| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * | 
 | 3 |  * Optimized version of the copy_user() routine. | 
 | 4 |  * It is used to copy date across the kernel/user boundary. | 
 | 5 |  * | 
 | 6 |  * The source and destination are always on opposite side of | 
 | 7 |  * the boundary. When reading from user space we must catch | 
 | 8 |  * faults on loads. When writing to user space we must catch | 
 | 9 |  * errors on stores. Note that because of the nature of the copy | 
 | 10 |  * we don't need to worry about overlapping regions. | 
 | 11 |  * | 
 | 12 |  * | 
 | 13 |  * Inputs: | 
 | 14 |  *	in0	address of source buffer | 
 | 15 |  *	in1	address of destination buffer | 
 | 16 |  *	in2	number of bytes to copy | 
 | 17 |  * | 
 | 18 |  * Outputs: | 
 | 19 |  *	ret0	0 in case of success. The number of bytes NOT copied in | 
 | 20 |  *		case of error. | 
 | 21 |  * | 
 | 22 |  * Copyright (C) 2000-2001 Hewlett-Packard Co | 
 | 23 |  *	Stephane Eranian <eranian@hpl.hp.com> | 
 | 24 |  * | 
 | 25 |  * Fixme: | 
 | 26 |  *	- handle the case where we have more than 16 bytes and the alignment | 
 | 27 |  *	  are different. | 
 | 28 |  *	- more benchmarking | 
 | 29 |  *	- fix extraneous stop bit introduced by the EX() macro. | 
 | 30 |  */ | 
 | 31 |  | 
 | 32 | #include <asm/asmmacro.h> | 
 | 33 |  | 
 | 34 | // | 
 | 35 | // Tuneable parameters | 
 | 36 | // | 
 | 37 | #define COPY_BREAK	16	// we do byte copy below (must be >=16) | 
 | 38 | #define PIPE_DEPTH	21	// pipe depth | 
 | 39 |  | 
 | 40 | #define EPI		p[PIPE_DEPTH-1] | 
 | 41 |  | 
 | 42 | // | 
 | 43 | // arguments | 
 | 44 | // | 
 | 45 | #define dst		in0 | 
 | 46 | #define src		in1 | 
 | 47 | #define len		in2 | 
 | 48 |  | 
 | 49 | // | 
 | 50 | // local registers | 
 | 51 | // | 
 | 52 | #define t1		r2	// rshift in bytes | 
 | 53 | #define t2		r3	// lshift in bytes | 
 | 54 | #define rshift		r14	// right shift in bits | 
 | 55 | #define lshift		r15	// left shift in bits | 
 | 56 | #define word1		r16 | 
 | 57 | #define word2		r17 | 
 | 58 | #define cnt		r18 | 
 | 59 | #define len2		r19 | 
 | 60 | #define saved_lc	r20 | 
 | 61 | #define saved_pr	r21 | 
 | 62 | #define tmp		r22 | 
 | 63 | #define val		r23 | 
 | 64 | #define src1		r24 | 
 | 65 | #define dst1		r25 | 
 | 66 | #define src2		r26 | 
 | 67 | #define dst2		r27 | 
 | 68 | #define len1		r28 | 
 | 69 | #define enddst		r29 | 
 | 70 | #define endsrc		r30 | 
 | 71 | #define saved_pfs	r31 | 
 | 72 |  | 
 | 73 | GLOBAL_ENTRY(__copy_user) | 
 | 74 | 	.prologue | 
 | 75 | 	.save ar.pfs, saved_pfs | 
 | 76 | 	alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) | 
 | 77 |  | 
 | 78 | 	.rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] | 
 | 79 | 	.rotp p[PIPE_DEPTH] | 
 | 80 |  | 
 | 81 | 	adds len2=-1,len	// br.ctop is repeat/until | 
 | 82 | 	mov ret0=r0 | 
 | 83 |  | 
 | 84 | 	;;			// RAW of cfm when len=0 | 
 | 85 | 	cmp.eq p8,p0=r0,len	// check for zero length | 
 | 86 | 	.save ar.lc, saved_lc | 
 | 87 | 	mov saved_lc=ar.lc	// preserve ar.lc (slow) | 
 | 88 | (p8)	br.ret.spnt.many rp	// empty mempcy() | 
 | 89 | 	;; | 
 | 90 | 	add enddst=dst,len	// first byte after end of source | 
 | 91 | 	add endsrc=src,len	// first byte after end of destination | 
 | 92 | 	.save pr, saved_pr | 
 | 93 | 	mov saved_pr=pr		// preserve predicates | 
 | 94 |  | 
 | 95 | 	.body | 
 | 96 |  | 
 | 97 | 	mov dst1=dst		// copy because of rotation | 
 | 98 | 	mov ar.ec=PIPE_DEPTH | 
 | 99 | 	mov pr.rot=1<<16	// p16=true all others are false | 
 | 100 |  | 
 | 101 | 	mov src1=src		// copy because of rotation | 
 | 102 | 	mov ar.lc=len2		// initialize lc for small count | 
 | 103 | 	cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy | 
 | 104 |  | 
 | 105 | 	xor tmp=src,dst		// same alignment test prepare | 
 | 106 | (p10)	br.cond.dptk .long_copy_user | 
 | 107 | 	;;			// RAW pr.rot/p16 ? | 
 | 108 | 	// | 
 | 109 | 	// Now we do the byte by byte loop with software pipeline | 
 | 110 | 	// | 
 | 111 | 	// p7 is necessarily false by now | 
 | 112 | 1: | 
 | 113 | 	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) | 
 | 114 | 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
 | 115 | 	br.ctop.dptk.few 1b | 
 | 116 | 	;; | 
 | 117 | 	mov ar.lc=saved_lc | 
 | 118 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 119 | 	mov ar.pfs=saved_pfs		// restore ar.ec | 
 | 120 | 	br.ret.sptk.many rp		// end of short memcpy | 
 | 121 |  | 
 | 122 | 	// | 
 | 123 | 	// Not 8-byte aligned | 
 | 124 | 	// | 
 | 125 | .diff_align_copy_user: | 
 | 126 | 	// At this point we know we have more than 16 bytes to copy | 
 | 127 | 	// and also that src and dest do _not_ have the same alignment. | 
 | 128 | 	and src2=0x7,src1				// src offset | 
 | 129 | 	and dst2=0x7,dst1				// dst offset | 
 | 130 | 	;; | 
 | 131 | 	// The basic idea is that we copy byte-by-byte at the head so | 
 | 132 | 	// that we can reach 8-byte alignment for both src1 and dst1. | 
 | 133 | 	// Then copy the body using software pipelined 8-byte copy, | 
 | 134 | 	// shifting the two back-to-back words right and left, then copy | 
 | 135 | 	// the tail by copying byte-by-byte. | 
 | 136 | 	// | 
 | 137 | 	// Fault handling. If the byte-by-byte at the head fails on the | 
 | 138 | 	// load, then restart and finish the pipleline by copying zeros | 
 | 139 | 	// to the dst1. Then copy zeros for the rest of dst1. | 
 | 140 | 	// If 8-byte software pipeline fails on the load, do the same as | 
 | 141 | 	// failure_in3 does. If the byte-by-byte at the tail fails, it is | 
 | 142 | 	// handled simply by failure_in_pipe1. | 
 | 143 | 	// | 
 | 144 | 	// The case p14 represents the source has more bytes in the | 
 | 145 | 	// the first word (by the shifted part), whereas the p15 needs to | 
 | 146 | 	// copy some bytes from the 2nd word of the source that has the | 
 | 147 | 	// tail of the 1st of the destination. | 
 | 148 | 	// | 
 | 149 |  | 
 | 150 | 	// | 
 | 151 | 	// Optimization. If dst1 is 8-byte aligned (quite common), we don't need | 
 | 152 | 	// to copy the head to dst1, to start 8-byte copy software pipeline. | 
 | 153 | 	// We know src1 is not 8-byte aligned in this case. | 
 | 154 | 	// | 
 | 155 | 	cmp.eq p14,p15=r0,dst2 | 
 | 156 | (p15)	br.cond.spnt 1f | 
 | 157 | 	;; | 
 | 158 | 	sub t1=8,src2 | 
 | 159 | 	mov t2=src2 | 
 | 160 | 	;; | 
 | 161 | 	shl rshift=t2,3 | 
 | 162 | 	sub len1=len,t1					// set len1 | 
 | 163 | 	;; | 
 | 164 | 	sub lshift=64,rshift | 
 | 165 | 	;; | 
 | 166 | 	br.cond.spnt .word_copy_user | 
 | 167 | 	;; | 
 | 168 | 1: | 
 | 169 | 	cmp.leu	p14,p15=src2,dst2 | 
 | 170 | 	sub t1=dst2,src2 | 
 | 171 | 	;; | 
 | 172 | 	.pred.rel "mutex", p14, p15 | 
 | 173 | (p14)	sub word1=8,src2				// (8 - src offset) | 
 | 174 | (p15)	sub t1=r0,t1					// absolute value | 
 | 175 | (p15)	sub word1=8,dst2				// (8 - dst offset) | 
 | 176 | 	;; | 
 | 177 | 	// For the case p14, we don't need to copy the shifted part to | 
 | 178 | 	// the 1st word of destination. | 
 | 179 | 	sub t2=8,t1 | 
 | 180 | (p14)	sub word1=word1,t1 | 
 | 181 | 	;; | 
 | 182 | 	sub len1=len,word1				// resulting len | 
 | 183 | (p15)	shl rshift=t1,3					// in bits | 
 | 184 | (p14)	shl rshift=t2,3 | 
 | 185 | 	;; | 
 | 186 | (p14)	sub len1=len1,t1 | 
 | 187 | 	adds cnt=-1,word1 | 
 | 188 | 	;; | 
 | 189 | 	sub lshift=64,rshift | 
 | 190 | 	mov ar.ec=PIPE_DEPTH | 
 | 191 | 	mov pr.rot=1<<16	// p16=true all others are false | 
 | 192 | 	mov ar.lc=cnt | 
 | 193 | 	;; | 
 | 194 | 2: | 
 | 195 | 	EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) | 
 | 196 | 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
 | 197 | 	br.ctop.dptk.few 2b | 
 | 198 | 	;; | 
 | 199 | 	clrrrb | 
 | 200 | 	;; | 
 | 201 | .word_copy_user: | 
 | 202 | 	cmp.gtu p9,p0=16,len1 | 
 | 203 | (p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy | 
 | 204 | 	;; | 
 | 205 | 	shr.u cnt=len1,3		// number of 64-bit words | 
 | 206 | 	;; | 
 | 207 | 	adds cnt=-1,cnt | 
 | 208 | 	;; | 
 | 209 | 	.pred.rel "mutex", p14, p15 | 
 | 210 | (p14)	sub src1=src1,t2 | 
 | 211 | (p15)	sub src1=src1,t1 | 
 | 212 | 	// | 
 | 213 | 	// Now both src1 and dst1 point to an 8-byte aligned address. And | 
 | 214 | 	// we have more than 8 bytes to copy. | 
 | 215 | 	// | 
 | 216 | 	mov ar.lc=cnt | 
 | 217 | 	mov ar.ec=PIPE_DEPTH | 
 | 218 | 	mov pr.rot=1<<16	// p16=true all others are false | 
 | 219 | 	;; | 
 | 220 | 3: | 
 | 221 | 	// | 
 | 222 | 	// The pipleline consists of 3 stages: | 
 | 223 | 	// 1 (p16):	Load a word from src1 | 
 | 224 | 	// 2 (EPI_1):	Shift right pair, saving to tmp | 
 | 225 | 	// 3 (EPI):	Store tmp to dst1 | 
 | 226 | 	// | 
 | 227 | 	// To make it simple, use at least 2 (p16) loops to set up val1[n] | 
 | 228 | 	// because we need 2 back-to-back val1[] to get tmp. | 
 | 229 | 	// Note that this implies EPI_2 must be p18 or greater. | 
 | 230 | 	// | 
 | 231 |  | 
 | 232 | #define EPI_1		p[PIPE_DEPTH-2] | 
 | 233 | #define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift | 
 | 234 | #define CASE(pred, shift)	\ | 
 | 235 | 	(pred)	br.cond.spnt .copy_user_bit##shift | 
 | 236 | #define BODY(rshift)						\ | 
 | 237 | .copy_user_bit##rshift:						\ | 
 | 238 | 1:								\ | 
 | 239 | 	EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\ | 
 | 240 | (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\ | 
 | 241 | 	EX(3f,(p16) ld8 val1[1]=[src1],8);			\ | 
 | 242 | (p16)	mov val1[0]=r0;						\ | 
 | 243 | 	br.ctop.dptk 1b;					\ | 
 | 244 | 	;;							\ | 
 | 245 | 	br.cond.sptk.many .diff_align_do_tail;			\ | 
 | 246 | 2:								\ | 
 | 247 | (EPI)	st8 [dst1]=tmp,8;					\ | 
 | 248 | (EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\ | 
 | 249 | 3:								\ | 
 | 250 | (p16)	mov val1[1]=r0;						\ | 
 | 251 | (p16)	mov val1[0]=r0;						\ | 
 | 252 | 	br.ctop.dptk 2b;					\ | 
 | 253 | 	;;							\ | 
 | 254 | 	br.cond.sptk.many .failure_in2 | 
 | 255 |  | 
 | 256 | 	// | 
 | 257 | 	// Since the instruction 'shrp' requires a fixed 128-bit value | 
 | 258 | 	// specifying the bits to shift, we need to provide 7 cases | 
 | 259 | 	// below. | 
 | 260 | 	// | 
 | 261 | 	SWITCH(p6, 8) | 
 | 262 | 	SWITCH(p7, 16) | 
 | 263 | 	SWITCH(p8, 24) | 
 | 264 | 	SWITCH(p9, 32) | 
 | 265 | 	SWITCH(p10, 40) | 
 | 266 | 	SWITCH(p11, 48) | 
 | 267 | 	SWITCH(p12, 56) | 
 | 268 | 	;; | 
 | 269 | 	CASE(p6, 8) | 
 | 270 | 	CASE(p7, 16) | 
 | 271 | 	CASE(p8, 24) | 
 | 272 | 	CASE(p9, 32) | 
 | 273 | 	CASE(p10, 40) | 
 | 274 | 	CASE(p11, 48) | 
 | 275 | 	CASE(p12, 56) | 
 | 276 | 	;; | 
 | 277 | 	BODY(8) | 
 | 278 | 	BODY(16) | 
 | 279 | 	BODY(24) | 
 | 280 | 	BODY(32) | 
 | 281 | 	BODY(40) | 
 | 282 | 	BODY(48) | 
 | 283 | 	BODY(56) | 
 | 284 | 	;; | 
 | 285 | .diff_align_do_tail: | 
 | 286 | 	.pred.rel "mutex", p14, p15 | 
 | 287 | (p14)	sub src1=src1,t1 | 
 | 288 | (p14)	adds dst1=-8,dst1 | 
 | 289 | (p15)	sub dst1=dst1,t1 | 
 | 290 | 	;; | 
 | 291 | 4: | 
 | 292 | 	// Tail correction. | 
 | 293 | 	// | 
 | 294 | 	// The problem with this piplelined loop is that the last word is not | 
 | 295 | 	// loaded and thus parf of the last word written is not correct. | 
 | 296 | 	// To fix that, we simply copy the tail byte by byte. | 
 | 297 |  | 
 | 298 | 	sub len1=endsrc,src1,1 | 
 | 299 | 	clrrrb | 
 | 300 | 	;; | 
 | 301 | 	mov ar.ec=PIPE_DEPTH | 
 | 302 | 	mov pr.rot=1<<16	// p16=true all others are false | 
 | 303 | 	mov ar.lc=len1 | 
 | 304 | 	;; | 
 | 305 | 5: | 
 | 306 | 	EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) | 
 | 307 | 	EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
 | 308 | 	br.ctop.dptk.few 5b | 
 | 309 | 	;; | 
 | 310 | 	mov ar.lc=saved_lc | 
 | 311 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 312 | 	mov ar.pfs=saved_pfs | 
 | 313 | 	br.ret.sptk.many rp | 
 | 314 |  | 
 | 315 | 	// | 
 | 316 | 	// Beginning of long mempcy (i.e. > 16 bytes) | 
 | 317 | 	// | 
 | 318 | .long_copy_user: | 
 | 319 | 	tbit.nz p6,p7=src1,0	// odd alignment | 
 | 320 | 	and tmp=7,tmp | 
 | 321 | 	;; | 
 | 322 | 	cmp.eq p10,p8=r0,tmp | 
 | 323 | 	mov len1=len		// copy because of rotation | 
 | 324 | (p8)	br.cond.dpnt .diff_align_copy_user | 
 | 325 | 	;; | 
 | 326 | 	// At this point we know we have more than 16 bytes to copy | 
 | 327 | 	// and also that both src and dest have the same alignment | 
 | 328 | 	// which may not be the one we want. So for now we must move | 
 | 329 | 	// forward slowly until we reach 16byte alignment: no need to | 
 | 330 | 	// worry about reaching the end of buffer. | 
 | 331 | 	// | 
 | 332 | 	EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned | 
 | 333 | (p6)	adds len1=-1,len1;; | 
 | 334 | 	tbit.nz p7,p0=src1,1 | 
 | 335 | 	;; | 
 | 336 | 	EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned | 
 | 337 | (p7)	adds len1=-2,len1;; | 
 | 338 | 	tbit.nz p8,p0=src1,2 | 
 | 339 | 	;; | 
 | 340 | 	// | 
 | 341 | 	// Stop bit not required after ld4 because if we fail on ld4 | 
 | 342 | 	// we have never executed the ld1, therefore st1 is not executed. | 
 | 343 | 	// | 
 | 344 | 	EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned | 
 | 345 | 	;; | 
 | 346 | 	EX(.failure_out,(p6) st1 [dst1]=val1[0],1) | 
 | 347 | 	tbit.nz p9,p0=src1,3 | 
 | 348 | 	;; | 
 | 349 | 	// | 
 | 350 | 	// Stop bit not required after ld8 because if we fail on ld8 | 
 | 351 | 	// we have never executed the ld2, therefore st2 is not executed. | 
 | 352 | 	// | 
 | 353 | 	EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned | 
 | 354 | 	EX(.failure_out,(p7) st2 [dst1]=val1[1],2) | 
 | 355 | (p8)	adds len1=-4,len1 | 
 | 356 | 	;; | 
 | 357 | 	EX(.failure_out, (p8) st4 [dst1]=val2[0],4) | 
 | 358 | (p9)	adds len1=-8,len1;; | 
 | 359 | 	shr.u cnt=len1,4		// number of 128-bit (2x64bit) words | 
 | 360 | 	;; | 
 | 361 | 	EX(.failure_out, (p9) st8 [dst1]=val2[1],8) | 
 | 362 | 	tbit.nz p6,p0=len1,3 | 
 | 363 | 	cmp.eq p7,p0=r0,cnt | 
 | 364 | 	adds tmp=-1,cnt			// br.ctop is repeat/until | 
 | 365 | (p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left | 
 | 366 | 	;; | 
 | 367 | 	adds src2=8,src1 | 
 | 368 | 	adds dst2=8,dst1 | 
 | 369 | 	mov ar.lc=tmp | 
 | 370 | 	;; | 
 | 371 | 	// | 
 | 372 | 	// 16bytes/iteration | 
 | 373 | 	// | 
 | 374 | 2: | 
 | 375 | 	EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) | 
 | 376 | (p16)	ld8 val2[0]=[src2],16 | 
 | 377 |  | 
 | 378 | 	EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16) | 
 | 379 | (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16 | 
 | 380 | 	br.ctop.dptk 2b | 
 | 381 | 	;;			// RAW on src1 when fall through from loop | 
 | 382 | 	// | 
 | 383 | 	// Tail correction based on len only | 
 | 384 | 	// | 
 | 385 | 	// No matter where we come from (loop or test) the src1 pointer | 
 | 386 | 	// is 16 byte aligned AND we have less than 16 bytes to copy. | 
 | 387 | 	// | 
 | 388 | .dotail: | 
 | 389 | 	EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes | 
 | 390 | 	tbit.nz p7,p0=len1,2 | 
 | 391 | 	;; | 
 | 392 | 	EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes | 
 | 393 | 	tbit.nz p8,p0=len1,1 | 
 | 394 | 	;; | 
 | 395 | 	EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes | 
 | 396 | 	tbit.nz p9,p0=len1,0 | 
 | 397 | 	;; | 
 | 398 | 	EX(.failure_out, (p6) st8 [dst1]=val1[0],8) | 
 | 399 | 	;; | 
 | 400 | 	EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left | 
 | 401 | 	mov ar.lc=saved_lc | 
 | 402 | 	;; | 
 | 403 | 	EX(.failure_out,(p7) st4 [dst1]=val1[1],4) | 
 | 404 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 405 | 	;; | 
 | 406 | 	EX(.failure_out, (p8)	st2 [dst1]=val2[0],2) | 
 | 407 | 	mov ar.pfs=saved_pfs | 
 | 408 | 	;; | 
 | 409 | 	EX(.failure_out, (p9)	st1 [dst1]=val2[1]) | 
 | 410 | 	br.ret.sptk.many rp | 
 | 411 |  | 
 | 412 |  | 
 | 413 | 	// | 
 | 414 | 	// Here we handle the case where the byte by byte copy fails | 
 | 415 | 	// on the load. | 
 | 416 | 	// Several factors make the zeroing of the rest of the buffer kind of | 
 | 417 | 	// tricky: | 
 | 418 | 	//	- the pipeline: loads/stores are not in sync (pipeline) | 
 | 419 | 	// | 
 | 420 | 	//	  In the same loop iteration, the dst1 pointer does not directly | 
 | 421 | 	//	  reflect where the faulty load was. | 
 | 422 | 	// | 
 | 423 | 	//	- pipeline effect | 
 | 424 | 	//	  When you get a fault on load, you may have valid data from | 
 | 425 | 	//	  previous loads not yet store in transit. Such data must be | 
 | 426 | 	//	  store normally before moving onto zeroing the rest. | 
 | 427 | 	// | 
 | 428 | 	//	- single/multi dispersal independence. | 
 | 429 | 	// | 
 | 430 | 	// solution: | 
 | 431 | 	//	- we don't disrupt the pipeline, i.e. data in transit in | 
 | 432 | 	//	  the software pipeline will be eventually move to memory. | 
 | 433 | 	//	  We simply replace the load with a simple mov and keep the | 
 | 434 | 	//	  pipeline going. We can't really do this inline because | 
 | 435 | 	//	  p16 is always reset to 1 when lc > 0. | 
 | 436 | 	// | 
 | 437 | .failure_in_pipe1: | 
 | 438 | 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
 | 439 | 1: | 
 | 440 | (p16)	mov val1[0]=r0 | 
 | 441 | (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1 | 
 | 442 | 	br.ctop.dptk 1b | 
 | 443 | 	;; | 
 | 444 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 445 | 	mov ar.lc=saved_lc | 
 | 446 | 	mov ar.pfs=saved_pfs | 
 | 447 | 	br.ret.sptk.many rp | 
 | 448 |  | 
 | 449 | 	// | 
 | 450 | 	// This is the case where the byte by byte copy fails on the load | 
 | 451 | 	// when we copy the head. We need to finish the pipeline and copy | 
 | 452 | 	// zeros for the rest of the destination. Since this happens | 
 | 453 | 	// at the top we still need to fill the body and tail. | 
 | 454 | .failure_in_pipe2: | 
 | 455 | 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
 | 456 | 2: | 
 | 457 | (p16)	mov val1[0]=r0 | 
 | 458 | (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1 | 
 | 459 | 	br.ctop.dptk 2b | 
 | 460 | 	;; | 
 | 461 | 	sub len=enddst,dst1,1		// precompute len | 
 | 462 | 	br.cond.dptk.many .failure_in1bis | 
 | 463 | 	;; | 
 | 464 |  | 
 | 465 | 	// | 
 | 466 | 	// Here we handle the head & tail part when we check for alignment. | 
 | 467 | 	// The following code handles only the load failures. The | 
 | 468 | 	// main diffculty comes from the fact that loads/stores are | 
 | 469 | 	// scheduled. So when you fail on a load, the stores corresponding | 
 | 470 | 	// to previous successful loads must be executed. | 
 | 471 | 	// | 
 | 472 | 	// However some simplifications are possible given the way | 
 | 473 | 	// things work. | 
 | 474 | 	// | 
 | 475 | 	// 1) HEAD | 
 | 476 | 	// Theory of operation: | 
 | 477 | 	// | 
 | 478 | 	//  Page A   | Page B | 
 | 479 | 	//  ---------|----- | 
 | 480 | 	//          1|8 x | 
 | 481 | 	//	  1 2|8 x | 
 | 482 | 	//	    4|8 x | 
 | 483 | 	//	  1 4|8 x | 
 | 484 | 	//        2 4|8 x | 
 | 485 | 	//      1 2 4|8 x | 
 | 486 | 	//	     |1 | 
 | 487 | 	//	     |2 x | 
 | 488 | 	//	     |4 x | 
 | 489 | 	// | 
 | 490 | 	// page_size >= 4k (2^12).  (x means 4, 2, 1) | 
 | 491 | 	// Here we suppose Page A exists and Page B does not. | 
 | 492 | 	// | 
 | 493 | 	// As we move towards eight byte alignment we may encounter faults. | 
 | 494 | 	// The numbers on each page show the size of the load (current alignment). | 
 | 495 | 	// | 
 | 496 | 	// Key point: | 
 | 497 | 	//	- if you fail on 1, 2, 4 then you have never executed any smaller | 
 | 498 | 	//	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed | 
 | 499 | 	//	  before. | 
 | 500 | 	// | 
 | 501 | 	// This allows us to simplify the cleanup code, because basically you | 
 | 502 | 	// only have to worry about "pending" stores in the case of a failing | 
 | 503 | 	// ld8(). Given the way the code is written today, this means only | 
 | 504 | 	// worry about st2, st4. There we can use the information encapsulated | 
 | 505 | 	// into the predicates. | 
 | 506 | 	// | 
 | 507 | 	// Other key point: | 
 | 508 | 	//	- if you fail on the ld8 in the head, it means you went straight | 
 | 509 | 	//	  to it, i.e. 8byte alignment within an unexisting page. | 
 | 510 | 	// Again this comes from the fact that if you crossed just for the ld8 then | 
 | 511 | 	// you are 8byte aligned but also 16byte align, therefore you would | 
 | 512 | 	// either go for the 16byte copy loop OR the ld8 in the tail part. | 
 | 513 | 	// The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible | 
 | 514 | 	// because it would mean you had 15bytes to copy in which case you | 
 | 515 | 	// would have defaulted to the byte by byte copy. | 
 | 516 | 	// | 
 | 517 | 	// | 
 | 518 | 	// 2) TAIL | 
 | 519 | 	// Here we now we have less than 16 bytes AND we are either 8 or 16 byte | 
 | 520 | 	// aligned. | 
 | 521 | 	// | 
 | 522 | 	// Key point: | 
 | 523 | 	// This means that we either: | 
 | 524 | 	//		- are right on a page boundary | 
 | 525 | 	//	OR | 
 | 526 | 	//		- are at more than 16 bytes from a page boundary with | 
 | 527 | 	//		  at most 15 bytes to copy: no chance of crossing. | 
 | 528 | 	// | 
 | 529 | 	// This allows us to assume that if we fail on a load we haven't possibly | 
 | 530 | 	// executed any of the previous (tail) ones, so we don't need to do | 
 | 531 | 	// any stores. For instance, if we fail on ld2, this means we had | 
 | 532 | 	// 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. | 
 | 533 | 	// | 
 | 534 | 	// This means that we are in a situation similar the a fault in the | 
 | 535 | 	// head part. That's nice! | 
 | 536 | 	// | 
 | 537 | .failure_in1: | 
 | 538 | 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
 | 539 | 	sub len=endsrc,src1,1 | 
 | 540 | 	// | 
 | 541 | 	// we know that ret0 can never be zero at this point | 
 | 542 | 	// because we failed why trying to do a load, i.e. there is still | 
 | 543 | 	// some work to do. | 
 | 544 | 	// The failure_in1bis and length problem is taken care of at the | 
 | 545 | 	// calling side. | 
 | 546 | 	// | 
 | 547 | 	;; | 
 | 548 | .failure_in1bis:		// from (.failure_in3) | 
 | 549 | 	mov ar.lc=len		// Continue with a stupid byte store. | 
 | 550 | 	;; | 
 | 551 | 5: | 
 | 552 | 	st1 [dst1]=r0,1 | 
 | 553 | 	br.cloop.dptk 5b | 
 | 554 | 	;; | 
 | 555 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 556 | 	mov ar.lc=saved_lc | 
 | 557 | 	mov ar.pfs=saved_pfs | 
 | 558 | 	br.ret.sptk.many rp | 
 | 559 |  | 
 | 560 | 	// | 
 | 561 | 	// Here we simply restart the loop but instead | 
 | 562 | 	// of doing loads we fill the pipeline with zeroes | 
 | 563 | 	// We can't simply store r0 because we may have valid | 
 | 564 | 	// data in transit in the pipeline. | 
 | 565 | 	// ar.lc and ar.ec are setup correctly at this point | 
 | 566 | 	// | 
 | 567 | 	// we MUST use src1/endsrc here and not dst1/enddst because | 
 | 568 | 	// of the pipeline effect. | 
 | 569 | 	// | 
 | 570 | .failure_in3: | 
 | 571 | 	sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
 | 572 | 	;; | 
 | 573 | 2: | 
 | 574 | (p16)	mov val1[0]=r0 | 
 | 575 | (p16)	mov val2[0]=r0 | 
 | 576 | (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16 | 
 | 577 | (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16 | 
 | 578 | 	br.ctop.dptk 2b | 
 | 579 | 	;; | 
 | 580 | 	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ? | 
 | 581 | 	sub len=enddst,dst1,1		// precompute len | 
 | 582 | (p6)	br.cond.dptk .failure_in1bis | 
 | 583 | 	;; | 
 | 584 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 585 | 	mov ar.lc=saved_lc | 
 | 586 | 	mov ar.pfs=saved_pfs | 
 | 587 | 	br.ret.sptk.many rp | 
 | 588 |  | 
 | 589 | .failure_in2: | 
 | 590 | 	sub ret0=endsrc,src1 | 
 | 591 | 	cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ? | 
 | 592 | 	sub len=enddst,dst1,1		// precompute len | 
 | 593 | (p6)	br.cond.dptk .failure_in1bis | 
 | 594 | 	;; | 
 | 595 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 596 | 	mov ar.lc=saved_lc | 
 | 597 | 	mov ar.pfs=saved_pfs | 
 | 598 | 	br.ret.sptk.many rp | 
 | 599 |  | 
 | 600 | 	// | 
 | 601 | 	// handling of failures on stores: that's the easy part | 
 | 602 | 	// | 
 | 603 | .failure_out: | 
 | 604 | 	sub ret0=enddst,dst1 | 
 | 605 | 	mov pr=saved_pr,0xffffffffffff0000 | 
 | 606 | 	mov ar.lc=saved_lc | 
 | 607 |  | 
 | 608 | 	mov ar.pfs=saved_pfs | 
 | 609 | 	br.ret.sptk.many rp | 
 | 610 | END(__copy_user) |