| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Cryptographic API. | 
 | 3 |  * | 
 | 4 |  * Cipher operations. | 
 | 5 |  * | 
 | 6 |  * Copyright (c) 2002 James Morris <jmorris@intercode.com.au> | 
 | 7 |  * | 
 | 8 |  * This program is free software; you can redistribute it and/or modify it | 
 | 9 |  * under the terms of the GNU General Public License as published by the Free | 
 | 10 |  * Software Foundation; either version 2 of the License, or (at your option)  | 
 | 11 |  * any later version. | 
 | 12 |  * | 
 | 13 |  */ | 
 | 14 | #include <linux/compiler.h> | 
 | 15 | #include <linux/kernel.h> | 
 | 16 | #include <linux/crypto.h> | 
 | 17 | #include <linux/errno.h> | 
 | 18 | #include <linux/mm.h> | 
 | 19 | #include <linux/slab.h> | 
 | 20 | #include <linux/string.h> | 
 | 21 | #include <asm/scatterlist.h> | 
 | 22 | #include "internal.h" | 
 | 23 | #include "scatterwalk.h" | 
 | 24 |  | 
 | 25 | typedef void (cryptfn_t)(void *, u8 *, const u8 *); | 
 | 26 | typedef void (procfn_t)(struct crypto_tfm *, u8 *, | 
 | 27 |                         u8*, cryptfn_t, void *); | 
 | 28 |  | 
 | 29 | static inline void xor_64(u8 *a, const u8 *b) | 
 | 30 | { | 
 | 31 | 	((u32 *)a)[0] ^= ((u32 *)b)[0]; | 
 | 32 | 	((u32 *)a)[1] ^= ((u32 *)b)[1]; | 
 | 33 | } | 
 | 34 |  | 
 | 35 | static inline void xor_128(u8 *a, const u8 *b) | 
 | 36 | { | 
 | 37 | 	((u32 *)a)[0] ^= ((u32 *)b)[0]; | 
 | 38 | 	((u32 *)a)[1] ^= ((u32 *)b)[1]; | 
 | 39 | 	((u32 *)a)[2] ^= ((u32 *)b)[2]; | 
 | 40 | 	((u32 *)a)[3] ^= ((u32 *)b)[3]; | 
 | 41 | } | 
 | 42 |   | 
 | 43 | static inline void *prepare_src(struct scatter_walk *walk, int bsize, | 
 | 44 | 				void *tmp, int in_place) | 
 | 45 | { | 
 | 46 | 	void *src = walk->data; | 
 | 47 | 	int n = bsize; | 
 | 48 |  | 
 | 49 | 	if (unlikely(scatterwalk_across_pages(walk, bsize))) { | 
 | 50 | 		src = tmp; | 
 | 51 | 		n = scatterwalk_copychunks(src, walk, bsize, 0); | 
 | 52 | 	} | 
 | 53 | 	scatterwalk_advance(walk, n); | 
 | 54 | 	return src; | 
 | 55 | } | 
 | 56 |  | 
 | 57 | static inline void *prepare_dst(struct scatter_walk *walk, int bsize, | 
 | 58 | 				void *tmp, int in_place) | 
 | 59 | { | 
 | 60 | 	void *dst = walk->data; | 
 | 61 |  | 
 | 62 | 	if (unlikely(scatterwalk_across_pages(walk, bsize)) || in_place) | 
 | 63 | 		dst = tmp; | 
 | 64 | 	return dst; | 
 | 65 | } | 
 | 66 |  | 
 | 67 | static inline void complete_src(struct scatter_walk *walk, int bsize, | 
 | 68 | 				void *src, int in_place) | 
 | 69 | { | 
 | 70 | } | 
 | 71 |  | 
 | 72 | static inline void complete_dst(struct scatter_walk *walk, int bsize, | 
 | 73 | 				void *dst, int in_place) | 
 | 74 | { | 
 | 75 | 	int n = bsize; | 
 | 76 |  | 
 | 77 | 	if (unlikely(scatterwalk_across_pages(walk, bsize))) | 
 | 78 | 		n = scatterwalk_copychunks(dst, walk, bsize, 1); | 
 | 79 | 	else if (in_place) | 
 | 80 | 		memcpy(walk->data, dst, bsize); | 
 | 81 | 	scatterwalk_advance(walk, n); | 
 | 82 | } | 
 | 83 |  | 
 | 84 | /*  | 
 | 85 |  * Generic encrypt/decrypt wrapper for ciphers, handles operations across | 
 | 86 |  * multiple page boundaries by using temporary blocks.  In user context, | 
 | 87 |  * the kernel is given a chance to schedule us once per block. | 
 | 88 |  */ | 
 | 89 | static int crypt(struct crypto_tfm *tfm, | 
 | 90 | 		 struct scatterlist *dst, | 
 | 91 | 		 struct scatterlist *src, | 
 | 92 |                  unsigned int nbytes, cryptfn_t crfn, | 
 | 93 |                  procfn_t prfn, void *info) | 
 | 94 | { | 
 | 95 | 	struct scatter_walk walk_in, walk_out; | 
 | 96 | 	const unsigned int bsize = crypto_tfm_alg_blocksize(tfm); | 
 | 97 | 	u8 tmp_src[bsize]; | 
 | 98 | 	u8 tmp_dst[bsize]; | 
 | 99 |  | 
 | 100 | 	if (!nbytes) | 
 | 101 | 		return 0; | 
 | 102 |  | 
 | 103 | 	if (nbytes % bsize) { | 
 | 104 | 		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_BLOCK_LEN; | 
 | 105 | 		return -EINVAL; | 
 | 106 | 	} | 
 | 107 |  | 
 | 108 | 	scatterwalk_start(&walk_in, src); | 
 | 109 | 	scatterwalk_start(&walk_out, dst); | 
 | 110 |  | 
 | 111 | 	for(;;) { | 
 | 112 | 		u8 *src_p, *dst_p; | 
 | 113 | 		int in_place; | 
 | 114 |  | 
 | 115 | 		scatterwalk_map(&walk_in, 0); | 
 | 116 | 		scatterwalk_map(&walk_out, 1); | 
 | 117 |  | 
 | 118 | 		in_place = scatterwalk_samebuf(&walk_in, &walk_out); | 
 | 119 |  | 
 | 120 | 		do { | 
 | 121 | 			src_p = prepare_src(&walk_in, bsize, tmp_src, | 
 | 122 | 					    in_place); | 
 | 123 | 			dst_p = prepare_dst(&walk_out, bsize, tmp_dst, | 
 | 124 | 					    in_place); | 
 | 125 |  | 
 | 126 | 			prfn(tfm, dst_p, src_p, crfn, info); | 
 | 127 |  | 
 | 128 | 			complete_src(&walk_in, bsize, src_p, in_place); | 
 | 129 | 			complete_dst(&walk_out, bsize, dst_p, in_place); | 
 | 130 |  | 
 | 131 | 			nbytes -= bsize; | 
 | 132 | 		} while (nbytes && | 
 | 133 | 			 !scatterwalk_across_pages(&walk_in, bsize) && | 
 | 134 | 			 !scatterwalk_across_pages(&walk_out, bsize)); | 
 | 135 |  | 
 | 136 | 		scatterwalk_done(&walk_in, 0, nbytes); | 
 | 137 | 		scatterwalk_done(&walk_out, 1, nbytes); | 
 | 138 |  | 
 | 139 | 		if (!nbytes) | 
 | 140 | 			return 0; | 
 | 141 |  | 
 | 142 | 		crypto_yield(tfm); | 
 | 143 | 	} | 
 | 144 | } | 
 | 145 |  | 
 | 146 | static void cbc_process_encrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src, | 
 | 147 | 				cryptfn_t fn, void *info) | 
 | 148 | { | 
 | 149 | 	u8 *iv = info; | 
 | 150 |  | 
 | 151 | 	tfm->crt_u.cipher.cit_xor_block(iv, src); | 
 | 152 | 	fn(crypto_tfm_ctx(tfm), dst, iv); | 
 | 153 | 	memcpy(iv, dst, crypto_tfm_alg_blocksize(tfm)); | 
 | 154 | } | 
 | 155 |  | 
 | 156 | static void cbc_process_decrypt(struct crypto_tfm *tfm, u8 *dst, u8 *src, | 
 | 157 | 				cryptfn_t fn, void *info) | 
 | 158 | { | 
 | 159 | 	u8 *iv = info; | 
 | 160 |  | 
 | 161 | 	fn(crypto_tfm_ctx(tfm), dst, src); | 
 | 162 | 	tfm->crt_u.cipher.cit_xor_block(dst, iv); | 
 | 163 | 	memcpy(iv, src, crypto_tfm_alg_blocksize(tfm)); | 
 | 164 | } | 
 | 165 |  | 
 | 166 | static void ecb_process(struct crypto_tfm *tfm, u8 *dst, u8 *src, | 
 | 167 | 			cryptfn_t fn, void *info) | 
 | 168 | { | 
 | 169 | 	fn(crypto_tfm_ctx(tfm), dst, src); | 
 | 170 | } | 
 | 171 |  | 
 | 172 | static int setkey(struct crypto_tfm *tfm, const u8 *key, unsigned int keylen) | 
 | 173 | { | 
 | 174 | 	struct cipher_alg *cia = &tfm->__crt_alg->cra_cipher; | 
 | 175 | 	 | 
 | 176 | 	if (keylen < cia->cia_min_keysize || keylen > cia->cia_max_keysize) { | 
 | 177 | 		tfm->crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN; | 
 | 178 | 		return -EINVAL; | 
 | 179 | 	} else | 
 | 180 | 		return cia->cia_setkey(crypto_tfm_ctx(tfm), key, keylen, | 
 | 181 | 		                       &tfm->crt_flags); | 
 | 182 | } | 
 | 183 |  | 
 | 184 | static int ecb_encrypt(struct crypto_tfm *tfm, | 
 | 185 | 		       struct scatterlist *dst, | 
 | 186 |                        struct scatterlist *src, unsigned int nbytes) | 
 | 187 | { | 
 | 188 | 	return crypt(tfm, dst, src, nbytes, | 
 | 189 | 	             tfm->__crt_alg->cra_cipher.cia_encrypt, | 
 | 190 | 	             ecb_process, NULL); | 
 | 191 | } | 
 | 192 |  | 
 | 193 | static int ecb_decrypt(struct crypto_tfm *tfm, | 
 | 194 |                        struct scatterlist *dst, | 
 | 195 |                        struct scatterlist *src, | 
 | 196 | 		       unsigned int nbytes) | 
 | 197 | { | 
 | 198 | 	return crypt(tfm, dst, src, nbytes, | 
 | 199 | 	             tfm->__crt_alg->cra_cipher.cia_decrypt, | 
 | 200 | 	             ecb_process, NULL); | 
 | 201 | } | 
 | 202 |  | 
 | 203 | static int cbc_encrypt(struct crypto_tfm *tfm, | 
 | 204 |                        struct scatterlist *dst, | 
 | 205 |                        struct scatterlist *src, | 
 | 206 | 		       unsigned int nbytes) | 
 | 207 | { | 
 | 208 | 	return crypt(tfm, dst, src, nbytes, | 
 | 209 | 	             tfm->__crt_alg->cra_cipher.cia_encrypt, | 
 | 210 | 	             cbc_process_encrypt, tfm->crt_cipher.cit_iv); | 
 | 211 | } | 
 | 212 |  | 
 | 213 | static int cbc_encrypt_iv(struct crypto_tfm *tfm, | 
 | 214 |                           struct scatterlist *dst, | 
 | 215 |                           struct scatterlist *src, | 
 | 216 |                           unsigned int nbytes, u8 *iv) | 
 | 217 | { | 
 | 218 | 	return crypt(tfm, dst, src, nbytes, | 
 | 219 | 	             tfm->__crt_alg->cra_cipher.cia_encrypt, | 
 | 220 | 	             cbc_process_encrypt, iv); | 
 | 221 | } | 
 | 222 |  | 
 | 223 | static int cbc_decrypt(struct crypto_tfm *tfm, | 
 | 224 |                        struct scatterlist *dst, | 
 | 225 |                        struct scatterlist *src, | 
 | 226 | 		       unsigned int nbytes) | 
 | 227 | { | 
 | 228 | 	return crypt(tfm, dst, src, nbytes, | 
 | 229 | 	             tfm->__crt_alg->cra_cipher.cia_decrypt, | 
 | 230 | 	             cbc_process_decrypt, tfm->crt_cipher.cit_iv); | 
 | 231 | } | 
 | 232 |  | 
 | 233 | static int cbc_decrypt_iv(struct crypto_tfm *tfm, | 
 | 234 |                           struct scatterlist *dst, | 
 | 235 |                           struct scatterlist *src, | 
 | 236 |                           unsigned int nbytes, u8 *iv) | 
 | 237 | { | 
 | 238 | 	return crypt(tfm, dst, src, nbytes, | 
 | 239 | 	             tfm->__crt_alg->cra_cipher.cia_decrypt, | 
 | 240 | 	             cbc_process_decrypt, iv); | 
 | 241 | } | 
 | 242 |  | 
 | 243 | static int nocrypt(struct crypto_tfm *tfm, | 
 | 244 |                    struct scatterlist *dst, | 
 | 245 |                    struct scatterlist *src, | 
 | 246 | 		   unsigned int nbytes) | 
 | 247 | { | 
 | 248 | 	return -ENOSYS; | 
 | 249 | } | 
 | 250 |  | 
 | 251 | static int nocrypt_iv(struct crypto_tfm *tfm, | 
 | 252 |                       struct scatterlist *dst, | 
 | 253 |                       struct scatterlist *src, | 
 | 254 |                       unsigned int nbytes, u8 *iv) | 
 | 255 | { | 
 | 256 | 	return -ENOSYS; | 
 | 257 | } | 
 | 258 |  | 
 | 259 | int crypto_init_cipher_flags(struct crypto_tfm *tfm, u32 flags) | 
 | 260 | { | 
 | 261 | 	u32 mode = flags & CRYPTO_TFM_MODE_MASK; | 
 | 262 | 	 | 
 | 263 | 	tfm->crt_cipher.cit_mode = mode ? mode : CRYPTO_TFM_MODE_ECB; | 
 | 264 | 	if (flags & CRYPTO_TFM_REQ_WEAK_KEY) | 
 | 265 | 		tfm->crt_flags = CRYPTO_TFM_REQ_WEAK_KEY; | 
 | 266 | 	 | 
 | 267 | 	return 0; | 
 | 268 | } | 
 | 269 |  | 
 | 270 | int crypto_init_cipher_ops(struct crypto_tfm *tfm) | 
 | 271 | { | 
 | 272 | 	int ret = 0; | 
 | 273 | 	struct cipher_tfm *ops = &tfm->crt_cipher; | 
 | 274 |  | 
 | 275 | 	ops->cit_setkey = setkey; | 
 | 276 |  | 
 | 277 | 	switch (tfm->crt_cipher.cit_mode) { | 
 | 278 | 	case CRYPTO_TFM_MODE_ECB: | 
 | 279 | 		ops->cit_encrypt = ecb_encrypt; | 
 | 280 | 		ops->cit_decrypt = ecb_decrypt; | 
 | 281 | 		break; | 
 | 282 | 		 | 
 | 283 | 	case CRYPTO_TFM_MODE_CBC: | 
 | 284 | 		ops->cit_encrypt = cbc_encrypt; | 
 | 285 | 		ops->cit_decrypt = cbc_decrypt; | 
 | 286 | 		ops->cit_encrypt_iv = cbc_encrypt_iv; | 
 | 287 | 		ops->cit_decrypt_iv = cbc_decrypt_iv; | 
 | 288 | 		break; | 
 | 289 | 		 | 
 | 290 | 	case CRYPTO_TFM_MODE_CFB: | 
 | 291 | 		ops->cit_encrypt = nocrypt; | 
 | 292 | 		ops->cit_decrypt = nocrypt; | 
 | 293 | 		ops->cit_encrypt_iv = nocrypt_iv; | 
 | 294 | 		ops->cit_decrypt_iv = nocrypt_iv; | 
 | 295 | 		break; | 
 | 296 | 	 | 
 | 297 | 	case CRYPTO_TFM_MODE_CTR: | 
 | 298 | 		ops->cit_encrypt = nocrypt; | 
 | 299 | 		ops->cit_decrypt = nocrypt; | 
 | 300 | 		ops->cit_encrypt_iv = nocrypt_iv; | 
 | 301 | 		ops->cit_decrypt_iv = nocrypt_iv; | 
 | 302 | 		break; | 
 | 303 |  | 
 | 304 | 	default: | 
 | 305 | 		BUG(); | 
 | 306 | 	} | 
 | 307 | 	 | 
 | 308 | 	if (ops->cit_mode == CRYPTO_TFM_MODE_CBC) { | 
 | 309 | 	    	 | 
 | 310 | 	    	switch (crypto_tfm_alg_blocksize(tfm)) { | 
 | 311 | 	    	case 8: | 
 | 312 | 	    		ops->cit_xor_block = xor_64; | 
 | 313 | 	    		break; | 
 | 314 | 	    		 | 
 | 315 | 	    	case 16: | 
 | 316 | 	    		ops->cit_xor_block = xor_128; | 
 | 317 | 	    		break; | 
 | 318 | 	    		 | 
 | 319 | 	    	default: | 
 | 320 | 	    		printk(KERN_WARNING "%s: block size %u not supported\n", | 
 | 321 | 	    		       crypto_tfm_alg_name(tfm), | 
 | 322 | 	    		       crypto_tfm_alg_blocksize(tfm)); | 
 | 323 | 	    		ret = -EINVAL; | 
 | 324 | 	    		goto out; | 
 | 325 | 	    	} | 
 | 326 | 	    	 | 
 | 327 | 		ops->cit_ivsize = crypto_tfm_alg_blocksize(tfm); | 
 | 328 | 	    	ops->cit_iv = kmalloc(ops->cit_ivsize, GFP_KERNEL); | 
 | 329 | 		if (ops->cit_iv == NULL) | 
 | 330 | 			ret = -ENOMEM; | 
 | 331 | 	} | 
 | 332 |  | 
 | 333 | out:	 | 
 | 334 | 	return ret; | 
 | 335 | } | 
 | 336 |  | 
 | 337 | void crypto_exit_cipher_ops(struct crypto_tfm *tfm) | 
 | 338 | { | 
 | 339 | 	if (tfm->crt_cipher.cit_iv) | 
 | 340 | 		kfree(tfm->crt_cipher.cit_iv); | 
 | 341 | } |