner, "JavaStation-E") != 0) { | 
 | 			return -ENXIO; | 
 | 		} | 
 | 		reg0.which_io = 0; | 
 | 		reg0.phys_addr = 0x20400000; | 
 | 		reg0.reg_size  = 0x00800000; | 
 | 	} | 
 |  | 
 | 	/* Let us be really paranoid for modifications to probing code. */ | 
 | 	/* extern enum sparc_cpu sparc_cpu_model; */ /* in <asm/system.h> */ | 
 | 	if (sparc_cpu_model != sun4m) { | 
 | 		/* We must be on sun4m because we use MMU Bypass ASI. */ | 
 | 		return -ENXIO; | 
 | 	} | 
 |  | 
 | 	if (jsf0.base == 0) { | 
 | 		jsf = &jsf0; | 
 |  | 
 | 		jsf->base = reg0.phys_addr; | 
 | 		jsf->size = reg0.reg_size; | 
 |  | 
 | 		/* XXX Redo the userland interface. */ | 
 | 		jsf->id.off = JSF_BASE_ALL; | 
 | 		jsf->id.size = 0x01000000;	/* 16M - all segments */ | 
 | 		strcpy(jsf->id.name, "Krups_all"); | 
 |  | 
 | 		jsf->dv[0].dbase = jsf->base; | 
 | 		jsf->dv[0].dsize = jsf->size; | 
 | 		jsf->dv[1].dbase = jsf->base + 1024; | 
 | 		jsf->dv[1].dsize = jsf->size - 1024; | 
 | 		jsf->dv[2].dbase = JSF_BASE_ALL; | 
 | 		jsf->dv[2].dsize = 0x01000000; | 
 |  | 
 | 		printk("Espresso Flash @0x%lx [%d MB]\n", jsf->base, | 
 | 		    (int) (jsf->size / (1024*1024))); | 
 | 	} | 
 |  | 
 | 	if ((rc = misc_register(&jsf_dev)) != 0) { | 
 | 		printk(KERN_ERR "jsf: unable to get misc minor %d\n", | 
 | 		    JSF_MINOR); | 
 | 		jsf0.base = 0; | 
 | 		return rc; | 
 | 	} | 
 |  | 
 | 	return 0; | 
 | } | 
 |  | 
 | static struct request_queue *jsf_queue; | 
 |  | 
 | static int jsfd_init(void) | 
 | { | 
 | 	static DEFINE_SPINLOCK(lock); | 
 | 	struct jsflash *jsf; | 
 | 	struct jsfd_part *jdp; | 
 | 	int err; | 
 | 	int i; | 
 |  | 
 | 	if (jsf0.base == 0) | 
 | 		return -ENXIO; | 
 |  | 
 | 	err = -ENOMEM; | 
 | 	for (i = 0; i < JSF_MAX; i++) { | 
 | 		struct gendisk *disk = alloc_disk(1); | 
 | 		if (!disk) | 
 | 			goto out; | 
 | 		jsfd_disk[i] = disk; | 
 | 	} | 
 |  | 
 | 	if (register_blkdev(JSFD_MAJOR, "jsfd")) { | 
 | 		err = -EIO; | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	jsf_queue = blk_init_queue(jsfd_do_request, &lock); | 
 | 	if (!jsf_queue) { | 
 | 		err = -ENOMEM; | 
 | 		unregister_blkdev(JSFD_MAJOR, "jsfd"); | 
 | 		goto out; | 
 | 	} | 
 |  | 
 | 	for (i = 0; i < JSF_MAX; i++) { | 
 | 		struct gendisk *disk = jsfd_disk[i]; | 
 | 		if ((i & JSF_PART_MASK) >= JSF_NPART) continue; | 
 | 		jsf = &jsf0;	/* actually, &jsfv[i >> JSF_PART_BITS] */ | 
 | 		jdp = &jsf->dv[i&JSF_PART_MASK]; | 
 |  | 
 | 		disk->major = JSFD_MAJOR; | 
 | 		disk->first_minor = i; | 
 | 		sprintf(disk->disk_name, "jsfd%d", i); | 
 | 		disk->fops = &jsfd_fops; | 
 | 		set_capacity(disk, jdp->dsize >> 9); | 
 | 		disk->private_data = jdp; | 
 | 		disk->queue = jsf_queue; | 
 | 		add_disk(disk); | 
 | 		set_disk_ro(disk, 1); | 
 | 	} | 
 | 	return 0; | 
 | out: | 
 | 	while (i--) | 
 | 		put_disk(jsfd_disk[i]); | 
 | 	return err; | 
 | } | 
 |  | 
 | MODULE_LICENSE("GPL"); | 
 |  | 
 | static int __init jsflash_init_module(void) { | 
 | 	int rc; | 
 |  | 
 | 	if ((rc = jsflash_init()) == 0) { | 
 | 		jsfd_init(); | 
 | 		return 0; | 
 | 	} | 
 | 	return rc; | 
 | } | 
 |  | 
 | static void __exit jsflash_cleanup_module(void) | 
 | { | 
 | 	int i; | 
 |  | 
 | 	for (i = 0; i < JSF_MAX; i++) { | 
 | 		if ((i & JSF_PART_MASK) >= JSF_NPART) continue; | 
 | 		del_gendisk(jsfd_disk[i]); | 
 | 		put_disk(jsfd_disk[i]); | 
 | 	} | 
 | 	if (jsf0.busy) | 
 | 		printk("jsf0: cleaning busy unit\n"); | 
 | 	jsf0.base = 0; | 
 | 	jsf0.busy = 0; | 
 |  | 
 | 	misc_deregister(&jsf_dev); | 
 | 	unregister_blkdev(JSFD_MAJOR, "jsfd"); | 
 | 	blk_cleanup_queue(jsf_queue); | 
 | } | 
 |  | 
 | module_init(jsflash_init_module); | 
 | module_exit(jsflash_cleanup_module); |