| Andy Grover | eff5f53 | 2009-02-24 15:30:29 +0000 | [diff] [blame] | 1 | /* | 
 | 2 |  * Copyright (c) 2007 Oracle.  All rights reserved. | 
 | 3 |  * | 
 | 4 |  * This software is available to you under a choice of one of two | 
 | 5 |  * licenses.  You may choose to be licensed under the terms of the GNU | 
 | 6 |  * General Public License (GPL) Version 2, available from the file | 
 | 7 |  * COPYING in the main directory of this source tree, or the | 
 | 8 |  * OpenIB.org BSD license below: | 
 | 9 |  * | 
 | 10 |  *     Redistribution and use in source and binary forms, with or | 
 | 11 |  *     without modification, are permitted provided that the following | 
 | 12 |  *     conditions are met: | 
 | 13 |  * | 
 | 14 |  *      - Redistributions of source code must retain the above | 
 | 15 |  *        copyright notice, this list of conditions and the following | 
 | 16 |  *        disclaimer. | 
 | 17 |  * | 
 | 18 |  *      - Redistributions in binary form must reproduce the above | 
 | 19 |  *        copyright notice, this list of conditions and the following | 
 | 20 |  *        disclaimer in the documentation and/or other materials | 
 | 21 |  *        provided with the distribution. | 
 | 22 |  * | 
 | 23 |  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, | 
 | 24 |  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF | 
 | 25 |  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND | 
 | 26 |  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS | 
 | 27 |  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN | 
 | 28 |  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN | 
 | 29 |  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | 
 | 30 |  * SOFTWARE. | 
 | 31 |  * | 
 | 32 |  */ | 
 | 33 | #include <linux/pagemap.h> | 
 | 34 | #include <linux/rbtree.h> | 
 | 35 | #include <linux/dma-mapping.h> /* for DMA_*_DEVICE */ | 
 | 36 |  | 
 | 37 | #include "rdma.h" | 
 | 38 |  | 
 | 39 | /* | 
 | 40 |  * XXX | 
 | 41 |  *  - build with sparse | 
 | 42 |  *  - should we limit the size of a mr region?  let transport return failure? | 
 | 43 |  *  - should we detect duplicate keys on a socket?  hmm. | 
 | 44 |  *  - an rdma is an mlock, apply rlimit? | 
 | 45 |  */ | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * get the number of pages by looking at the page indices that the start and | 
 | 49 |  * end addresses fall in. | 
 | 50 |  * | 
 | 51 |  * Returns 0 if the vec is invalid.  It is invalid if the number of bytes | 
 | 52 |  * causes the address to wrap or overflows an unsigned int.  This comes | 
 | 53 |  * from being stored in the 'length' member of 'struct scatterlist'. | 
 | 54 |  */ | 
 | 55 | static unsigned int rds_pages_in_vec(struct rds_iovec *vec) | 
 | 56 | { | 
 | 57 | 	if ((vec->addr + vec->bytes <= vec->addr) || | 
 | 58 | 	    (vec->bytes > (u64)UINT_MAX)) | 
 | 59 | 		return 0; | 
 | 60 |  | 
 | 61 | 	return ((vec->addr + vec->bytes + PAGE_SIZE - 1) >> PAGE_SHIFT) - | 
 | 62 | 		(vec->addr >> PAGE_SHIFT); | 
 | 63 | } | 
 | 64 |  | 
 | 65 | static struct rds_mr *rds_mr_tree_walk(struct rb_root *root, u64 key, | 
 | 66 | 				       struct rds_mr *insert) | 
 | 67 | { | 
 | 68 | 	struct rb_node **p = &root->rb_node; | 
 | 69 | 	struct rb_node *parent = NULL; | 
 | 70 | 	struct rds_mr *mr; | 
 | 71 |  | 
 | 72 | 	while (*p) { | 
 | 73 | 		parent = *p; | 
 | 74 | 		mr = rb_entry(parent, struct rds_mr, r_rb_node); | 
 | 75 |  | 
 | 76 | 		if (key < mr->r_key) | 
 | 77 | 			p = &(*p)->rb_left; | 
 | 78 | 		else if (key > mr->r_key) | 
 | 79 | 			p = &(*p)->rb_right; | 
 | 80 | 		else | 
 | 81 | 			return mr; | 
 | 82 | 	} | 
 | 83 |  | 
 | 84 | 	if (insert) { | 
 | 85 | 		rb_link_node(&insert->r_rb_node, parent, p); | 
 | 86 | 		rb_insert_color(&insert->r_rb_node, root); | 
 | 87 | 		atomic_inc(&insert->r_refcount); | 
 | 88 | 	} | 
 | 89 | 	return NULL; | 
 | 90 | } | 
 | 91 |  | 
 | 92 | /* | 
 | 93 |  * Destroy the transport-specific part of a MR. | 
 | 94 |  */ | 
 | 95 | static void rds_destroy_mr(struct rds_mr *mr) | 
 | 96 | { | 
 | 97 | 	struct rds_sock *rs = mr->r_sock; | 
 | 98 | 	void *trans_private = NULL; | 
 | 99 | 	unsigned long flags; | 
 | 100 |  | 
 | 101 | 	rdsdebug("RDS: destroy mr key is %x refcnt %u\n", | 
 | 102 | 			mr->r_key, atomic_read(&mr->r_refcount)); | 
 | 103 |  | 
 | 104 | 	if (test_and_set_bit(RDS_MR_DEAD, &mr->r_state)) | 
 | 105 | 		return; | 
 | 106 |  | 
 | 107 | 	spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
 | 108 | 	if (!RB_EMPTY_NODE(&mr->r_rb_node)) | 
 | 109 | 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
 | 110 | 	trans_private = mr->r_trans_private; | 
 | 111 | 	mr->r_trans_private = NULL; | 
 | 112 | 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
 | 113 |  | 
 | 114 | 	if (trans_private) | 
 | 115 | 		mr->r_trans->free_mr(trans_private, mr->r_invalidate); | 
 | 116 | } | 
 | 117 |  | 
 | 118 | void __rds_put_mr_final(struct rds_mr *mr) | 
 | 119 | { | 
 | 120 | 	rds_destroy_mr(mr); | 
 | 121 | 	kfree(mr); | 
 | 122 | } | 
 | 123 |  | 
 | 124 | /* | 
 | 125 |  * By the time this is called we can't have any more ioctls called on | 
 | 126 |  * the socket so we don't need to worry about racing with others. | 
 | 127 |  */ | 
 | 128 | void rds_rdma_drop_keys(struct rds_sock *rs) | 
 | 129 | { | 
 | 130 | 	struct rds_mr *mr; | 
 | 131 | 	struct rb_node *node; | 
 | 132 |  | 
 | 133 | 	/* Release any MRs associated with this socket */ | 
 | 134 | 	while ((node = rb_first(&rs->rs_rdma_keys))) { | 
 | 135 | 		mr = container_of(node, struct rds_mr, r_rb_node); | 
 | 136 | 		if (mr->r_trans == rs->rs_transport) | 
 | 137 | 			mr->r_invalidate = 0; | 
 | 138 | 		rds_mr_put(mr); | 
 | 139 | 	} | 
 | 140 |  | 
 | 141 | 	if (rs->rs_transport && rs->rs_transport->flush_mrs) | 
 | 142 | 		rs->rs_transport->flush_mrs(); | 
 | 143 | } | 
 | 144 |  | 
 | 145 | /* | 
 | 146 |  * Helper function to pin user pages. | 
 | 147 |  */ | 
 | 148 | static int rds_pin_pages(unsigned long user_addr, unsigned int nr_pages, | 
 | 149 | 			struct page **pages, int write) | 
 | 150 | { | 
 | 151 | 	int ret; | 
 | 152 |  | 
 | 153 | 	down_read(¤t->mm->mmap_sem); | 
 | 154 | 	ret = get_user_pages(current, current->mm, user_addr, | 
 | 155 | 			     nr_pages, write, 0, pages, NULL); | 
 | 156 | 	up_read(¤t->mm->mmap_sem); | 
 | 157 |  | 
 | 158 | 	if (0 <= ret && (unsigned) ret < nr_pages) { | 
 | 159 | 		while (ret--) | 
 | 160 | 			put_page(pages[ret]); | 
 | 161 | 		ret = -EFAULT; | 
 | 162 | 	} | 
 | 163 |  | 
 | 164 | 	return ret; | 
 | 165 | } | 
 | 166 |  | 
 | 167 | static int __rds_rdma_map(struct rds_sock *rs, struct rds_get_mr_args *args, | 
 | 168 | 				u64 *cookie_ret, struct rds_mr **mr_ret) | 
 | 169 | { | 
 | 170 | 	struct rds_mr *mr = NULL, *found; | 
 | 171 | 	unsigned int nr_pages; | 
 | 172 | 	struct page **pages = NULL; | 
 | 173 | 	struct scatterlist *sg; | 
 | 174 | 	void *trans_private; | 
 | 175 | 	unsigned long flags; | 
 | 176 | 	rds_rdma_cookie_t cookie; | 
 | 177 | 	unsigned int nents; | 
 | 178 | 	long i; | 
 | 179 | 	int ret; | 
 | 180 |  | 
 | 181 | 	if (rs->rs_bound_addr == 0) { | 
 | 182 | 		ret = -ENOTCONN; /* XXX not a great errno */ | 
 | 183 | 		goto out; | 
 | 184 | 	} | 
 | 185 |  | 
 | 186 | 	if (rs->rs_transport->get_mr == NULL) { | 
 | 187 | 		ret = -EOPNOTSUPP; | 
 | 188 | 		goto out; | 
 | 189 | 	} | 
 | 190 |  | 
 | 191 | 	nr_pages = rds_pages_in_vec(&args->vec); | 
 | 192 | 	if (nr_pages == 0) { | 
 | 193 | 		ret = -EINVAL; | 
 | 194 | 		goto out; | 
 | 195 | 	} | 
 | 196 |  | 
 | 197 | 	rdsdebug("RDS: get_mr addr %llx len %llu nr_pages %u\n", | 
 | 198 | 		args->vec.addr, args->vec.bytes, nr_pages); | 
 | 199 |  | 
 | 200 | 	/* XXX clamp nr_pages to limit the size of this alloc? */ | 
 | 201 | 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_KERNEL); | 
 | 202 | 	if (pages == NULL) { | 
 | 203 | 		ret = -ENOMEM; | 
 | 204 | 		goto out; | 
 | 205 | 	} | 
 | 206 |  | 
 | 207 | 	mr = kzalloc(sizeof(struct rds_mr), GFP_KERNEL); | 
 | 208 | 	if (mr == NULL) { | 
 | 209 | 		ret = -ENOMEM; | 
 | 210 | 		goto out; | 
 | 211 | 	} | 
 | 212 |  | 
 | 213 | 	atomic_set(&mr->r_refcount, 1); | 
 | 214 | 	RB_CLEAR_NODE(&mr->r_rb_node); | 
 | 215 | 	mr->r_trans = rs->rs_transport; | 
 | 216 | 	mr->r_sock = rs; | 
 | 217 |  | 
 | 218 | 	if (args->flags & RDS_RDMA_USE_ONCE) | 
 | 219 | 		mr->r_use_once = 1; | 
 | 220 | 	if (args->flags & RDS_RDMA_INVALIDATE) | 
 | 221 | 		mr->r_invalidate = 1; | 
 | 222 | 	if (args->flags & RDS_RDMA_READWRITE) | 
 | 223 | 		mr->r_write = 1; | 
 | 224 |  | 
 | 225 | 	/* | 
 | 226 | 	 * Pin the pages that make up the user buffer and transfer the page | 
 | 227 | 	 * pointers to the mr's sg array.  We check to see if we've mapped | 
 | 228 | 	 * the whole region after transferring the partial page references | 
 | 229 | 	 * to the sg array so that we can have one page ref cleanup path. | 
 | 230 | 	 * | 
 | 231 | 	 * For now we have no flag that tells us whether the mapping is | 
 | 232 | 	 * r/o or r/w. We need to assume r/w, or we'll do a lot of RDMA to | 
 | 233 | 	 * the zero page. | 
 | 234 | 	 */ | 
 | 235 | 	ret = rds_pin_pages(args->vec.addr & PAGE_MASK, nr_pages, pages, 1); | 
 | 236 | 	if (ret < 0) | 
 | 237 | 		goto out; | 
 | 238 |  | 
 | 239 | 	nents = ret; | 
 | 240 | 	sg = kcalloc(nents, sizeof(*sg), GFP_KERNEL); | 
 | 241 | 	if (sg == NULL) { | 
 | 242 | 		ret = -ENOMEM; | 
 | 243 | 		goto out; | 
 | 244 | 	} | 
 | 245 | 	WARN_ON(!nents); | 
 | 246 | 	sg_init_table(sg, nents); | 
 | 247 |  | 
 | 248 | 	/* Stick all pages into the scatterlist */ | 
 | 249 | 	for (i = 0 ; i < nents; i++) | 
 | 250 | 		sg_set_page(&sg[i], pages[i], PAGE_SIZE, 0); | 
 | 251 |  | 
 | 252 | 	rdsdebug("RDS: trans_private nents is %u\n", nents); | 
 | 253 |  | 
 | 254 | 	/* Obtain a transport specific MR. If this succeeds, the | 
 | 255 | 	 * s/g list is now owned by the MR. | 
 | 256 | 	 * Note that dma_map() implies that pending writes are | 
 | 257 | 	 * flushed to RAM, so no dma_sync is needed here. */ | 
 | 258 | 	trans_private = rs->rs_transport->get_mr(sg, nents, rs, | 
 | 259 | 						 &mr->r_key); | 
 | 260 |  | 
 | 261 | 	if (IS_ERR(trans_private)) { | 
 | 262 | 		for (i = 0 ; i < nents; i++) | 
 | 263 | 			put_page(sg_page(&sg[i])); | 
 | 264 | 		kfree(sg); | 
 | 265 | 		ret = PTR_ERR(trans_private); | 
 | 266 | 		goto out; | 
 | 267 | 	} | 
 | 268 |  | 
 | 269 | 	mr->r_trans_private = trans_private; | 
 | 270 |  | 
 | 271 | 	rdsdebug("RDS: get_mr put_user key is %x cookie_addr %p\n", | 
 | 272 | 	       mr->r_key, (void *)(unsigned long) args->cookie_addr); | 
 | 273 |  | 
 | 274 | 	/* The user may pass us an unaligned address, but we can only | 
 | 275 | 	 * map page aligned regions. So we keep the offset, and build | 
 | 276 | 	 * a 64bit cookie containing <R_Key, offset> and pass that | 
 | 277 | 	 * around. */ | 
 | 278 | 	cookie = rds_rdma_make_cookie(mr->r_key, args->vec.addr & ~PAGE_MASK); | 
 | 279 | 	if (cookie_ret) | 
 | 280 | 		*cookie_ret = cookie; | 
 | 281 |  | 
 | 282 | 	if (args->cookie_addr && put_user(cookie, (u64 __user *)(unsigned long) args->cookie_addr)) { | 
 | 283 | 		ret = -EFAULT; | 
 | 284 | 		goto out; | 
 | 285 | 	} | 
 | 286 |  | 
 | 287 | 	/* Inserting the new MR into the rbtree bumps its | 
 | 288 | 	 * reference count. */ | 
 | 289 | 	spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
 | 290 | 	found = rds_mr_tree_walk(&rs->rs_rdma_keys, mr->r_key, mr); | 
 | 291 | 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
 | 292 |  | 
 | 293 | 	BUG_ON(found && found != mr); | 
 | 294 |  | 
 | 295 | 	rdsdebug("RDS: get_mr key is %x\n", mr->r_key); | 
 | 296 | 	if (mr_ret) { | 
 | 297 | 		atomic_inc(&mr->r_refcount); | 
 | 298 | 		*mr_ret = mr; | 
 | 299 | 	} | 
 | 300 |  | 
 | 301 | 	ret = 0; | 
 | 302 | out: | 
 | 303 | 	kfree(pages); | 
 | 304 | 	if (mr) | 
 | 305 | 		rds_mr_put(mr); | 
 | 306 | 	return ret; | 
 | 307 | } | 
 | 308 |  | 
 | 309 | int rds_get_mr(struct rds_sock *rs, char __user *optval, int optlen) | 
 | 310 | { | 
 | 311 | 	struct rds_get_mr_args args; | 
 | 312 |  | 
 | 313 | 	if (optlen != sizeof(struct rds_get_mr_args)) | 
 | 314 | 		return -EINVAL; | 
 | 315 |  | 
 | 316 | 	if (copy_from_user(&args, (struct rds_get_mr_args __user *)optval, | 
 | 317 | 			   sizeof(struct rds_get_mr_args))) | 
 | 318 | 		return -EFAULT; | 
 | 319 |  | 
 | 320 | 	return __rds_rdma_map(rs, &args, NULL, NULL); | 
 | 321 | } | 
 | 322 |  | 
 | 323 | /* | 
 | 324 |  * Free the MR indicated by the given R_Key | 
 | 325 |  */ | 
 | 326 | int rds_free_mr(struct rds_sock *rs, char __user *optval, int optlen) | 
 | 327 | { | 
 | 328 | 	struct rds_free_mr_args args; | 
 | 329 | 	struct rds_mr *mr; | 
 | 330 | 	unsigned long flags; | 
 | 331 |  | 
 | 332 | 	if (optlen != sizeof(struct rds_free_mr_args)) | 
 | 333 | 		return -EINVAL; | 
 | 334 |  | 
 | 335 | 	if (copy_from_user(&args, (struct rds_free_mr_args __user *)optval, | 
 | 336 | 			   sizeof(struct rds_free_mr_args))) | 
 | 337 | 		return -EFAULT; | 
 | 338 |  | 
 | 339 | 	/* Special case - a null cookie means flush all unused MRs */ | 
 | 340 | 	if (args.cookie == 0) { | 
 | 341 | 		if (!rs->rs_transport || !rs->rs_transport->flush_mrs) | 
 | 342 | 			return -EINVAL; | 
 | 343 | 		rs->rs_transport->flush_mrs(); | 
 | 344 | 		return 0; | 
 | 345 | 	} | 
 | 346 |  | 
 | 347 | 	/* Look up the MR given its R_key and remove it from the rbtree | 
 | 348 | 	 * so nobody else finds it. | 
 | 349 | 	 * This should also prevent races with rds_rdma_unuse. | 
 | 350 | 	 */ | 
 | 351 | 	spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
 | 352 | 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, rds_rdma_cookie_key(args.cookie), NULL); | 
 | 353 | 	if (mr) { | 
 | 354 | 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
 | 355 | 		RB_CLEAR_NODE(&mr->r_rb_node); | 
 | 356 | 		if (args.flags & RDS_RDMA_INVALIDATE) | 
 | 357 | 			mr->r_invalidate = 1; | 
 | 358 | 	} | 
 | 359 | 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
 | 360 |  | 
 | 361 | 	if (!mr) | 
 | 362 | 		return -EINVAL; | 
 | 363 |  | 
 | 364 | 	/* | 
 | 365 | 	 * call rds_destroy_mr() ourselves so that we're sure it's done by the time | 
 | 366 | 	 * we return.  If we let rds_mr_put() do it it might not happen until | 
 | 367 | 	 * someone else drops their ref. | 
 | 368 | 	 */ | 
 | 369 | 	rds_destroy_mr(mr); | 
 | 370 | 	rds_mr_put(mr); | 
 | 371 | 	return 0; | 
 | 372 | } | 
 | 373 |  | 
 | 374 | /* | 
 | 375 |  * This is called when we receive an extension header that | 
 | 376 |  * tells us this MR was used. It allows us to implement | 
 | 377 |  * use_once semantics | 
 | 378 |  */ | 
 | 379 | void rds_rdma_unuse(struct rds_sock *rs, u32 r_key, int force) | 
 | 380 | { | 
 | 381 | 	struct rds_mr *mr; | 
 | 382 | 	unsigned long flags; | 
 | 383 | 	int zot_me = 0; | 
 | 384 |  | 
 | 385 | 	spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
 | 386 | 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); | 
 | 387 | 	if (mr && (mr->r_use_once || force)) { | 
 | 388 | 		rb_erase(&mr->r_rb_node, &rs->rs_rdma_keys); | 
 | 389 | 		RB_CLEAR_NODE(&mr->r_rb_node); | 
 | 390 | 		zot_me = 1; | 
 | 391 | 	} else if (mr) | 
 | 392 | 		atomic_inc(&mr->r_refcount); | 
 | 393 | 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
 | 394 |  | 
 | 395 | 	/* May have to issue a dma_sync on this memory region. | 
 | 396 | 	 * Note we could avoid this if the operation was a RDMA READ, | 
 | 397 | 	 * but at this point we can't tell. */ | 
 | 398 | 	if (mr != NULL) { | 
 | 399 | 		if (mr->r_trans->sync_mr) | 
 | 400 | 			mr->r_trans->sync_mr(mr->r_trans_private, DMA_FROM_DEVICE); | 
 | 401 |  | 
 | 402 | 		/* If the MR was marked as invalidate, this will | 
 | 403 | 		 * trigger an async flush. */ | 
 | 404 | 		if (zot_me) | 
 | 405 | 			rds_destroy_mr(mr); | 
 | 406 | 		rds_mr_put(mr); | 
 | 407 | 	} | 
 | 408 | } | 
 | 409 |  | 
 | 410 | void rds_rdma_free_op(struct rds_rdma_op *ro) | 
 | 411 | { | 
 | 412 | 	unsigned int i; | 
 | 413 |  | 
 | 414 | 	for (i = 0; i < ro->r_nents; i++) { | 
 | 415 | 		struct page *page = sg_page(&ro->r_sg[i]); | 
 | 416 |  | 
 | 417 | 		/* Mark page dirty if it was possibly modified, which | 
 | 418 | 		 * is the case for a RDMA_READ which copies from remote | 
 | 419 | 		 * to local memory */ | 
 | 420 | 		if (!ro->r_write) | 
 | 421 | 			set_page_dirty(page); | 
 | 422 | 		put_page(page); | 
 | 423 | 	} | 
 | 424 |  | 
 | 425 | 	kfree(ro->r_notifier); | 
 | 426 | 	kfree(ro); | 
 | 427 | } | 
 | 428 |  | 
 | 429 | /* | 
 | 430 |  * args is a pointer to an in-kernel copy in the sendmsg cmsg. | 
 | 431 |  */ | 
 | 432 | static struct rds_rdma_op *rds_rdma_prepare(struct rds_sock *rs, | 
 | 433 | 					    struct rds_rdma_args *args) | 
 | 434 | { | 
 | 435 | 	struct rds_iovec vec; | 
 | 436 | 	struct rds_rdma_op *op = NULL; | 
 | 437 | 	unsigned int nr_pages; | 
 | 438 | 	unsigned int max_pages; | 
 | 439 | 	unsigned int nr_bytes; | 
 | 440 | 	struct page **pages = NULL; | 
 | 441 | 	struct rds_iovec __user *local_vec; | 
 | 442 | 	struct scatterlist *sg; | 
 | 443 | 	unsigned int nr; | 
 | 444 | 	unsigned int i, j; | 
 | 445 | 	int ret; | 
 | 446 |  | 
 | 447 |  | 
 | 448 | 	if (rs->rs_bound_addr == 0) { | 
 | 449 | 		ret = -ENOTCONN; /* XXX not a great errno */ | 
 | 450 | 		goto out; | 
 | 451 | 	} | 
 | 452 |  | 
 | 453 | 	if (args->nr_local > (u64)UINT_MAX) { | 
 | 454 | 		ret = -EMSGSIZE; | 
 | 455 | 		goto out; | 
 | 456 | 	} | 
 | 457 |  | 
 | 458 | 	nr_pages = 0; | 
 | 459 | 	max_pages = 0; | 
 | 460 |  | 
 | 461 | 	local_vec = (struct rds_iovec __user *)(unsigned long) args->local_vec_addr; | 
 | 462 |  | 
 | 463 | 	/* figure out the number of pages in the vector */ | 
 | 464 | 	for (i = 0; i < args->nr_local; i++) { | 
 | 465 | 		if (copy_from_user(&vec, &local_vec[i], | 
 | 466 | 				   sizeof(struct rds_iovec))) { | 
 | 467 | 			ret = -EFAULT; | 
 | 468 | 			goto out; | 
 | 469 | 		} | 
 | 470 |  | 
 | 471 | 		nr = rds_pages_in_vec(&vec); | 
 | 472 | 		if (nr == 0) { | 
 | 473 | 			ret = -EINVAL; | 
 | 474 | 			goto out; | 
 | 475 | 		} | 
 | 476 |  | 
 | 477 | 		max_pages = max(nr, max_pages); | 
 | 478 | 		nr_pages += nr; | 
 | 479 | 	} | 
 | 480 |  | 
 | 481 | 	pages = kcalloc(max_pages, sizeof(struct page *), GFP_KERNEL); | 
 | 482 | 	if (pages == NULL) { | 
 | 483 | 		ret = -ENOMEM; | 
 | 484 | 		goto out; | 
 | 485 | 	} | 
 | 486 |  | 
 | 487 | 	op = kzalloc(offsetof(struct rds_rdma_op, r_sg[nr_pages]), GFP_KERNEL); | 
 | 488 | 	if (op == NULL) { | 
 | 489 | 		ret = -ENOMEM; | 
 | 490 | 		goto out; | 
 | 491 | 	} | 
 | 492 |  | 
 | 493 | 	op->r_write = !!(args->flags & RDS_RDMA_READWRITE); | 
 | 494 | 	op->r_fence = !!(args->flags & RDS_RDMA_FENCE); | 
 | 495 | 	op->r_notify = !!(args->flags & RDS_RDMA_NOTIFY_ME); | 
 | 496 | 	op->r_recverr = rs->rs_recverr; | 
 | 497 | 	WARN_ON(!nr_pages); | 
 | 498 | 	sg_init_table(op->r_sg, nr_pages); | 
 | 499 |  | 
 | 500 | 	if (op->r_notify || op->r_recverr) { | 
 | 501 | 		/* We allocate an uninitialized notifier here, because | 
 | 502 | 		 * we don't want to do that in the completion handler. We | 
 | 503 | 		 * would have to use GFP_ATOMIC there, and don't want to deal | 
 | 504 | 		 * with failed allocations. | 
 | 505 | 		 */ | 
 | 506 | 		op->r_notifier = kmalloc(sizeof(struct rds_notifier), GFP_KERNEL); | 
 | 507 | 		if (!op->r_notifier) { | 
 | 508 | 			ret = -ENOMEM; | 
 | 509 | 			goto out; | 
 | 510 | 		} | 
 | 511 | 		op->r_notifier->n_user_token = args->user_token; | 
 | 512 | 		op->r_notifier->n_status = RDS_RDMA_SUCCESS; | 
 | 513 | 	} | 
 | 514 |  | 
 | 515 | 	/* The cookie contains the R_Key of the remote memory region, and | 
 | 516 | 	 * optionally an offset into it. This is how we implement RDMA into | 
 | 517 | 	 * unaligned memory. | 
 | 518 | 	 * When setting up the RDMA, we need to add that offset to the | 
 | 519 | 	 * destination address (which is really an offset into the MR) | 
 | 520 | 	 * FIXME: We may want to move this into ib_rdma.c | 
 | 521 | 	 */ | 
 | 522 | 	op->r_key = rds_rdma_cookie_key(args->cookie); | 
 | 523 | 	op->r_remote_addr = args->remote_vec.addr + rds_rdma_cookie_offset(args->cookie); | 
 | 524 |  | 
 | 525 | 	nr_bytes = 0; | 
 | 526 |  | 
 | 527 | 	rdsdebug("RDS: rdma prepare nr_local %llu rva %llx rkey %x\n", | 
 | 528 | 	       (unsigned long long)args->nr_local, | 
 | 529 | 	       (unsigned long long)args->remote_vec.addr, | 
 | 530 | 	       op->r_key); | 
 | 531 |  | 
 | 532 | 	for (i = 0; i < args->nr_local; i++) { | 
 | 533 | 		if (copy_from_user(&vec, &local_vec[i], | 
 | 534 | 				   sizeof(struct rds_iovec))) { | 
 | 535 | 			ret = -EFAULT; | 
 | 536 | 			goto out; | 
 | 537 | 		} | 
 | 538 |  | 
 | 539 | 		nr = rds_pages_in_vec(&vec); | 
 | 540 | 		if (nr == 0) { | 
 | 541 | 			ret = -EINVAL; | 
 | 542 | 			goto out; | 
 | 543 | 		} | 
 | 544 |  | 
 | 545 | 		rs->rs_user_addr = vec.addr; | 
 | 546 | 		rs->rs_user_bytes = vec.bytes; | 
 | 547 |  | 
 | 548 | 		/* did the user change the vec under us? */ | 
 | 549 | 		if (nr > max_pages || op->r_nents + nr > nr_pages) { | 
 | 550 | 			ret = -EINVAL; | 
 | 551 | 			goto out; | 
 | 552 | 		} | 
 | 553 | 		/* If it's a WRITE operation, we want to pin the pages for reading. | 
 | 554 | 		 * If it's a READ operation, we need to pin the pages for writing. | 
 | 555 | 		 */ | 
 | 556 | 		ret = rds_pin_pages(vec.addr & PAGE_MASK, nr, pages, !op->r_write); | 
 | 557 | 		if (ret < 0) | 
 | 558 | 			goto out; | 
 | 559 |  | 
 | 560 | 		rdsdebug("RDS: nr_bytes %u nr %u vec.bytes %llu vec.addr %llx\n", | 
 | 561 | 		       nr_bytes, nr, vec.bytes, vec.addr); | 
 | 562 |  | 
 | 563 | 		nr_bytes += vec.bytes; | 
 | 564 |  | 
 | 565 | 		for (j = 0; j < nr; j++) { | 
 | 566 | 			unsigned int offset = vec.addr & ~PAGE_MASK; | 
 | 567 |  | 
 | 568 | 			sg = &op->r_sg[op->r_nents + j]; | 
 | 569 | 			sg_set_page(sg, pages[j], | 
 | 570 | 					min_t(unsigned int, vec.bytes, PAGE_SIZE - offset), | 
 | 571 | 					offset); | 
 | 572 |  | 
 | 573 | 			rdsdebug("RDS: sg->offset %x sg->len %x vec.addr %llx vec.bytes %llu\n", | 
 | 574 | 			       sg->offset, sg->length, vec.addr, vec.bytes); | 
 | 575 |  | 
 | 576 | 			vec.addr += sg->length; | 
 | 577 | 			vec.bytes -= sg->length; | 
 | 578 | 		} | 
 | 579 |  | 
 | 580 | 		op->r_nents += nr; | 
 | 581 | 	} | 
 | 582 |  | 
 | 583 |  | 
 | 584 | 	if (nr_bytes > args->remote_vec.bytes) { | 
 | 585 | 		rdsdebug("RDS nr_bytes %u remote_bytes %u do not match\n", | 
 | 586 | 				nr_bytes, | 
 | 587 | 				(unsigned int) args->remote_vec.bytes); | 
 | 588 | 		ret = -EINVAL; | 
 | 589 | 		goto out; | 
 | 590 | 	} | 
 | 591 | 	op->r_bytes = nr_bytes; | 
 | 592 |  | 
 | 593 | 	ret = 0; | 
 | 594 | out: | 
 | 595 | 	kfree(pages); | 
 | 596 | 	if (ret) { | 
 | 597 | 		if (op) | 
 | 598 | 			rds_rdma_free_op(op); | 
 | 599 | 		op = ERR_PTR(ret); | 
 | 600 | 	} | 
 | 601 | 	return op; | 
 | 602 | } | 
 | 603 |  | 
 | 604 | /* | 
 | 605 |  * The application asks for a RDMA transfer. | 
 | 606 |  * Extract all arguments and set up the rdma_op | 
 | 607 |  */ | 
 | 608 | int rds_cmsg_rdma_args(struct rds_sock *rs, struct rds_message *rm, | 
 | 609 | 			  struct cmsghdr *cmsg) | 
 | 610 | { | 
 | 611 | 	struct rds_rdma_op *op; | 
 | 612 |  | 
 | 613 | 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_rdma_args)) | 
 | 614 | 	 || rm->m_rdma_op != NULL) | 
 | 615 | 		return -EINVAL; | 
 | 616 |  | 
 | 617 | 	op = rds_rdma_prepare(rs, CMSG_DATA(cmsg)); | 
 | 618 | 	if (IS_ERR(op)) | 
 | 619 | 		return PTR_ERR(op); | 
 | 620 | 	rds_stats_inc(s_send_rdma); | 
 | 621 | 	rm->m_rdma_op = op; | 
 | 622 | 	return 0; | 
 | 623 | } | 
 | 624 |  | 
 | 625 | /* | 
 | 626 |  * The application wants us to pass an RDMA destination (aka MR) | 
 | 627 |  * to the remote | 
 | 628 |  */ | 
 | 629 | int rds_cmsg_rdma_dest(struct rds_sock *rs, struct rds_message *rm, | 
 | 630 | 			  struct cmsghdr *cmsg) | 
 | 631 | { | 
 | 632 | 	unsigned long flags; | 
 | 633 | 	struct rds_mr *mr; | 
 | 634 | 	u32 r_key; | 
 | 635 | 	int err = 0; | 
 | 636 |  | 
 | 637 | 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(rds_rdma_cookie_t)) | 
 | 638 | 	 || rm->m_rdma_cookie != 0) | 
 | 639 | 		return -EINVAL; | 
 | 640 |  | 
 | 641 | 	memcpy(&rm->m_rdma_cookie, CMSG_DATA(cmsg), sizeof(rm->m_rdma_cookie)); | 
 | 642 |  | 
 | 643 | 	/* We are reusing a previously mapped MR here. Most likely, the | 
 | 644 | 	 * application has written to the buffer, so we need to explicitly | 
 | 645 | 	 * flush those writes to RAM. Otherwise the HCA may not see them | 
 | 646 | 	 * when doing a DMA from that buffer. | 
 | 647 | 	 */ | 
 | 648 | 	r_key = rds_rdma_cookie_key(rm->m_rdma_cookie); | 
 | 649 |  | 
 | 650 | 	spin_lock_irqsave(&rs->rs_rdma_lock, flags); | 
 | 651 | 	mr = rds_mr_tree_walk(&rs->rs_rdma_keys, r_key, NULL); | 
 | 652 | 	if (mr == NULL) | 
 | 653 | 		err = -EINVAL;	/* invalid r_key */ | 
 | 654 | 	else | 
 | 655 | 		atomic_inc(&mr->r_refcount); | 
 | 656 | 	spin_unlock_irqrestore(&rs->rs_rdma_lock, flags); | 
 | 657 |  | 
 | 658 | 	if (mr) { | 
 | 659 | 		mr->r_trans->sync_mr(mr->r_trans_private, DMA_TO_DEVICE); | 
 | 660 | 		rm->m_rdma_mr = mr; | 
 | 661 | 	} | 
 | 662 | 	return err; | 
 | 663 | } | 
 | 664 |  | 
 | 665 | /* | 
 | 666 |  * The application passes us an address range it wants to enable RDMA | 
 | 667 |  * to/from. We map the area, and save the <R_Key,offset> pair | 
 | 668 |  * in rm->m_rdma_cookie. This causes it to be sent along to the peer | 
 | 669 |  * in an extension header. | 
 | 670 |  */ | 
 | 671 | int rds_cmsg_rdma_map(struct rds_sock *rs, struct rds_message *rm, | 
 | 672 | 			  struct cmsghdr *cmsg) | 
 | 673 | { | 
 | 674 | 	if (cmsg->cmsg_len < CMSG_LEN(sizeof(struct rds_get_mr_args)) | 
 | 675 | 	 || rm->m_rdma_cookie != 0) | 
 | 676 | 		return -EINVAL; | 
 | 677 |  | 
 | 678 | 	return __rds_rdma_map(rs, CMSG_DATA(cmsg), &rm->m_rdma_cookie, &rm->m_rdma_mr); | 
 | 679 | } |