| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 1 | /* | 
 | 2 |  * LZMA2 decoder | 
 | 3 |  * | 
 | 4 |  * Authors: Lasse Collin <lasse.collin@tukaani.org> | 
 | 5 |  *          Igor Pavlov <http://7-zip.org/> | 
 | 6 |  * | 
 | 7 |  * This file has been put into the public domain. | 
 | 8 |  * You can do whatever you want with this file. | 
 | 9 |  */ | 
 | 10 |  | 
 | 11 | #include "xz_private.h" | 
 | 12 | #include "xz_lzma2.h" | 
 | 13 |  | 
 | 14 | /* | 
 | 15 |  * Range decoder initialization eats the first five bytes of each LZMA chunk. | 
 | 16 |  */ | 
 | 17 | #define RC_INIT_BYTES 5 | 
 | 18 |  | 
 | 19 | /* | 
 | 20 |  * Minimum number of usable input buffer to safely decode one LZMA symbol. | 
 | 21 |  * The worst case is that we decode 22 bits using probabilities and 26 | 
 | 22 |  * direct bits. This may decode at maximum of 20 bytes of input. However, | 
 | 23 |  * lzma_main() does an extra normalization before returning, thus we | 
 | 24 |  * need to put 21 here. | 
 | 25 |  */ | 
 | 26 | #define LZMA_IN_REQUIRED 21 | 
 | 27 |  | 
 | 28 | /* | 
 | 29 |  * Dictionary (history buffer) | 
 | 30 |  * | 
 | 31 |  * These are always true: | 
 | 32 |  *    start <= pos <= full <= end | 
 | 33 |  *    pos <= limit <= end | 
 | 34 |  * | 
 | 35 |  * In multi-call mode, also these are true: | 
 | 36 |  *    end == size | 
 | 37 |  *    size <= size_max | 
 | 38 |  *    allocated <= size | 
 | 39 |  * | 
 | 40 |  * Most of these variables are size_t to support single-call mode, | 
 | 41 |  * in which the dictionary variables address the actual output | 
 | 42 |  * buffer directly. | 
 | 43 |  */ | 
 | 44 | struct dictionary { | 
 | 45 | 	/* Beginning of the history buffer */ | 
 | 46 | 	uint8_t *buf; | 
 | 47 |  | 
 | 48 | 	/* Old position in buf (before decoding more data) */ | 
 | 49 | 	size_t start; | 
 | 50 |  | 
 | 51 | 	/* Position in buf */ | 
 | 52 | 	size_t pos; | 
 | 53 |  | 
 | 54 | 	/* | 
 | 55 | 	 * How full dictionary is. This is used to detect corrupt input that | 
 | 56 | 	 * would read beyond the beginning of the uncompressed stream. | 
 | 57 | 	 */ | 
 | 58 | 	size_t full; | 
 | 59 |  | 
 | 60 | 	/* Write limit; we don't write to buf[limit] or later bytes. */ | 
 | 61 | 	size_t limit; | 
 | 62 |  | 
 | 63 | 	/* | 
 | 64 | 	 * End of the dictionary buffer. In multi-call mode, this is | 
 | 65 | 	 * the same as the dictionary size. In single-call mode, this | 
 | 66 | 	 * indicates the size of the output buffer. | 
 | 67 | 	 */ | 
 | 68 | 	size_t end; | 
 | 69 |  | 
 | 70 | 	/* | 
 | 71 | 	 * Size of the dictionary as specified in Block Header. This is used | 
 | 72 | 	 * together with "full" to detect corrupt input that would make us | 
 | 73 | 	 * read beyond the beginning of the uncompressed stream. | 
 | 74 | 	 */ | 
 | 75 | 	uint32_t size; | 
 | 76 |  | 
 | 77 | 	/* | 
 | 78 | 	 * Maximum allowed dictionary size in multi-call mode. | 
 | 79 | 	 * This is ignored in single-call mode. | 
 | 80 | 	 */ | 
 | 81 | 	uint32_t size_max; | 
 | 82 |  | 
 | 83 | 	/* | 
 | 84 | 	 * Amount of memory currently allocated for the dictionary. | 
 | 85 | 	 * This is used only with XZ_DYNALLOC. (With XZ_PREALLOC, | 
 | 86 | 	 * size_max is always the same as the allocated size.) | 
 | 87 | 	 */ | 
 | 88 | 	uint32_t allocated; | 
 | 89 |  | 
 | 90 | 	/* Operation mode */ | 
 | 91 | 	enum xz_mode mode; | 
 | 92 | }; | 
 | 93 |  | 
 | 94 | /* Range decoder */ | 
 | 95 | struct rc_dec { | 
 | 96 | 	uint32_t range; | 
 | 97 | 	uint32_t code; | 
 | 98 |  | 
 | 99 | 	/* | 
 | 100 | 	 * Number of initializing bytes remaining to be read | 
 | 101 | 	 * by rc_read_init(). | 
 | 102 | 	 */ | 
 | 103 | 	uint32_t init_bytes_left; | 
 | 104 |  | 
 | 105 | 	/* | 
 | 106 | 	 * Buffer from which we read our input. It can be either | 
 | 107 | 	 * temp.buf or the caller-provided input buffer. | 
 | 108 | 	 */ | 
 | 109 | 	const uint8_t *in; | 
 | 110 | 	size_t in_pos; | 
 | 111 | 	size_t in_limit; | 
 | 112 | }; | 
 | 113 |  | 
 | 114 | /* Probabilities for a length decoder. */ | 
 | 115 | struct lzma_len_dec { | 
 | 116 | 	/* Probability of match length being at least 10 */ | 
 | 117 | 	uint16_t choice; | 
 | 118 |  | 
 | 119 | 	/* Probability of match length being at least 18 */ | 
 | 120 | 	uint16_t choice2; | 
 | 121 |  | 
 | 122 | 	/* Probabilities for match lengths 2-9 */ | 
 | 123 | 	uint16_t low[POS_STATES_MAX][LEN_LOW_SYMBOLS]; | 
 | 124 |  | 
 | 125 | 	/* Probabilities for match lengths 10-17 */ | 
 | 126 | 	uint16_t mid[POS_STATES_MAX][LEN_MID_SYMBOLS]; | 
 | 127 |  | 
 | 128 | 	/* Probabilities for match lengths 18-273 */ | 
 | 129 | 	uint16_t high[LEN_HIGH_SYMBOLS]; | 
 | 130 | }; | 
 | 131 |  | 
 | 132 | struct lzma_dec { | 
 | 133 | 	/* Distances of latest four matches */ | 
 | 134 | 	uint32_t rep0; | 
 | 135 | 	uint32_t rep1; | 
 | 136 | 	uint32_t rep2; | 
 | 137 | 	uint32_t rep3; | 
 | 138 |  | 
 | 139 | 	/* Types of the most recently seen LZMA symbols */ | 
 | 140 | 	enum lzma_state state; | 
 | 141 |  | 
 | 142 | 	/* | 
 | 143 | 	 * Length of a match. This is updated so that dict_repeat can | 
 | 144 | 	 * be called again to finish repeating the whole match. | 
 | 145 | 	 */ | 
 | 146 | 	uint32_t len; | 
 | 147 |  | 
 | 148 | 	/* | 
 | 149 | 	 * LZMA properties or related bit masks (number of literal | 
 | 150 | 	 * context bits, a mask dervied from the number of literal | 
 | 151 | 	 * position bits, and a mask dervied from the number | 
 | 152 | 	 * position bits) | 
 | 153 | 	 */ | 
 | 154 | 	uint32_t lc; | 
 | 155 | 	uint32_t literal_pos_mask; /* (1 << lp) - 1 */ | 
 | 156 | 	uint32_t pos_mask;         /* (1 << pb) - 1 */ | 
 | 157 |  | 
 | 158 | 	/* If 1, it's a match. Otherwise it's a single 8-bit literal. */ | 
 | 159 | 	uint16_t is_match[STATES][POS_STATES_MAX]; | 
 | 160 |  | 
 | 161 | 	/* If 1, it's a repeated match. The distance is one of rep0 .. rep3. */ | 
 | 162 | 	uint16_t is_rep[STATES]; | 
 | 163 |  | 
 | 164 | 	/* | 
 | 165 | 	 * If 0, distance of a repeated match is rep0. | 
 | 166 | 	 * Otherwise check is_rep1. | 
 | 167 | 	 */ | 
 | 168 | 	uint16_t is_rep0[STATES]; | 
 | 169 |  | 
 | 170 | 	/* | 
 | 171 | 	 * If 0, distance of a repeated match is rep1. | 
 | 172 | 	 * Otherwise check is_rep2. | 
 | 173 | 	 */ | 
 | 174 | 	uint16_t is_rep1[STATES]; | 
 | 175 |  | 
 | 176 | 	/* If 0, distance of a repeated match is rep2. Otherwise it is rep3. */ | 
 | 177 | 	uint16_t is_rep2[STATES]; | 
 | 178 |  | 
 | 179 | 	/* | 
 | 180 | 	 * If 1, the repeated match has length of one byte. Otherwise | 
 | 181 | 	 * the length is decoded from rep_len_decoder. | 
 | 182 | 	 */ | 
 | 183 | 	uint16_t is_rep0_long[STATES][POS_STATES_MAX]; | 
 | 184 |  | 
 | 185 | 	/* | 
 | 186 | 	 * Probability tree for the highest two bits of the match | 
 | 187 | 	 * distance. There is a separate probability tree for match | 
 | 188 | 	 * lengths of 2 (i.e. MATCH_LEN_MIN), 3, 4, and [5, 273]. | 
 | 189 | 	 */ | 
 | 190 | 	uint16_t dist_slot[DIST_STATES][DIST_SLOTS]; | 
 | 191 |  | 
 | 192 | 	/* | 
 | 193 | 	 * Probility trees for additional bits for match distance | 
 | 194 | 	 * when the distance is in the range [4, 127]. | 
 | 195 | 	 */ | 
 | 196 | 	uint16_t dist_special[FULL_DISTANCES - DIST_MODEL_END]; | 
 | 197 |  | 
 | 198 | 	/* | 
 | 199 | 	 * Probability tree for the lowest four bits of a match | 
 | 200 | 	 * distance that is equal to or greater than 128. | 
 | 201 | 	 */ | 
 | 202 | 	uint16_t dist_align[ALIGN_SIZE]; | 
 | 203 |  | 
 | 204 | 	/* Length of a normal match */ | 
 | 205 | 	struct lzma_len_dec match_len_dec; | 
 | 206 |  | 
 | 207 | 	/* Length of a repeated match */ | 
 | 208 | 	struct lzma_len_dec rep_len_dec; | 
 | 209 |  | 
 | 210 | 	/* Probabilities of literals */ | 
 | 211 | 	uint16_t literal[LITERAL_CODERS_MAX][LITERAL_CODER_SIZE]; | 
 | 212 | }; | 
 | 213 |  | 
 | 214 | struct lzma2_dec { | 
 | 215 | 	/* Position in xz_dec_lzma2_run(). */ | 
 | 216 | 	enum lzma2_seq { | 
 | 217 | 		SEQ_CONTROL, | 
 | 218 | 		SEQ_UNCOMPRESSED_1, | 
 | 219 | 		SEQ_UNCOMPRESSED_2, | 
 | 220 | 		SEQ_COMPRESSED_0, | 
 | 221 | 		SEQ_COMPRESSED_1, | 
 | 222 | 		SEQ_PROPERTIES, | 
 | 223 | 		SEQ_LZMA_PREPARE, | 
 | 224 | 		SEQ_LZMA_RUN, | 
 | 225 | 		SEQ_COPY | 
 | 226 | 	} sequence; | 
 | 227 |  | 
 | 228 | 	/* Next position after decoding the compressed size of the chunk. */ | 
 | 229 | 	enum lzma2_seq next_sequence; | 
 | 230 |  | 
 | 231 | 	/* Uncompressed size of LZMA chunk (2 MiB at maximum) */ | 
 | 232 | 	uint32_t uncompressed; | 
 | 233 |  | 
 | 234 | 	/* | 
 | 235 | 	 * Compressed size of LZMA chunk or compressed/uncompressed | 
 | 236 | 	 * size of uncompressed chunk (64 KiB at maximum) | 
 | 237 | 	 */ | 
 | 238 | 	uint32_t compressed; | 
 | 239 |  | 
 | 240 | 	/* | 
 | 241 | 	 * True if dictionary reset is needed. This is false before | 
 | 242 | 	 * the first chunk (LZMA or uncompressed). | 
 | 243 | 	 */ | 
 | 244 | 	bool need_dict_reset; | 
 | 245 |  | 
 | 246 | 	/* | 
 | 247 | 	 * True if new LZMA properties are needed. This is false | 
 | 248 | 	 * before the first LZMA chunk. | 
 | 249 | 	 */ | 
 | 250 | 	bool need_props; | 
 | 251 | }; | 
 | 252 |  | 
 | 253 | struct xz_dec_lzma2 { | 
 | 254 | 	/* | 
 | 255 | 	 * The order below is important on x86 to reduce code size and | 
 | 256 | 	 * it shouldn't hurt on other platforms. Everything up to and | 
 | 257 | 	 * including lzma.pos_mask are in the first 128 bytes on x86-32, | 
 | 258 | 	 * which allows using smaller instructions to access those | 
 | 259 | 	 * variables. On x86-64, fewer variables fit into the first 128 | 
 | 260 | 	 * bytes, but this is still the best order without sacrificing | 
 | 261 | 	 * the readability by splitting the structures. | 
 | 262 | 	 */ | 
 | 263 | 	struct rc_dec rc; | 
 | 264 | 	struct dictionary dict; | 
 | 265 | 	struct lzma2_dec lzma2; | 
 | 266 | 	struct lzma_dec lzma; | 
 | 267 |  | 
 | 268 | 	/* | 
 | 269 | 	 * Temporary buffer which holds small number of input bytes between | 
 | 270 | 	 * decoder calls. See lzma2_lzma() for details. | 
 | 271 | 	 */ | 
 | 272 | 	struct { | 
 | 273 | 		uint32_t size; | 
 | 274 | 		uint8_t buf[3 * LZMA_IN_REQUIRED]; | 
 | 275 | 	} temp; | 
 | 276 | }; | 
 | 277 |  | 
 | 278 | /************** | 
 | 279 |  * Dictionary * | 
 | 280 |  **************/ | 
 | 281 |  | 
 | 282 | /* | 
 | 283 |  * Reset the dictionary state. When in single-call mode, set up the beginning | 
 | 284 |  * of the dictionary to point to the actual output buffer. | 
 | 285 |  */ | 
 | 286 | static void dict_reset(struct dictionary *dict, struct xz_buf *b) | 
 | 287 | { | 
 | 288 | 	if (DEC_IS_SINGLE(dict->mode)) { | 
 | 289 | 		dict->buf = b->out + b->out_pos; | 
 | 290 | 		dict->end = b->out_size - b->out_pos; | 
 | 291 | 	} | 
 | 292 |  | 
 | 293 | 	dict->start = 0; | 
 | 294 | 	dict->pos = 0; | 
 | 295 | 	dict->limit = 0; | 
 | 296 | 	dict->full = 0; | 
 | 297 | } | 
 | 298 |  | 
 | 299 | /* Set dictionary write limit */ | 
 | 300 | static void dict_limit(struct dictionary *dict, size_t out_max) | 
 | 301 | { | 
 | 302 | 	if (dict->end - dict->pos <= out_max) | 
 | 303 | 		dict->limit = dict->end; | 
 | 304 | 	else | 
 | 305 | 		dict->limit = dict->pos + out_max; | 
 | 306 | } | 
 | 307 |  | 
 | 308 | /* Return true if at least one byte can be written into the dictionary. */ | 
 | 309 | static inline bool dict_has_space(const struct dictionary *dict) | 
 | 310 | { | 
 | 311 | 	return dict->pos < dict->limit; | 
 | 312 | } | 
 | 313 |  | 
 | 314 | /* | 
 | 315 |  * Get a byte from the dictionary at the given distance. The distance is | 
 | 316 |  * assumed to valid, or as a special case, zero when the dictionary is | 
 | 317 |  * still empty. This special case is needed for single-call decoding to | 
 | 318 |  * avoid writing a '\0' to the end of the destination buffer. | 
 | 319 |  */ | 
 | 320 | static inline uint32_t dict_get(const struct dictionary *dict, uint32_t dist) | 
 | 321 | { | 
 | 322 | 	size_t offset = dict->pos - dist - 1; | 
 | 323 |  | 
 | 324 | 	if (dist >= dict->pos) | 
 | 325 | 		offset += dict->end; | 
 | 326 |  | 
 | 327 | 	return dict->full > 0 ? dict->buf[offset] : 0; | 
 | 328 | } | 
 | 329 |  | 
 | 330 | /* | 
 | 331 |  * Put one byte into the dictionary. It is assumed that there is space for it. | 
 | 332 |  */ | 
 | 333 | static inline void dict_put(struct dictionary *dict, uint8_t byte) | 
 | 334 | { | 
 | 335 | 	dict->buf[dict->pos++] = byte; | 
 | 336 |  | 
 | 337 | 	if (dict->full < dict->pos) | 
 | 338 | 		dict->full = dict->pos; | 
 | 339 | } | 
 | 340 |  | 
 | 341 | /* | 
 | 342 |  * Repeat given number of bytes from the given distance. If the distance is | 
 | 343 |  * invalid, false is returned. On success, true is returned and *len is | 
 | 344 |  * updated to indicate how many bytes were left to be repeated. | 
 | 345 |  */ | 
 | 346 | static bool dict_repeat(struct dictionary *dict, uint32_t *len, uint32_t dist) | 
 | 347 | { | 
 | 348 | 	size_t back; | 
 | 349 | 	uint32_t left; | 
 | 350 |  | 
 | 351 | 	if (dist >= dict->full || dist >= dict->size) | 
 | 352 | 		return false; | 
 | 353 |  | 
 | 354 | 	left = min_t(size_t, dict->limit - dict->pos, *len); | 
 | 355 | 	*len -= left; | 
 | 356 |  | 
 | 357 | 	back = dict->pos - dist - 1; | 
 | 358 | 	if (dist >= dict->pos) | 
 | 359 | 		back += dict->end; | 
 | 360 |  | 
 | 361 | 	do { | 
 | 362 | 		dict->buf[dict->pos++] = dict->buf[back++]; | 
 | 363 | 		if (back == dict->end) | 
 | 364 | 			back = 0; | 
 | 365 | 	} while (--left > 0); | 
 | 366 |  | 
 | 367 | 	if (dict->full < dict->pos) | 
 | 368 | 		dict->full = dict->pos; | 
 | 369 |  | 
 | 370 | 	return true; | 
 | 371 | } | 
 | 372 |  | 
 | 373 | /* Copy uncompressed data as is from input to dictionary and output buffers. */ | 
 | 374 | static void dict_uncompressed(struct dictionary *dict, struct xz_buf *b, | 
 | 375 | 			      uint32_t *left) | 
 | 376 | { | 
 | 377 | 	size_t copy_size; | 
 | 378 |  | 
 | 379 | 	while (*left > 0 && b->in_pos < b->in_size | 
 | 380 | 			&& b->out_pos < b->out_size) { | 
 | 381 | 		copy_size = min(b->in_size - b->in_pos, | 
 | 382 | 				b->out_size - b->out_pos); | 
 | 383 | 		if (copy_size > dict->end - dict->pos) | 
 | 384 | 			copy_size = dict->end - dict->pos; | 
 | 385 | 		if (copy_size > *left) | 
 | 386 | 			copy_size = *left; | 
 | 387 |  | 
 | 388 | 		*left -= copy_size; | 
 | 389 |  | 
 | 390 | 		memcpy(dict->buf + dict->pos, b->in + b->in_pos, copy_size); | 
 | 391 | 		dict->pos += copy_size; | 
 | 392 |  | 
 | 393 | 		if (dict->full < dict->pos) | 
 | 394 | 			dict->full = dict->pos; | 
 | 395 |  | 
 | 396 | 		if (DEC_IS_MULTI(dict->mode)) { | 
 | 397 | 			if (dict->pos == dict->end) | 
 | 398 | 				dict->pos = 0; | 
 | 399 |  | 
 | 400 | 			memcpy(b->out + b->out_pos, b->in + b->in_pos, | 
 | 401 | 					copy_size); | 
 | 402 | 		} | 
 | 403 |  | 
 | 404 | 		dict->start = dict->pos; | 
 | 405 |  | 
 | 406 | 		b->out_pos += copy_size; | 
 | 407 | 		b->in_pos += copy_size; | 
 | 408 | 	} | 
 | 409 | } | 
 | 410 |  | 
 | 411 | /* | 
 | 412 |  * Flush pending data from dictionary to b->out. It is assumed that there is | 
 | 413 |  * enough space in b->out. This is guaranteed because caller uses dict_limit() | 
 | 414 |  * before decoding data into the dictionary. | 
 | 415 |  */ | 
 | 416 | static uint32_t dict_flush(struct dictionary *dict, struct xz_buf *b) | 
 | 417 | { | 
 | 418 | 	size_t copy_size = dict->pos - dict->start; | 
 | 419 |  | 
 | 420 | 	if (DEC_IS_MULTI(dict->mode)) { | 
 | 421 | 		if (dict->pos == dict->end) | 
 | 422 | 			dict->pos = 0; | 
 | 423 |  | 
 | 424 | 		memcpy(b->out + b->out_pos, dict->buf + dict->start, | 
 | 425 | 				copy_size); | 
 | 426 | 	} | 
 | 427 |  | 
 | 428 | 	dict->start = dict->pos; | 
 | 429 | 	b->out_pos += copy_size; | 
 | 430 | 	return copy_size; | 
 | 431 | } | 
 | 432 |  | 
 | 433 | /***************** | 
 | 434 |  * Range decoder * | 
 | 435 |  *****************/ | 
 | 436 |  | 
 | 437 | /* Reset the range decoder. */ | 
 | 438 | static void rc_reset(struct rc_dec *rc) | 
 | 439 | { | 
 | 440 | 	rc->range = (uint32_t)-1; | 
 | 441 | 	rc->code = 0; | 
 | 442 | 	rc->init_bytes_left = RC_INIT_BYTES; | 
 | 443 | } | 
 | 444 |  | 
 | 445 | /* | 
 | 446 |  * Read the first five initial bytes into rc->code if they haven't been | 
 | 447 |  * read already. (Yes, the first byte gets completely ignored.) | 
 | 448 |  */ | 
 | 449 | static bool rc_read_init(struct rc_dec *rc, struct xz_buf *b) | 
 | 450 | { | 
 | 451 | 	while (rc->init_bytes_left > 0) { | 
 | 452 | 		if (b->in_pos == b->in_size) | 
 | 453 | 			return false; | 
 | 454 |  | 
 | 455 | 		rc->code = (rc->code << 8) + b->in[b->in_pos++]; | 
 | 456 | 		--rc->init_bytes_left; | 
 | 457 | 	} | 
 | 458 |  | 
 | 459 | 	return true; | 
 | 460 | } | 
 | 461 |  | 
 | 462 | /* Return true if there may not be enough input for the next decoding loop. */ | 
 | 463 | static inline bool rc_limit_exceeded(const struct rc_dec *rc) | 
 | 464 | { | 
 | 465 | 	return rc->in_pos > rc->in_limit; | 
 | 466 | } | 
 | 467 |  | 
 | 468 | /* | 
 | 469 |  * Return true if it is possible (from point of view of range decoder) that | 
 | 470 |  * we have reached the end of the LZMA chunk. | 
 | 471 |  */ | 
 | 472 | static inline bool rc_is_finished(const struct rc_dec *rc) | 
 | 473 | { | 
 | 474 | 	return rc->code == 0; | 
 | 475 | } | 
 | 476 |  | 
 | 477 | /* Read the next input byte if needed. */ | 
 | 478 | static __always_inline void rc_normalize(struct rc_dec *rc) | 
 | 479 | { | 
 | 480 | 	if (rc->range < RC_TOP_VALUE) { | 
 | 481 | 		rc->range <<= RC_SHIFT_BITS; | 
 | 482 | 		rc->code = (rc->code << RC_SHIFT_BITS) + rc->in[rc->in_pos++]; | 
 | 483 | 	} | 
 | 484 | } | 
 | 485 |  | 
 | 486 | /* | 
 | 487 |  * Decode one bit. In some versions, this function has been splitted in three | 
 | 488 |  * functions so that the compiler is supposed to be able to more easily avoid | 
 | 489 |  * an extra branch. In this particular version of the LZMA decoder, this | 
 | 490 |  * doesn't seem to be a good idea (tested with GCC 3.3.6, 3.4.6, and 4.3.3 | 
 | 491 |  * on x86). Using a non-splitted version results in nicer looking code too. | 
 | 492 |  * | 
 | 493 |  * NOTE: This must return an int. Do not make it return a bool or the speed | 
 | 494 |  * of the code generated by GCC 3.x decreases 10-15 %. (GCC 4.3 doesn't care, | 
 | 495 |  * and it generates 10-20 % faster code than GCC 3.x from this file anyway.) | 
 | 496 |  */ | 
 | 497 | static __always_inline int rc_bit(struct rc_dec *rc, uint16_t *prob) | 
 | 498 | { | 
 | 499 | 	uint32_t bound; | 
 | 500 | 	int bit; | 
 | 501 |  | 
 | 502 | 	rc_normalize(rc); | 
 | 503 | 	bound = (rc->range >> RC_BIT_MODEL_TOTAL_BITS) * *prob; | 
 | 504 | 	if (rc->code < bound) { | 
 | 505 | 		rc->range = bound; | 
 | 506 | 		*prob += (RC_BIT_MODEL_TOTAL - *prob) >> RC_MOVE_BITS; | 
 | 507 | 		bit = 0; | 
 | 508 | 	} else { | 
 | 509 | 		rc->range -= bound; | 
 | 510 | 		rc->code -= bound; | 
 | 511 | 		*prob -= *prob >> RC_MOVE_BITS; | 
 | 512 | 		bit = 1; | 
 | 513 | 	} | 
 | 514 |  | 
 | 515 | 	return bit; | 
 | 516 | } | 
 | 517 |  | 
 | 518 | /* Decode a bittree starting from the most significant bit. */ | 
 | 519 | static __always_inline uint32_t rc_bittree(struct rc_dec *rc, | 
 | 520 | 					   uint16_t *probs, uint32_t limit) | 
 | 521 | { | 
 | 522 | 	uint32_t symbol = 1; | 
 | 523 |  | 
 | 524 | 	do { | 
 | 525 | 		if (rc_bit(rc, &probs[symbol])) | 
 | 526 | 			symbol = (symbol << 1) + 1; | 
 | 527 | 		else | 
 | 528 | 			symbol <<= 1; | 
 | 529 | 	} while (symbol < limit); | 
 | 530 |  | 
 | 531 | 	return symbol; | 
 | 532 | } | 
 | 533 |  | 
 | 534 | /* Decode a bittree starting from the least significant bit. */ | 
 | 535 | static __always_inline void rc_bittree_reverse(struct rc_dec *rc, | 
 | 536 | 					       uint16_t *probs, | 
 | 537 | 					       uint32_t *dest, uint32_t limit) | 
 | 538 | { | 
 | 539 | 	uint32_t symbol = 1; | 
 | 540 | 	uint32_t i = 0; | 
 | 541 |  | 
 | 542 | 	do { | 
 | 543 | 		if (rc_bit(rc, &probs[symbol])) { | 
 | 544 | 			symbol = (symbol << 1) + 1; | 
 | 545 | 			*dest += 1 << i; | 
 | 546 | 		} else { | 
 | 547 | 			symbol <<= 1; | 
 | 548 | 		} | 
 | 549 | 	} while (++i < limit); | 
 | 550 | } | 
 | 551 |  | 
 | 552 | /* Decode direct bits (fixed fifty-fifty probability) */ | 
 | 553 | static inline void rc_direct(struct rc_dec *rc, uint32_t *dest, uint32_t limit) | 
 | 554 | { | 
 | 555 | 	uint32_t mask; | 
 | 556 |  | 
 | 557 | 	do { | 
 | 558 | 		rc_normalize(rc); | 
 | 559 | 		rc->range >>= 1; | 
 | 560 | 		rc->code -= rc->range; | 
 | 561 | 		mask = (uint32_t)0 - (rc->code >> 31); | 
 | 562 | 		rc->code += rc->range & mask; | 
 | 563 | 		*dest = (*dest << 1) + (mask + 1); | 
 | 564 | 	} while (--limit > 0); | 
 | 565 | } | 
 | 566 |  | 
 | 567 | /******** | 
 | 568 |  * LZMA * | 
 | 569 |  ********/ | 
 | 570 |  | 
 | 571 | /* Get pointer to literal coder probability array. */ | 
 | 572 | static uint16_t *lzma_literal_probs(struct xz_dec_lzma2 *s) | 
 | 573 | { | 
 | 574 | 	uint32_t prev_byte = dict_get(&s->dict, 0); | 
 | 575 | 	uint32_t low = prev_byte >> (8 - s->lzma.lc); | 
 | 576 | 	uint32_t high = (s->dict.pos & s->lzma.literal_pos_mask) << s->lzma.lc; | 
 | 577 | 	return s->lzma.literal[low + high]; | 
 | 578 | } | 
 | 579 |  | 
 | 580 | /* Decode a literal (one 8-bit byte) */ | 
 | 581 | static void lzma_literal(struct xz_dec_lzma2 *s) | 
 | 582 | { | 
 | 583 | 	uint16_t *probs; | 
 | 584 | 	uint32_t symbol; | 
 | 585 | 	uint32_t match_byte; | 
 | 586 | 	uint32_t match_bit; | 
 | 587 | 	uint32_t offset; | 
 | 588 | 	uint32_t i; | 
 | 589 |  | 
 | 590 | 	probs = lzma_literal_probs(s); | 
 | 591 |  | 
 | 592 | 	if (lzma_state_is_literal(s->lzma.state)) { | 
 | 593 | 		symbol = rc_bittree(&s->rc, probs, 0x100); | 
 | 594 | 	} else { | 
 | 595 | 		symbol = 1; | 
 | 596 | 		match_byte = dict_get(&s->dict, s->lzma.rep0) << 1; | 
 | 597 | 		offset = 0x100; | 
 | 598 |  | 
 | 599 | 		do { | 
 | 600 | 			match_bit = match_byte & offset; | 
 | 601 | 			match_byte <<= 1; | 
 | 602 | 			i = offset + match_bit + symbol; | 
 | 603 |  | 
 | 604 | 			if (rc_bit(&s->rc, &probs[i])) { | 
 | 605 | 				symbol = (symbol << 1) + 1; | 
 | 606 | 				offset &= match_bit; | 
 | 607 | 			} else { | 
 | 608 | 				symbol <<= 1; | 
 | 609 | 				offset &= ~match_bit; | 
 | 610 | 			} | 
 | 611 | 		} while (symbol < 0x100); | 
 | 612 | 	} | 
 | 613 |  | 
 | 614 | 	dict_put(&s->dict, (uint8_t)symbol); | 
 | 615 | 	lzma_state_literal(&s->lzma.state); | 
 | 616 | } | 
 | 617 |  | 
 | 618 | /* Decode the length of the match into s->lzma.len. */ | 
 | 619 | static void lzma_len(struct xz_dec_lzma2 *s, struct lzma_len_dec *l, | 
 | 620 | 		     uint32_t pos_state) | 
 | 621 | { | 
 | 622 | 	uint16_t *probs; | 
 | 623 | 	uint32_t limit; | 
 | 624 |  | 
 | 625 | 	if (!rc_bit(&s->rc, &l->choice)) { | 
 | 626 | 		probs = l->low[pos_state]; | 
 | 627 | 		limit = LEN_LOW_SYMBOLS; | 
 | 628 | 		s->lzma.len = MATCH_LEN_MIN; | 
 | 629 | 	} else { | 
 | 630 | 		if (!rc_bit(&s->rc, &l->choice2)) { | 
 | 631 | 			probs = l->mid[pos_state]; | 
 | 632 | 			limit = LEN_MID_SYMBOLS; | 
 | 633 | 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS; | 
 | 634 | 		} else { | 
 | 635 | 			probs = l->high; | 
 | 636 | 			limit = LEN_HIGH_SYMBOLS; | 
 | 637 | 			s->lzma.len = MATCH_LEN_MIN + LEN_LOW_SYMBOLS | 
 | 638 | 					+ LEN_MID_SYMBOLS; | 
 | 639 | 		} | 
 | 640 | 	} | 
 | 641 |  | 
 | 642 | 	s->lzma.len += rc_bittree(&s->rc, probs, limit) - limit; | 
 | 643 | } | 
 | 644 |  | 
 | 645 | /* Decode a match. The distance will be stored in s->lzma.rep0. */ | 
 | 646 | static void lzma_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | 
 | 647 | { | 
 | 648 | 	uint16_t *probs; | 
 | 649 | 	uint32_t dist_slot; | 
 | 650 | 	uint32_t limit; | 
 | 651 |  | 
 | 652 | 	lzma_state_match(&s->lzma.state); | 
 | 653 |  | 
 | 654 | 	s->lzma.rep3 = s->lzma.rep2; | 
 | 655 | 	s->lzma.rep2 = s->lzma.rep1; | 
 | 656 | 	s->lzma.rep1 = s->lzma.rep0; | 
 | 657 |  | 
 | 658 | 	lzma_len(s, &s->lzma.match_len_dec, pos_state); | 
 | 659 |  | 
 | 660 | 	probs = s->lzma.dist_slot[lzma_get_dist_state(s->lzma.len)]; | 
 | 661 | 	dist_slot = rc_bittree(&s->rc, probs, DIST_SLOTS) - DIST_SLOTS; | 
 | 662 |  | 
 | 663 | 	if (dist_slot < DIST_MODEL_START) { | 
 | 664 | 		s->lzma.rep0 = dist_slot; | 
 | 665 | 	} else { | 
 | 666 | 		limit = (dist_slot >> 1) - 1; | 
 | 667 | 		s->lzma.rep0 = 2 + (dist_slot & 1); | 
 | 668 |  | 
 | 669 | 		if (dist_slot < DIST_MODEL_END) { | 
 | 670 | 			s->lzma.rep0 <<= limit; | 
 | 671 | 			probs = s->lzma.dist_special + s->lzma.rep0 | 
 | 672 | 					- dist_slot - 1; | 
 | 673 | 			rc_bittree_reverse(&s->rc, probs, | 
 | 674 | 					&s->lzma.rep0, limit); | 
 | 675 | 		} else { | 
 | 676 | 			rc_direct(&s->rc, &s->lzma.rep0, limit - ALIGN_BITS); | 
 | 677 | 			s->lzma.rep0 <<= ALIGN_BITS; | 
 | 678 | 			rc_bittree_reverse(&s->rc, s->lzma.dist_align, | 
 | 679 | 					&s->lzma.rep0, ALIGN_BITS); | 
 | 680 | 		} | 
 | 681 | 	} | 
 | 682 | } | 
 | 683 |  | 
 | 684 | /* | 
 | 685 |  * Decode a repeated match. The distance is one of the four most recently | 
 | 686 |  * seen matches. The distance will be stored in s->lzma.rep0. | 
 | 687 |  */ | 
 | 688 | static void lzma_rep_match(struct xz_dec_lzma2 *s, uint32_t pos_state) | 
 | 689 | { | 
 | 690 | 	uint32_t tmp; | 
 | 691 |  | 
 | 692 | 	if (!rc_bit(&s->rc, &s->lzma.is_rep0[s->lzma.state])) { | 
 | 693 | 		if (!rc_bit(&s->rc, &s->lzma.is_rep0_long[ | 
 | 694 | 				s->lzma.state][pos_state])) { | 
 | 695 | 			lzma_state_short_rep(&s->lzma.state); | 
 | 696 | 			s->lzma.len = 1; | 
 | 697 | 			return; | 
 | 698 | 		} | 
 | 699 | 	} else { | 
 | 700 | 		if (!rc_bit(&s->rc, &s->lzma.is_rep1[s->lzma.state])) { | 
 | 701 | 			tmp = s->lzma.rep1; | 
 | 702 | 		} else { | 
 | 703 | 			if (!rc_bit(&s->rc, &s->lzma.is_rep2[s->lzma.state])) { | 
 | 704 | 				tmp = s->lzma.rep2; | 
 | 705 | 			} else { | 
 | 706 | 				tmp = s->lzma.rep3; | 
 | 707 | 				s->lzma.rep3 = s->lzma.rep2; | 
 | 708 | 			} | 
 | 709 |  | 
 | 710 | 			s->lzma.rep2 = s->lzma.rep1; | 
 | 711 | 		} | 
 | 712 |  | 
 | 713 | 		s->lzma.rep1 = s->lzma.rep0; | 
 | 714 | 		s->lzma.rep0 = tmp; | 
 | 715 | 	} | 
 | 716 |  | 
 | 717 | 	lzma_state_long_rep(&s->lzma.state); | 
 | 718 | 	lzma_len(s, &s->lzma.rep_len_dec, pos_state); | 
 | 719 | } | 
 | 720 |  | 
 | 721 | /* LZMA decoder core */ | 
 | 722 | static bool lzma_main(struct xz_dec_lzma2 *s) | 
 | 723 | { | 
 | 724 | 	uint32_t pos_state; | 
 | 725 |  | 
 | 726 | 	/* | 
 | 727 | 	 * If the dictionary was reached during the previous call, try to | 
 | 728 | 	 * finish the possibly pending repeat in the dictionary. | 
 | 729 | 	 */ | 
 | 730 | 	if (dict_has_space(&s->dict) && s->lzma.len > 0) | 
 | 731 | 		dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0); | 
 | 732 |  | 
 | 733 | 	/* | 
 | 734 | 	 * Decode more LZMA symbols. One iteration may consume up to | 
 | 735 | 	 * LZMA_IN_REQUIRED - 1 bytes. | 
 | 736 | 	 */ | 
 | 737 | 	while (dict_has_space(&s->dict) && !rc_limit_exceeded(&s->rc)) { | 
 | 738 | 		pos_state = s->dict.pos & s->lzma.pos_mask; | 
 | 739 |  | 
 | 740 | 		if (!rc_bit(&s->rc, &s->lzma.is_match[ | 
 | 741 | 				s->lzma.state][pos_state])) { | 
 | 742 | 			lzma_literal(s); | 
 | 743 | 		} else { | 
 | 744 | 			if (rc_bit(&s->rc, &s->lzma.is_rep[s->lzma.state])) | 
 | 745 | 				lzma_rep_match(s, pos_state); | 
 | 746 | 			else | 
 | 747 | 				lzma_match(s, pos_state); | 
 | 748 |  | 
 | 749 | 			if (!dict_repeat(&s->dict, &s->lzma.len, s->lzma.rep0)) | 
 | 750 | 				return false; | 
 | 751 | 		} | 
 | 752 | 	} | 
 | 753 |  | 
 | 754 | 	/* | 
 | 755 | 	 * Having the range decoder always normalized when we are outside | 
 | 756 | 	 * this function makes it easier to correctly handle end of the chunk. | 
 | 757 | 	 */ | 
 | 758 | 	rc_normalize(&s->rc); | 
 | 759 |  | 
 | 760 | 	return true; | 
 | 761 | } | 
 | 762 |  | 
 | 763 | /* | 
 | 764 |  * Reset the LZMA decoder and range decoder state. Dictionary is nore reset | 
 | 765 |  * here, because LZMA state may be reset without resetting the dictionary. | 
 | 766 |  */ | 
 | 767 | static void lzma_reset(struct xz_dec_lzma2 *s) | 
 | 768 | { | 
 | 769 | 	uint16_t *probs; | 
 | 770 | 	size_t i; | 
 | 771 |  | 
 | 772 | 	s->lzma.state = STATE_LIT_LIT; | 
 | 773 | 	s->lzma.rep0 = 0; | 
 | 774 | 	s->lzma.rep1 = 0; | 
 | 775 | 	s->lzma.rep2 = 0; | 
 | 776 | 	s->lzma.rep3 = 0; | 
 | 777 |  | 
 | 778 | 	/* | 
 | 779 | 	 * All probabilities are initialized to the same value. This hack | 
 | 780 | 	 * makes the code smaller by avoiding a separate loop for each | 
 | 781 | 	 * probability array. | 
 | 782 | 	 * | 
 | 783 | 	 * This could be optimized so that only that part of literal | 
 | 784 | 	 * probabilities that are actually required. In the common case | 
 | 785 | 	 * we would write 12 KiB less. | 
 | 786 | 	 */ | 
 | 787 | 	probs = s->lzma.is_match[0]; | 
 | 788 | 	for (i = 0; i < PROBS_TOTAL; ++i) | 
 | 789 | 		probs[i] = RC_BIT_MODEL_TOTAL / 2; | 
 | 790 |  | 
 | 791 | 	rc_reset(&s->rc); | 
 | 792 | } | 
 | 793 |  | 
 | 794 | /* | 
 | 795 |  * Decode and validate LZMA properties (lc/lp/pb) and calculate the bit masks | 
 | 796 |  * from the decoded lp and pb values. On success, the LZMA decoder state is | 
 | 797 |  * reset and true is returned. | 
 | 798 |  */ | 
 | 799 | static bool lzma_props(struct xz_dec_lzma2 *s, uint8_t props) | 
 | 800 | { | 
 | 801 | 	if (props > (4 * 5 + 4) * 9 + 8) | 
 | 802 | 		return false; | 
 | 803 |  | 
 | 804 | 	s->lzma.pos_mask = 0; | 
 | 805 | 	while (props >= 9 * 5) { | 
 | 806 | 		props -= 9 * 5; | 
 | 807 | 		++s->lzma.pos_mask; | 
 | 808 | 	} | 
 | 809 |  | 
 | 810 | 	s->lzma.pos_mask = (1 << s->lzma.pos_mask) - 1; | 
 | 811 |  | 
 | 812 | 	s->lzma.literal_pos_mask = 0; | 
 | 813 | 	while (props >= 9) { | 
 | 814 | 		props -= 9; | 
 | 815 | 		++s->lzma.literal_pos_mask; | 
 | 816 | 	} | 
 | 817 |  | 
 | 818 | 	s->lzma.lc = props; | 
 | 819 |  | 
 | 820 | 	if (s->lzma.lc + s->lzma.literal_pos_mask > 4) | 
 | 821 | 		return false; | 
 | 822 |  | 
 | 823 | 	s->lzma.literal_pos_mask = (1 << s->lzma.literal_pos_mask) - 1; | 
 | 824 |  | 
 | 825 | 	lzma_reset(s); | 
 | 826 |  | 
 | 827 | 	return true; | 
 | 828 | } | 
 | 829 |  | 
 | 830 | /********* | 
 | 831 |  * LZMA2 * | 
 | 832 |  *********/ | 
 | 833 |  | 
 | 834 | /* | 
 | 835 |  * The LZMA decoder assumes that if the input limit (s->rc.in_limit) hasn't | 
 | 836 |  * been exceeded, it is safe to read up to LZMA_IN_REQUIRED bytes. This | 
 | 837 |  * wrapper function takes care of making the LZMA decoder's assumption safe. | 
 | 838 |  * | 
 | 839 |  * As long as there is plenty of input left to be decoded in the current LZMA | 
 | 840 |  * chunk, we decode directly from the caller-supplied input buffer until | 
 | 841 |  * there's LZMA_IN_REQUIRED bytes left. Those remaining bytes are copied into | 
 | 842 |  * s->temp.buf, which (hopefully) gets filled on the next call to this | 
 | 843 |  * function. We decode a few bytes from the temporary buffer so that we can | 
 | 844 |  * continue decoding from the caller-supplied input buffer again. | 
 | 845 |  */ | 
 | 846 | static bool lzma2_lzma(struct xz_dec_lzma2 *s, struct xz_buf *b) | 
 | 847 | { | 
 | 848 | 	size_t in_avail; | 
 | 849 | 	uint32_t tmp; | 
 | 850 |  | 
 | 851 | 	in_avail = b->in_size - b->in_pos; | 
 | 852 | 	if (s->temp.size > 0 || s->lzma2.compressed == 0) { | 
 | 853 | 		tmp = 2 * LZMA_IN_REQUIRED - s->temp.size; | 
 | 854 | 		if (tmp > s->lzma2.compressed - s->temp.size) | 
 | 855 | 			tmp = s->lzma2.compressed - s->temp.size; | 
 | 856 | 		if (tmp > in_avail) | 
 | 857 | 			tmp = in_avail; | 
 | 858 |  | 
 | 859 | 		memcpy(s->temp.buf + s->temp.size, b->in + b->in_pos, tmp); | 
 | 860 |  | 
 | 861 | 		if (s->temp.size + tmp == s->lzma2.compressed) { | 
 | 862 | 			memzero(s->temp.buf + s->temp.size + tmp, | 
 | 863 | 					sizeof(s->temp.buf) | 
 | 864 | 						- s->temp.size - tmp); | 
 | 865 | 			s->rc.in_limit = s->temp.size + tmp; | 
 | 866 | 		} else if (s->temp.size + tmp < LZMA_IN_REQUIRED) { | 
 | 867 | 			s->temp.size += tmp; | 
 | 868 | 			b->in_pos += tmp; | 
 | 869 | 			return true; | 
 | 870 | 		} else { | 
 | 871 | 			s->rc.in_limit = s->temp.size + tmp - LZMA_IN_REQUIRED; | 
 | 872 | 		} | 
 | 873 |  | 
 | 874 | 		s->rc.in = s->temp.buf; | 
 | 875 | 		s->rc.in_pos = 0; | 
 | 876 |  | 
 | 877 | 		if (!lzma_main(s) || s->rc.in_pos > s->temp.size + tmp) | 
 | 878 | 			return false; | 
 | 879 |  | 
 | 880 | 		s->lzma2.compressed -= s->rc.in_pos; | 
 | 881 |  | 
 | 882 | 		if (s->rc.in_pos < s->temp.size) { | 
 | 883 | 			s->temp.size -= s->rc.in_pos; | 
 | 884 | 			memmove(s->temp.buf, s->temp.buf + s->rc.in_pos, | 
 | 885 | 					s->temp.size); | 
 | 886 | 			return true; | 
 | 887 | 		} | 
 | 888 |  | 
 | 889 | 		b->in_pos += s->rc.in_pos - s->temp.size; | 
 | 890 | 		s->temp.size = 0; | 
 | 891 | 	} | 
 | 892 |  | 
 | 893 | 	in_avail = b->in_size - b->in_pos; | 
 | 894 | 	if (in_avail >= LZMA_IN_REQUIRED) { | 
 | 895 | 		s->rc.in = b->in; | 
 | 896 | 		s->rc.in_pos = b->in_pos; | 
 | 897 |  | 
 | 898 | 		if (in_avail >= s->lzma2.compressed + LZMA_IN_REQUIRED) | 
 | 899 | 			s->rc.in_limit = b->in_pos + s->lzma2.compressed; | 
 | 900 | 		else | 
 | 901 | 			s->rc.in_limit = b->in_size - LZMA_IN_REQUIRED; | 
 | 902 |  | 
 | 903 | 		if (!lzma_main(s)) | 
 | 904 | 			return false; | 
 | 905 |  | 
 | 906 | 		in_avail = s->rc.in_pos - b->in_pos; | 
 | 907 | 		if (in_avail > s->lzma2.compressed) | 
 | 908 | 			return false; | 
 | 909 |  | 
 | 910 | 		s->lzma2.compressed -= in_avail; | 
 | 911 | 		b->in_pos = s->rc.in_pos; | 
 | 912 | 	} | 
 | 913 |  | 
 | 914 | 	in_avail = b->in_size - b->in_pos; | 
 | 915 | 	if (in_avail < LZMA_IN_REQUIRED) { | 
 | 916 | 		if (in_avail > s->lzma2.compressed) | 
 | 917 | 			in_avail = s->lzma2.compressed; | 
 | 918 |  | 
 | 919 | 		memcpy(s->temp.buf, b->in + b->in_pos, in_avail); | 
 | 920 | 		s->temp.size = in_avail; | 
 | 921 | 		b->in_pos += in_avail; | 
 | 922 | 	} | 
 | 923 |  | 
 | 924 | 	return true; | 
 | 925 | } | 
 | 926 |  | 
 | 927 | /* | 
 | 928 |  * Take care of the LZMA2 control layer, and forward the job of actual LZMA | 
 | 929 |  * decoding or copying of uncompressed chunks to other functions. | 
 | 930 |  */ | 
 | 931 | XZ_EXTERN enum xz_ret xz_dec_lzma2_run(struct xz_dec_lzma2 *s, | 
 | 932 | 				       struct xz_buf *b) | 
 | 933 | { | 
 | 934 | 	uint32_t tmp; | 
 | 935 |  | 
 | 936 | 	while (b->in_pos < b->in_size || s->lzma2.sequence == SEQ_LZMA_RUN) { | 
 | 937 | 		switch (s->lzma2.sequence) { | 
 | 938 | 		case SEQ_CONTROL: | 
 | 939 | 			/* | 
 | 940 | 			 * LZMA2 control byte | 
 | 941 | 			 * | 
 | 942 | 			 * Exact values: | 
 | 943 | 			 *   0x00   End marker | 
 | 944 | 			 *   0x01   Dictionary reset followed by | 
 | 945 | 			 *          an uncompressed chunk | 
 | 946 | 			 *   0x02   Uncompressed chunk (no dictionary reset) | 
 | 947 | 			 * | 
 | 948 | 			 * Highest three bits (s->control & 0xE0): | 
 | 949 | 			 *   0xE0   Dictionary reset, new properties and state | 
 | 950 | 			 *          reset, followed by LZMA compressed chunk | 
 | 951 | 			 *   0xC0   New properties and state reset, followed | 
 | 952 | 			 *          by LZMA compressed chunk (no dictionary | 
 | 953 | 			 *          reset) | 
 | 954 | 			 *   0xA0   State reset using old properties, | 
 | 955 | 			 *          followed by LZMA compressed chunk (no | 
 | 956 | 			 *          dictionary reset) | 
 | 957 | 			 *   0x80   LZMA chunk (no dictionary or state reset) | 
 | 958 | 			 * | 
 | 959 | 			 * For LZMA compressed chunks, the lowest five bits | 
 | 960 | 			 * (s->control & 1F) are the highest bits of the | 
 | 961 | 			 * uncompressed size (bits 16-20). | 
 | 962 | 			 * | 
 | 963 | 			 * A new LZMA2 stream must begin with a dictionary | 
 | 964 | 			 * reset. The first LZMA chunk must set new | 
 | 965 | 			 * properties and reset the LZMA state. | 
 | 966 | 			 * | 
 | 967 | 			 * Values that don't match anything described above | 
 | 968 | 			 * are invalid and we return XZ_DATA_ERROR. | 
 | 969 | 			 */ | 
 | 970 | 			tmp = b->in[b->in_pos++]; | 
 | 971 |  | 
| Lasse Collin | 646032e | 2011-05-01 19:38:42 +0300 | [diff] [blame] | 972 | 			if (tmp == 0x00) | 
 | 973 | 				return XZ_STREAM_END; | 
 | 974 |  | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 975 | 			if (tmp >= 0xE0 || tmp == 0x01) { | 
 | 976 | 				s->lzma2.need_props = true; | 
 | 977 | 				s->lzma2.need_dict_reset = false; | 
 | 978 | 				dict_reset(&s->dict, b); | 
 | 979 | 			} else if (s->lzma2.need_dict_reset) { | 
 | 980 | 				return XZ_DATA_ERROR; | 
 | 981 | 			} | 
 | 982 |  | 
 | 983 | 			if (tmp >= 0x80) { | 
 | 984 | 				s->lzma2.uncompressed = (tmp & 0x1F) << 16; | 
 | 985 | 				s->lzma2.sequence = SEQ_UNCOMPRESSED_1; | 
 | 986 |  | 
 | 987 | 				if (tmp >= 0xC0) { | 
 | 988 | 					/* | 
 | 989 | 					 * When there are new properties, | 
 | 990 | 					 * state reset is done at | 
 | 991 | 					 * SEQ_PROPERTIES. | 
 | 992 | 					 */ | 
 | 993 | 					s->lzma2.need_props = false; | 
 | 994 | 					s->lzma2.next_sequence | 
 | 995 | 							= SEQ_PROPERTIES; | 
 | 996 |  | 
 | 997 | 				} else if (s->lzma2.need_props) { | 
 | 998 | 					return XZ_DATA_ERROR; | 
 | 999 |  | 
 | 1000 | 				} else { | 
 | 1001 | 					s->lzma2.next_sequence | 
 | 1002 | 							= SEQ_LZMA_PREPARE; | 
 | 1003 | 					if (tmp >= 0xA0) | 
 | 1004 | 						lzma_reset(s); | 
 | 1005 | 				} | 
 | 1006 | 			} else { | 
| Lasse Collin | 24fa040 | 2011-01-12 17:01:22 -0800 | [diff] [blame] | 1007 | 				if (tmp > 0x02) | 
 | 1008 | 					return XZ_DATA_ERROR; | 
 | 1009 |  | 
 | 1010 | 				s->lzma2.sequence = SEQ_COMPRESSED_0; | 
 | 1011 | 				s->lzma2.next_sequence = SEQ_COPY; | 
 | 1012 | 			} | 
 | 1013 |  | 
 | 1014 | 			break; | 
 | 1015 |  | 
 | 1016 | 		case SEQ_UNCOMPRESSED_1: | 
 | 1017 | 			s->lzma2.uncompressed | 
 | 1018 | 					+= (uint32_t)b->in[b->in_pos++] << 8; | 
 | 1019 | 			s->lzma2.sequence = SEQ_UNCOMPRESSED_2; | 
 | 1020 | 			break; | 
 | 1021 |  | 
 | 1022 | 		case SEQ_UNCOMPRESSED_2: | 
 | 1023 | 			s->lzma2.uncompressed | 
 | 1024 | 					+= (uint32_t)b->in[b->in_pos++] + 1; | 
 | 1025 | 			s->lzma2.sequence = SEQ_COMPRESSED_0; | 
 | 1026 | 			break; | 
 | 1027 |  | 
 | 1028 | 		case SEQ_COMPRESSED_0: | 
 | 1029 | 			s->lzma2.compressed | 
 | 1030 | 					= (uint32_t)b->in[b->in_pos++] << 8; | 
 | 1031 | 			s->lzma2.sequence = SEQ_COMPRESSED_1; | 
 | 1032 | 			break; | 
 | 1033 |  | 
 | 1034 | 		case SEQ_COMPRESSED_1: | 
 | 1035 | 			s->lzma2.compressed | 
 | 1036 | 					+= (uint32_t)b->in[b->in_pos++] + 1; | 
 | 1037 | 			s->lzma2.sequence = s->lzma2.next_sequence; | 
 | 1038 | 			break; | 
 | 1039 |  | 
 | 1040 | 		case SEQ_PROPERTIES: | 
 | 1041 | 			if (!lzma_props(s, b->in[b->in_pos++])) | 
 | 1042 | 				return XZ_DATA_ERROR; | 
 | 1043 |  | 
 | 1044 | 			s->lzma2.sequence = SEQ_LZMA_PREPARE; | 
 | 1045 |  | 
 | 1046 | 		case SEQ_LZMA_PREPARE: | 
 | 1047 | 			if (s->lzma2.compressed < RC_INIT_BYTES) | 
 | 1048 | 				return XZ_DATA_ERROR; | 
 | 1049 |  | 
 | 1050 | 			if (!rc_read_init(&s->rc, b)) | 
 | 1051 | 				return XZ_OK; | 
 | 1052 |  | 
 | 1053 | 			s->lzma2.compressed -= RC_INIT_BYTES; | 
 | 1054 | 			s->lzma2.sequence = SEQ_LZMA_RUN; | 
 | 1055 |  | 
 | 1056 | 		case SEQ_LZMA_RUN: | 
 | 1057 | 			/* | 
 | 1058 | 			 * Set dictionary limit to indicate how much we want | 
 | 1059 | 			 * to be encoded at maximum. Decode new data into the | 
 | 1060 | 			 * dictionary. Flush the new data from dictionary to | 
 | 1061 | 			 * b->out. Check if we finished decoding this chunk. | 
 | 1062 | 			 * In case the dictionary got full but we didn't fill | 
 | 1063 | 			 * the output buffer yet, we may run this loop | 
 | 1064 | 			 * multiple times without changing s->lzma2.sequence. | 
 | 1065 | 			 */ | 
 | 1066 | 			dict_limit(&s->dict, min_t(size_t, | 
 | 1067 | 					b->out_size - b->out_pos, | 
 | 1068 | 					s->lzma2.uncompressed)); | 
 | 1069 | 			if (!lzma2_lzma(s, b)) | 
 | 1070 | 				return XZ_DATA_ERROR; | 
 | 1071 |  | 
 | 1072 | 			s->lzma2.uncompressed -= dict_flush(&s->dict, b); | 
 | 1073 |  | 
 | 1074 | 			if (s->lzma2.uncompressed == 0) { | 
 | 1075 | 				if (s->lzma2.compressed > 0 || s->lzma.len > 0 | 
 | 1076 | 						|| !rc_is_finished(&s->rc)) | 
 | 1077 | 					return XZ_DATA_ERROR; | 
 | 1078 |  | 
 | 1079 | 				rc_reset(&s->rc); | 
 | 1080 | 				s->lzma2.sequence = SEQ_CONTROL; | 
 | 1081 |  | 
 | 1082 | 			} else if (b->out_pos == b->out_size | 
 | 1083 | 					|| (b->in_pos == b->in_size | 
 | 1084 | 						&& s->temp.size | 
 | 1085 | 						< s->lzma2.compressed)) { | 
 | 1086 | 				return XZ_OK; | 
 | 1087 | 			} | 
 | 1088 |  | 
 | 1089 | 			break; | 
 | 1090 |  | 
 | 1091 | 		case SEQ_COPY: | 
 | 1092 | 			dict_uncompressed(&s->dict, b, &s->lzma2.compressed); | 
 | 1093 | 			if (s->lzma2.compressed > 0) | 
 | 1094 | 				return XZ_OK; | 
 | 1095 |  | 
 | 1096 | 			s->lzma2.sequence = SEQ_CONTROL; | 
 | 1097 | 			break; | 
 | 1098 | 		} | 
 | 1099 | 	} | 
 | 1100 |  | 
 | 1101 | 	return XZ_OK; | 
 | 1102 | } | 
 | 1103 |  | 
 | 1104 | XZ_EXTERN struct xz_dec_lzma2 *xz_dec_lzma2_create(enum xz_mode mode, | 
 | 1105 | 						   uint32_t dict_max) | 
 | 1106 | { | 
 | 1107 | 	struct xz_dec_lzma2 *s = kmalloc(sizeof(*s), GFP_KERNEL); | 
 | 1108 | 	if (s == NULL) | 
 | 1109 | 		return NULL; | 
 | 1110 |  | 
 | 1111 | 	s->dict.mode = mode; | 
 | 1112 | 	s->dict.size_max = dict_max; | 
 | 1113 |  | 
 | 1114 | 	if (DEC_IS_PREALLOC(mode)) { | 
 | 1115 | 		s->dict.buf = vmalloc(dict_max); | 
 | 1116 | 		if (s->dict.buf == NULL) { | 
 | 1117 | 			kfree(s); | 
 | 1118 | 			return NULL; | 
 | 1119 | 		} | 
 | 1120 | 	} else if (DEC_IS_DYNALLOC(mode)) { | 
 | 1121 | 		s->dict.buf = NULL; | 
 | 1122 | 		s->dict.allocated = 0; | 
 | 1123 | 	} | 
 | 1124 |  | 
 | 1125 | 	return s; | 
 | 1126 | } | 
 | 1127 |  | 
 | 1128 | XZ_EXTERN enum xz_ret xz_dec_lzma2_reset(struct xz_dec_lzma2 *s, uint8_t props) | 
 | 1129 | { | 
 | 1130 | 	/* This limits dictionary size to 3 GiB to keep parsing simpler. */ | 
 | 1131 | 	if (props > 39) | 
 | 1132 | 		return XZ_OPTIONS_ERROR; | 
 | 1133 |  | 
 | 1134 | 	s->dict.size = 2 + (props & 1); | 
 | 1135 | 	s->dict.size <<= (props >> 1) + 11; | 
 | 1136 |  | 
 | 1137 | 	if (DEC_IS_MULTI(s->dict.mode)) { | 
 | 1138 | 		if (s->dict.size > s->dict.size_max) | 
 | 1139 | 			return XZ_MEMLIMIT_ERROR; | 
 | 1140 |  | 
 | 1141 | 		s->dict.end = s->dict.size; | 
 | 1142 |  | 
 | 1143 | 		if (DEC_IS_DYNALLOC(s->dict.mode)) { | 
 | 1144 | 			if (s->dict.allocated < s->dict.size) { | 
 | 1145 | 				vfree(s->dict.buf); | 
 | 1146 | 				s->dict.buf = vmalloc(s->dict.size); | 
 | 1147 | 				if (s->dict.buf == NULL) { | 
 | 1148 | 					s->dict.allocated = 0; | 
 | 1149 | 					return XZ_MEM_ERROR; | 
 | 1150 | 				} | 
 | 1151 | 			} | 
 | 1152 | 		} | 
 | 1153 | 	} | 
 | 1154 |  | 
 | 1155 | 	s->lzma.len = 0; | 
 | 1156 |  | 
 | 1157 | 	s->lzma2.sequence = SEQ_CONTROL; | 
 | 1158 | 	s->lzma2.need_dict_reset = true; | 
 | 1159 |  | 
 | 1160 | 	s->temp.size = 0; | 
 | 1161 |  | 
 | 1162 | 	return XZ_OK; | 
 | 1163 | } | 
 | 1164 |  | 
 | 1165 | XZ_EXTERN void xz_dec_lzma2_end(struct xz_dec_lzma2 *s) | 
 | 1166 | { | 
 | 1167 | 	if (DEC_IS_MULTI(s->dict.mode)) | 
 | 1168 | 		vfree(s->dict.buf); | 
 | 1169 |  | 
 | 1170 | 	kfree(s); | 
 | 1171 | } |