| /****************************************************************************** | 
 |  * | 
 |  * Name:	skgeinit.c | 
 |  * Project:	Gigabit Ethernet Adapters, Common Modules | 
 |  * Version:	$Revision: 1.97 $ | 
 |  * Date:	$Date: 2003/10/02 16:45:31 $ | 
 |  * Purpose:	Contains functions to initialize the adapter | 
 |  * | 
 |  ******************************************************************************/ | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	(C)Copyright 1998-2002 SysKonnect. | 
 |  *	(C)Copyright 2002-2003 Marvell. | 
 |  * | 
 |  *	This program is free software; you can redistribute it and/or modify | 
 |  *	it under the terms of the GNU General Public License as published by | 
 |  *	the Free Software Foundation; either version 2 of the License, or | 
 |  *	(at your option) any later version. | 
 |  * | 
 |  *	The information in this file is provided "AS IS" without warranty. | 
 |  * | 
 |  ******************************************************************************/ | 
 |  | 
 | #include "h/skdrv1st.h" | 
 | #include "h/skdrv2nd.h" | 
 |  | 
 | /* global variables ***********************************************************/ | 
 |  | 
 | /* local variables ************************************************************/ | 
 |  | 
 | #if (defined(DEBUG) || ((!defined(LINT)) && (!defined(SK_SLIM)))) | 
 | static const char SysKonnectFileId[] = | 
 | 	"@(#) $Id: skgeinit.c,v 1.97 2003/10/02 16:45:31 rschmidt Exp $ (C) Marvell."; | 
 | #endif | 
 |  | 
 | struct s_QOffTab { | 
 | 	int	RxQOff;		/* Receive Queue Address Offset */ | 
 | 	int	XsQOff;		/* Sync Tx Queue Address Offset */ | 
 | 	int	XaQOff;		/* Async Tx Queue Address Offset */ | 
 | }; | 
 | static struct s_QOffTab QOffTab[] = { | 
 | 	{Q_R1, Q_XS1, Q_XA1}, {Q_R2, Q_XS2, Q_XA2} | 
 | }; | 
 |  | 
 | struct s_Config { | 
 | 	char	ScanString[8]; | 
 | 	SK_U32	Value; | 
 | }; | 
 |  | 
 | static struct s_Config OemConfig = { | 
 | 	{'O','E','M','_','C','o','n','f'}, | 
 | #ifdef SK_OEM_CONFIG | 
 | 	OEM_CONFIG_VALUE, | 
 | #else | 
 | 	0, | 
 | #endif | 
 | }; | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGePollRxD() - Enable / Disable Descriptor Polling of RxD Ring | 
 |  * | 
 |  * Description: | 
 |  *	Enable or disable the descriptor polling of the receive descriptor | 
 |  *	ring (RxD) for port 'Port'. | 
 |  *	The new configuration is *not* saved over any SkGeStopPort() and | 
 |  *	SkGeInitPort() calls. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGePollRxD( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port,		/* Port Index (MAC_1 + n) */ | 
 | SK_BOOL PollRxD)	/* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ | 
 | { | 
 | 	SK_GEPORT *pPrt; | 
 |  | 
 | 	pPrt = &pAC->GIni.GP[Port]; | 
 |  | 
 | 	SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), (PollRxD) ? | 
 | 		CSR_ENA_POL : CSR_DIS_POL); | 
 | }	/* SkGePollRxD */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGePollTxD() - Enable / Disable Descriptor Polling of TxD Rings | 
 |  * | 
 |  * Description: | 
 |  *	Enable or disable the descriptor polling of the transmit descriptor | 
 |  *	ring(s) (TxD) for port 'Port'. | 
 |  *	The new configuration is *not* saved over any SkGeStopPort() and | 
 |  *	SkGeInitPort() calls. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGePollTxD( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port,		/* Port Index (MAC_1 + n) */ | 
 | SK_BOOL PollTxD)	/* SK_TRUE (enable pol.), SK_FALSE (disable pol.) */ | 
 | { | 
 | 	SK_GEPORT *pPrt; | 
 | 	SK_U32	DWord; | 
 |  | 
 | 	pPrt = &pAC->GIni.GP[Port]; | 
 |  | 
 | 	DWord = (SK_U32)(PollTxD ? CSR_ENA_POL : CSR_DIS_POL); | 
 |  | 
 | 	if (pPrt->PXSQSize != 0) { | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), DWord); | 
 | 	} | 
 | 	 | 
 | 	if (pPrt->PXAQSize != 0) { | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), DWord); | 
 | 	} | 
 | }	/* SkGePollTxD */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeYellowLED() - Switch the yellow LED on or off. | 
 |  * | 
 |  * Description: | 
 |  *	Switch the yellow LED on or off. | 
 |  * | 
 |  * Note: | 
 |  *	This function may be called any time after SkGeInit(Level 1). | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGeYellowLED( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		State)		/* yellow LED state, 0 = OFF, 0 != ON */ | 
 | { | 
 | 	if (State == 0) { | 
 | 		/* Switch yellow LED OFF */ | 
 | 		SK_OUT8(IoC, B0_LED, LED_STAT_OFF); | 
 | 	} | 
 | 	else { | 
 | 		/* Switch yellow LED ON */ | 
 | 		SK_OUT8(IoC, B0_LED, LED_STAT_ON); | 
 | 	} | 
 | }	/* SkGeYellowLED */ | 
 |  | 
 |  | 
 | #if (!defined(SK_SLIM) || defined(GENESIS)) | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeXmitLED() - Modify the Operational Mode of a transmission LED. | 
 |  * | 
 |  * Description: | 
 |  *	The Rx or Tx LED which is specified by 'Led' will be | 
 |  *	enabled, disabled or switched on in test mode. | 
 |  * | 
 |  * Note: | 
 |  *	'Led' must contain the address offset of the LEDs INI register. | 
 |  * | 
 |  * Usage: | 
 |  *	SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGeXmitLED( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Led,		/* offset to the LED Init Value register */ | 
 | int		Mode)		/* Mode may be SK_LED_DIS, SK_LED_ENA, SK_LED_TST */ | 
 | { | 
 | 	SK_U32	LedIni; | 
 |  | 
 | 	switch (Mode) { | 
 | 	case SK_LED_ENA: | 
 | 		LedIni = SK_XMIT_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; | 
 | 		SK_OUT32(IoC, Led + XMIT_LED_INI, LedIni); | 
 | 		SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); | 
 | 		break; | 
 | 	case SK_LED_TST: | 
 | 		SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_ON); | 
 | 		SK_OUT32(IoC, Led + XMIT_LED_CNT, 100); | 
 | 		SK_OUT8(IoC, Led + XMIT_LED_CTRL, LED_START); | 
 | 		break; | 
 | 	case SK_LED_DIS: | 
 | 	default: | 
 | 		/* | 
 | 		 * Do NOT stop the LED Timer here. The LED might be | 
 | 		 * in on state. But it needs to go off. | 
 | 		 */ | 
 | 		SK_OUT32(IoC, Led + XMIT_LED_CNT, 0); | 
 | 		SK_OUT8(IoC, Led + XMIT_LED_TST, LED_T_OFF); | 
 | 		break; | 
 | 	} | 
 | 			 | 
 | 	/* | 
 | 	 * 1000BT: The Transmit LED is driven by the PHY. | 
 | 	 * But the default LED configuration is used for | 
 | 	 * Level One and Broadcom PHYs. | 
 | 	 * (Broadcom: It may be that PHY_B_PEC_EN_LTR has to be set.) | 
 | 	 * (In this case it has to be added here. But we will see. XXX) | 
 | 	 */ | 
 | }	/* SkGeXmitLED */ | 
 | #endif	/* !SK_SLIM || GENESIS */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	DoCalcAddr() - Calculates the start and the end address of a queue. | 
 |  * | 
 |  * Description: | 
 |  *	This function calculates the start and the end address of a queue. | 
 |  *  Afterwards the 'StartVal' is incremented to the next start position. | 
 |  *	If the port is already initialized the calculated values | 
 |  *	will be checked against the configured values and an | 
 |  *	error will be returned, if they are not equal. | 
 |  *	If the port is not initialized the values will be written to | 
 |  *	*StartAdr and *EndAddr. | 
 |  * | 
 |  * Returns: | 
 |  *	0:	success | 
 |  *	1:	configuration error | 
 |  */ | 
 | static int DoCalcAddr( | 
 | SK_AC		*pAC, 				/* adapter context */ | 
 | SK_GEPORT	SK_FAR *pPrt,		/* port index */ | 
 | int			QuSize,				/* size of the queue to configure in kB */ | 
 | SK_U32		SK_FAR *StartVal,	/* start value for address calculation */ | 
 | SK_U32		SK_FAR *QuStartAddr,/* start addr to calculate */ | 
 | SK_U32		SK_FAR *QuEndAddr)	/* end address to calculate */ | 
 | { | 
 | 	SK_U32	EndVal; | 
 | 	SK_U32	NextStart; | 
 | 	int		Rtv; | 
 |  | 
 | 	Rtv = 0; | 
 | 	if (QuSize == 0) { | 
 | 		EndVal = *StartVal; | 
 | 		NextStart = EndVal; | 
 | 	} | 
 | 	else { | 
 | 		EndVal = *StartVal + ((SK_U32)QuSize * 1024) - 1; | 
 | 		NextStart = EndVal + 1; | 
 | 	} | 
 |  | 
 | 	if (pPrt->PState >= SK_PRT_INIT) { | 
 | 		if (*StartVal != *QuStartAddr || EndVal != *QuEndAddr) { | 
 | 			Rtv = 1; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		*QuStartAddr = *StartVal; | 
 | 		*QuEndAddr = EndVal; | 
 | 	} | 
 |  | 
 | 	*StartVal = NextStart; | 
 | 	return(Rtv); | 
 | }	/* DoCalcAddr */ | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitAssignRamToQueues() - allocate default queue sizes | 
 |  * | 
 |  * Description: | 
 |  *	This function assigns the memory to the different queues and ports. | 
 |  *	When DualNet is set to SK_TRUE all ports get the same amount of memory. | 
 |  *  Otherwise the first port gets most of the memory and all the | 
 |  *	other ports just the required minimum. | 
 |  *	This function can only be called when pAC->GIni.GIRamSize and | 
 |  *	pAC->GIni.GIMacsFound have been initialized, usually this happens | 
 |  *	at init level 1 | 
 |  * | 
 |  * Returns: | 
 |  *	0 - ok | 
 |  *	1 - invalid input values | 
 |  *	2 - not enough memory | 
 |  */ | 
 |  | 
 | int SkGeInitAssignRamToQueues( | 
 | SK_AC	*pAC,			/* Adapter context */ | 
 | int		ActivePort,		/* Active Port in RLMT mode */ | 
 | SK_BOOL	DualNet)		/* adapter context */ | 
 | { | 
 | 	int	i; | 
 | 	int	UsedKilobytes;			/* memory already assigned */ | 
 | 	int	ActivePortKilobytes;	/* memory available for active port */ | 
 | 	SK_GEPORT *pGePort; | 
 |  | 
 | 	UsedKilobytes = 0; | 
 |  | 
 | 	if (ActivePort >= pAC->GIni.GIMacsFound) { | 
 | 		SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
 | 			("SkGeInitAssignRamToQueues: ActivePort (%d) invalid\n", | 
 | 			ActivePort)); | 
 | 		return(1); | 
 | 	} | 
 | 	if (((pAC->GIni.GIMacsFound * (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE)) + | 
 | 		((RAM_QUOTA_SYNC == 0) ? 0 : SK_MIN_TXQ_SIZE)) > pAC->GIni.GIRamSize) { | 
 | 		SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
 | 			("SkGeInitAssignRamToQueues: Not enough memory (%d)\n", | 
 | 			 pAC->GIni.GIRamSize)); | 
 | 		return(2); | 
 | 	} | 
 |  | 
 | 	if (DualNet) { | 
 | 		/* every port gets the same amount of memory */ | 
 | 		ActivePortKilobytes = pAC->GIni.GIRamSize / pAC->GIni.GIMacsFound; | 
 | 		for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 |  | 
 | 			pGePort = &pAC->GIni.GP[i]; | 
 | 			 | 
 | 			/* take away the minimum memory for active queues */ | 
 | 			ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); | 
 |  | 
 | 			/* receive queue gets the minimum + 80% of the rest */ | 
 | 			pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB(( | 
 | 				ActivePortKilobytes * (unsigned long) RAM_QUOTA_RX) / 100)) | 
 | 				+ SK_MIN_RXQ_SIZE; | 
 |  | 
 | 			ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); | 
 |  | 
 | 			/* synchronous transmit queue */ | 
 | 			pGePort->PXSQSize = 0; | 
 |  | 
 | 			/* asynchronous transmit queue */ | 
 | 			pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes + | 
 | 				SK_MIN_TXQ_SIZE); | 
 | 		} | 
 | 	} | 
 | 	else {	 | 
 | 		/* Rlmt Mode or single link adapter */ | 
 |  | 
 | 		/* Set standby queue size defaults for all standby ports */ | 
 | 		for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 |  | 
 | 			if (i != ActivePort) { | 
 | 				pGePort = &pAC->GIni.GP[i]; | 
 |  | 
 | 				pGePort->PRxQSize = SK_MIN_RXQ_SIZE; | 
 | 				pGePort->PXAQSize = SK_MIN_TXQ_SIZE; | 
 | 				pGePort->PXSQSize = 0; | 
 |  | 
 | 				/* Count used RAM */ | 
 | 				UsedKilobytes += pGePort->PRxQSize + pGePort->PXAQSize; | 
 | 			} | 
 | 		} | 
 | 		/* what's left? */ | 
 | 		ActivePortKilobytes = pAC->GIni.GIRamSize - UsedKilobytes; | 
 |  | 
 | 		/* assign it to the active port */ | 
 | 		/* first take away the minimum memory */ | 
 | 		ActivePortKilobytes -= (SK_MIN_RXQ_SIZE + SK_MIN_TXQ_SIZE); | 
 | 		pGePort = &pAC->GIni.GP[ActivePort]; | 
 |  | 
 | 		/* receive queue get's the minimum + 80% of the rest */ | 
 | 		pGePort->PRxQSize = (int) (ROUND_QUEUE_SIZE_KB((ActivePortKilobytes * | 
 | 			(unsigned long) RAM_QUOTA_RX) / 100)) + SK_MIN_RXQ_SIZE; | 
 |  | 
 | 		ActivePortKilobytes -= (pGePort->PRxQSize - SK_MIN_RXQ_SIZE); | 
 |  | 
 | 		/* synchronous transmit queue */ | 
 | 		pGePort->PXSQSize = 0; | 
 |  | 
 | 		/* asynchronous transmit queue */ | 
 | 		pGePort->PXAQSize = (int) ROUND_QUEUE_SIZE_KB(ActivePortKilobytes) + | 
 | 			SK_MIN_TXQ_SIZE; | 
 | 	} | 
 | #ifdef VCPU | 
 | 	VCPUprintf(0, "PRxQSize=%u, PXSQSize=%u, PXAQSize=%u\n", | 
 | 		pGePort->PRxQSize, pGePort->PXSQSize, pGePort->PXAQSize); | 
 | #endif /* VCPU */ | 
 |  | 
 | 	return(0); | 
 | }	/* SkGeInitAssignRamToQueues */ | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeCheckQSize() - Checks the Adapters Queue Size Configuration | 
 |  * | 
 |  * Description: | 
 |  *	This function verifies the Queue Size Configuration specified | 
 |  *	in the variables PRxQSize, PXSQSize, and PXAQSize of all | 
 |  *	used ports. | 
 |  *	This requirements must be fullfilled to have a valid configuration: | 
 |  *		- The size of all queues must not exceed GIRamSize. | 
 |  *		- The queue sizes must be specified in units of 8 kB. | 
 |  *		- The size of Rx queues of available ports must not be | 
 |  *		  smaller than 16 kB. | 
 |  *		- The size of at least one Tx queue (synch. or asynch.) | 
 |  *        of available ports must not be smaller than 16 kB | 
 |  *        when Jumbo Frames are used. | 
 |  *		- The RAM start and end addresses must not be changed | 
 |  *		  for ports which are already initialized. | 
 |  *	Furthermore SkGeCheckQSize() defines the Start and End Addresses | 
 |  *  of all ports and stores them into the HWAC port	structure. | 
 |  * | 
 |  * Returns: | 
 |  *	0:	Queue Size Configuration valid | 
 |  *	1:	Queue Size Configuration invalid | 
 |  */ | 
 | static int SkGeCheckQSize( | 
 | SK_AC	 *pAC,		/* adapter context */ | 
 | int		 Port)		/* port index */ | 
 | { | 
 | 	SK_GEPORT *pPrt; | 
 | 	int	i; | 
 | 	int	Rtv; | 
 | 	int	Rtv2; | 
 | 	SK_U32	StartAddr; | 
 | #ifndef SK_SLIM | 
 | 	int	UsedMem;	/* total memory used (max. found ports) */ | 
 | #endif	 | 
 |  | 
 | 	Rtv = 0; | 
 | 	 | 
 | #ifndef SK_SLIM | 
 |  | 
 | 	UsedMem = 0; | 
 | 	for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 		pPrt = &pAC->GIni.GP[i]; | 
 |  | 
 | 		if ((pPrt->PRxQSize & QZ_UNITS) != 0 || | 
 | 			(pPrt->PXSQSize & QZ_UNITS) != 0 || | 
 | 			(pPrt->PXAQSize & QZ_UNITS) != 0) { | 
 |  | 
 | 			SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); | 
 | 			return(1); | 
 | 		} | 
 |  | 
 | 		if (i == Port && pPrt->PRxQSize < SK_MIN_RXQ_SIZE) { | 
 | 			SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E011, SKERR_HWI_E011MSG); | 
 | 			return(1); | 
 | 		} | 
 | 		 | 
 | 		/* | 
 | 		 * the size of at least one Tx queue (synch. or asynch.) has to be > 0. | 
 | 		 * if Jumbo Frames are used, this size has to be >= 16 kB. | 
 | 		 */ | 
 | 		if ((i == Port && pPrt->PXSQSize == 0 && pPrt->PXAQSize == 0) || | 
 | 			(pAC->GIni.GIPortUsage == SK_JUMBO_LINK && | 
 |             ((pPrt->PXSQSize > 0 && pPrt->PXSQSize < SK_MIN_TXQ_SIZE) || | 
 | 			 (pPrt->PXAQSize > 0 && pPrt->PXAQSize < SK_MIN_TXQ_SIZE)))) { | 
 | 				SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E023, SKERR_HWI_E023MSG); | 
 | 				return(1); | 
 | 		} | 
 | 		 | 
 | 		UsedMem += pPrt->PRxQSize + pPrt->PXSQSize + pPrt->PXAQSize; | 
 | 	} | 
 | 	 | 
 | 	if (UsedMem > pAC->GIni.GIRamSize) { | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E012, SKERR_HWI_E012MSG); | 
 | 		return(1); | 
 | 	} | 
 | #endif	/* !SK_SLIM */ | 
 |  | 
 | 	/* Now start address calculation */ | 
 | 	StartAddr = pAC->GIni.GIRamOffs; | 
 | 	for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 		pPrt = &pAC->GIni.GP[i]; | 
 |  | 
 | 		/* Calculate/Check values for the receive queue */ | 
 | 		Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PRxQSize, &StartAddr, | 
 | 			&pPrt->PRxQRamStart, &pPrt->PRxQRamEnd); | 
 | 		Rtv |= Rtv2; | 
 |  | 
 | 		/* Calculate/Check values for the synchronous Tx queue */ | 
 | 		Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXSQSize, &StartAddr, | 
 | 			&pPrt->PXsQRamStart, &pPrt->PXsQRamEnd); | 
 | 		Rtv |= Rtv2; | 
 |  | 
 | 		/* Calculate/Check values for the asynchronous Tx queue */ | 
 | 		Rtv2 = DoCalcAddr(pAC, pPrt, pPrt->PXAQSize, &StartAddr, | 
 | 			&pPrt->PXaQRamStart, &pPrt->PXaQRamEnd); | 
 | 		Rtv |= Rtv2; | 
 |  | 
 | 		if (Rtv) { | 
 | 			SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E013, SKERR_HWI_E013MSG); | 
 | 			return(1); | 
 | 		} | 
 | 	} | 
 |  | 
 | 	return(0); | 
 | }	/* SkGeCheckQSize */ | 
 |  | 
 |  | 
 | #ifdef GENESIS | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitMacArb() - Initialize the MAC Arbiter | 
 |  * | 
 |  * Description: | 
 |  *	This function initializes the MAC Arbiter. | 
 |  *	It must not be called if there is still an | 
 |  *	initialized or active port. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInitMacArb( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	/* release local reset */ | 
 | 	SK_OUT16(IoC, B3_MA_TO_CTRL, MA_RST_CLR); | 
 |  | 
 | 	/* configure timeout values */ | 
 | 	SK_OUT8(IoC, B3_MA_TOINI_RX1, SK_MAC_TO_53); | 
 | 	SK_OUT8(IoC, B3_MA_TOINI_RX2, SK_MAC_TO_53); | 
 | 	SK_OUT8(IoC, B3_MA_TOINI_TX1, SK_MAC_TO_53); | 
 | 	SK_OUT8(IoC, B3_MA_TOINI_TX2, SK_MAC_TO_53); | 
 |  | 
 | 	SK_OUT8(IoC, B3_MA_RCINI_RX1, 0); | 
 | 	SK_OUT8(IoC, B3_MA_RCINI_RX2, 0); | 
 | 	SK_OUT8(IoC, B3_MA_RCINI_TX1, 0); | 
 | 	SK_OUT8(IoC, B3_MA_RCINI_TX2, 0); | 
 |  | 
 | 	/* recovery values are needed for XMAC II Rev. B2 only */ | 
 | 	/* Fast Output Enable Mode was intended to use with Rev. B2, but now? */ | 
 |  | 
 | 	/* | 
 | 	 * There is no start or enable button to push, therefore | 
 | 	 * the MAC arbiter is configured and enabled now. | 
 | 	 */ | 
 | }	/* SkGeInitMacArb */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitPktArb() - Initialize the Packet Arbiter | 
 |  * | 
 |  * Description: | 
 |  *	This function initializes the Packet Arbiter. | 
 |  *	It must not be called if there is still an | 
 |  *	initialized or active port. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInitPktArb( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	/* release local reset */ | 
 | 	SK_OUT16(IoC, B3_PA_CTRL, PA_RST_CLR); | 
 |  | 
 | 	/* configure timeout values */ | 
 | 	SK_OUT16(IoC, B3_PA_TOINI_RX1, SK_PKT_TO_MAX); | 
 | 	SK_OUT16(IoC, B3_PA_TOINI_RX2, SK_PKT_TO_MAX); | 
 | 	SK_OUT16(IoC, B3_PA_TOINI_TX1, SK_PKT_TO_MAX); | 
 | 	SK_OUT16(IoC, B3_PA_TOINI_TX2, SK_PKT_TO_MAX); | 
 |  | 
 | 	/* | 
 | 	 * enable timeout timers if jumbo frames not used | 
 | 	 * NOTE: the packet arbiter timeout interrupt is needed for | 
 | 	 * half duplex hangup workaround | 
 | 	 */ | 
 | 	if (pAC->GIni.GIPortUsage != SK_JUMBO_LINK) { | 
 | 		if (pAC->GIni.GIMacsFound == 1) { | 
 | 			SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1); | 
 | 		} | 
 | 		else { | 
 | 			SK_OUT16(IoC, B3_PA_CTRL, PA_ENA_TO_TX1 | PA_ENA_TO_TX2); | 
 | 		} | 
 | 	} | 
 | }	/* SkGeInitPktArb */ | 
 | #endif /* GENESIS */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitMacFifo() - Initialize the MAC FIFOs | 
 |  * | 
 |  * Description: | 
 |  *	Initialize all MAC FIFOs of the specified port | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInitMacFifo( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port)		/* Port Index (MAC_1 + n) */ | 
 | { | 
 | 	SK_U16	Word; | 
 | #ifdef VCPU | 
 | 	SK_U32	DWord; | 
 | #endif /* VCPU */ | 
 | 	/* | 
 | 	 * For each FIFO: | 
 | 	 *	- release local reset | 
 | 	 *	- use default value for MAC FIFO size | 
 | 	 *	- setup defaults for the control register | 
 | 	 *	- enable the FIFO | 
 | 	 */ | 
 | 	 | 
 | #ifdef GENESIS | 
 | 	if (pAC->GIni.GIGenesis) { | 
 | 		/* Configure Rx MAC FIFO */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_CLR); | 
 | 		SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_RX_CTRL_DEF); | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_ENA_OP_MD); | 
 | 	 | 
 | 		/* Configure Tx MAC FIFO */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_CLR); | 
 | 		SK_OUT16(IoC, MR_ADDR(Port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF); | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_ENA_OP_MD); | 
 | 	 | 
 | 		/* Enable frame flushing if jumbo frames used */ | 
 | 		if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK) { | 
 | 			SK_OUT16(IoC, MR_ADDR(Port, RX_MFF_CTRL1), MFF_ENA_FLUSH); | 
 | 		} | 
 | 	} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 	if (pAC->GIni.GIYukon) { | 
 | 		/* set Rx GMAC FIFO Flush Mask */ | 
 | 		SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_MSK), (SK_U16)RX_FF_FL_DEF_MSK); | 
 | 		 | 
 | 		Word = (SK_U16)GMF_RX_CTRL_DEF; | 
 |  | 
 | 		/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */ | 
 | 		if (pAC->GIni.GIYukonLite && pAC->GIni.GIChipId == CHIP_ID_YUKON) { | 
 |  | 
 | 			Word &= ~GMF_RX_F_FL_ON; | 
 | 		} | 
 | 		 | 
 | 		/* Configure Rx MAC FIFO */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); | 
 | 		SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), Word); | 
 | 		 | 
 | 		/* set Rx GMAC FIFO Flush Threshold (default: 0x0a -> 56 bytes) */ | 
 | 		SK_OUT16(IoC, MR_ADDR(Port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF); | 
 | 		 | 
 | 		/* Configure Tx MAC FIFO */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_CLR); | 
 | 		SK_OUT16(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U16)GMF_TX_CTRL_DEF); | 
 | 		 | 
 | #ifdef VCPU | 
 | 		SK_IN32(IoC, MR_ADDR(Port, RX_GMF_AF_THR), &DWord); | 
 | 		SK_IN32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), &DWord); | 
 | #endif /* VCPU */ | 
 | 		 | 
 | 		/* set Tx GMAC FIFO Almost Empty Threshold */ | 
 | /*		SK_OUT32(IoC, MR_ADDR(Port, TX_GMF_AE_THR), 0); */ | 
 | 	} | 
 | #endif /* YUKON */ | 
 |  | 
 | }	/* SkGeInitMacFifo */ | 
 |  | 
 | #ifdef	SK_LNK_SYNC_CNT | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeLoadLnkSyncCnt() - Load the Link Sync Counter and starts counting | 
 |  * | 
 |  * Description: | 
 |  *	This function starts the Link Sync Counter of the specified | 
 |  *	port and enables the generation of an Link Sync IRQ. | 
 |  *	The Link Sync Counter may be used to detect an active link, | 
 |  *	if autonegotiation is not used. | 
 |  * | 
 |  * Note: | 
 |  *	o To ensure receiving the Link Sync Event the LinkSyncCounter | 
 |  *	  should be initialized BEFORE clearing the XMAC's reset! | 
 |  *	o Enable IS_LNK_SYNC_M1 and IS_LNK_SYNC_M2 after calling this | 
 |  *	  function. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGeLoadLnkSyncCnt( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port,		/* Port Index (MAC_1 + n) */ | 
 | SK_U32	CntVal)		/* Counter value */ | 
 | { | 
 | 	SK_U32	OrgIMsk; | 
 | 	SK_U32	NewIMsk; | 
 | 	SK_U32	ISrc; | 
 | 	SK_BOOL	IrqPend; | 
 |  | 
 | 	/* stop counter */ | 
 | 	SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_STOP); | 
 |  | 
 | 	/* | 
 | 	 * ASIC problem: | 
 | 	 * Each time starting the Link Sync Counter an IRQ is generated | 
 | 	 * by the adapter. See problem report entry from 21.07.98 | 
 | 	 * | 
 | 	 * Workaround:	Disable Link Sync IRQ and clear the unexpeced IRQ | 
 | 	 *		if no IRQ is already pending. | 
 | 	 */ | 
 | 	IrqPend = SK_FALSE; | 
 | 	SK_IN32(IoC, B0_ISRC, &ISrc); | 
 | 	SK_IN32(IoC, B0_IMSK, &OrgIMsk); | 
 | 	if (Port == MAC_1) { | 
 | 		NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M1; | 
 | 		if ((ISrc & IS_LNK_SYNC_M1) != 0) { | 
 | 			IrqPend = SK_TRUE; | 
 | 		} | 
 | 	} | 
 | 	else { | 
 | 		NewIMsk = OrgIMsk & ~IS_LNK_SYNC_M2; | 
 | 		if ((ISrc & IS_LNK_SYNC_M2) != 0) { | 
 | 			IrqPend = SK_TRUE; | 
 | 		} | 
 | 	} | 
 | 	if (!IrqPend) { | 
 | 		SK_OUT32(IoC, B0_IMSK, NewIMsk); | 
 | 	} | 
 |  | 
 | 	/* load counter */ | 
 | 	SK_OUT32(IoC, MR_ADDR(Port, LNK_SYNC_INI), CntVal); | 
 |  | 
 | 	/* start counter */ | 
 | 	SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_START); | 
 |  | 
 | 	if (!IrqPend) { | 
 | 		/* clear the unexpected IRQ, and restore the interrupt mask */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, LNK_SYNC_CTRL), LED_CLR_IRQ); | 
 | 		SK_OUT32(IoC, B0_IMSK, OrgIMsk); | 
 | 	} | 
 | }	/* SkGeLoadLnkSyncCnt*/ | 
 | #endif	/* SK_LNK_SYNC_CNT */ | 
 |  | 
 | #if defined(SK_DIAG) || defined(SK_CFG_SYNC) | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeCfgSync() - Configure synchronous bandwidth for this port. | 
 |  * | 
 |  * Description: | 
 |  *	This function may be used to configure synchronous bandwidth | 
 |  *	to the specified port. This may be done any time after | 
 |  *	initializing the port. The configuration values are NOT saved | 
 |  *	in the HWAC port structure and will be overwritten any | 
 |  *	time when stopping and starting the port. | 
 |  *	Any values for the synchronous configuration will be ignored | 
 |  *	if the size of the synchronous queue is zero! | 
 |  * | 
 |  *	The default configuration for the synchronous service is | 
 |  *	TXA_ENA_FSYNC. This means if the size of | 
 |  *	the synchronous queue is unequal zero but no specific | 
 |  *	synchronous bandwidth is configured, the synchronous queue | 
 |  *	will always have the 'unlimited' transmit priority! | 
 |  * | 
 |  *	This mode will be restored if the synchronous bandwidth is | 
 |  *	deallocated ('IntTime' = 0 and 'LimCount' = 0). | 
 |  * | 
 |  * Returns: | 
 |  *	0:	success | 
 |  *	1:	parameter configuration error | 
 |  *	2:	try to configure quality of service although no | 
 |  *		synchronous queue is configured | 
 |  */ | 
 | int SkGeCfgSync( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port,		/* Port Index (MAC_1 + n) */ | 
 | SK_U32	IntTime,	/* Interval Timer Value in units of 8ns */ | 
 | SK_U32	LimCount,	/* Number of bytes to transfer during IntTime */ | 
 | int		SyncMode)	/* Sync Mode: TXA_ENA_ALLOC | TXA_DIS_ALLOC | 0 */ | 
 | { | 
 | 	int Rtv; | 
 |  | 
 | 	Rtv = 0; | 
 |  | 
 | 	/* check the parameters */ | 
 | 	if (LimCount > IntTime || | 
 | 		(LimCount == 0 && IntTime != 0) || | 
 | 		(LimCount != 0 && IntTime == 0)) { | 
 |  | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); | 
 | 		return(1); | 
 | 	} | 
 | 	 | 
 | 	if (pAC->GIni.GP[Port].PXSQSize == 0) { | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E009, SKERR_HWI_E009MSG); | 
 | 		return(2); | 
 | 	} | 
 | 	 | 
 | 	/* calculate register values */ | 
 | 	IntTime = (IntTime / 2) * pAC->GIni.GIHstClkFact / 100; | 
 | 	LimCount = LimCount / 8; | 
 | 	 | 
 | 	if (IntTime > TXA_MAX_VAL || LimCount > TXA_MAX_VAL) { | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E010, SKERR_HWI_E010MSG); | 
 | 		return(1); | 
 | 	} | 
 |  | 
 | 	/* | 
 | 	 * - Enable 'Force Sync' to ensure the synchronous queue | 
 | 	 *   has the priority while configuring the new values. | 
 | 	 * - Also 'disable alloc' to ensure the settings complies | 
 | 	 *   to the SyncMode parameter. | 
 | 	 * - Disable 'Rate Control' to configure the new values. | 
 | 	 * - write IntTime and LimCount | 
 | 	 * - start 'Rate Control' and disable 'Force Sync' | 
 | 	 *   if Interval Timer or Limit Counter not zero. | 
 | 	 */ | 
 | 	SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), | 
 | 		TXA_ENA_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | 
 | 	 | 
 | 	SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), IntTime); | 
 | 	SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), LimCount); | 
 | 	 | 
 | 	SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), | 
 | 		(SK_U8)(SyncMode & (TXA_ENA_ALLOC | TXA_DIS_ALLOC))); | 
 | 	 | 
 | 	if (IntTime != 0 || LimCount != 0) { | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_DIS_FSYNC | TXA_START_RC); | 
 | 	} | 
 |  | 
 | 	return(0); | 
 | }	/* SkGeCfgSync */ | 
 | #endif /* SK_DIAG || SK_CFG_SYNC*/ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	DoInitRamQueue() - Initialize the RAM Buffer Address of a single Queue | 
 |  * | 
 |  * Desccription: | 
 |  *	If the queue is used, enable and initialize it. | 
 |  *	Make sure the queue is still reset, if it is not used. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void DoInitRamQueue( | 
 | SK_AC	*pAC,			/* adapter context */ | 
 | SK_IOC	IoC,			/* IO context */ | 
 | int		QuIoOffs,		/* Queue IO Address Offset */ | 
 | SK_U32	QuStartAddr,	/* Queue Start Address */ | 
 | SK_U32	QuEndAddr,		/* Queue End Address */ | 
 | int		QuType)			/* Queue Type (SK_RX_SRAM_Q|SK_RX_BRAM_Q|SK_TX_RAM_Q) */ | 
 | { | 
 | 	SK_U32	RxUpThresVal; | 
 | 	SK_U32	RxLoThresVal; | 
 |  | 
 | 	if (QuStartAddr != QuEndAddr) { | 
 | 		/* calculate thresholds, assume we have a big Rx queue */ | 
 | 		RxUpThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_ULPP) / 8; | 
 | 		RxLoThresVal = (QuEndAddr + 1 - QuStartAddr - SK_RB_LLPP_B)/8; | 
 |  | 
 | 		/* build HW address format */ | 
 | 		QuStartAddr = QuStartAddr / 8; | 
 | 		QuEndAddr = QuEndAddr / 8; | 
 |  | 
 | 		/* release local reset */ | 
 | 		SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_CLR); | 
 |  | 
 | 		/* configure addresses */ | 
 | 		SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_START), QuStartAddr); | 
 | 		SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_END), QuEndAddr); | 
 | 		SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_WP), QuStartAddr); | 
 | 		SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RP), QuStartAddr); | 
 |  | 
 | 		switch (QuType) { | 
 | 		case SK_RX_SRAM_Q: | 
 | 			/* configure threshold for small Rx Queue */ | 
 | 			RxLoThresVal += (SK_RB_LLPP_B - SK_RB_LLPP_S) / 8; | 
 |  | 
 | 			/* continue with SK_RX_BRAM_Q */ | 
 | 		case SK_RX_BRAM_Q: | 
 | 			/* write threshold for Rx Queue */ | 
 |  | 
 | 			SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_UTPP), RxUpThresVal); | 
 | 			SK_OUT32(IoC, RB_ADDR(QuIoOffs, RB_RX_LTPP), RxLoThresVal); | 
 |  | 
 | 			/* the high priority threshold not used */ | 
 | 			break; | 
 | 		case SK_TX_RAM_Q: | 
 | 			/* | 
 | 			 * Do NOT use Store & Forward under normal operation due to | 
 | 			 * performance optimization (GENESIS only). | 
 | 			 * But if Jumbo Frames are configured (XMAC Tx FIFO is only 4 kB) | 
 | 			 * or YUKON is used ((GMAC Tx FIFO is only 1 kB) | 
 | 			 * we NEED Store & Forward of the RAM buffer. | 
 | 			 */ | 
 | 			if (pAC->GIni.GIPortUsage == SK_JUMBO_LINK || | 
 | 				pAC->GIni.GIYukon) { | 
 | 				/* enable Store & Forward Mode for the Tx Side */ | 
 | 				SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_STFWD); | 
 | 			} | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* set queue operational */ | 
 | 		SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_ENA_OP_MD); | 
 | 	} | 
 | 	else { | 
 | 		/* ensure the queue is still disabled */ | 
 | 		SK_OUT8(IoC, RB_ADDR(QuIoOffs, RB_CTRL), RB_RST_SET); | 
 | 	} | 
 | }	/* DoInitRamQueue */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitRamBufs() - Initialize the RAM Buffer Queues | 
 |  * | 
 |  * Description: | 
 |  *	Initialize all RAM Buffer Queues of the specified port | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInitRamBufs( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port)		/* Port Index (MAC_1 + n) */ | 
 | { | 
 | 	SK_GEPORT *pPrt; | 
 | 	int RxQType; | 
 |  | 
 | 	pPrt = &pAC->GIni.GP[Port]; | 
 |  | 
 | 	if (pPrt->PRxQSize == SK_MIN_RXQ_SIZE) { | 
 | 		RxQType = SK_RX_SRAM_Q; 	/* small Rx Queue */ | 
 | 	} | 
 | 	else { | 
 | 		RxQType = SK_RX_BRAM_Q;		/* big Rx Queue */ | 
 | 	} | 
 |  | 
 | 	DoInitRamQueue(pAC, IoC, pPrt->PRxQOff, pPrt->PRxQRamStart, | 
 | 		pPrt->PRxQRamEnd, RxQType); | 
 | 	 | 
 | 	DoInitRamQueue(pAC, IoC, pPrt->PXsQOff, pPrt->PXsQRamStart, | 
 | 		pPrt->PXsQRamEnd, SK_TX_RAM_Q); | 
 | 	 | 
 | 	DoInitRamQueue(pAC, IoC, pPrt->PXaQOff, pPrt->PXaQRamStart, | 
 | 		pPrt->PXaQRamEnd, SK_TX_RAM_Q); | 
 |  | 
 | }	/* SkGeInitRamBufs */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitRamIface() - Initialize the RAM Interface | 
 |  * | 
 |  * Description: | 
 |  *	This function initializes the Adapters RAM Interface. | 
 |  * | 
 |  * Note: | 
 |  *	This function is used in the diagnostics. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGeInitRamIface( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	/* release local reset */ | 
 | 	SK_OUT16(IoC, B3_RI_CTRL, RI_RST_CLR); | 
 |  | 
 | 	/* configure timeout values */ | 
 | 	SK_OUT8(IoC, B3_RI_WTO_R1, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_WTO_XA1, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_WTO_XS1, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_RTO_R1, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_RTO_XA1, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_RTO_XS1, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_WTO_R2, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_WTO_XA2, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_WTO_XS2, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_RTO_R2, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_RTO_XA2, SK_RI_TO_53); | 
 | 	SK_OUT8(IoC, B3_RI_RTO_XS2, SK_RI_TO_53); | 
 |  | 
 | }	/* SkGeInitRamIface */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitBmu() - Initialize the BMU state machines | 
 |  * | 
 |  * Description: | 
 |  *	Initialize all BMU state machines of the specified port | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInitBmu( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port)		/* Port Index (MAC_1 + n) */ | 
 | { | 
 | 	SK_GEPORT	*pPrt; | 
 | 	SK_U32		RxWm; | 
 | 	SK_U32		TxWm; | 
 |  | 
 | 	pPrt = &pAC->GIni.GP[Port]; | 
 |  | 
 | 	RxWm = SK_BMU_RX_WM; | 
 | 	TxWm = SK_BMU_TX_WM; | 
 | 	 | 
 | 	if (!pAC->GIni.GIPciSlot64 && !pAC->GIni.GIPciClock66) { | 
 | 		/* for better performance */ | 
 | 		RxWm /= 2; | 
 | 		TxWm /= 2; | 
 | 	} | 
 |  | 
 | 	/* Rx Queue: Release all local resets and set the watermark */ | 
 | 	SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_CLR_RESET); | 
 | 	SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_F), RxWm); | 
 |  | 
 | 	/* | 
 | 	 * Tx Queue: Release all local resets if the queue is used ! | 
 | 	 * 		set watermark | 
 | 	 */ | 
 | 	if (pPrt->PXSQSize != 0) { | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_CLR_RESET); | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_F), TxWm); | 
 | 	} | 
 | 	 | 
 | 	if (pPrt->PXAQSize != 0) { | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_CLR_RESET); | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_F), TxWm); | 
 | 	} | 
 | 	/* | 
 | 	 * Do NOT enable the descriptor poll timers here, because | 
 | 	 * the descriptor addresses are not specified yet. | 
 | 	 */ | 
 | }	/* SkGeInitBmu */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	TestStopBit() -	Test the stop bit of the queue | 
 |  * | 
 |  * Description: | 
 |  *	Stopping a queue is not as simple as it seems to be. | 
 |  *	If descriptor polling is enabled, it may happen | 
 |  *	that RX/TX stop is done and SV idle is NOT set. | 
 |  *	In this case we have to issue another stop command. | 
 |  * | 
 |  * Returns: | 
 |  *	The queues control status register | 
 |  */ | 
 | static SK_U32 TestStopBit( | 
 | SK_AC	*pAC,		/* Adapter Context */ | 
 | SK_IOC	IoC,		/* IO Context */ | 
 | int		QuIoOffs)	/* Queue IO Address Offset */ | 
 | { | 
 | 	SK_U32	QuCsr;	/* CSR contents */ | 
 |  | 
 | 	SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); | 
 | 	 | 
 | 	if ((QuCsr & (CSR_STOP | CSR_SV_IDLE)) == 0) { | 
 | 		/* Stop Descriptor overridden by start command */ | 
 | 		SK_OUT32(IoC, Q_ADDR(QuIoOffs, Q_CSR), CSR_STOP); | 
 |  | 
 | 		SK_IN32(IoC, Q_ADDR(QuIoOffs, Q_CSR), &QuCsr); | 
 | 	} | 
 | 	 | 
 | 	return(QuCsr); | 
 | }	/* TestStopBit */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeStopPort() - Stop the Rx/Tx activity of the port 'Port'. | 
 |  * | 
 |  * Description: | 
 |  *	After calling this function the descriptor rings and Rx and Tx | 
 |  *	queues of this port may be reconfigured. | 
 |  * | 
 |  *	It is possible to stop the receive and transmit path separate or | 
 |  *	both together. | 
 |  * | 
 |  *	Dir =	SK_STOP_TX 	Stops the transmit path only and resets the MAC. | 
 |  *				The receive queue is still active and | 
 |  *				the pending Rx frames may be still transferred | 
 |  *				into the RxD. | 
 |  *		SK_STOP_RX	Stop the receive path. The tansmit path | 
 |  *				has to be stopped once before. | 
 |  *		SK_STOP_ALL	SK_STOP_TX + SK_STOP_RX | 
 |  * | 
 |  *	RstMode = SK_SOFT_RST	Resets the MAC. The PHY is still alive. | 
 |  *			SK_HARD_RST	Resets the MAC and the PHY. | 
 |  * | 
 |  * Example: | 
 |  *	1) A Link Down event was signaled for a port. Therefore the activity | 
 |  *	of this port should be stopped and a hardware reset should be issued | 
 |  *	to enable the workaround of XMAC Errata #2. But the received frames | 
 |  *	should not be discarded. | 
 |  *		... | 
 |  *		SkGeStopPort(pAC, IoC, Port, SK_STOP_TX, SK_HARD_RST); | 
 |  *		(transfer all pending Rx frames) | 
 |  *		SkGeStopPort(pAC, IoC, Port, SK_STOP_RX, SK_HARD_RST); | 
 |  *		... | 
 |  * | 
 |  *	2) An event was issued which request the driver to switch | 
 |  *	the 'virtual active' link to an other already active port | 
 |  *	as soon as possible. The frames in the receive queue of this | 
 |  *	port may be lost. But the PHY must not be reset during this | 
 |  *	event. | 
 |  *		... | 
 |  *		SkGeStopPort(pAC, IoC, Port, SK_STOP_ALL, SK_SOFT_RST); | 
 |  *		... | 
 |  * | 
 |  * Extended Description: | 
 |  *	If SK_STOP_TX is set, | 
 |  *		o disable the MAC's receive and transmitter to prevent | 
 |  *		  from sending incomplete frames | 
 |  *		o stop the port's transmit queues before terminating the | 
 |  *		  BMUs to prevent from performing incomplete PCI cycles | 
 |  *		  on the PCI bus | 
 |  *		- The network Rx and Tx activity and PCI Tx transfer is | 
 |  *		  disabled now. | 
 |  *		o reset the MAC depending on the RstMode | 
 |  *		o Stop Interval Timer and Limit Counter of Tx Arbiter, | 
 |  *		  also disable Force Sync bit and Enable Alloc bit. | 
 |  *		o perform a local reset of the port's Tx path | 
 |  *			- reset the PCI FIFO of the async Tx queue | 
 |  *			- reset the PCI FIFO of the sync Tx queue | 
 |  *			- reset the RAM Buffer async Tx queue | 
 |  *			- reset the RAM Buffer sync Tx queue | 
 |  *			- reset the MAC Tx FIFO | 
 |  *		o switch Link and Tx LED off, stop the LED counters | 
 |  * | 
 |  *	If SK_STOP_RX is set, | 
 |  *		o stop the port's receive queue | 
 |  *		- The path data transfer activity is fully stopped now. | 
 |  *		o perform a local reset of the port's Rx path | 
 |  *			- reset the PCI FIFO of the Rx queue | 
 |  *			- reset the RAM Buffer receive queue | 
 |  *			- reset the MAC Rx FIFO | 
 |  *		o switch Rx LED off, stop the LED counter | 
 |  * | 
 |  *	If all ports are stopped, | 
 |  *		o reset the RAM Interface. | 
 |  * | 
 |  * Notes: | 
 |  *	o This function may be called during the driver states RESET_PORT and | 
 |  *	  SWITCH_PORT. | 
 |  */ | 
 | void SkGeStopPort( | 
 | SK_AC	*pAC,	/* adapter context */ | 
 | SK_IOC	IoC,	/* I/O context */ | 
 | int		Port,	/* port to stop (MAC_1 + n) */ | 
 | int		Dir,	/* Direction to Stop (SK_STOP_RX, SK_STOP_TX, SK_STOP_ALL) */ | 
 | int		RstMode)/* Reset Mode (SK_SOFT_RST, SK_HARD_RST) */ | 
 | { | 
 | #ifndef SK_DIAG | 
 | 	SK_EVPARA Para; | 
 | #endif /* !SK_DIAG */ | 
 | 	SK_GEPORT *pPrt; | 
 | 	SK_U32	DWord; | 
 | 	SK_U32	XsCsr; | 
 | 	SK_U32	XaCsr; | 
 | 	SK_U64	ToutStart; | 
 | 	int		i; | 
 | 	int		ToutCnt; | 
 |  | 
 | 	pPrt = &pAC->GIni.GP[Port]; | 
 |  | 
 | 	if ((Dir & SK_STOP_TX) != 0) { | 
 | 		/* disable receiver and transmitter */ | 
 | 		SkMacRxTxDisable(pAC, IoC, Port); | 
 | 		 | 
 | 		/* stop both transmit queues */ | 
 | 		/* | 
 | 		 * If the BMU is in the reset state CSR_STOP will terminate | 
 | 		 * immediately. | 
 | 		 */ | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_STOP); | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_STOP); | 
 |  | 
 | 		ToutStart = SkOsGetTime(pAC); | 
 | 		ToutCnt = 0; | 
 | 		do { | 
 | 			/* | 
 | 			 * Clear packet arbiter timeout to make sure | 
 | 			 * this loop will terminate. | 
 | 			 */ | 
 | 			SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? | 
 | 				PA_CLR_TO_TX1 : PA_CLR_TO_TX2)); | 
 |  | 
 | 			/* | 
 | 			 * If the transfer stucks at the MAC the STOP command will not | 
 | 			 * terminate if we don't flush the XMAC's transmit FIFO ! | 
 | 			 */ | 
 | 			SkMacFlushTxFifo(pAC, IoC, Port); | 
 |  | 
 | 			XsCsr = TestStopBit(pAC, IoC, pPrt->PXsQOff); | 
 | 			XaCsr = TestStopBit(pAC, IoC, pPrt->PXaQOff); | 
 |  | 
 | 			if (SkOsGetTime(pAC) - ToutStart > (SK_TICKS_PER_SEC / 18)) { | 
 | 				/* | 
 | 				 * Timeout of 1/18 second reached. | 
 | 				 * This needs to be checked at 1/18 sec only. | 
 | 				 */ | 
 | 				ToutCnt++; | 
 | 				if (ToutCnt > 1) { | 
 | 					/* Might be a problem when the driver event handler | 
 | 					 * calls StopPort again. XXX. | 
 | 					 */ | 
 |  | 
 | 					/* Fatal Error, Loop aborted */ | 
 | 					SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E018, | 
 | 						SKERR_HWI_E018MSG); | 
 | #ifndef SK_DIAG | 
 | 					Para.Para64 = Port; | 
 | 					SkEventQueue(pAC, SKGE_DRV, SK_DRV_PORT_FAIL, Para); | 
 | #endif /* !SK_DIAG */ | 
 | 					return; | 
 | 				} | 
 | 				/* | 
 | 				 * Cache incoherency workaround: Assume a start command | 
 | 				 * has been lost while sending the frame. | 
 | 				 */ | 
 | 				ToutStart = SkOsGetTime(pAC); | 
 |  | 
 | 				if ((XsCsr & CSR_STOP) != 0) { | 
 | 					SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_START); | 
 | 				} | 
 | 				if ((XaCsr & CSR_STOP) != 0) { | 
 | 					SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_START); | 
 | 				} | 
 | 			} | 
 |  | 
 | 			/* | 
 | 			 * Because of the ASIC problem report entry from 21.08.1998 it is | 
 | 			 * required to wait until CSR_STOP is reset and CSR_SV_IDLE is set. | 
 | 			 */ | 
 | 		} while ((XsCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE || | 
 | 				 (XaCsr & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); | 
 |  | 
 | 		/* Reset the MAC depending on the RstMode */ | 
 | 		if (RstMode == SK_SOFT_RST) { | 
 | 			SkMacSoftRst(pAC, IoC, Port); | 
 | 		} | 
 | 		else { | 
 | 			SkMacHardRst(pAC, IoC, Port); | 
 | 		} | 
 |  		 | 
 | 		/* Disable Force Sync bit and Enable Alloc bit */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), | 
 | 			TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC); | 
 | 		 | 
 | 		/* Stop Interval Timer and Limit Counter of Tx Arbiter */ | 
 | 		SK_OUT32(IoC, MR_ADDR(Port, TXA_ITI_INI), 0L); | 
 | 		SK_OUT32(IoC, MR_ADDR(Port, TXA_LIM_INI), 0L); | 
 |  | 
 | 		/* Perform a local reset of the port's Tx path */ | 
 |  | 
 | 		/* Reset the PCI FIFO of the async Tx queue */ | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXaQOff, Q_CSR), CSR_SET_RESET); | 
 | 		/* Reset the PCI FIFO of the sync Tx queue */ | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PXsQOff, Q_CSR), CSR_SET_RESET); | 
 | 		/* Reset the RAM Buffer async Tx queue */ | 
 | 		SK_OUT8(IoC, RB_ADDR(pPrt->PXaQOff, RB_CTRL), RB_RST_SET); | 
 | 		/* Reset the RAM Buffer sync Tx queue */ | 
 | 		SK_OUT8(IoC, RB_ADDR(pPrt->PXsQOff, RB_CTRL), RB_RST_SET); | 
 | 		 | 
 | 		/* Reset Tx MAC FIFO */ | 
 | #ifdef GENESIS | 
 | 		if (pAC->GIni.GIGenesis) { | 
 | 			/* Note: MFF_RST_SET does NOT reset the XMAC ! */ | 
 | 			SK_OUT8(IoC, MR_ADDR(Port, TX_MFF_CTRL2), MFF_RST_SET); | 
 |  | 
 | 			/* switch Link and Tx LED off, stop the LED counters */ | 
 | 			/* Link LED is switched off by the RLMT and the Diag itself */ | 
 | 			SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_DIS); | 
 | 		} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 		if (pAC->GIni.GIYukon) { | 
 | 			/* Reset TX MAC FIFO */ | 
 | 			SK_OUT8(IoC, MR_ADDR(Port, TX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); | 
 | 		} | 
 | #endif /* YUKON */ | 
 | 	} | 
 |  | 
 | 	if ((Dir & SK_STOP_RX) != 0) { | 
 | 		/* | 
 | 		 * The RX Stop Command will not terminate if no buffers | 
 | 		 * are queued in the RxD ring. But it will always reach | 
 | 		 * the Idle state. Therefore we can use this feature to | 
 | 		 * stop the transfer of received packets. | 
 | 		 */ | 
 | 		/* stop the port's receive queue */ | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_STOP); | 
 | 		 | 
 | 		i = 100; | 
 | 		do { | 
 | 			/* | 
 | 			 * Clear packet arbiter timeout to make sure | 
 | 			 * this loop will terminate | 
 | 			 */ | 
 | 			SK_OUT16(IoC, B3_PA_CTRL, (SK_U16)((Port == MAC_1) ? | 
 | 				PA_CLR_TO_RX1 : PA_CLR_TO_RX2)); | 
 |  | 
 | 			DWord = TestStopBit(pAC, IoC, pPrt->PRxQOff); | 
 |  | 
 | 			/* timeout if i==0 (bug fix for #10748) */ | 
 | 			if (--i == 0) { | 
 | 				SK_ERR_LOG(pAC, SK_ERRCL_HW, SKERR_HWI_E024, | 
 | 					SKERR_HWI_E024MSG); | 
 | 				break; | 
 | 			} | 
 | 			/* | 
 | 			 * because of the ASIC problem report entry from 21.08.98 | 
 | 			 * it is required to wait until CSR_STOP is reset and | 
 | 			 * CSR_SV_IDLE is set. | 
 | 			 */ | 
 | 		} while ((DWord & (CSR_STOP | CSR_SV_IDLE)) != CSR_SV_IDLE); | 
 |  | 
 | 		/* The path data transfer activity is fully stopped now */ | 
 |  | 
 | 		/* Perform a local reset of the port's Rx path */ | 
 |  | 
 | 		 /*	Reset the PCI FIFO of the Rx queue */ | 
 | 		SK_OUT32(IoC, Q_ADDR(pPrt->PRxQOff, Q_CSR), CSR_SET_RESET); | 
 | 		/* Reset the RAM Buffer receive queue */ | 
 | 		SK_OUT8(IoC, RB_ADDR(pPrt->PRxQOff, RB_CTRL), RB_RST_SET); | 
 |  | 
 | 		/* Reset Rx MAC FIFO */ | 
 | #ifdef GENESIS | 
 | 		if (pAC->GIni.GIGenesis) { | 
 | 			 | 
 | 			SK_OUT8(IoC, MR_ADDR(Port, RX_MFF_CTRL2), MFF_RST_SET); | 
 |  | 
 | 			/* switch Rx LED off, stop the LED counter */ | 
 | 			SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_DIS); | 
 | 		} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 		if (pAC->GIni.GIYukon) { | 
 | 			/* Reset Rx MAC FIFO */ | 
 | 			SK_OUT8(IoC, MR_ADDR(Port, RX_GMF_CTRL_T), (SK_U8)GMF_RST_SET); | 
 | 		} | 
 | #endif /* YUKON */ | 
 | 	} | 
 | }	/* SkGeStopPort */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInit0() - Level 0 Initialization | 
 |  * | 
 |  * Description: | 
 |  *	- Initialize the BMU address offsets | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInit0( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	int i; | 
 | 	SK_GEPORT *pPrt; | 
 |  | 
 | 	for (i = 0; i < SK_MAX_MACS; i++) { | 
 | 		pPrt = &pAC->GIni.GP[i]; | 
 |  | 
 | 		pPrt->PState = SK_PRT_RESET; | 
 | 		pPrt->PRxQOff = QOffTab[i].RxQOff; | 
 | 		pPrt->PXsQOff = QOffTab[i].XsQOff; | 
 | 		pPrt->PXaQOff = QOffTab[i].XaQOff; | 
 | 		pPrt->PCheckPar = SK_FALSE; | 
 | 		pPrt->PIsave = 0; | 
 | 		pPrt->PPrevShorts = 0; | 
 | 		pPrt->PLinkResCt = 0; | 
 | 		pPrt->PAutoNegTOCt = 0; | 
 | 		pPrt->PPrevRx = 0; | 
 | 		pPrt->PPrevFcs = 0; | 
 | 		pPrt->PRxLim = SK_DEF_RX_WA_LIM; | 
 | 		pPrt->PLinkMode = (SK_U8)SK_LMODE_AUTOFULL; | 
 | 		pPrt->PLinkSpeedCap = (SK_U8)SK_LSPEED_CAP_1000MBPS; | 
 | 		pPrt->PLinkSpeed = (SK_U8)SK_LSPEED_1000MBPS; | 
 | 		pPrt->PLinkSpeedUsed = (SK_U8)SK_LSPEED_STAT_UNKNOWN; | 
 | 		pPrt->PLinkModeConf = (SK_U8)SK_LMODE_AUTOSENSE; | 
 | 		pPrt->PFlowCtrlMode = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; | 
 | 		pPrt->PLinkCap = (SK_U8)(SK_LMODE_CAP_HALF | SK_LMODE_CAP_FULL | | 
 | 			SK_LMODE_CAP_AUTOHALF | SK_LMODE_CAP_AUTOFULL); | 
 | 		pPrt->PLinkModeStatus = (SK_U8)SK_LMODE_STAT_UNKNOWN; | 
 | 		pPrt->PFlowCtrlCap = (SK_U8)SK_FLOW_MODE_SYM_OR_REM; | 
 | 		pPrt->PFlowCtrlStatus = (SK_U8)SK_FLOW_STAT_NONE; | 
 | 		pPrt->PMSCap = 0; | 
 | 		pPrt->PMSMode = (SK_U8)SK_MS_MODE_AUTO; | 
 | 		pPrt->PMSStatus = (SK_U8)SK_MS_STAT_UNSET; | 
 | 		pPrt->PLipaAutoNeg = (SK_U8)SK_LIPA_UNKNOWN; | 
 | 		pPrt->PAutoNegFail = SK_FALSE; | 
 | 		pPrt->PHWLinkUp = SK_FALSE; | 
 | 		pPrt->PLinkBroken = SK_TRUE; /* See WA code */ | 
 | 		pPrt->PPhyPowerState = PHY_PM_OPERATIONAL_MODE; | 
 | 		pPrt->PMacColThres = TX_COL_DEF; | 
 | 		pPrt->PMacJamLen = TX_JAM_LEN_DEF; | 
 | 		pPrt->PMacJamIpgVal	= TX_JAM_IPG_DEF; | 
 | 		pPrt->PMacJamIpgData = TX_IPG_JAM_DEF; | 
 | 		pPrt->PMacIpgData = IPG_DATA_DEF; | 
 | 		pPrt->PMacLimit4 = SK_FALSE; | 
 | 	} | 
 |  | 
 | 	pAC->GIni.GIPortUsage = SK_RED_LINK; | 
 | 	pAC->GIni.GILedBlinkCtrl = (SK_U16)OemConfig.Value; | 
 | 	pAC->GIni.GIValIrqMask = IS_ALL_MSK; | 
 |  | 
 | }	/* SkGeInit0*/ | 
 |  | 
 | #ifdef SK_PCI_RESET | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGePciReset() - Reset PCI interface | 
 |  * | 
 |  * Description: | 
 |  *	o Read PCI configuration. | 
 |  *	o Change power state to 3. | 
 |  *	o Change power state to 0. | 
 |  *	o Restore PCI configuration. | 
 |  * | 
 |  * Returns: | 
 |  *	0:	Success. | 
 |  *	1:	Power state could not be changed to 3. | 
 |  */ | 
 | static int SkGePciReset( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	int		i; | 
 | 	SK_U16	PmCtlSts; | 
 | 	SK_U32	Bp1; | 
 | 	SK_U32	Bp2; | 
 | 	SK_U16	PciCmd; | 
 | 	SK_U8	Cls; | 
 | 	SK_U8	Lat; | 
 | 	SK_U8	ConfigSpace[PCI_CFG_SIZE]; | 
 |  | 
 | 	/* | 
 | 	 * Note: Switching to D3 state is like a software reset. | 
 | 	 *		 Switching from D3 to D0 is a hardware reset. | 
 | 	 *		 We have to save and restore the configuration space. | 
 | 	 */ | 
 | 	for (i = 0; i < PCI_CFG_SIZE; i++) { | 
 | 		SkPciReadCfgDWord(pAC, i*4, &ConfigSpace[i]); | 
 | 	} | 
 |  | 
 | 	/* We know the RAM Interface Arbiter is enabled. */ | 
 | 	SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D3); | 
 | 	SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); | 
 | 	 | 
 | 	if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D3) { | 
 | 		return(1); | 
 | 	} | 
 |  | 
 | 	/* Return to D0 state. */ | 
 | 	SkPciWriteCfgWord(pAC, PCI_PM_CTL_STS, PCI_PM_STATE_D0); | 
 |  | 
 | 	/* Check for D0 state. */ | 
 | 	SkPciReadCfgWord(pAC, PCI_PM_CTL_STS, &PmCtlSts); | 
 | 	 | 
 | 	if ((PmCtlSts & PCI_PM_STATE_MSK) != PCI_PM_STATE_D0) { | 
 | 		return(1); | 
 | 	} | 
 |  | 
 | 	/* Check PCI Config Registers. */ | 
 | 	SkPciReadCfgWord(pAC, PCI_COMMAND, &PciCmd); | 
 | 	SkPciReadCfgByte(pAC, PCI_CACHE_LSZ, &Cls); | 
 | 	SkPciReadCfgDWord(pAC, PCI_BASE_1ST, &Bp1); | 
 | 	SkPciReadCfgDWord(pAC, PCI_BASE_2ND, &Bp2); | 
 | 	SkPciReadCfgByte(pAC, PCI_LAT_TIM, &Lat); | 
 | 	 | 
 | 	if (PciCmd != 0 || Cls != (SK_U8)0 || Lat != (SK_U8)0 || | 
 | 		(Bp1 & 0xfffffff0L) != 0 || Bp2 != 1) { | 
 | 		return(1); | 
 | 	} | 
 |  | 
 | 	/* Restore PCI Config Space. */ | 
 | 	for (i = 0; i < PCI_CFG_SIZE; i++) { | 
 | 		SkPciWriteCfgDWord(pAC, i*4, ConfigSpace[i]); | 
 | 	} | 
 |  | 
 | 	return(0); | 
 | }	/* SkGePciReset */ | 
 |  | 
 | #endif /* SK_PCI_RESET */ | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInit1() - Level 1 Initialization | 
 |  * | 
 |  * Description: | 
 |  *	o Do a software reset. | 
 |  *	o Clear all reset bits. | 
 |  *	o Verify that the detected hardware is present. | 
 |  *	  Return an error if not. | 
 |  *	o Get the hardware configuration | 
 |  *		+ Read the number of MACs/Ports. | 
 |  *		+ Read the RAM size. | 
 |  *		+ Read the PCI Revision Id. | 
 |  *		+ Find out the adapters host clock speed | 
 |  *		+ Read and check the PHY type | 
 |  * | 
 |  * Returns: | 
 |  *	0:	success | 
 |  *	5:	Unexpected PHY type detected | 
 |  *	6:	HW self test failed | 
 |  */ | 
 | static int SkGeInit1( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	SK_U8	Byte; | 
 | 	SK_U16	Word; | 
 | 	SK_U16	CtrlStat; | 
 | 	SK_U32	DWord; | 
 | 	int	RetVal; | 
 | 	int	i; | 
 |  | 
 | 	RetVal = 0; | 
 |  | 
 | 	/* save CLK_RUN bits (YUKON-Lite) */ | 
 | 	SK_IN16(IoC, B0_CTST, &CtrlStat); | 
 |  | 
 | #ifdef SK_PCI_RESET | 
 | 	(void)SkGePciReset(pAC, IoC); | 
 | #endif /* SK_PCI_RESET */ | 
 |  | 
 | 	/* do the SW-reset */ | 
 | 	SK_OUT8(IoC, B0_CTST, CS_RST_SET); | 
 |  | 
 | 	/* release the SW-reset */ | 
 | 	SK_OUT8(IoC, B0_CTST, CS_RST_CLR); | 
 |  | 
 | 	/* reset all error bits in the PCI STATUS register */ | 
 | 	/* | 
 | 	 * Note: PCI Cfg cycles cannot be used, because they are not | 
 | 	 *		 available on some platforms after 'boot time'. | 
 | 	 */ | 
 | 	SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); | 
 | 	 | 
 | 	SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
 | 	SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); | 
 | 	SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
 |  | 
 | 	/* release Master Reset */ | 
 | 	SK_OUT8(IoC, B0_CTST, CS_MRST_CLR); | 
 |  | 
 | #ifdef CLK_RUN | 
 | 	CtrlStat |= CS_CLK_RUN_ENA; | 
 | #endif /* CLK_RUN */ | 
 |  | 
 | 	/* restore CLK_RUN bits */ | 
 | 	SK_OUT16(IoC, B0_CTST, (SK_U16)(CtrlStat & | 
 | 		(CS_CLK_RUN_HOT | CS_CLK_RUN_RST | CS_CLK_RUN_ENA))); | 
 |  | 
 | 	/* read Chip Identification Number */ | 
 | 	SK_IN8(IoC, B2_CHIP_ID, &Byte); | 
 | 	pAC->GIni.GIChipId = Byte; | 
 | 	 | 
 | 	/* read number of MACs */ | 
 | 	SK_IN8(IoC, B2_MAC_CFG, &Byte); | 
 | 	pAC->GIni.GIMacsFound = (Byte & CFG_SNG_MAC) ? 1 : 2; | 
 | 	 | 
 | 	/* get Chip Revision Number */ | 
 | 	pAC->GIni.GIChipRev = (SK_U8)((Byte & CFG_CHIP_R_MSK) >> 4); | 
 |  | 
 | 	/* get diff. PCI parameters */ | 
 | 	SK_IN16(IoC, B0_CTST, &CtrlStat); | 
 | 	 | 
 | 	/* read the adapters RAM size */ | 
 | 	SK_IN8(IoC, B2_E_0, &Byte); | 
 | 	 | 
 | 	pAC->GIni.GIGenesis = SK_FALSE; | 
 | 	pAC->GIni.GIYukon = SK_FALSE; | 
 | 	pAC->GIni.GIYukonLite = SK_FALSE; | 
 |  | 
 | #ifdef GENESIS | 
 | 	if (pAC->GIni.GIChipId == CHIP_ID_GENESIS) { | 
 |  | 
 | 		pAC->GIni.GIGenesis = SK_TRUE; | 
 |  | 
 | 		if (Byte == (SK_U8)3) {						 | 
 | 			/* special case: 4 x 64k x 36, offset = 0x80000 */ | 
 | 			pAC->GIni.GIRamSize = 1024; | 
 | 			pAC->GIni.GIRamOffs = (SK_U32)512 * 1024; | 
 | 		} | 
 | 		else { | 
 | 			pAC->GIni.GIRamSize = (int)Byte * 512; | 
 | 			pAC->GIni.GIRamOffs = 0; | 
 | 		} | 
 | 		/* all GE adapters work with 53.125 MHz host clock */ | 
 | 		pAC->GIni.GIHstClkFact = SK_FACT_53; | 
 | 		 | 
 | 		/* set Descr. Poll Timer Init Value to 250 ms */ | 
 | 		pAC->GIni.GIPollTimerVal = | 
 | 			SK_DPOLL_DEF * (SK_U32)pAC->GIni.GIHstClkFact / 100; | 
 | 	} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 	if (pAC->GIni.GIChipId != CHIP_ID_GENESIS) { | 
 | 		 | 
 | 		pAC->GIni.GIYukon = SK_TRUE; | 
 | 		 | 
 | 		pAC->GIni.GIRamSize = (Byte == (SK_U8)0) ? 128 : (int)Byte * 4; | 
 | 		 | 
 | 		pAC->GIni.GIRamOffs = 0; | 
 | 		 | 
 | 		/* WA for chip Rev. A */ | 
 | 		pAC->GIni.GIWolOffs = (pAC->GIni.GIChipId == CHIP_ID_YUKON && | 
 | 			pAC->GIni.GIChipRev == 0) ? WOL_REG_OFFS : 0; | 
 | 		 | 
 | 		/* get PM Capabilities of PCI config space */ | 
 | 		SK_IN16(IoC, PCI_C(PCI_PM_CAP_REG), &Word); | 
 |  | 
 | 		/* check if VAUX is available */ | 
 | 		if (((CtrlStat & CS_VAUX_AVAIL) != 0) && | 
 | 			/* check also if PME from D3cold is set */ | 
 | 			((Word & PCI_PME_D3C_SUP) != 0)) { | 
 | 			/* set entry in GE init struct */ | 
 | 			pAC->GIni.GIVauxAvail = SK_TRUE; | 
 | 		} | 
 | 		 | 
 | 		if (pAC->GIni.GIChipId == CHIP_ID_YUKON_LITE) { | 
 | 			/* this is Rev. A1 */ | 
 | 			pAC->GIni.GIYukonLite = SK_TRUE; | 
 | 		} | 
 | 		else { | 
 | 			/* save Flash-Address Register */ | 
 | 			SK_IN32(IoC, B2_FAR, &DWord); | 
 |  | 
 | 			/* test Flash-Address Register */ | 
 | 			SK_OUT8(IoC, B2_FAR + 3, 0xff); | 
 | 			SK_IN8(IoC, B2_FAR + 3, &Byte); | 
 |  | 
 | 			if (Byte != 0) { | 
 | 				/* this is Rev. A0 */ | 
 | 				pAC->GIni.GIYukonLite = SK_TRUE; | 
 |  | 
 | 				/* restore Flash-Address Register */ | 
 | 				SK_OUT32(IoC, B2_FAR, DWord); | 
 | 			} | 
 | 		} | 
 |  | 
 | 		/* switch power to VCC (WA for VAUX problem) */ | 
 | 		SK_OUT8(IoC, B0_POWER_CTRL, (SK_U8)(PC_VAUX_ENA | PC_VCC_ENA | | 
 | 			PC_VAUX_OFF | PC_VCC_ON)); | 
 |  | 
 | 		/* read the Interrupt source */ | 
 | 		SK_IN32(IoC, B0_ISRC, &DWord); | 
 | 		 | 
 | 		if ((DWord & IS_HW_ERR) != 0) { | 
 | 			/* read the HW Error Interrupt source */ | 
 | 			SK_IN32(IoC, B0_HWE_ISRC, &DWord); | 
 | 			 | 
 | 			if ((DWord & IS_IRQ_SENSOR) != 0) { | 
 | 				/* disable HW Error IRQ */ | 
 | 				pAC->GIni.GIValIrqMask &= ~IS_HW_ERR; | 
 | 			} | 
 | 		} | 
 | 		 | 
 | 		for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 			/* set GMAC Link Control reset */ | 
 | 			SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_SET); | 
 |  | 
 | 			/* clear GMAC Link Control reset */ | 
 | 			SK_OUT16(IoC, MR_ADDR(i, GMAC_LINK_CTRL), GMLC_RST_CLR); | 
 | 		} | 
 | 		/* all YU chips work with 78.125 MHz host clock */ | 
 | 		pAC->GIni.GIHstClkFact = SK_FACT_78; | 
 | 		 | 
 | 		pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX;	/* 215 ms */ | 
 | 	} | 
 | #endif /* YUKON */ | 
 |  | 
 | 	/* check if 64-bit PCI Slot is present */ | 
 | 	pAC->GIni.GIPciSlot64 = (SK_BOOL)((CtrlStat & CS_BUS_SLOT_SZ) != 0); | 
 | 	 | 
 | 	/* check if 66 MHz PCI Clock is active */ | 
 | 	pAC->GIni.GIPciClock66 = (SK_BOOL)((CtrlStat & CS_BUS_CLOCK) != 0); | 
 |  | 
 | 	/* read PCI HW Revision Id. */ | 
 | 	SK_IN8(IoC, PCI_C(PCI_REV_ID), &Byte); | 
 | 	pAC->GIni.GIPciHwRev = Byte; | 
 |  | 
 | 	/* read the PMD type */ | 
 | 	SK_IN8(IoC, B2_PMD_TYP, &Byte); | 
 | 	pAC->GIni.GICopperType = (SK_U8)(Byte == 'T'); | 
 |  | 
 | 	/* read the PHY type */ | 
 | 	SK_IN8(IoC, B2_E_1, &Byte); | 
 |  | 
 | 	Byte &= 0x0f;	/* the PHY type is stored in the lower nibble */ | 
 | 	for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 		 | 
 | #ifdef GENESIS | 
 | 		if (pAC->GIni.GIGenesis) { | 
 | 			switch (Byte) { | 
 | 			case SK_PHY_XMAC: | 
 | 				pAC->GIni.GP[i].PhyAddr = PHY_ADDR_XMAC; | 
 | 				break; | 
 | 			case SK_PHY_BCOM: | 
 | 				pAC->GIni.GP[i].PhyAddr = PHY_ADDR_BCOM; | 
 | 				pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | | 
 | 					SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); | 
 | 				break; | 
 | #ifdef OTHER_PHY | 
 | 			case SK_PHY_LONE: | 
 | 				pAC->GIni.GP[i].PhyAddr = PHY_ADDR_LONE; | 
 | 				break; | 
 | 			case SK_PHY_NAT: | 
 | 				pAC->GIni.GP[i].PhyAddr = PHY_ADDR_NAT; | 
 | 				break; | 
 | #endif /* OTHER_PHY */ | 
 | 			default: | 
 | 				/* ERROR: unexpected PHY type detected */ | 
 | 				RetVal = 5; | 
 | 				break; | 
 | 			} | 
 | 		} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 		if (pAC->GIni.GIYukon) { | 
 | 			 | 
 | 			if (Byte < (SK_U8)SK_PHY_MARV_COPPER) { | 
 | 				/* if this field is not initialized */ | 
 | 				Byte = (SK_U8)SK_PHY_MARV_COPPER; | 
 | 				 | 
 | 				pAC->GIni.GICopperType = SK_TRUE; | 
 | 			} | 
 | 			 | 
 | 			pAC->GIni.GP[i].PhyAddr = PHY_ADDR_MARV; | 
 | 			 | 
 | 			if (pAC->GIni.GICopperType) { | 
 |  | 
 | 				pAC->GIni.GP[i].PLinkSpeedCap = (SK_U8)(SK_LSPEED_CAP_AUTO | | 
 | 					SK_LSPEED_CAP_10MBPS | SK_LSPEED_CAP_100MBPS | | 
 | 					SK_LSPEED_CAP_1000MBPS); | 
 | 				 | 
 | 				pAC->GIni.GP[i].PLinkSpeed = (SK_U8)SK_LSPEED_AUTO; | 
 | 				 | 
 | 				pAC->GIni.GP[i].PMSCap = (SK_U8)(SK_MS_CAP_AUTO | | 
 | 					SK_MS_CAP_MASTER | SK_MS_CAP_SLAVE); | 
 | 			} | 
 | 			else { | 
 | 				Byte = (SK_U8)SK_PHY_MARV_FIBER; | 
 | 			} | 
 | 		} | 
 | #endif /* YUKON */ | 
 | 		 | 
 | 		pAC->GIni.GP[i].PhyType = (int)Byte; | 
 | 		 | 
 | 		SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
 | 			("PHY type: %d  PHY addr: %04x\n", Byte, | 
 | 			pAC->GIni.GP[i].PhyAddr)); | 
 | 	} | 
 | 	 | 
 | 	/* get MAC Type & set function pointers dependent on */ | 
 | #ifdef GENESIS | 
 | 	if (pAC->GIni.GIGenesis) { | 
 | 		 | 
 | 		pAC->GIni.GIMacType = SK_MAC_XMAC; | 
 |  | 
 | 		pAC->GIni.GIFunc.pFnMacUpdateStats	= SkXmUpdateStats; | 
 | 		pAC->GIni.GIFunc.pFnMacStatistic	= SkXmMacStatistic; | 
 | 		pAC->GIni.GIFunc.pFnMacResetCounter	= SkXmResetCounter; | 
 | 		pAC->GIni.GIFunc.pFnMacOverflow		= SkXmOverflowStatus; | 
 | 	} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 	if (pAC->GIni.GIYukon) { | 
 | 		 | 
 | 		pAC->GIni.GIMacType = SK_MAC_GMAC; | 
 |  | 
 | 		pAC->GIni.GIFunc.pFnMacUpdateStats	= SkGmUpdateStats; | 
 | 		pAC->GIni.GIFunc.pFnMacStatistic	= SkGmMacStatistic; | 
 | 		pAC->GIni.GIFunc.pFnMacResetCounter	= SkGmResetCounter; | 
 | 		pAC->GIni.GIFunc.pFnMacOverflow		= SkGmOverflowStatus; | 
 |  | 
 | #ifdef SPECIAL_HANDLING | 
 | 		if (pAC->GIni.GIChipId == CHIP_ID_YUKON) { | 
 | 			/* check HW self test result */ | 
 | 			SK_IN8(IoC, B2_E_3, &Byte); | 
 | 			if (Byte & B2_E3_RES_MASK) { | 
 | 				RetVal = 6; | 
 | 			} | 
 | 		} | 
 | #endif | 
 | 	} | 
 | #endif /* YUKON */ | 
 | 	 | 
 | 	return(RetVal); | 
 | }	/* SkGeInit1 */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInit2() - Level 2 Initialization | 
 |  * | 
 |  * Description: | 
 |  *	- start the Blink Source Counter | 
 |  *	- start the Descriptor Poll Timer | 
 |  *	- configure the MAC-Arbiter | 
 |  *	- configure the Packet-Arbiter | 
 |  *	- enable the Tx Arbiters | 
 |  *	- enable the RAM Interface Arbiter | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | static void SkGeInit2( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | #ifdef GENESIS | 
 | 	SK_U32	DWord; | 
 | #endif /* GENESIS */ | 
 | 	int		i; | 
 |  | 
 | 	/* start the Descriptor Poll Timer */ | 
 | 	if (pAC->GIni.GIPollTimerVal != 0) { | 
 | 		if (pAC->GIni.GIPollTimerVal > SK_DPOLL_MAX) { | 
 | 			pAC->GIni.GIPollTimerVal = SK_DPOLL_MAX; | 
 |  | 
 | 			SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E017, SKERR_HWI_E017MSG); | 
 | 		} | 
 | 		SK_OUT32(IoC, B28_DPT_INI, pAC->GIni.GIPollTimerVal); | 
 | 		SK_OUT8(IoC, B28_DPT_CTRL, DPT_START); | 
 | 	} | 
 |  | 
 | #ifdef GENESIS | 
 | 	if (pAC->GIni.GIGenesis) { | 
 | 		/* start the Blink Source Counter */ | 
 | 		DWord = SK_BLK_DUR * (SK_U32)pAC->GIni.GIHstClkFact / 100; | 
 |  | 
 | 		SK_OUT32(IoC, B2_BSC_INI, DWord); | 
 | 		SK_OUT8(IoC, B2_BSC_CTRL, BSC_START); | 
 |  | 
 | 		/* | 
 | 		 * Configure the MAC Arbiter and the Packet Arbiter. | 
 | 		 * They will be started once and never be stopped. | 
 | 		 */ | 
 | 		SkGeInitMacArb(pAC, IoC); | 
 |  | 
 | 		SkGeInitPktArb(pAC, IoC); | 
 | 	} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 	if (pAC->GIni.GIYukon) { | 
 | 		/* start Time Stamp Timer */ | 
 | 		SK_OUT8(IoC, GMAC_TI_ST_CTRL, (SK_U8)GMT_ST_START); | 
 | 	} | 
 | #endif /* YUKON */ | 
 |  | 
 | 	/* enable the Tx Arbiters */ | 
 | 	for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 		SK_OUT8(IoC, MR_ADDR(i, TXA_CTRL), TXA_ENA_ARB); | 
 | 	} | 
 |  | 
 | 	/* enable the RAM Interface Arbiter */ | 
 | 	SkGeInitRamIface(pAC, IoC); | 
 |  | 
 | }	/* SkGeInit2 */ | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInit() - Initialize the GE Adapter with the specified level. | 
 |  * | 
 |  * Description: | 
 |  *	Level	0:	Initialize the Module structures. | 
 |  *	Level	1:	Generic Hardware Initialization. The IOP/MemBase pointer has | 
 |  *				to be set before calling this level. | 
 |  * | 
 |  *			o Do a software reset. | 
 |  *			o Clear all reset bits. | 
 |  *			o Verify that the detected hardware is present. | 
 |  *			  Return an error if not. | 
 |  *			o Get the hardware configuration | 
 |  *				+ Set GIMacsFound with the number of MACs. | 
 |  *				+ Store the RAM size in GIRamSize. | 
 |  *				+ Save the PCI Revision ID in GIPciHwRev. | 
 |  *			o return an error | 
 |  *				if Number of MACs > SK_MAX_MACS | 
 |  * | 
 |  *			After returning from Level 0 the adapter | 
 |  *			may be accessed with IO operations. | 
 |  * | 
 |  *	Level	2:	start the Blink Source Counter | 
 |  * | 
 |  * Returns: | 
 |  *	0:	success | 
 |  *	1:	Number of MACs exceeds SK_MAX_MACS	(after level 1) | 
 |  *	2:	Adapter not present or not accessible | 
 |  *	3:	Illegal initialization level | 
 |  *	4:	Initialization Level 1 Call missing | 
 |  *	5:	Unexpected PHY type detected | 
 |  *	6:	HW self test failed | 
 |  */ | 
 | int	SkGeInit( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Level)		/* initialization level */ | 
 | { | 
 | 	int		RetVal;		/* return value */ | 
 | 	SK_U32	DWord; | 
 |  | 
 | 	RetVal = 0; | 
 | 	SK_DBG_MSG(pAC, SK_DBGMOD_HWM, SK_DBGCAT_INIT, | 
 | 		("SkGeInit(Level %d)\n", Level)); | 
 |  | 
 | 	switch (Level) { | 
 | 	case SK_INIT_DATA: | 
 | 		/* Initialization Level 0 */ | 
 | 		SkGeInit0(pAC, IoC); | 
 | 		pAC->GIni.GILevel = SK_INIT_DATA; | 
 | 		break; | 
 | 	 | 
 | 	case SK_INIT_IO: | 
 | 		/* Initialization Level 1 */ | 
 | 		RetVal = SkGeInit1(pAC, IoC); | 
 | 		if (RetVal != 0) { | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* check if the adapter seems to be accessible */ | 
 | 		SK_OUT32(IoC, B2_IRQM_INI, SK_TEST_VAL); | 
 | 		SK_IN32(IoC, B2_IRQM_INI, &DWord); | 
 | 		SK_OUT32(IoC, B2_IRQM_INI, 0L); | 
 | 		 | 
 | 		if (DWord != SK_TEST_VAL) { | 
 | 			RetVal = 2; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* check if the number of GIMacsFound matches SK_MAX_MACS */ | 
 | 		if (pAC->GIni.GIMacsFound > SK_MAX_MACS) { | 
 | 			RetVal = 1; | 
 | 			break; | 
 | 		} | 
 |  | 
 | 		/* Level 1 successfully passed */ | 
 | 		pAC->GIni.GILevel = SK_INIT_IO; | 
 | 		break; | 
 | 	 | 
 | 	case SK_INIT_RUN: | 
 | 		/* Initialization Level 2 */ | 
 | 		if (pAC->GIni.GILevel != SK_INIT_IO) { | 
 | #ifndef SK_DIAG | 
 | 			SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E002, SKERR_HWI_E002MSG); | 
 | #endif /* !SK_DIAG */ | 
 | 			RetVal = 4; | 
 | 			break; | 
 | 		} | 
 | 		SkGeInit2(pAC, IoC); | 
 |  | 
 | 		/* Level 2 successfully passed */ | 
 | 		pAC->GIni.GILevel = SK_INIT_RUN; | 
 | 		break; | 
 | 	 | 
 | 	default: | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E003, SKERR_HWI_E003MSG); | 
 | 		RetVal = 3; | 
 | 		break; | 
 | 	} | 
 |  | 
 | 	return(RetVal); | 
 | }	/* SkGeInit */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeDeInit() - Deinitialize the adapter | 
 |  * | 
 |  * Description: | 
 |  *	All ports of the adapter will be stopped if not already done. | 
 |  *	Do a software reset and switch off all LEDs. | 
 |  * | 
 |  * Returns: | 
 |  *	nothing | 
 |  */ | 
 | void SkGeDeInit( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC)		/* IO context */ | 
 | { | 
 | 	int	i; | 
 | 	SK_U16	Word; | 
 |  | 
 | #ifdef SK_PHY_LP_MODE | 
 | 	SK_U8	Byte; | 
 | 	SK_U16	PmCtlSts; | 
 | #endif /* SK_PHY_LP_MODE */ | 
 |  | 
 | #if (!defined(SK_SLIM) && !defined(VCPU)) | 
 | 	/* ensure I2C is ready */ | 
 | 	SkI2cWaitIrq(pAC, IoC); | 
 | #endif	 | 
 |  | 
 | 	/* stop all current transfer activity */ | 
 | 	for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 		if (pAC->GIni.GP[i].PState != SK_PRT_STOP && | 
 | 			pAC->GIni.GP[i].PState != SK_PRT_RESET) { | 
 |  | 
 | 			SkGeStopPort(pAC, IoC, i, SK_STOP_ALL, SK_HARD_RST); | 
 | 		} | 
 | 	} | 
 |  | 
 | #ifdef SK_PHY_LP_MODE | 
 |     /* | 
 | 	 * for power saving purposes within mobile environments | 
 | 	 * we set the PHY to coma mode and switch to D3 power state. | 
 | 	 */ | 
 | 	if (pAC->GIni.GIYukonLite && | 
 | 		pAC->GIni.GIChipRev == CHIP_REV_YU_LITE_A3) { | 
 |  | 
 | 		/* for all ports switch PHY to coma mode */ | 
 | 		for (i = 0; i < pAC->GIni.GIMacsFound; i++) { | 
 | 			 | 
 | 			SkGmEnterLowPowerMode(pAC, IoC, i, PHY_PM_DEEP_SLEEP); | 
 | 		} | 
 |  | 
 | 		if (pAC->GIni.GIVauxAvail) { | 
 | 			/* switch power to VAUX */ | 
 | 			Byte = PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF; | 
 |  | 
 | 			SK_OUT8(IoC, B0_POWER_CTRL, Byte); | 
 | 		} | 
 | 		 | 
 | 		/* switch to D3 state */ | 
 | 		SK_IN16(IoC, PCI_C(PCI_PM_CTL_STS), &PmCtlSts); | 
 |  | 
 | 		PmCtlSts |= PCI_PM_STATE_D3; | 
 |  | 
 | 		SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
 |  | 
 | 		SK_OUT16(IoC, PCI_C(PCI_PM_CTL_STS), PmCtlSts); | 
 | 	} | 
 | #endif /* SK_PHY_LP_MODE */ | 
 |  | 
 | 	/* Reset all bits in the PCI STATUS register */ | 
 | 	/* | 
 | 	 * Note: PCI Cfg cycles cannot be used, because they are not | 
 | 	 *	 available on some platforms after 'boot time'. | 
 | 	 */ | 
 | 	SK_IN16(IoC, PCI_C(PCI_STATUS), &Word); | 
 | 	 | 
 | 	SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_ON); | 
 | 	SK_OUT16(IoC, PCI_C(PCI_STATUS), (SK_U16)(Word | PCI_ERRBITS)); | 
 | 	SK_OUT8(IoC, B2_TST_CTRL1, TST_CFG_WRITE_OFF); | 
 |  | 
 | 	/* do the reset, all LEDs are switched off now */ | 
 | 	SK_OUT8(IoC, B0_CTST, CS_RST_SET); | 
 | 	 | 
 | 	pAC->GIni.GILevel = SK_INIT_DATA; | 
 | }	/* SkGeDeInit */ | 
 |  | 
 |  | 
 | /****************************************************************************** | 
 |  * | 
 |  *	SkGeInitPort()	Initialize the specified port. | 
 |  * | 
 |  * Description: | 
 |  *	PRxQSize, PXSQSize, and PXAQSize has to be | 
 |  *	configured for the specified port before calling this function. | 
 |  *  The descriptor rings has to be initialized too. | 
 |  * | 
 |  *	o (Re)configure queues of the specified port. | 
 |  *	o configure the MAC of the specified port. | 
 |  *	o put ASIC and MAC(s) in operational mode. | 
 |  *	o initialize Rx/Tx and Sync LED | 
 |  *	o initialize RAM Buffers and MAC FIFOs | 
 |  * | 
 |  *	The port is ready to connect when returning. | 
 |  * | 
 |  * Note: | 
 |  *	The MAC's Rx and Tx state machine is still disabled when returning. | 
 |  * | 
 |  * Returns: | 
 |  *	0:	success | 
 |  *	1:	Queue size initialization error. The configured values | 
 |  *		for PRxQSize, PXSQSize, or PXAQSize are invalid for one | 
 |  *		or more queues. The specified port was NOT initialized. | 
 |  *		An error log entry was generated. | 
 |  *	2:	The port has to be stopped before it can be initialized again. | 
 |  */ | 
 | int SkGeInitPort( | 
 | SK_AC	*pAC,		/* adapter context */ | 
 | SK_IOC	IoC,		/* IO context */ | 
 | int		Port)		/* Port to configure */ | 
 | { | 
 | 	SK_GEPORT *pPrt; | 
 |  | 
 | 	pPrt = &pAC->GIni.GP[Port]; | 
 |  | 
 | 	if (SkGeCheckQSize(pAC, Port) != 0) { | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E004, SKERR_HWI_E004MSG); | 
 | 		return(1); | 
 | 	} | 
 | 	 | 
 | 	if (pPrt->PState == SK_PRT_INIT || pPrt->PState == SK_PRT_RUN) { | 
 | 		SK_ERR_LOG(pAC, SK_ERRCL_SW, SKERR_HWI_E005, SKERR_HWI_E005MSG); | 
 | 		return(2); | 
 | 	} | 
 |  | 
 | 	/* configuration ok, initialize the Port now */ | 
 |  | 
 | #ifdef GENESIS | 
 | 	if (pAC->GIni.GIGenesis) { | 
 | 		/* initialize Rx, Tx and Link LED */ | 
 | 		/* | 
 | 		 * If 1000BT Phy needs LED initialization than swap | 
 | 		 * LED and XMAC initialization order | 
 | 		 */ | 
 | 		SkGeXmitLED(pAC, IoC, MR_ADDR(Port, TX_LED_INI), SK_LED_ENA); | 
 | 		SkGeXmitLED(pAC, IoC, MR_ADDR(Port, RX_LED_INI), SK_LED_ENA); | 
 | 		/* The Link LED is initialized by RLMT or Diagnostics itself */ | 
 | 		 | 
 | 		SkXmInitMac(pAC, IoC, Port); | 
 | 	} | 
 | #endif /* GENESIS */ | 
 | 	 | 
 | #ifdef YUKON | 
 | 	if (pAC->GIni.GIYukon) { | 
 |  | 
 | 		SkGmInitMac(pAC, IoC, Port); | 
 | 	} | 
 | #endif /* YUKON */ | 
 | 	 | 
 | 	/* do NOT initialize the Link Sync Counter */ | 
 |  | 
 | 	SkGeInitMacFifo(pAC, IoC, Port); | 
 | 	 | 
 | 	SkGeInitRamBufs(pAC, IoC, Port); | 
 | 	 | 
 | 	if (pPrt->PXSQSize != 0) { | 
 | 		/* enable Force Sync bit if synchronous queue available */ | 
 | 		SK_OUT8(IoC, MR_ADDR(Port, TXA_CTRL), TXA_ENA_FSYNC); | 
 | 	} | 
 | 	 | 
 | 	SkGeInitBmu(pAC, IoC, Port); | 
 |  | 
 | 	/* mark port as initialized */ | 
 | 	pPrt->PState = SK_PRT_INIT; | 
 |  | 
 | 	return(0); | 
 | }	/* SkGeInitPort */ |