| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  linux/mm/memory.c | 
 | 3 |  * | 
 | 4 |  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds | 
 | 5 |  */ | 
 | 6 |  | 
 | 7 | /* | 
 | 8 |  * demand-loading started 01.12.91 - seems it is high on the list of | 
 | 9 |  * things wanted, and it should be easy to implement. - Linus | 
 | 10 |  */ | 
 | 11 |  | 
 | 12 | /* | 
 | 13 |  * Ok, demand-loading was easy, shared pages a little bit tricker. Shared | 
 | 14 |  * pages started 02.12.91, seems to work. - Linus. | 
 | 15 |  * | 
 | 16 |  * Tested sharing by executing about 30 /bin/sh: under the old kernel it | 
 | 17 |  * would have taken more than the 6M I have free, but it worked well as | 
 | 18 |  * far as I could see. | 
 | 19 |  * | 
 | 20 |  * Also corrected some "invalidate()"s - I wasn't doing enough of them. | 
 | 21 |  */ | 
 | 22 |  | 
 | 23 | /* | 
 | 24 |  * Real VM (paging to/from disk) started 18.12.91. Much more work and | 
 | 25 |  * thought has to go into this. Oh, well.. | 
 | 26 |  * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why. | 
 | 27 |  *		Found it. Everything seems to work now. | 
 | 28 |  * 20.12.91  -  Ok, making the swap-device changeable like the root. | 
 | 29 |  */ | 
 | 30 |  | 
 | 31 | /* | 
 | 32 |  * 05.04.94  -  Multi-page memory management added for v1.1. | 
 | 33 |  * 		Idea by Alex Bligh (alex@cconcepts.co.uk) | 
 | 34 |  * | 
 | 35 |  * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG | 
 | 36 |  *		(Gerhard.Wichert@pdb.siemens.de) | 
 | 37 |  * | 
 | 38 |  * Aug/Sep 2004 Changed to four level page tables (Andi Kleen) | 
 | 39 |  */ | 
 | 40 |  | 
 | 41 | #include <linux/kernel_stat.h> | 
 | 42 | #include <linux/mm.h> | 
 | 43 | #include <linux/hugetlb.h> | 
 | 44 | #include <linux/mman.h> | 
 | 45 | #include <linux/swap.h> | 
 | 46 | #include <linux/highmem.h> | 
 | 47 | #include <linux/pagemap.h> | 
 | 48 | #include <linux/rmap.h> | 
 | 49 | #include <linux/module.h> | 
 | 50 | #include <linux/init.h> | 
 | 51 |  | 
 | 52 | #include <asm/pgalloc.h> | 
 | 53 | #include <asm/uaccess.h> | 
 | 54 | #include <asm/tlb.h> | 
 | 55 | #include <asm/tlbflush.h> | 
 | 56 | #include <asm/pgtable.h> | 
 | 57 |  | 
 | 58 | #include <linux/swapops.h> | 
 | 59 | #include <linux/elf.h> | 
 | 60 |  | 
| Andy Whitcroft | d41dee3 | 2005-06-23 00:07:54 -0700 | [diff] [blame] | 61 | #ifndef CONFIG_NEED_MULTIPLE_NODES | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 62 | /* use the per-pgdat data instead for discontigmem - mbligh */ | 
 | 63 | unsigned long max_mapnr; | 
 | 64 | struct page *mem_map; | 
 | 65 |  | 
 | 66 | EXPORT_SYMBOL(max_mapnr); | 
 | 67 | EXPORT_SYMBOL(mem_map); | 
 | 68 | #endif | 
 | 69 |  | 
 | 70 | unsigned long num_physpages; | 
 | 71 | /* | 
 | 72 |  * A number of key systems in x86 including ioremap() rely on the assumption | 
 | 73 |  * that high_memory defines the upper bound on direct map memory, then end | 
 | 74 |  * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and | 
 | 75 |  * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL | 
 | 76 |  * and ZONE_HIGHMEM. | 
 | 77 |  */ | 
 | 78 | void * high_memory; | 
 | 79 | unsigned long vmalloc_earlyreserve; | 
 | 80 |  | 
 | 81 | EXPORT_SYMBOL(num_physpages); | 
 | 82 | EXPORT_SYMBOL(high_memory); | 
 | 83 | EXPORT_SYMBOL(vmalloc_earlyreserve); | 
 | 84 |  | 
 | 85 | /* | 
 | 86 |  * If a p?d_bad entry is found while walking page tables, report | 
 | 87 |  * the error, before resetting entry to p?d_none.  Usually (but | 
 | 88 |  * very seldom) called out from the p?d_none_or_clear_bad macros. | 
 | 89 |  */ | 
 | 90 |  | 
 | 91 | void pgd_clear_bad(pgd_t *pgd) | 
 | 92 | { | 
 | 93 | 	pgd_ERROR(*pgd); | 
 | 94 | 	pgd_clear(pgd); | 
 | 95 | } | 
 | 96 |  | 
 | 97 | void pud_clear_bad(pud_t *pud) | 
 | 98 | { | 
 | 99 | 	pud_ERROR(*pud); | 
 | 100 | 	pud_clear(pud); | 
 | 101 | } | 
 | 102 |  | 
 | 103 | void pmd_clear_bad(pmd_t *pmd) | 
 | 104 | { | 
 | 105 | 	pmd_ERROR(*pmd); | 
 | 106 | 	pmd_clear(pmd); | 
 | 107 | } | 
 | 108 |  | 
 | 109 | /* | 
 | 110 |  * Note: this doesn't free the actual pages themselves. That | 
 | 111 |  * has been handled earlier when unmapping all the memory regions. | 
 | 112 |  */ | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 113 | static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 114 | { | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 115 | 	struct page *page = pmd_page(*pmd); | 
 | 116 | 	pmd_clear(pmd); | 
 | 117 | 	pte_free_tlb(tlb, page); | 
 | 118 | 	dec_page_state(nr_page_table_pages); | 
 | 119 | 	tlb->mm->nr_ptes--; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 120 | } | 
 | 121 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 122 | static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 123 | 				unsigned long addr, unsigned long end, | 
 | 124 | 				unsigned long floor, unsigned long ceiling) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 125 | { | 
 | 126 | 	pmd_t *pmd; | 
 | 127 | 	unsigned long next; | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 128 | 	unsigned long start; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 129 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 130 | 	start = addr; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 131 | 	pmd = pmd_offset(pud, addr); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 132 | 	do { | 
 | 133 | 		next = pmd_addr_end(addr, end); | 
 | 134 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 135 | 			continue; | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 136 | 		free_pte_range(tlb, pmd); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 137 | 	} while (pmd++, addr = next, addr != end); | 
 | 138 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 139 | 	start &= PUD_MASK; | 
 | 140 | 	if (start < floor) | 
 | 141 | 		return; | 
 | 142 | 	if (ceiling) { | 
 | 143 | 		ceiling &= PUD_MASK; | 
 | 144 | 		if (!ceiling) | 
 | 145 | 			return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 146 | 	} | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 147 | 	if (end - 1 > ceiling - 1) | 
 | 148 | 		return; | 
 | 149 |  | 
 | 150 | 	pmd = pmd_offset(pud, start); | 
 | 151 | 	pud_clear(pud); | 
 | 152 | 	pmd_free_tlb(tlb, pmd); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 153 | } | 
 | 154 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 155 | static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 156 | 				unsigned long addr, unsigned long end, | 
 | 157 | 				unsigned long floor, unsigned long ceiling) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 158 | { | 
 | 159 | 	pud_t *pud; | 
 | 160 | 	unsigned long next; | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 161 | 	unsigned long start; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 162 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 163 | 	start = addr; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 164 | 	pud = pud_offset(pgd, addr); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 165 | 	do { | 
 | 166 | 		next = pud_addr_end(addr, end); | 
 | 167 | 		if (pud_none_or_clear_bad(pud)) | 
 | 168 | 			continue; | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 169 | 		free_pmd_range(tlb, pud, addr, next, floor, ceiling); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 170 | 	} while (pud++, addr = next, addr != end); | 
 | 171 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 172 | 	start &= PGDIR_MASK; | 
 | 173 | 	if (start < floor) | 
 | 174 | 		return; | 
 | 175 | 	if (ceiling) { | 
 | 176 | 		ceiling &= PGDIR_MASK; | 
 | 177 | 		if (!ceiling) | 
 | 178 | 			return; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 179 | 	} | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 180 | 	if (end - 1 > ceiling - 1) | 
 | 181 | 		return; | 
 | 182 |  | 
 | 183 | 	pud = pud_offset(pgd, start); | 
 | 184 | 	pgd_clear(pgd); | 
 | 185 | 	pud_free_tlb(tlb, pud); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 186 | } | 
 | 187 |  | 
 | 188 | /* | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 189 |  * This function frees user-level page tables of a process. | 
 | 190 |  * | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 191 |  * Must be called with pagetable lock held. | 
 | 192 |  */ | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 193 | void free_pgd_range(struct mmu_gather **tlb, | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 194 | 			unsigned long addr, unsigned long end, | 
 | 195 | 			unsigned long floor, unsigned long ceiling) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 196 | { | 
 | 197 | 	pgd_t *pgd; | 
 | 198 | 	unsigned long next; | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 199 | 	unsigned long start; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 200 |  | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 201 | 	/* | 
 | 202 | 	 * The next few lines have given us lots of grief... | 
 | 203 | 	 * | 
 | 204 | 	 * Why are we testing PMD* at this top level?  Because often | 
 | 205 | 	 * there will be no work to do at all, and we'd prefer not to | 
 | 206 | 	 * go all the way down to the bottom just to discover that. | 
 | 207 | 	 * | 
 | 208 | 	 * Why all these "- 1"s?  Because 0 represents both the bottom | 
 | 209 | 	 * of the address space and the top of it (using -1 for the | 
 | 210 | 	 * top wouldn't help much: the masks would do the wrong thing). | 
 | 211 | 	 * The rule is that addr 0 and floor 0 refer to the bottom of | 
 | 212 | 	 * the address space, but end 0 and ceiling 0 refer to the top | 
 | 213 | 	 * Comparisons need to use "end - 1" and "ceiling - 1" (though | 
 | 214 | 	 * that end 0 case should be mythical). | 
 | 215 | 	 * | 
 | 216 | 	 * Wherever addr is brought up or ceiling brought down, we must | 
 | 217 | 	 * be careful to reject "the opposite 0" before it confuses the | 
 | 218 | 	 * subsequent tests.  But what about where end is brought down | 
 | 219 | 	 * by PMD_SIZE below? no, end can't go down to 0 there. | 
 | 220 | 	 * | 
 | 221 | 	 * Whereas we round start (addr) and ceiling down, by different | 
 | 222 | 	 * masks at different levels, in order to test whether a table | 
 | 223 | 	 * now has no other vmas using it, so can be freed, we don't | 
 | 224 | 	 * bother to round floor or end up - the tests don't need that. | 
 | 225 | 	 */ | 
 | 226 |  | 
 | 227 | 	addr &= PMD_MASK; | 
 | 228 | 	if (addr < floor) { | 
 | 229 | 		addr += PMD_SIZE; | 
 | 230 | 		if (!addr) | 
 | 231 | 			return; | 
 | 232 | 	} | 
 | 233 | 	if (ceiling) { | 
 | 234 | 		ceiling &= PMD_MASK; | 
 | 235 | 		if (!ceiling) | 
 | 236 | 			return; | 
 | 237 | 	} | 
 | 238 | 	if (end - 1 > ceiling - 1) | 
 | 239 | 		end -= PMD_SIZE; | 
 | 240 | 	if (addr > end - 1) | 
 | 241 | 		return; | 
 | 242 |  | 
 | 243 | 	start = addr; | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 244 | 	pgd = pgd_offset((*tlb)->mm, addr); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 245 | 	do { | 
 | 246 | 		next = pgd_addr_end(addr, end); | 
 | 247 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 248 | 			continue; | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 249 | 		free_pud_range(*tlb, pgd, addr, next, floor, ceiling); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 250 | 	} while (pgd++, addr = next, addr != end); | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 251 |  | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 252 | 	if (!tlb_is_full_mm(*tlb)) | 
 | 253 | 		flush_tlb_pgtables((*tlb)->mm, start, end); | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 254 | } | 
 | 255 |  | 
 | 256 | void free_pgtables(struct mmu_gather **tlb, struct vm_area_struct *vma, | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 257 | 		unsigned long floor, unsigned long ceiling) | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 258 | { | 
 | 259 | 	while (vma) { | 
 | 260 | 		struct vm_area_struct *next = vma->vm_next; | 
 | 261 | 		unsigned long addr = vma->vm_start; | 
 | 262 |  | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 263 | 		if (is_hugepage_only_range(vma->vm_mm, addr, HPAGE_SIZE)) { | 
 | 264 | 			hugetlb_free_pgd_range(tlb, addr, vma->vm_end, | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 265 | 				floor, next? next->vm_start: ceiling); | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 266 | 		} else { | 
 | 267 | 			/* | 
 | 268 | 			 * Optimization: gather nearby vmas into one call down | 
 | 269 | 			 */ | 
 | 270 | 			while (next && next->vm_start <= vma->vm_end + PMD_SIZE | 
 | 271 | 			  && !is_hugepage_only_range(vma->vm_mm, next->vm_start, | 
 | 272 | 							HPAGE_SIZE)) { | 
 | 273 | 				vma = next; | 
 | 274 | 				next = vma->vm_next; | 
 | 275 | 			} | 
 | 276 | 			free_pgd_range(tlb, addr, vma->vm_end, | 
 | 277 | 				floor, next? next->vm_start: ceiling); | 
 | 278 | 		} | 
| Hugh Dickins | e0da382 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 279 | 		vma = next; | 
 | 280 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 281 | } | 
 | 282 |  | 
| Hugh Dickins | 3bf5ee9 | 2005-04-19 13:29:16 -0700 | [diff] [blame] | 283 | pte_t fastcall *pte_alloc_map(struct mm_struct *mm, pmd_t *pmd, | 
 | 284 | 				unsigned long address) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 285 | { | 
 | 286 | 	if (!pmd_present(*pmd)) { | 
 | 287 | 		struct page *new; | 
 | 288 |  | 
 | 289 | 		spin_unlock(&mm->page_table_lock); | 
 | 290 | 		new = pte_alloc_one(mm, address); | 
 | 291 | 		spin_lock(&mm->page_table_lock); | 
 | 292 | 		if (!new) | 
 | 293 | 			return NULL; | 
 | 294 | 		/* | 
 | 295 | 		 * Because we dropped the lock, we should re-check the | 
 | 296 | 		 * entry, as somebody else could have populated it.. | 
 | 297 | 		 */ | 
 | 298 | 		if (pmd_present(*pmd)) { | 
 | 299 | 			pte_free(new); | 
 | 300 | 			goto out; | 
 | 301 | 		} | 
 | 302 | 		mm->nr_ptes++; | 
 | 303 | 		inc_page_state(nr_page_table_pages); | 
 | 304 | 		pmd_populate(mm, pmd, new); | 
 | 305 | 	} | 
 | 306 | out: | 
 | 307 | 	return pte_offset_map(pmd, address); | 
 | 308 | } | 
 | 309 |  | 
 | 310 | pte_t fastcall * pte_alloc_kernel(struct mm_struct *mm, pmd_t *pmd, unsigned long address) | 
 | 311 | { | 
 | 312 | 	if (!pmd_present(*pmd)) { | 
 | 313 | 		pte_t *new; | 
 | 314 |  | 
 | 315 | 		spin_unlock(&mm->page_table_lock); | 
 | 316 | 		new = pte_alloc_one_kernel(mm, address); | 
 | 317 | 		spin_lock(&mm->page_table_lock); | 
 | 318 | 		if (!new) | 
 | 319 | 			return NULL; | 
 | 320 |  | 
 | 321 | 		/* | 
 | 322 | 		 * Because we dropped the lock, we should re-check the | 
 | 323 | 		 * entry, as somebody else could have populated it.. | 
 | 324 | 		 */ | 
 | 325 | 		if (pmd_present(*pmd)) { | 
 | 326 | 			pte_free_kernel(new); | 
 | 327 | 			goto out; | 
 | 328 | 		} | 
 | 329 | 		pmd_populate_kernel(mm, pmd, new); | 
 | 330 | 	} | 
 | 331 | out: | 
 | 332 | 	return pte_offset_kernel(pmd, address); | 
 | 333 | } | 
 | 334 |  | 
 | 335 | /* | 
 | 336 |  * copy one vm_area from one task to the other. Assumes the page tables | 
 | 337 |  * already present in the new task to be cleared in the whole range | 
 | 338 |  * covered by this vma. | 
 | 339 |  * | 
 | 340 |  * dst->page_table_lock is held on entry and exit, | 
 | 341 |  * but may be dropped within p[mg]d_alloc() and pte_alloc_map(). | 
 | 342 |  */ | 
 | 343 |  | 
 | 344 | static inline void | 
 | 345 | copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 346 | 		pte_t *dst_pte, pte_t *src_pte, unsigned long vm_flags, | 
 | 347 | 		unsigned long addr) | 
 | 348 | { | 
 | 349 | 	pte_t pte = *src_pte; | 
 | 350 | 	struct page *page; | 
 | 351 | 	unsigned long pfn; | 
 | 352 |  | 
 | 353 | 	/* pte contains position in swap or file, so copy. */ | 
 | 354 | 	if (unlikely(!pte_present(pte))) { | 
 | 355 | 		if (!pte_file(pte)) { | 
 | 356 | 			swap_duplicate(pte_to_swp_entry(pte)); | 
 | 357 | 			/* make sure dst_mm is on swapoff's mmlist. */ | 
 | 358 | 			if (unlikely(list_empty(&dst_mm->mmlist))) { | 
 | 359 | 				spin_lock(&mmlist_lock); | 
 | 360 | 				list_add(&dst_mm->mmlist, &src_mm->mmlist); | 
 | 361 | 				spin_unlock(&mmlist_lock); | 
 | 362 | 			} | 
 | 363 | 		} | 
 | 364 | 		set_pte_at(dst_mm, addr, dst_pte, pte); | 
 | 365 | 		return; | 
 | 366 | 	} | 
 | 367 |  | 
 | 368 | 	pfn = pte_pfn(pte); | 
 | 369 | 	/* the pte points outside of valid memory, the | 
 | 370 | 	 * mapping is assumed to be good, meaningful | 
 | 371 | 	 * and not mapped via rmap - duplicate the | 
 | 372 | 	 * mapping as is. | 
 | 373 | 	 */ | 
 | 374 | 	page = NULL; | 
 | 375 | 	if (pfn_valid(pfn)) | 
 | 376 | 		page = pfn_to_page(pfn); | 
 | 377 |  | 
 | 378 | 	if (!page || PageReserved(page)) { | 
 | 379 | 		set_pte_at(dst_mm, addr, dst_pte, pte); | 
 | 380 | 		return; | 
 | 381 | 	} | 
 | 382 |  | 
 | 383 | 	/* | 
 | 384 | 	 * If it's a COW mapping, write protect it both | 
 | 385 | 	 * in the parent and the child | 
 | 386 | 	 */ | 
 | 387 | 	if ((vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE) { | 
 | 388 | 		ptep_set_wrprotect(src_mm, addr, src_pte); | 
 | 389 | 		pte = *src_pte; | 
 | 390 | 	} | 
 | 391 |  | 
 | 392 | 	/* | 
 | 393 | 	 * If it's a shared mapping, mark it clean in | 
 | 394 | 	 * the child | 
 | 395 | 	 */ | 
 | 396 | 	if (vm_flags & VM_SHARED) | 
 | 397 | 		pte = pte_mkclean(pte); | 
 | 398 | 	pte = pte_mkold(pte); | 
 | 399 | 	get_page(page); | 
 | 400 | 	inc_mm_counter(dst_mm, rss); | 
 | 401 | 	if (PageAnon(page)) | 
 | 402 | 		inc_mm_counter(dst_mm, anon_rss); | 
 | 403 | 	set_pte_at(dst_mm, addr, dst_pte, pte); | 
 | 404 | 	page_dup_rmap(page); | 
 | 405 | } | 
 | 406 |  | 
 | 407 | static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 408 | 		pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma, | 
 | 409 | 		unsigned long addr, unsigned long end) | 
 | 410 | { | 
 | 411 | 	pte_t *src_pte, *dst_pte; | 
 | 412 | 	unsigned long vm_flags = vma->vm_flags; | 
 | 413 | 	int progress; | 
 | 414 |  | 
 | 415 | again: | 
 | 416 | 	dst_pte = pte_alloc_map(dst_mm, dst_pmd, addr); | 
 | 417 | 	if (!dst_pte) | 
 | 418 | 		return -ENOMEM; | 
 | 419 | 	src_pte = pte_offset_map_nested(src_pmd, addr); | 
 | 420 |  | 
 | 421 | 	progress = 0; | 
 | 422 | 	spin_lock(&src_mm->page_table_lock); | 
 | 423 | 	do { | 
 | 424 | 		/* | 
 | 425 | 		 * We are holding two locks at this point - either of them | 
 | 426 | 		 * could generate latencies in another task on another CPU. | 
 | 427 | 		 */ | 
 | 428 | 		if (progress >= 32 && (need_resched() || | 
 | 429 | 		    need_lockbreak(&src_mm->page_table_lock) || | 
 | 430 | 		    need_lockbreak(&dst_mm->page_table_lock))) | 
 | 431 | 			break; | 
 | 432 | 		if (pte_none(*src_pte)) { | 
 | 433 | 			progress++; | 
 | 434 | 			continue; | 
 | 435 | 		} | 
 | 436 | 		copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vm_flags, addr); | 
 | 437 | 		progress += 8; | 
 | 438 | 	} while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end); | 
 | 439 | 	spin_unlock(&src_mm->page_table_lock); | 
 | 440 |  | 
 | 441 | 	pte_unmap_nested(src_pte - 1); | 
 | 442 | 	pte_unmap(dst_pte - 1); | 
 | 443 | 	cond_resched_lock(&dst_mm->page_table_lock); | 
 | 444 | 	if (addr != end) | 
 | 445 | 		goto again; | 
 | 446 | 	return 0; | 
 | 447 | } | 
 | 448 |  | 
 | 449 | static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 450 | 		pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma, | 
 | 451 | 		unsigned long addr, unsigned long end) | 
 | 452 | { | 
 | 453 | 	pmd_t *src_pmd, *dst_pmd; | 
 | 454 | 	unsigned long next; | 
 | 455 |  | 
 | 456 | 	dst_pmd = pmd_alloc(dst_mm, dst_pud, addr); | 
 | 457 | 	if (!dst_pmd) | 
 | 458 | 		return -ENOMEM; | 
 | 459 | 	src_pmd = pmd_offset(src_pud, addr); | 
 | 460 | 	do { | 
 | 461 | 		next = pmd_addr_end(addr, end); | 
 | 462 | 		if (pmd_none_or_clear_bad(src_pmd)) | 
 | 463 | 			continue; | 
 | 464 | 		if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd, | 
 | 465 | 						vma, addr, next)) | 
 | 466 | 			return -ENOMEM; | 
 | 467 | 	} while (dst_pmd++, src_pmd++, addr = next, addr != end); | 
 | 468 | 	return 0; | 
 | 469 | } | 
 | 470 |  | 
 | 471 | static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 472 | 		pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma, | 
 | 473 | 		unsigned long addr, unsigned long end) | 
 | 474 | { | 
 | 475 | 	pud_t *src_pud, *dst_pud; | 
 | 476 | 	unsigned long next; | 
 | 477 |  | 
 | 478 | 	dst_pud = pud_alloc(dst_mm, dst_pgd, addr); | 
 | 479 | 	if (!dst_pud) | 
 | 480 | 		return -ENOMEM; | 
 | 481 | 	src_pud = pud_offset(src_pgd, addr); | 
 | 482 | 	do { | 
 | 483 | 		next = pud_addr_end(addr, end); | 
 | 484 | 		if (pud_none_or_clear_bad(src_pud)) | 
 | 485 | 			continue; | 
 | 486 | 		if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud, | 
 | 487 | 						vma, addr, next)) | 
 | 488 | 			return -ENOMEM; | 
 | 489 | 	} while (dst_pud++, src_pud++, addr = next, addr != end); | 
 | 490 | 	return 0; | 
 | 491 | } | 
 | 492 |  | 
 | 493 | int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm, | 
 | 494 | 		struct vm_area_struct *vma) | 
 | 495 | { | 
 | 496 | 	pgd_t *src_pgd, *dst_pgd; | 
 | 497 | 	unsigned long next; | 
 | 498 | 	unsigned long addr = vma->vm_start; | 
 | 499 | 	unsigned long end = vma->vm_end; | 
 | 500 |  | 
| Nick Piggin | d992895 | 2005-08-28 16:49:11 +1000 | [diff] [blame] | 501 | 	/* | 
 | 502 | 	 * Don't copy ptes where a page fault will fill them correctly. | 
 | 503 | 	 * Fork becomes much lighter when there are big shared or private | 
 | 504 | 	 * readonly mappings. The tradeoff is that copy_page_range is more | 
 | 505 | 	 * efficient than faulting. | 
 | 506 | 	 */ | 
 | 507 | 	if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_RESERVED))) { | 
 | 508 | 		if (!vma->anon_vma) | 
 | 509 | 			return 0; | 
 | 510 | 	} | 
 | 511 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 512 | 	if (is_vm_hugetlb_page(vma)) | 
 | 513 | 		return copy_hugetlb_page_range(dst_mm, src_mm, vma); | 
 | 514 |  | 
 | 515 | 	dst_pgd = pgd_offset(dst_mm, addr); | 
 | 516 | 	src_pgd = pgd_offset(src_mm, addr); | 
 | 517 | 	do { | 
 | 518 | 		next = pgd_addr_end(addr, end); | 
 | 519 | 		if (pgd_none_or_clear_bad(src_pgd)) | 
 | 520 | 			continue; | 
 | 521 | 		if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd, | 
 | 522 | 						vma, addr, next)) | 
 | 523 | 			return -ENOMEM; | 
 | 524 | 	} while (dst_pgd++, src_pgd++, addr = next, addr != end); | 
 | 525 | 	return 0; | 
 | 526 | } | 
 | 527 |  | 
 | 528 | static void zap_pte_range(struct mmu_gather *tlb, pmd_t *pmd, | 
 | 529 | 				unsigned long addr, unsigned long end, | 
 | 530 | 				struct zap_details *details) | 
 | 531 | { | 
 | 532 | 	pte_t *pte; | 
 | 533 |  | 
 | 534 | 	pte = pte_offset_map(pmd, addr); | 
 | 535 | 	do { | 
 | 536 | 		pte_t ptent = *pte; | 
 | 537 | 		if (pte_none(ptent)) | 
 | 538 | 			continue; | 
 | 539 | 		if (pte_present(ptent)) { | 
 | 540 | 			struct page *page = NULL; | 
 | 541 | 			unsigned long pfn = pte_pfn(ptent); | 
 | 542 | 			if (pfn_valid(pfn)) { | 
 | 543 | 				page = pfn_to_page(pfn); | 
 | 544 | 				if (PageReserved(page)) | 
 | 545 | 					page = NULL; | 
 | 546 | 			} | 
 | 547 | 			if (unlikely(details) && page) { | 
 | 548 | 				/* | 
 | 549 | 				 * unmap_shared_mapping_pages() wants to | 
 | 550 | 				 * invalidate cache without truncating: | 
 | 551 | 				 * unmap shared but keep private pages. | 
 | 552 | 				 */ | 
 | 553 | 				if (details->check_mapping && | 
 | 554 | 				    details->check_mapping != page->mapping) | 
 | 555 | 					continue; | 
 | 556 | 				/* | 
 | 557 | 				 * Each page->index must be checked when | 
 | 558 | 				 * invalidating or truncating nonlinear. | 
 | 559 | 				 */ | 
 | 560 | 				if (details->nonlinear_vma && | 
 | 561 | 				    (page->index < details->first_index || | 
 | 562 | 				     page->index > details->last_index)) | 
 | 563 | 					continue; | 
 | 564 | 			} | 
 | 565 | 			ptent = ptep_get_and_clear(tlb->mm, addr, pte); | 
 | 566 | 			tlb_remove_tlb_entry(tlb, pte, addr); | 
 | 567 | 			if (unlikely(!page)) | 
 | 568 | 				continue; | 
 | 569 | 			if (unlikely(details) && details->nonlinear_vma | 
 | 570 | 			    && linear_page_index(details->nonlinear_vma, | 
 | 571 | 						addr) != page->index) | 
 | 572 | 				set_pte_at(tlb->mm, addr, pte, | 
 | 573 | 					   pgoff_to_pte(page->index)); | 
 | 574 | 			if (pte_dirty(ptent)) | 
 | 575 | 				set_page_dirty(page); | 
 | 576 | 			if (PageAnon(page)) | 
 | 577 | 				dec_mm_counter(tlb->mm, anon_rss); | 
 | 578 | 			else if (pte_young(ptent)) | 
 | 579 | 				mark_page_accessed(page); | 
 | 580 | 			tlb->freed++; | 
 | 581 | 			page_remove_rmap(page); | 
 | 582 | 			tlb_remove_page(tlb, page); | 
 | 583 | 			continue; | 
 | 584 | 		} | 
 | 585 | 		/* | 
 | 586 | 		 * If details->check_mapping, we leave swap entries; | 
 | 587 | 		 * if details->nonlinear_vma, we leave file entries. | 
 | 588 | 		 */ | 
 | 589 | 		if (unlikely(details)) | 
 | 590 | 			continue; | 
 | 591 | 		if (!pte_file(ptent)) | 
 | 592 | 			free_swap_and_cache(pte_to_swp_entry(ptent)); | 
 | 593 | 		pte_clear(tlb->mm, addr, pte); | 
 | 594 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 595 | 	pte_unmap(pte - 1); | 
 | 596 | } | 
 | 597 |  | 
 | 598 | static inline void zap_pmd_range(struct mmu_gather *tlb, pud_t *pud, | 
 | 599 | 				unsigned long addr, unsigned long end, | 
 | 600 | 				struct zap_details *details) | 
 | 601 | { | 
 | 602 | 	pmd_t *pmd; | 
 | 603 | 	unsigned long next; | 
 | 604 |  | 
 | 605 | 	pmd = pmd_offset(pud, addr); | 
 | 606 | 	do { | 
 | 607 | 		next = pmd_addr_end(addr, end); | 
 | 608 | 		if (pmd_none_or_clear_bad(pmd)) | 
 | 609 | 			continue; | 
 | 610 | 		zap_pte_range(tlb, pmd, addr, next, details); | 
 | 611 | 	} while (pmd++, addr = next, addr != end); | 
 | 612 | } | 
 | 613 |  | 
 | 614 | static inline void zap_pud_range(struct mmu_gather *tlb, pgd_t *pgd, | 
 | 615 | 				unsigned long addr, unsigned long end, | 
 | 616 | 				struct zap_details *details) | 
 | 617 | { | 
 | 618 | 	pud_t *pud; | 
 | 619 | 	unsigned long next; | 
 | 620 |  | 
 | 621 | 	pud = pud_offset(pgd, addr); | 
 | 622 | 	do { | 
 | 623 | 		next = pud_addr_end(addr, end); | 
 | 624 | 		if (pud_none_or_clear_bad(pud)) | 
 | 625 | 			continue; | 
 | 626 | 		zap_pmd_range(tlb, pud, addr, next, details); | 
 | 627 | 	} while (pud++, addr = next, addr != end); | 
 | 628 | } | 
 | 629 |  | 
 | 630 | static void unmap_page_range(struct mmu_gather *tlb, struct vm_area_struct *vma, | 
 | 631 | 				unsigned long addr, unsigned long end, | 
 | 632 | 				struct zap_details *details) | 
 | 633 | { | 
 | 634 | 	pgd_t *pgd; | 
 | 635 | 	unsigned long next; | 
 | 636 |  | 
 | 637 | 	if (details && !details->check_mapping && !details->nonlinear_vma) | 
 | 638 | 		details = NULL; | 
 | 639 |  | 
 | 640 | 	BUG_ON(addr >= end); | 
 | 641 | 	tlb_start_vma(tlb, vma); | 
 | 642 | 	pgd = pgd_offset(vma->vm_mm, addr); | 
 | 643 | 	do { | 
 | 644 | 		next = pgd_addr_end(addr, end); | 
 | 645 | 		if (pgd_none_or_clear_bad(pgd)) | 
 | 646 | 			continue; | 
 | 647 | 		zap_pud_range(tlb, pgd, addr, next, details); | 
 | 648 | 	} while (pgd++, addr = next, addr != end); | 
 | 649 | 	tlb_end_vma(tlb, vma); | 
 | 650 | } | 
 | 651 |  | 
 | 652 | #ifdef CONFIG_PREEMPT | 
 | 653 | # define ZAP_BLOCK_SIZE	(8 * PAGE_SIZE) | 
 | 654 | #else | 
 | 655 | /* No preempt: go for improved straight-line efficiency */ | 
 | 656 | # define ZAP_BLOCK_SIZE	(1024 * PAGE_SIZE) | 
 | 657 | #endif | 
 | 658 |  | 
 | 659 | /** | 
 | 660 |  * unmap_vmas - unmap a range of memory covered by a list of vma's | 
 | 661 |  * @tlbp: address of the caller's struct mmu_gather | 
 | 662 |  * @mm: the controlling mm_struct | 
 | 663 |  * @vma: the starting vma | 
 | 664 |  * @start_addr: virtual address at which to start unmapping | 
 | 665 |  * @end_addr: virtual address at which to end unmapping | 
 | 666 |  * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here | 
 | 667 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 | 668 |  * | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 669 |  * Returns the end address of the unmapping (restart addr if interrupted). | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 670 |  * | 
 | 671 |  * Unmap all pages in the vma list.  Called under page_table_lock. | 
 | 672 |  * | 
 | 673 |  * We aim to not hold page_table_lock for too long (for scheduling latency | 
 | 674 |  * reasons).  So zap pages in ZAP_BLOCK_SIZE bytecounts.  This means we need to | 
 | 675 |  * return the ending mmu_gather to the caller. | 
 | 676 |  * | 
 | 677 |  * Only addresses between `start' and `end' will be unmapped. | 
 | 678 |  * | 
 | 679 |  * The VMA list must be sorted in ascending virtual address order. | 
 | 680 |  * | 
 | 681 |  * unmap_vmas() assumes that the caller will flush the whole unmapped address | 
 | 682 |  * range after unmap_vmas() returns.  So the only responsibility here is to | 
 | 683 |  * ensure that any thus-far unmapped pages are flushed before unmap_vmas() | 
 | 684 |  * drops the lock and schedules. | 
 | 685 |  */ | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 686 | unsigned long unmap_vmas(struct mmu_gather **tlbp, struct mm_struct *mm, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 687 | 		struct vm_area_struct *vma, unsigned long start_addr, | 
 | 688 | 		unsigned long end_addr, unsigned long *nr_accounted, | 
 | 689 | 		struct zap_details *details) | 
 | 690 | { | 
 | 691 | 	unsigned long zap_bytes = ZAP_BLOCK_SIZE; | 
 | 692 | 	unsigned long tlb_start = 0;	/* For tlb_finish_mmu */ | 
 | 693 | 	int tlb_start_valid = 0; | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 694 | 	unsigned long start = start_addr; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 695 | 	spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL; | 
 | 696 | 	int fullmm = tlb_is_full_mm(*tlbp); | 
 | 697 |  | 
 | 698 | 	for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 699 | 		unsigned long end; | 
 | 700 |  | 
 | 701 | 		start = max(vma->vm_start, start_addr); | 
 | 702 | 		if (start >= vma->vm_end) | 
 | 703 | 			continue; | 
 | 704 | 		end = min(vma->vm_end, end_addr); | 
 | 705 | 		if (end <= vma->vm_start) | 
 | 706 | 			continue; | 
 | 707 |  | 
 | 708 | 		if (vma->vm_flags & VM_ACCOUNT) | 
 | 709 | 			*nr_accounted += (end - start) >> PAGE_SHIFT; | 
 | 710 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 711 | 		while (start != end) { | 
 | 712 | 			unsigned long block; | 
 | 713 |  | 
 | 714 | 			if (!tlb_start_valid) { | 
 | 715 | 				tlb_start = start; | 
 | 716 | 				tlb_start_valid = 1; | 
 | 717 | 			} | 
 | 718 |  | 
 | 719 | 			if (is_vm_hugetlb_page(vma)) { | 
 | 720 | 				block = end - start; | 
 | 721 | 				unmap_hugepage_range(vma, start, end); | 
 | 722 | 			} else { | 
 | 723 | 				block = min(zap_bytes, end - start); | 
 | 724 | 				unmap_page_range(*tlbp, vma, start, | 
 | 725 | 						start + block, details); | 
 | 726 | 			} | 
 | 727 |  | 
 | 728 | 			start += block; | 
 | 729 | 			zap_bytes -= block; | 
 | 730 | 			if ((long)zap_bytes > 0) | 
 | 731 | 				continue; | 
 | 732 |  | 
 | 733 | 			tlb_finish_mmu(*tlbp, tlb_start, start); | 
 | 734 |  | 
 | 735 | 			if (need_resched() || | 
 | 736 | 				need_lockbreak(&mm->page_table_lock) || | 
 | 737 | 				(i_mmap_lock && need_lockbreak(i_mmap_lock))) { | 
 | 738 | 				if (i_mmap_lock) { | 
 | 739 | 					/* must reset count of rss freed */ | 
 | 740 | 					*tlbp = tlb_gather_mmu(mm, fullmm); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 741 | 					goto out; | 
 | 742 | 				} | 
 | 743 | 				spin_unlock(&mm->page_table_lock); | 
 | 744 | 				cond_resched(); | 
 | 745 | 				spin_lock(&mm->page_table_lock); | 
 | 746 | 			} | 
 | 747 |  | 
 | 748 | 			*tlbp = tlb_gather_mmu(mm, fullmm); | 
 | 749 | 			tlb_start_valid = 0; | 
 | 750 | 			zap_bytes = ZAP_BLOCK_SIZE; | 
 | 751 | 		} | 
 | 752 | 	} | 
 | 753 | out: | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 754 | 	return start;	/* which is now the end (or restart) address */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 755 | } | 
 | 756 |  | 
 | 757 | /** | 
 | 758 |  * zap_page_range - remove user pages in a given range | 
 | 759 |  * @vma: vm_area_struct holding the applicable pages | 
 | 760 |  * @address: starting address of pages to zap | 
 | 761 |  * @size: number of bytes to zap | 
 | 762 |  * @details: details of nonlinear truncation or shared cache invalidation | 
 | 763 |  */ | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 764 | unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 765 | 		unsigned long size, struct zap_details *details) | 
 | 766 | { | 
 | 767 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 768 | 	struct mmu_gather *tlb; | 
 | 769 | 	unsigned long end = address + size; | 
 | 770 | 	unsigned long nr_accounted = 0; | 
 | 771 |  | 
 | 772 | 	if (is_vm_hugetlb_page(vma)) { | 
 | 773 | 		zap_hugepage_range(vma, address, size); | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 774 | 		return end; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 775 | 	} | 
 | 776 |  | 
 | 777 | 	lru_add_drain(); | 
 | 778 | 	spin_lock(&mm->page_table_lock); | 
 | 779 | 	tlb = tlb_gather_mmu(mm, 0); | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 780 | 	end = unmap_vmas(&tlb, mm, vma, address, end, &nr_accounted, details); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 781 | 	tlb_finish_mmu(tlb, address, end); | 
 | 782 | 	spin_unlock(&mm->page_table_lock); | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 783 | 	return end; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 784 | } | 
 | 785 |  | 
 | 786 | /* | 
 | 787 |  * Do a quick page-table lookup for a single page. | 
 | 788 |  * mm->page_table_lock must be held. | 
 | 789 |  */ | 
| Andrew Morton | 1aaf18f | 2005-07-27 11:43:54 -0700 | [diff] [blame] | 790 | static struct page *__follow_page(struct mm_struct *mm, unsigned long address, | 
 | 791 | 			int read, int write, int accessed) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 792 | { | 
 | 793 | 	pgd_t *pgd; | 
 | 794 | 	pud_t *pud; | 
 | 795 | 	pmd_t *pmd; | 
 | 796 | 	pte_t *ptep, pte; | 
 | 797 | 	unsigned long pfn; | 
 | 798 | 	struct page *page; | 
 | 799 |  | 
 | 800 | 	page = follow_huge_addr(mm, address, write); | 
 | 801 | 	if (! IS_ERR(page)) | 
 | 802 | 		return page; | 
 | 803 |  | 
 | 804 | 	pgd = pgd_offset(mm, address); | 
 | 805 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 806 | 		goto out; | 
 | 807 |  | 
 | 808 | 	pud = pud_offset(pgd, address); | 
 | 809 | 	if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
 | 810 | 		goto out; | 
 | 811 | 	 | 
 | 812 | 	pmd = pmd_offset(pud, address); | 
 | 813 | 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
 | 814 | 		goto out; | 
 | 815 | 	if (pmd_huge(*pmd)) | 
 | 816 | 		return follow_huge_pmd(mm, address, pmd, write); | 
 | 817 |  | 
 | 818 | 	ptep = pte_offset_map(pmd, address); | 
 | 819 | 	if (!ptep) | 
 | 820 | 		goto out; | 
 | 821 |  | 
 | 822 | 	pte = *ptep; | 
 | 823 | 	pte_unmap(ptep); | 
 | 824 | 	if (pte_present(pte)) { | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 825 | 		if (write && !pte_write(pte)) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 826 | 			goto out; | 
 | 827 | 		if (read && !pte_read(pte)) | 
 | 828 | 			goto out; | 
 | 829 | 		pfn = pte_pfn(pte); | 
 | 830 | 		if (pfn_valid(pfn)) { | 
 | 831 | 			page = pfn_to_page(pfn); | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 832 | 			if (accessed) { | 
 | 833 | 				if (write && !pte_dirty(pte) &&!PageDirty(page)) | 
 | 834 | 					set_page_dirty(page); | 
| Andrew Morton | 1aaf18f | 2005-07-27 11:43:54 -0700 | [diff] [blame] | 835 | 				mark_page_accessed(page); | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 836 | 			} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 837 | 			return page; | 
 | 838 | 		} | 
 | 839 | 	} | 
 | 840 |  | 
 | 841 | out: | 
 | 842 | 	return NULL; | 
 | 843 | } | 
 | 844 |  | 
| Andrew Morton | 1aaf18f | 2005-07-27 11:43:54 -0700 | [diff] [blame] | 845 | inline struct page * | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 846 | follow_page(struct mm_struct *mm, unsigned long address, int write) | 
 | 847 | { | 
| Andrew Morton | 1aaf18f | 2005-07-27 11:43:54 -0700 | [diff] [blame] | 848 | 	return __follow_page(mm, address, 0, write, 1); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 849 | } | 
 | 850 |  | 
| Andrew Morton | 1aaf18f | 2005-07-27 11:43:54 -0700 | [diff] [blame] | 851 | /* | 
 | 852 |  * check_user_page_readable() can be called frm niterrupt context by oprofile, | 
 | 853 |  * so we need to avoid taking any non-irq-safe locks | 
 | 854 |  */ | 
 | 855 | int check_user_page_readable(struct mm_struct *mm, unsigned long address) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 856 | { | 
| Andrew Morton | 1aaf18f | 2005-07-27 11:43:54 -0700 | [diff] [blame] | 857 | 	return __follow_page(mm, address, 1, 0, 0) != NULL; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 858 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 859 | EXPORT_SYMBOL(check_user_page_readable); | 
 | 860 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 861 | static inline int | 
 | 862 | untouched_anonymous_page(struct mm_struct* mm, struct vm_area_struct *vma, | 
 | 863 | 			 unsigned long address) | 
 | 864 | { | 
 | 865 | 	pgd_t *pgd; | 
 | 866 | 	pud_t *pud; | 
 | 867 | 	pmd_t *pmd; | 
 | 868 |  | 
 | 869 | 	/* Check if the vma is for an anonymous mapping. */ | 
 | 870 | 	if (vma->vm_ops && vma->vm_ops->nopage) | 
 | 871 | 		return 0; | 
 | 872 |  | 
 | 873 | 	/* Check if page directory entry exists. */ | 
 | 874 | 	pgd = pgd_offset(mm, address); | 
 | 875 | 	if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd))) | 
 | 876 | 		return 1; | 
 | 877 |  | 
 | 878 | 	pud = pud_offset(pgd, address); | 
 | 879 | 	if (pud_none(*pud) || unlikely(pud_bad(*pud))) | 
 | 880 | 		return 1; | 
 | 881 |  | 
 | 882 | 	/* Check if page middle directory entry exists. */ | 
 | 883 | 	pmd = pmd_offset(pud, address); | 
 | 884 | 	if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd))) | 
 | 885 | 		return 1; | 
 | 886 |  | 
 | 887 | 	/* There is a pte slot for 'address' in 'mm'. */ | 
 | 888 | 	return 0; | 
 | 889 | } | 
 | 890 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 891 | int get_user_pages(struct task_struct *tsk, struct mm_struct *mm, | 
 | 892 | 		unsigned long start, int len, int write, int force, | 
 | 893 | 		struct page **pages, struct vm_area_struct **vmas) | 
 | 894 | { | 
 | 895 | 	int i; | 
 | 896 | 	unsigned int flags; | 
 | 897 |  | 
 | 898 | 	/*  | 
 | 899 | 	 * Require read or write permissions. | 
 | 900 | 	 * If 'force' is set, we only require the "MAY" flags. | 
 | 901 | 	 */ | 
 | 902 | 	flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD); | 
 | 903 | 	flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE); | 
 | 904 | 	i = 0; | 
 | 905 |  | 
 | 906 | 	do { | 
 | 907 | 		struct vm_area_struct *	vma; | 
 | 908 |  | 
 | 909 | 		vma = find_extend_vma(mm, start); | 
 | 910 | 		if (!vma && in_gate_area(tsk, start)) { | 
 | 911 | 			unsigned long pg = start & PAGE_MASK; | 
 | 912 | 			struct vm_area_struct *gate_vma = get_gate_vma(tsk); | 
 | 913 | 			pgd_t *pgd; | 
 | 914 | 			pud_t *pud; | 
 | 915 | 			pmd_t *pmd; | 
 | 916 | 			pte_t *pte; | 
 | 917 | 			if (write) /* user gate pages are read-only */ | 
 | 918 | 				return i ? : -EFAULT; | 
 | 919 | 			if (pg > TASK_SIZE) | 
 | 920 | 				pgd = pgd_offset_k(pg); | 
 | 921 | 			else | 
 | 922 | 				pgd = pgd_offset_gate(mm, pg); | 
 | 923 | 			BUG_ON(pgd_none(*pgd)); | 
 | 924 | 			pud = pud_offset(pgd, pg); | 
 | 925 | 			BUG_ON(pud_none(*pud)); | 
 | 926 | 			pmd = pmd_offset(pud, pg); | 
| Hugh Dickins | 690dbe1 | 2005-08-01 21:11:42 -0700 | [diff] [blame] | 927 | 			if (pmd_none(*pmd)) | 
 | 928 | 				return i ? : -EFAULT; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 929 | 			pte = pte_offset_map(pmd, pg); | 
| Hugh Dickins | 690dbe1 | 2005-08-01 21:11:42 -0700 | [diff] [blame] | 930 | 			if (pte_none(*pte)) { | 
 | 931 | 				pte_unmap(pte); | 
 | 932 | 				return i ? : -EFAULT; | 
 | 933 | 			} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 934 | 			if (pages) { | 
 | 935 | 				pages[i] = pte_page(*pte); | 
 | 936 | 				get_page(pages[i]); | 
 | 937 | 			} | 
 | 938 | 			pte_unmap(pte); | 
 | 939 | 			if (vmas) | 
 | 940 | 				vmas[i] = gate_vma; | 
 | 941 | 			i++; | 
 | 942 | 			start += PAGE_SIZE; | 
 | 943 | 			len--; | 
 | 944 | 			continue; | 
 | 945 | 		} | 
 | 946 |  | 
 | 947 | 		if (!vma || (vma->vm_flags & VM_IO) | 
 | 948 | 				|| !(flags & vma->vm_flags)) | 
 | 949 | 			return i ? : -EFAULT; | 
 | 950 |  | 
 | 951 | 		if (is_vm_hugetlb_page(vma)) { | 
 | 952 | 			i = follow_hugetlb_page(mm, vma, pages, vmas, | 
 | 953 | 						&start, &len, i); | 
 | 954 | 			continue; | 
 | 955 | 		} | 
 | 956 | 		spin_lock(&mm->page_table_lock); | 
 | 957 | 		do { | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 958 | 			int write_access = write; | 
| Hugh Dickins | 08ef472 | 2005-06-21 17:15:10 -0700 | [diff] [blame] | 959 | 			struct page *page; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 960 |  | 
 | 961 | 			cond_resched_lock(&mm->page_table_lock); | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 962 | 			while (!(page = follow_page(mm, start, write_access))) { | 
| Linus Torvalds | a68d2eb | 2005-08-03 10:07:09 -0700 | [diff] [blame] | 963 | 				int ret; | 
 | 964 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 965 | 				/* | 
 | 966 | 				 * Shortcut for anonymous pages. We don't want | 
 | 967 | 				 * to force the creation of pages tables for | 
| Hugh Dickins | 08ef472 | 2005-06-21 17:15:10 -0700 | [diff] [blame] | 968 | 				 * insanely big anonymously mapped areas that | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 969 | 				 * nobody touched so far. This is important | 
 | 970 | 				 * for doing a core dump for these mappings. | 
 | 971 | 				 */ | 
| Linus Torvalds | 4ceb5db | 2005-08-01 11:14:49 -0700 | [diff] [blame] | 972 | 				if (!write && untouched_anonymous_page(mm,vma,start)) { | 
| Hugh Dickins | 08ef472 | 2005-06-21 17:15:10 -0700 | [diff] [blame] | 973 | 					page = ZERO_PAGE(start); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 974 | 					break; | 
 | 975 | 				} | 
 | 976 | 				spin_unlock(&mm->page_table_lock); | 
| Linus Torvalds | a68d2eb | 2005-08-03 10:07:09 -0700 | [diff] [blame] | 977 | 				ret = __handle_mm_fault(mm, vma, start, write_access); | 
 | 978 |  | 
 | 979 | 				/* | 
 | 980 | 				 * The VM_FAULT_WRITE bit tells us that do_wp_page has | 
 | 981 | 				 * broken COW when necessary, even if maybe_mkwrite | 
 | 982 | 				 * decided not to set pte_write. We can thus safely do | 
 | 983 | 				 * subsequent page lookups as if they were reads. | 
 | 984 | 				 */ | 
 | 985 | 				if (ret & VM_FAULT_WRITE) | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 986 | 					write_access = 0; | 
| Linus Torvalds | a68d2eb | 2005-08-03 10:07:09 -0700 | [diff] [blame] | 987 | 				 | 
 | 988 | 				switch (ret & ~VM_FAULT_WRITE) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 989 | 				case VM_FAULT_MINOR: | 
 | 990 | 					tsk->min_flt++; | 
 | 991 | 					break; | 
 | 992 | 				case VM_FAULT_MAJOR: | 
 | 993 | 					tsk->maj_flt++; | 
 | 994 | 					break; | 
 | 995 | 				case VM_FAULT_SIGBUS: | 
 | 996 | 					return i ? i : -EFAULT; | 
 | 997 | 				case VM_FAULT_OOM: | 
 | 998 | 					return i ? i : -ENOMEM; | 
 | 999 | 				default: | 
 | 1000 | 					BUG(); | 
 | 1001 | 				} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1002 | 				spin_lock(&mm->page_table_lock); | 
 | 1003 | 			} | 
 | 1004 | 			if (pages) { | 
| Hugh Dickins | 08ef472 | 2005-06-21 17:15:10 -0700 | [diff] [blame] | 1005 | 				pages[i] = page; | 
 | 1006 | 				flush_dcache_page(page); | 
 | 1007 | 				if (!PageReserved(page)) | 
 | 1008 | 					page_cache_get(page); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1009 | 			} | 
 | 1010 | 			if (vmas) | 
 | 1011 | 				vmas[i] = vma; | 
 | 1012 | 			i++; | 
 | 1013 | 			start += PAGE_SIZE; | 
 | 1014 | 			len--; | 
| Hugh Dickins | 08ef472 | 2005-06-21 17:15:10 -0700 | [diff] [blame] | 1015 | 		} while (len && start < vma->vm_end); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1016 | 		spin_unlock(&mm->page_table_lock); | 
| Hugh Dickins | 08ef472 | 2005-06-21 17:15:10 -0700 | [diff] [blame] | 1017 | 	} while (len); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1018 | 	return i; | 
 | 1019 | } | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1020 | EXPORT_SYMBOL(get_user_pages); | 
 | 1021 |  | 
 | 1022 | static int zeromap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
 | 1023 | 			unsigned long addr, unsigned long end, pgprot_t prot) | 
 | 1024 | { | 
 | 1025 | 	pte_t *pte; | 
 | 1026 |  | 
 | 1027 | 	pte = pte_alloc_map(mm, pmd, addr); | 
 | 1028 | 	if (!pte) | 
 | 1029 | 		return -ENOMEM; | 
 | 1030 | 	do { | 
 | 1031 | 		pte_t zero_pte = pte_wrprotect(mk_pte(ZERO_PAGE(addr), prot)); | 
 | 1032 | 		BUG_ON(!pte_none(*pte)); | 
 | 1033 | 		set_pte_at(mm, addr, pte, zero_pte); | 
 | 1034 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 1035 | 	pte_unmap(pte - 1); | 
 | 1036 | 	return 0; | 
 | 1037 | } | 
 | 1038 |  | 
 | 1039 | static inline int zeromap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
 | 1040 | 			unsigned long addr, unsigned long end, pgprot_t prot) | 
 | 1041 | { | 
 | 1042 | 	pmd_t *pmd; | 
 | 1043 | 	unsigned long next; | 
 | 1044 |  | 
 | 1045 | 	pmd = pmd_alloc(mm, pud, addr); | 
 | 1046 | 	if (!pmd) | 
 | 1047 | 		return -ENOMEM; | 
 | 1048 | 	do { | 
 | 1049 | 		next = pmd_addr_end(addr, end); | 
 | 1050 | 		if (zeromap_pte_range(mm, pmd, addr, next, prot)) | 
 | 1051 | 			return -ENOMEM; | 
 | 1052 | 	} while (pmd++, addr = next, addr != end); | 
 | 1053 | 	return 0; | 
 | 1054 | } | 
 | 1055 |  | 
 | 1056 | static inline int zeromap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
 | 1057 | 			unsigned long addr, unsigned long end, pgprot_t prot) | 
 | 1058 | { | 
 | 1059 | 	pud_t *pud; | 
 | 1060 | 	unsigned long next; | 
 | 1061 |  | 
 | 1062 | 	pud = pud_alloc(mm, pgd, addr); | 
 | 1063 | 	if (!pud) | 
 | 1064 | 		return -ENOMEM; | 
 | 1065 | 	do { | 
 | 1066 | 		next = pud_addr_end(addr, end); | 
 | 1067 | 		if (zeromap_pmd_range(mm, pud, addr, next, prot)) | 
 | 1068 | 			return -ENOMEM; | 
 | 1069 | 	} while (pud++, addr = next, addr != end); | 
 | 1070 | 	return 0; | 
 | 1071 | } | 
 | 1072 |  | 
 | 1073 | int zeromap_page_range(struct vm_area_struct *vma, | 
 | 1074 | 			unsigned long addr, unsigned long size, pgprot_t prot) | 
 | 1075 | { | 
 | 1076 | 	pgd_t *pgd; | 
 | 1077 | 	unsigned long next; | 
 | 1078 | 	unsigned long end = addr + size; | 
 | 1079 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 1080 | 	int err; | 
 | 1081 |  | 
 | 1082 | 	BUG_ON(addr >= end); | 
 | 1083 | 	pgd = pgd_offset(mm, addr); | 
 | 1084 | 	flush_cache_range(vma, addr, end); | 
 | 1085 | 	spin_lock(&mm->page_table_lock); | 
 | 1086 | 	do { | 
 | 1087 | 		next = pgd_addr_end(addr, end); | 
 | 1088 | 		err = zeromap_pud_range(mm, pgd, addr, next, prot); | 
 | 1089 | 		if (err) | 
 | 1090 | 			break; | 
 | 1091 | 	} while (pgd++, addr = next, addr != end); | 
 | 1092 | 	spin_unlock(&mm->page_table_lock); | 
 | 1093 | 	return err; | 
 | 1094 | } | 
 | 1095 |  | 
 | 1096 | /* | 
 | 1097 |  * maps a range of physical memory into the requested pages. the old | 
 | 1098 |  * mappings are removed. any references to nonexistent pages results | 
 | 1099 |  * in null mappings (currently treated as "copy-on-access") | 
 | 1100 |  */ | 
 | 1101 | static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd, | 
 | 1102 | 			unsigned long addr, unsigned long end, | 
 | 1103 | 			unsigned long pfn, pgprot_t prot) | 
 | 1104 | { | 
 | 1105 | 	pte_t *pte; | 
 | 1106 |  | 
 | 1107 | 	pte = pte_alloc_map(mm, pmd, addr); | 
 | 1108 | 	if (!pte) | 
 | 1109 | 		return -ENOMEM; | 
 | 1110 | 	do { | 
 | 1111 | 		BUG_ON(!pte_none(*pte)); | 
 | 1112 | 		if (!pfn_valid(pfn) || PageReserved(pfn_to_page(pfn))) | 
 | 1113 | 			set_pte_at(mm, addr, pte, pfn_pte(pfn, prot)); | 
 | 1114 | 		pfn++; | 
 | 1115 | 	} while (pte++, addr += PAGE_SIZE, addr != end); | 
 | 1116 | 	pte_unmap(pte - 1); | 
 | 1117 | 	return 0; | 
 | 1118 | } | 
 | 1119 |  | 
 | 1120 | static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud, | 
 | 1121 | 			unsigned long addr, unsigned long end, | 
 | 1122 | 			unsigned long pfn, pgprot_t prot) | 
 | 1123 | { | 
 | 1124 | 	pmd_t *pmd; | 
 | 1125 | 	unsigned long next; | 
 | 1126 |  | 
 | 1127 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 1128 | 	pmd = pmd_alloc(mm, pud, addr); | 
 | 1129 | 	if (!pmd) | 
 | 1130 | 		return -ENOMEM; | 
 | 1131 | 	do { | 
 | 1132 | 		next = pmd_addr_end(addr, end); | 
 | 1133 | 		if (remap_pte_range(mm, pmd, addr, next, | 
 | 1134 | 				pfn + (addr >> PAGE_SHIFT), prot)) | 
 | 1135 | 			return -ENOMEM; | 
 | 1136 | 	} while (pmd++, addr = next, addr != end); | 
 | 1137 | 	return 0; | 
 | 1138 | } | 
 | 1139 |  | 
 | 1140 | static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd, | 
 | 1141 | 			unsigned long addr, unsigned long end, | 
 | 1142 | 			unsigned long pfn, pgprot_t prot) | 
 | 1143 | { | 
 | 1144 | 	pud_t *pud; | 
 | 1145 | 	unsigned long next; | 
 | 1146 |  | 
 | 1147 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 1148 | 	pud = pud_alloc(mm, pgd, addr); | 
 | 1149 | 	if (!pud) | 
 | 1150 | 		return -ENOMEM; | 
 | 1151 | 	do { | 
 | 1152 | 		next = pud_addr_end(addr, end); | 
 | 1153 | 		if (remap_pmd_range(mm, pud, addr, next, | 
 | 1154 | 				pfn + (addr >> PAGE_SHIFT), prot)) | 
 | 1155 | 			return -ENOMEM; | 
 | 1156 | 	} while (pud++, addr = next, addr != end); | 
 | 1157 | 	return 0; | 
 | 1158 | } | 
 | 1159 |  | 
 | 1160 | /*  Note: this is only safe if the mm semaphore is held when called. */ | 
 | 1161 | int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr, | 
 | 1162 | 		    unsigned long pfn, unsigned long size, pgprot_t prot) | 
 | 1163 | { | 
 | 1164 | 	pgd_t *pgd; | 
 | 1165 | 	unsigned long next; | 
| Hugh Dickins | 2d15cab | 2005-06-25 14:54:33 -0700 | [diff] [blame] | 1166 | 	unsigned long end = addr + PAGE_ALIGN(size); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1167 | 	struct mm_struct *mm = vma->vm_mm; | 
 | 1168 | 	int err; | 
 | 1169 |  | 
 | 1170 | 	/* | 
 | 1171 | 	 * Physically remapped pages are special. Tell the | 
 | 1172 | 	 * rest of the world about it: | 
 | 1173 | 	 *   VM_IO tells people not to look at these pages | 
 | 1174 | 	 *	(accesses can have side effects). | 
 | 1175 | 	 *   VM_RESERVED tells swapout not to try to touch | 
 | 1176 | 	 *	this region. | 
 | 1177 | 	 */ | 
 | 1178 | 	vma->vm_flags |= VM_IO | VM_RESERVED; | 
 | 1179 |  | 
 | 1180 | 	BUG_ON(addr >= end); | 
 | 1181 | 	pfn -= addr >> PAGE_SHIFT; | 
 | 1182 | 	pgd = pgd_offset(mm, addr); | 
 | 1183 | 	flush_cache_range(vma, addr, end); | 
 | 1184 | 	spin_lock(&mm->page_table_lock); | 
 | 1185 | 	do { | 
 | 1186 | 		next = pgd_addr_end(addr, end); | 
 | 1187 | 		err = remap_pud_range(mm, pgd, addr, next, | 
 | 1188 | 				pfn + (addr >> PAGE_SHIFT), prot); | 
 | 1189 | 		if (err) | 
 | 1190 | 			break; | 
 | 1191 | 	} while (pgd++, addr = next, addr != end); | 
 | 1192 | 	spin_unlock(&mm->page_table_lock); | 
 | 1193 | 	return err; | 
 | 1194 | } | 
 | 1195 | EXPORT_SYMBOL(remap_pfn_range); | 
 | 1196 |  | 
 | 1197 | /* | 
 | 1198 |  * Do pte_mkwrite, but only if the vma says VM_WRITE.  We do this when | 
 | 1199 |  * servicing faults for write access.  In the normal case, do always want | 
 | 1200 |  * pte_mkwrite.  But get_user_pages can cause write faults for mappings | 
 | 1201 |  * that do not have writing enabled, when used by access_process_vm. | 
 | 1202 |  */ | 
 | 1203 | static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma) | 
 | 1204 | { | 
 | 1205 | 	if (likely(vma->vm_flags & VM_WRITE)) | 
 | 1206 | 		pte = pte_mkwrite(pte); | 
 | 1207 | 	return pte; | 
 | 1208 | } | 
 | 1209 |  | 
 | 1210 | /* | 
 | 1211 |  * We hold the mm semaphore for reading and vma->vm_mm->page_table_lock | 
 | 1212 |  */ | 
 | 1213 | static inline void break_cow(struct vm_area_struct * vma, struct page * new_page, unsigned long address,  | 
 | 1214 | 		pte_t *page_table) | 
 | 1215 | { | 
 | 1216 | 	pte_t entry; | 
 | 1217 |  | 
 | 1218 | 	entry = maybe_mkwrite(pte_mkdirty(mk_pte(new_page, vma->vm_page_prot)), | 
 | 1219 | 			      vma); | 
 | 1220 | 	ptep_establish(vma, address, page_table, entry); | 
 | 1221 | 	update_mmu_cache(vma, address, entry); | 
 | 1222 | 	lazy_mmu_prot_update(entry); | 
 | 1223 | } | 
 | 1224 |  | 
 | 1225 | /* | 
 | 1226 |  * This routine handles present pages, when users try to write | 
 | 1227 |  * to a shared page. It is done by copying the page to a new address | 
 | 1228 |  * and decrementing the shared-page counter for the old page. | 
 | 1229 |  * | 
 | 1230 |  * Goto-purists beware: the only reason for goto's here is that it results | 
 | 1231 |  * in better assembly code.. The "default" path will see no jumps at all. | 
 | 1232 |  * | 
 | 1233 |  * Note that this routine assumes that the protection checks have been | 
 | 1234 |  * done by the caller (the low-level page fault routine in most cases). | 
 | 1235 |  * Thus we can safely just mark it writable once we've done any necessary | 
 | 1236 |  * COW. | 
 | 1237 |  * | 
 | 1238 |  * We also mark the page dirty at this point even though the page will | 
 | 1239 |  * change only once the write actually happens. This avoids a few races, | 
 | 1240 |  * and potentially makes it more efficient. | 
 | 1241 |  * | 
 | 1242 |  * We hold the mm semaphore and the page_table_lock on entry and exit | 
 | 1243 |  * with the page_table_lock released. | 
 | 1244 |  */ | 
 | 1245 | static int do_wp_page(struct mm_struct *mm, struct vm_area_struct * vma, | 
 | 1246 | 	unsigned long address, pte_t *page_table, pmd_t *pmd, pte_t pte) | 
 | 1247 | { | 
 | 1248 | 	struct page *old_page, *new_page; | 
 | 1249 | 	unsigned long pfn = pte_pfn(pte); | 
 | 1250 | 	pte_t entry; | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 1251 | 	int ret; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1252 |  | 
 | 1253 | 	if (unlikely(!pfn_valid(pfn))) { | 
 | 1254 | 		/* | 
 | 1255 | 		 * This should really halt the system so it can be debugged or | 
 | 1256 | 		 * at least the kernel stops what it's doing before it corrupts | 
 | 1257 | 		 * data, but for the moment just pretend this is OOM. | 
 | 1258 | 		 */ | 
 | 1259 | 		pte_unmap(page_table); | 
 | 1260 | 		printk(KERN_ERR "do_wp_page: bogus page at address %08lx\n", | 
 | 1261 | 				address); | 
 | 1262 | 		spin_unlock(&mm->page_table_lock); | 
 | 1263 | 		return VM_FAULT_OOM; | 
 | 1264 | 	} | 
 | 1265 | 	old_page = pfn_to_page(pfn); | 
 | 1266 |  | 
| Hugh Dickins | d296e9c | 2005-06-21 17:15:11 -0700 | [diff] [blame] | 1267 | 	if (PageAnon(old_page) && !TestSetPageLocked(old_page)) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1268 | 		int reuse = can_share_swap_page(old_page); | 
 | 1269 | 		unlock_page(old_page); | 
 | 1270 | 		if (reuse) { | 
 | 1271 | 			flush_cache_page(vma, address, pfn); | 
 | 1272 | 			entry = maybe_mkwrite(pte_mkyoung(pte_mkdirty(pte)), | 
 | 1273 | 					      vma); | 
 | 1274 | 			ptep_set_access_flags(vma, address, page_table, entry, 1); | 
 | 1275 | 			update_mmu_cache(vma, address, entry); | 
 | 1276 | 			lazy_mmu_prot_update(entry); | 
 | 1277 | 			pte_unmap(page_table); | 
 | 1278 | 			spin_unlock(&mm->page_table_lock); | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 1279 | 			return VM_FAULT_MINOR|VM_FAULT_WRITE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1280 | 		} | 
 | 1281 | 	} | 
 | 1282 | 	pte_unmap(page_table); | 
 | 1283 |  | 
 | 1284 | 	/* | 
 | 1285 | 	 * Ok, we need to copy. Oh, well.. | 
 | 1286 | 	 */ | 
 | 1287 | 	if (!PageReserved(old_page)) | 
 | 1288 | 		page_cache_get(old_page); | 
 | 1289 | 	spin_unlock(&mm->page_table_lock); | 
 | 1290 |  | 
 | 1291 | 	if (unlikely(anon_vma_prepare(vma))) | 
 | 1292 | 		goto no_new_page; | 
 | 1293 | 	if (old_page == ZERO_PAGE(address)) { | 
 | 1294 | 		new_page = alloc_zeroed_user_highpage(vma, address); | 
 | 1295 | 		if (!new_page) | 
 | 1296 | 			goto no_new_page; | 
 | 1297 | 	} else { | 
 | 1298 | 		new_page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
 | 1299 | 		if (!new_page) | 
 | 1300 | 			goto no_new_page; | 
 | 1301 | 		copy_user_highpage(new_page, old_page, address); | 
 | 1302 | 	} | 
 | 1303 | 	/* | 
 | 1304 | 	 * Re-check the pte - we dropped the lock | 
 | 1305 | 	 */ | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 1306 | 	ret = VM_FAULT_MINOR; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1307 | 	spin_lock(&mm->page_table_lock); | 
 | 1308 | 	page_table = pte_offset_map(pmd, address); | 
 | 1309 | 	if (likely(pte_same(*page_table, pte))) { | 
 | 1310 | 		if (PageAnon(old_page)) | 
 | 1311 | 			dec_mm_counter(mm, anon_rss); | 
 | 1312 | 		if (PageReserved(old_page)) | 
 | 1313 | 			inc_mm_counter(mm, rss); | 
 | 1314 | 		else | 
 | 1315 | 			page_remove_rmap(old_page); | 
 | 1316 | 		flush_cache_page(vma, address, pfn); | 
 | 1317 | 		break_cow(vma, new_page, address, page_table); | 
 | 1318 | 		lru_cache_add_active(new_page); | 
 | 1319 | 		page_add_anon_rmap(new_page, vma, address); | 
 | 1320 |  | 
 | 1321 | 		/* Free the old page.. */ | 
 | 1322 | 		new_page = old_page; | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 1323 | 		ret |= VM_FAULT_WRITE; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1324 | 	} | 
 | 1325 | 	pte_unmap(page_table); | 
 | 1326 | 	page_cache_release(new_page); | 
 | 1327 | 	page_cache_release(old_page); | 
 | 1328 | 	spin_unlock(&mm->page_table_lock); | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 1329 | 	return ret; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1330 |  | 
 | 1331 | no_new_page: | 
 | 1332 | 	page_cache_release(old_page); | 
 | 1333 | 	return VM_FAULT_OOM; | 
 | 1334 | } | 
 | 1335 |  | 
 | 1336 | /* | 
 | 1337 |  * Helper functions for unmap_mapping_range(). | 
 | 1338 |  * | 
 | 1339 |  * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __ | 
 | 1340 |  * | 
 | 1341 |  * We have to restart searching the prio_tree whenever we drop the lock, | 
 | 1342 |  * since the iterator is only valid while the lock is held, and anyway | 
 | 1343 |  * a later vma might be split and reinserted earlier while lock dropped. | 
 | 1344 |  * | 
 | 1345 |  * The list of nonlinear vmas could be handled more efficiently, using | 
 | 1346 |  * a placeholder, but handle it in the same way until a need is shown. | 
 | 1347 |  * It is important to search the prio_tree before nonlinear list: a vma | 
 | 1348 |  * may become nonlinear and be shifted from prio_tree to nonlinear list | 
 | 1349 |  * while the lock is dropped; but never shifted from list to prio_tree. | 
 | 1350 |  * | 
 | 1351 |  * In order to make forward progress despite restarting the search, | 
 | 1352 |  * vm_truncate_count is used to mark a vma as now dealt with, so we can | 
 | 1353 |  * quickly skip it next time around.  Since the prio_tree search only | 
 | 1354 |  * shows us those vmas affected by unmapping the range in question, we | 
 | 1355 |  * can't efficiently keep all vmas in step with mapping->truncate_count: | 
 | 1356 |  * so instead reset them all whenever it wraps back to 0 (then go to 1). | 
 | 1357 |  * mapping->truncate_count and vma->vm_truncate_count are protected by | 
 | 1358 |  * i_mmap_lock. | 
 | 1359 |  * | 
 | 1360 |  * In order to make forward progress despite repeatedly restarting some | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 1361 |  * large vma, note the restart_addr from unmap_vmas when it breaks out: | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1362 |  * and restart from that address when we reach that vma again.  It might | 
 | 1363 |  * have been split or merged, shrunk or extended, but never shifted: so | 
 | 1364 |  * restart_addr remains valid so long as it remains in the vma's range. | 
 | 1365 |  * unmap_mapping_range forces truncate_count to leap over page-aligned | 
 | 1366 |  * values so we can save vma's restart_addr in its truncate_count field. | 
 | 1367 |  */ | 
 | 1368 | #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK)) | 
 | 1369 |  | 
 | 1370 | static void reset_vma_truncate_counts(struct address_space *mapping) | 
 | 1371 | { | 
 | 1372 | 	struct vm_area_struct *vma; | 
 | 1373 | 	struct prio_tree_iter iter; | 
 | 1374 |  | 
 | 1375 | 	vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX) | 
 | 1376 | 		vma->vm_truncate_count = 0; | 
 | 1377 | 	list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list) | 
 | 1378 | 		vma->vm_truncate_count = 0; | 
 | 1379 | } | 
 | 1380 |  | 
 | 1381 | static int unmap_mapping_range_vma(struct vm_area_struct *vma, | 
 | 1382 | 		unsigned long start_addr, unsigned long end_addr, | 
 | 1383 | 		struct zap_details *details) | 
 | 1384 | { | 
 | 1385 | 	unsigned long restart_addr; | 
 | 1386 | 	int need_break; | 
 | 1387 |  | 
 | 1388 | again: | 
 | 1389 | 	restart_addr = vma->vm_truncate_count; | 
 | 1390 | 	if (is_restart_addr(restart_addr) && start_addr < restart_addr) { | 
 | 1391 | 		start_addr = restart_addr; | 
 | 1392 | 		if (start_addr >= end_addr) { | 
 | 1393 | 			/* Top of vma has been split off since last time */ | 
 | 1394 | 			vma->vm_truncate_count = details->truncate_count; | 
 | 1395 | 			return 0; | 
 | 1396 | 		} | 
 | 1397 | 	} | 
 | 1398 |  | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 1399 | 	restart_addr = zap_page_range(vma, start_addr, | 
 | 1400 | 					end_addr - start_addr, details); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1401 |  | 
 | 1402 | 	/* | 
 | 1403 | 	 * We cannot rely on the break test in unmap_vmas: | 
 | 1404 | 	 * on the one hand, we don't want to restart our loop | 
 | 1405 | 	 * just because that broke out for the page_table_lock; | 
 | 1406 | 	 * on the other hand, it does no test when vma is small. | 
 | 1407 | 	 */ | 
 | 1408 | 	need_break = need_resched() || | 
 | 1409 | 			need_lockbreak(details->i_mmap_lock); | 
 | 1410 |  | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 1411 | 	if (restart_addr >= end_addr) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1412 | 		/* We have now completed this vma: mark it so */ | 
 | 1413 | 		vma->vm_truncate_count = details->truncate_count; | 
 | 1414 | 		if (!need_break) | 
 | 1415 | 			return 0; | 
 | 1416 | 	} else { | 
 | 1417 | 		/* Note restart_addr in vma's truncate_count field */ | 
| Hugh Dickins | ee39b37 | 2005-04-19 13:29:15 -0700 | [diff] [blame] | 1418 | 		vma->vm_truncate_count = restart_addr; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1419 | 		if (!need_break) | 
 | 1420 | 			goto again; | 
 | 1421 | 	} | 
 | 1422 |  | 
 | 1423 | 	spin_unlock(details->i_mmap_lock); | 
 | 1424 | 	cond_resched(); | 
 | 1425 | 	spin_lock(details->i_mmap_lock); | 
 | 1426 | 	return -EINTR; | 
 | 1427 | } | 
 | 1428 |  | 
 | 1429 | static inline void unmap_mapping_range_tree(struct prio_tree_root *root, | 
 | 1430 | 					    struct zap_details *details) | 
 | 1431 | { | 
 | 1432 | 	struct vm_area_struct *vma; | 
 | 1433 | 	struct prio_tree_iter iter; | 
 | 1434 | 	pgoff_t vba, vea, zba, zea; | 
 | 1435 |  | 
 | 1436 | restart: | 
 | 1437 | 	vma_prio_tree_foreach(vma, &iter, root, | 
 | 1438 | 			details->first_index, details->last_index) { | 
 | 1439 | 		/* Skip quickly over those we have already dealt with */ | 
 | 1440 | 		if (vma->vm_truncate_count == details->truncate_count) | 
 | 1441 | 			continue; | 
 | 1442 |  | 
 | 1443 | 		vba = vma->vm_pgoff; | 
 | 1444 | 		vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1; | 
 | 1445 | 		/* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */ | 
 | 1446 | 		zba = details->first_index; | 
 | 1447 | 		if (zba < vba) | 
 | 1448 | 			zba = vba; | 
 | 1449 | 		zea = details->last_index; | 
 | 1450 | 		if (zea > vea) | 
 | 1451 | 			zea = vea; | 
 | 1452 |  | 
 | 1453 | 		if (unmap_mapping_range_vma(vma, | 
 | 1454 | 			((zba - vba) << PAGE_SHIFT) + vma->vm_start, | 
 | 1455 | 			((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start, | 
 | 1456 | 				details) < 0) | 
 | 1457 | 			goto restart; | 
 | 1458 | 	} | 
 | 1459 | } | 
 | 1460 |  | 
 | 1461 | static inline void unmap_mapping_range_list(struct list_head *head, | 
 | 1462 | 					    struct zap_details *details) | 
 | 1463 | { | 
 | 1464 | 	struct vm_area_struct *vma; | 
 | 1465 |  | 
 | 1466 | 	/* | 
 | 1467 | 	 * In nonlinear VMAs there is no correspondence between virtual address | 
 | 1468 | 	 * offset and file offset.  So we must perform an exhaustive search | 
 | 1469 | 	 * across *all* the pages in each nonlinear VMA, not just the pages | 
 | 1470 | 	 * whose virtual address lies outside the file truncation point. | 
 | 1471 | 	 */ | 
 | 1472 | restart: | 
 | 1473 | 	list_for_each_entry(vma, head, shared.vm_set.list) { | 
 | 1474 | 		/* Skip quickly over those we have already dealt with */ | 
 | 1475 | 		if (vma->vm_truncate_count == details->truncate_count) | 
 | 1476 | 			continue; | 
 | 1477 | 		details->nonlinear_vma = vma; | 
 | 1478 | 		if (unmap_mapping_range_vma(vma, vma->vm_start, | 
 | 1479 | 					vma->vm_end, details) < 0) | 
 | 1480 | 			goto restart; | 
 | 1481 | 	} | 
 | 1482 | } | 
 | 1483 |  | 
 | 1484 | /** | 
 | 1485 |  * unmap_mapping_range - unmap the portion of all mmaps | 
 | 1486 |  * in the specified address_space corresponding to the specified | 
 | 1487 |  * page range in the underlying file. | 
| Martin Waitz | 3d41088 | 2005-06-23 22:05:21 -0700 | [diff] [blame] | 1488 |  * @mapping: the address space containing mmaps to be unmapped. | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1489 |  * @holebegin: byte in first page to unmap, relative to the start of | 
 | 1490 |  * the underlying file.  This will be rounded down to a PAGE_SIZE | 
 | 1491 |  * boundary.  Note that this is different from vmtruncate(), which | 
 | 1492 |  * must keep the partial page.  In contrast, we must get rid of | 
 | 1493 |  * partial pages. | 
 | 1494 |  * @holelen: size of prospective hole in bytes.  This will be rounded | 
 | 1495 |  * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the | 
 | 1496 |  * end of the file. | 
 | 1497 |  * @even_cows: 1 when truncating a file, unmap even private COWed pages; | 
 | 1498 |  * but 0 when invalidating pagecache, don't throw away private data. | 
 | 1499 |  */ | 
 | 1500 | void unmap_mapping_range(struct address_space *mapping, | 
 | 1501 | 		loff_t const holebegin, loff_t const holelen, int even_cows) | 
 | 1502 | { | 
 | 1503 | 	struct zap_details details; | 
 | 1504 | 	pgoff_t hba = holebegin >> PAGE_SHIFT; | 
 | 1505 | 	pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 1506 |  | 
 | 1507 | 	/* Check for overflow. */ | 
 | 1508 | 	if (sizeof(holelen) > sizeof(hlen)) { | 
 | 1509 | 		long long holeend = | 
 | 1510 | 			(holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT; | 
 | 1511 | 		if (holeend & ~(long long)ULONG_MAX) | 
 | 1512 | 			hlen = ULONG_MAX - hba + 1; | 
 | 1513 | 	} | 
 | 1514 |  | 
 | 1515 | 	details.check_mapping = even_cows? NULL: mapping; | 
 | 1516 | 	details.nonlinear_vma = NULL; | 
 | 1517 | 	details.first_index = hba; | 
 | 1518 | 	details.last_index = hba + hlen - 1; | 
 | 1519 | 	if (details.last_index < details.first_index) | 
 | 1520 | 		details.last_index = ULONG_MAX; | 
 | 1521 | 	details.i_mmap_lock = &mapping->i_mmap_lock; | 
 | 1522 |  | 
 | 1523 | 	spin_lock(&mapping->i_mmap_lock); | 
 | 1524 |  | 
 | 1525 | 	/* serialize i_size write against truncate_count write */ | 
 | 1526 | 	smp_wmb(); | 
 | 1527 | 	/* Protect against page faults, and endless unmapping loops */ | 
 | 1528 | 	mapping->truncate_count++; | 
 | 1529 | 	/* | 
 | 1530 | 	 * For archs where spin_lock has inclusive semantics like ia64 | 
 | 1531 | 	 * this smp_mb() will prevent to read pagetable contents | 
 | 1532 | 	 * before the truncate_count increment is visible to | 
 | 1533 | 	 * other cpus. | 
 | 1534 | 	 */ | 
 | 1535 | 	smp_mb(); | 
 | 1536 | 	if (unlikely(is_restart_addr(mapping->truncate_count))) { | 
 | 1537 | 		if (mapping->truncate_count == 0) | 
 | 1538 | 			reset_vma_truncate_counts(mapping); | 
 | 1539 | 		mapping->truncate_count++; | 
 | 1540 | 	} | 
 | 1541 | 	details.truncate_count = mapping->truncate_count; | 
 | 1542 |  | 
 | 1543 | 	if (unlikely(!prio_tree_empty(&mapping->i_mmap))) | 
 | 1544 | 		unmap_mapping_range_tree(&mapping->i_mmap, &details); | 
 | 1545 | 	if (unlikely(!list_empty(&mapping->i_mmap_nonlinear))) | 
 | 1546 | 		unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details); | 
 | 1547 | 	spin_unlock(&mapping->i_mmap_lock); | 
 | 1548 | } | 
 | 1549 | EXPORT_SYMBOL(unmap_mapping_range); | 
 | 1550 |  | 
 | 1551 | /* | 
 | 1552 |  * Handle all mappings that got truncated by a "truncate()" | 
 | 1553 |  * system call. | 
 | 1554 |  * | 
 | 1555 |  * NOTE! We have to be ready to update the memory sharing | 
 | 1556 |  * between the file and the memory map for a potential last | 
 | 1557 |  * incomplete page.  Ugly, but necessary. | 
 | 1558 |  */ | 
 | 1559 | int vmtruncate(struct inode * inode, loff_t offset) | 
 | 1560 | { | 
 | 1561 | 	struct address_space *mapping = inode->i_mapping; | 
 | 1562 | 	unsigned long limit; | 
 | 1563 |  | 
 | 1564 | 	if (inode->i_size < offset) | 
 | 1565 | 		goto do_expand; | 
 | 1566 | 	/* | 
 | 1567 | 	 * truncation of in-use swapfiles is disallowed - it would cause | 
 | 1568 | 	 * subsequent swapout to scribble on the now-freed blocks. | 
 | 1569 | 	 */ | 
 | 1570 | 	if (IS_SWAPFILE(inode)) | 
 | 1571 | 		goto out_busy; | 
 | 1572 | 	i_size_write(inode, offset); | 
 | 1573 | 	unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1); | 
 | 1574 | 	truncate_inode_pages(mapping, offset); | 
 | 1575 | 	goto out_truncate; | 
 | 1576 |  | 
 | 1577 | do_expand: | 
 | 1578 | 	limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur; | 
 | 1579 | 	if (limit != RLIM_INFINITY && offset > limit) | 
 | 1580 | 		goto out_sig; | 
 | 1581 | 	if (offset > inode->i_sb->s_maxbytes) | 
 | 1582 | 		goto out_big; | 
 | 1583 | 	i_size_write(inode, offset); | 
 | 1584 |  | 
 | 1585 | out_truncate: | 
 | 1586 | 	if (inode->i_op && inode->i_op->truncate) | 
 | 1587 | 		inode->i_op->truncate(inode); | 
 | 1588 | 	return 0; | 
 | 1589 | out_sig: | 
 | 1590 | 	send_sig(SIGXFSZ, current, 0); | 
 | 1591 | out_big: | 
 | 1592 | 	return -EFBIG; | 
 | 1593 | out_busy: | 
 | 1594 | 	return -ETXTBSY; | 
 | 1595 | } | 
 | 1596 |  | 
 | 1597 | EXPORT_SYMBOL(vmtruncate); | 
 | 1598 |  | 
 | 1599 | /*  | 
 | 1600 |  * Primitive swap readahead code. We simply read an aligned block of | 
 | 1601 |  * (1 << page_cluster) entries in the swap area. This method is chosen | 
 | 1602 |  * because it doesn't cost us any seek time.  We also make sure to queue | 
 | 1603 |  * the 'original' request together with the readahead ones...   | 
 | 1604 |  * | 
 | 1605 |  * This has been extended to use the NUMA policies from the mm triggering | 
 | 1606 |  * the readahead. | 
 | 1607 |  * | 
 | 1608 |  * Caller must hold down_read on the vma->vm_mm if vma is not NULL. | 
 | 1609 |  */ | 
 | 1610 | void swapin_readahead(swp_entry_t entry, unsigned long addr,struct vm_area_struct *vma) | 
 | 1611 | { | 
 | 1612 | #ifdef CONFIG_NUMA | 
 | 1613 | 	struct vm_area_struct *next_vma = vma ? vma->vm_next : NULL; | 
 | 1614 | #endif | 
 | 1615 | 	int i, num; | 
 | 1616 | 	struct page *new_page; | 
 | 1617 | 	unsigned long offset; | 
 | 1618 |  | 
 | 1619 | 	/* | 
 | 1620 | 	 * Get the number of handles we should do readahead io to. | 
 | 1621 | 	 */ | 
 | 1622 | 	num = valid_swaphandles(entry, &offset); | 
 | 1623 | 	for (i = 0; i < num; offset++, i++) { | 
 | 1624 | 		/* Ok, do the async read-ahead now */ | 
 | 1625 | 		new_page = read_swap_cache_async(swp_entry(swp_type(entry), | 
 | 1626 | 							   offset), vma, addr); | 
 | 1627 | 		if (!new_page) | 
 | 1628 | 			break; | 
 | 1629 | 		page_cache_release(new_page); | 
 | 1630 | #ifdef CONFIG_NUMA | 
 | 1631 | 		/* | 
 | 1632 | 		 * Find the next applicable VMA for the NUMA policy. | 
 | 1633 | 		 */ | 
 | 1634 | 		addr += PAGE_SIZE; | 
 | 1635 | 		if (addr == 0) | 
 | 1636 | 			vma = NULL; | 
 | 1637 | 		if (vma) { | 
 | 1638 | 			if (addr >= vma->vm_end) { | 
 | 1639 | 				vma = next_vma; | 
 | 1640 | 				next_vma = vma ? vma->vm_next : NULL; | 
 | 1641 | 			} | 
 | 1642 | 			if (vma && addr < vma->vm_start) | 
 | 1643 | 				vma = NULL; | 
 | 1644 | 		} else { | 
 | 1645 | 			if (next_vma && addr >= next_vma->vm_start) { | 
 | 1646 | 				vma = next_vma; | 
 | 1647 | 				next_vma = vma->vm_next; | 
 | 1648 | 			} | 
 | 1649 | 		} | 
 | 1650 | #endif | 
 | 1651 | 	} | 
 | 1652 | 	lru_add_drain();	/* Push any new pages onto the LRU now */ | 
 | 1653 | } | 
 | 1654 |  | 
 | 1655 | /* | 
 | 1656 |  * We hold the mm semaphore and the page_table_lock on entry and | 
 | 1657 |  * should release the pagetable lock on exit.. | 
 | 1658 |  */ | 
 | 1659 | static int do_swap_page(struct mm_struct * mm, | 
 | 1660 | 	struct vm_area_struct * vma, unsigned long address, | 
 | 1661 | 	pte_t *page_table, pmd_t *pmd, pte_t orig_pte, int write_access) | 
 | 1662 | { | 
 | 1663 | 	struct page *page; | 
 | 1664 | 	swp_entry_t entry = pte_to_swp_entry(orig_pte); | 
 | 1665 | 	pte_t pte; | 
 | 1666 | 	int ret = VM_FAULT_MINOR; | 
 | 1667 |  | 
 | 1668 | 	pte_unmap(page_table); | 
 | 1669 | 	spin_unlock(&mm->page_table_lock); | 
 | 1670 | 	page = lookup_swap_cache(entry); | 
 | 1671 | 	if (!page) { | 
 | 1672 |  		swapin_readahead(entry, address, vma); | 
 | 1673 |  		page = read_swap_cache_async(entry, vma, address); | 
 | 1674 | 		if (!page) { | 
 | 1675 | 			/* | 
 | 1676 | 			 * Back out if somebody else faulted in this pte while | 
 | 1677 | 			 * we released the page table lock. | 
 | 1678 | 			 */ | 
 | 1679 | 			spin_lock(&mm->page_table_lock); | 
 | 1680 | 			page_table = pte_offset_map(pmd, address); | 
 | 1681 | 			if (likely(pte_same(*page_table, orig_pte))) | 
 | 1682 | 				ret = VM_FAULT_OOM; | 
 | 1683 | 			else | 
 | 1684 | 				ret = VM_FAULT_MINOR; | 
 | 1685 | 			pte_unmap(page_table); | 
 | 1686 | 			spin_unlock(&mm->page_table_lock); | 
 | 1687 | 			goto out; | 
 | 1688 | 		} | 
 | 1689 |  | 
 | 1690 | 		/* Had to read the page from swap area: Major fault */ | 
 | 1691 | 		ret = VM_FAULT_MAJOR; | 
 | 1692 | 		inc_page_state(pgmajfault); | 
 | 1693 | 		grab_swap_token(); | 
 | 1694 | 	} | 
 | 1695 |  | 
 | 1696 | 	mark_page_accessed(page); | 
 | 1697 | 	lock_page(page); | 
 | 1698 |  | 
 | 1699 | 	/* | 
 | 1700 | 	 * Back out if somebody else faulted in this pte while we | 
 | 1701 | 	 * released the page table lock. | 
 | 1702 | 	 */ | 
 | 1703 | 	spin_lock(&mm->page_table_lock); | 
 | 1704 | 	page_table = pte_offset_map(pmd, address); | 
 | 1705 | 	if (unlikely(!pte_same(*page_table, orig_pte))) { | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1706 | 		ret = VM_FAULT_MINOR; | 
| Kirill Korotaev | b810748 | 2005-05-16 21:53:50 -0700 | [diff] [blame] | 1707 | 		goto out_nomap; | 
 | 1708 | 	} | 
 | 1709 |  | 
 | 1710 | 	if (unlikely(!PageUptodate(page))) { | 
 | 1711 | 		ret = VM_FAULT_SIGBUS; | 
 | 1712 | 		goto out_nomap; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1713 | 	} | 
 | 1714 |  | 
 | 1715 | 	/* The page isn't present yet, go ahead with the fault. */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1716 |  | 
 | 1717 | 	inc_mm_counter(mm, rss); | 
 | 1718 | 	pte = mk_pte(page, vma->vm_page_prot); | 
 | 1719 | 	if (write_access && can_share_swap_page(page)) { | 
 | 1720 | 		pte = maybe_mkwrite(pte_mkdirty(pte), vma); | 
 | 1721 | 		write_access = 0; | 
 | 1722 | 	} | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1723 |  | 
 | 1724 | 	flush_icache_page(vma, page); | 
 | 1725 | 	set_pte_at(mm, address, page_table, pte); | 
 | 1726 | 	page_add_anon_rmap(page, vma, address); | 
 | 1727 |  | 
| Hugh Dickins | c475a8a | 2005-06-21 17:15:12 -0700 | [diff] [blame] | 1728 | 	swap_free(entry); | 
 | 1729 | 	if (vm_swap_full()) | 
 | 1730 | 		remove_exclusive_swap_page(page); | 
 | 1731 | 	unlock_page(page); | 
 | 1732 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1733 | 	if (write_access) { | 
 | 1734 | 		if (do_wp_page(mm, vma, address, | 
 | 1735 | 				page_table, pmd, pte) == VM_FAULT_OOM) | 
 | 1736 | 			ret = VM_FAULT_OOM; | 
 | 1737 | 		goto out; | 
 | 1738 | 	} | 
 | 1739 |  | 
 | 1740 | 	/* No need to invalidate - it was non-present before */ | 
 | 1741 | 	update_mmu_cache(vma, address, pte); | 
 | 1742 | 	lazy_mmu_prot_update(pte); | 
 | 1743 | 	pte_unmap(page_table); | 
 | 1744 | 	spin_unlock(&mm->page_table_lock); | 
 | 1745 | out: | 
 | 1746 | 	return ret; | 
| Kirill Korotaev | b810748 | 2005-05-16 21:53:50 -0700 | [diff] [blame] | 1747 | out_nomap: | 
 | 1748 | 	pte_unmap(page_table); | 
 | 1749 | 	spin_unlock(&mm->page_table_lock); | 
 | 1750 | 	unlock_page(page); | 
 | 1751 | 	page_cache_release(page); | 
 | 1752 | 	goto out; | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1753 | } | 
 | 1754 |  | 
 | 1755 | /* | 
 | 1756 |  * We are called with the MM semaphore and page_table_lock | 
 | 1757 |  * spinlock held to protect against concurrent faults in | 
 | 1758 |  * multithreaded programs.  | 
 | 1759 |  */ | 
 | 1760 | static int | 
 | 1761 | do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 1762 | 		pte_t *page_table, pmd_t *pmd, int write_access, | 
 | 1763 | 		unsigned long addr) | 
 | 1764 | { | 
 | 1765 | 	pte_t entry; | 
 | 1766 | 	struct page * page = ZERO_PAGE(addr); | 
 | 1767 |  | 
 | 1768 | 	/* Read-only mapping of ZERO_PAGE. */ | 
 | 1769 | 	entry = pte_wrprotect(mk_pte(ZERO_PAGE(addr), vma->vm_page_prot)); | 
 | 1770 |  | 
 | 1771 | 	/* ..except if it's a write access */ | 
 | 1772 | 	if (write_access) { | 
 | 1773 | 		/* Allocate our own private page. */ | 
 | 1774 | 		pte_unmap(page_table); | 
 | 1775 | 		spin_unlock(&mm->page_table_lock); | 
 | 1776 |  | 
 | 1777 | 		if (unlikely(anon_vma_prepare(vma))) | 
 | 1778 | 			goto no_mem; | 
 | 1779 | 		page = alloc_zeroed_user_highpage(vma, addr); | 
 | 1780 | 		if (!page) | 
 | 1781 | 			goto no_mem; | 
 | 1782 |  | 
 | 1783 | 		spin_lock(&mm->page_table_lock); | 
 | 1784 | 		page_table = pte_offset_map(pmd, addr); | 
 | 1785 |  | 
 | 1786 | 		if (!pte_none(*page_table)) { | 
 | 1787 | 			pte_unmap(page_table); | 
 | 1788 | 			page_cache_release(page); | 
 | 1789 | 			spin_unlock(&mm->page_table_lock); | 
 | 1790 | 			goto out; | 
 | 1791 | 		} | 
 | 1792 | 		inc_mm_counter(mm, rss); | 
 | 1793 | 		entry = maybe_mkwrite(pte_mkdirty(mk_pte(page, | 
 | 1794 | 							 vma->vm_page_prot)), | 
 | 1795 | 				      vma); | 
 | 1796 | 		lru_cache_add_active(page); | 
 | 1797 | 		SetPageReferenced(page); | 
 | 1798 | 		page_add_anon_rmap(page, vma, addr); | 
 | 1799 | 	} | 
 | 1800 |  | 
 | 1801 | 	set_pte_at(mm, addr, page_table, entry); | 
 | 1802 | 	pte_unmap(page_table); | 
 | 1803 |  | 
 | 1804 | 	/* No need to invalidate - it was non-present before */ | 
 | 1805 | 	update_mmu_cache(vma, addr, entry); | 
 | 1806 | 	lazy_mmu_prot_update(entry); | 
 | 1807 | 	spin_unlock(&mm->page_table_lock); | 
 | 1808 | out: | 
 | 1809 | 	return VM_FAULT_MINOR; | 
 | 1810 | no_mem: | 
 | 1811 | 	return VM_FAULT_OOM; | 
 | 1812 | } | 
 | 1813 |  | 
 | 1814 | /* | 
 | 1815 |  * do_no_page() tries to create a new page mapping. It aggressively | 
 | 1816 |  * tries to share with existing pages, but makes a separate copy if | 
 | 1817 |  * the "write_access" parameter is true in order to avoid the next | 
 | 1818 |  * page fault. | 
 | 1819 |  * | 
 | 1820 |  * As this is called only for pages that do not currently exist, we | 
 | 1821 |  * do not need to flush old virtual caches or the TLB. | 
 | 1822 |  * | 
 | 1823 |  * This is called with the MM semaphore held and the page table | 
 | 1824 |  * spinlock held. Exit with the spinlock released. | 
 | 1825 |  */ | 
 | 1826 | static int | 
 | 1827 | do_no_page(struct mm_struct *mm, struct vm_area_struct *vma, | 
 | 1828 | 	unsigned long address, int write_access, pte_t *page_table, pmd_t *pmd) | 
 | 1829 | { | 
 | 1830 | 	struct page * new_page; | 
 | 1831 | 	struct address_space *mapping = NULL; | 
 | 1832 | 	pte_t entry; | 
 | 1833 | 	unsigned int sequence = 0; | 
 | 1834 | 	int ret = VM_FAULT_MINOR; | 
 | 1835 | 	int anon = 0; | 
 | 1836 |  | 
 | 1837 | 	if (!vma->vm_ops || !vma->vm_ops->nopage) | 
 | 1838 | 		return do_anonymous_page(mm, vma, page_table, | 
 | 1839 | 					pmd, write_access, address); | 
 | 1840 | 	pte_unmap(page_table); | 
 | 1841 | 	spin_unlock(&mm->page_table_lock); | 
 | 1842 |  | 
 | 1843 | 	if (vma->vm_file) { | 
 | 1844 | 		mapping = vma->vm_file->f_mapping; | 
 | 1845 | 		sequence = mapping->truncate_count; | 
 | 1846 | 		smp_rmb(); /* serializes i_size against truncate_count */ | 
 | 1847 | 	} | 
 | 1848 | retry: | 
 | 1849 | 	cond_resched(); | 
 | 1850 | 	new_page = vma->vm_ops->nopage(vma, address & PAGE_MASK, &ret); | 
 | 1851 | 	/* | 
 | 1852 | 	 * No smp_rmb is needed here as long as there's a full | 
 | 1853 | 	 * spin_lock/unlock sequence inside the ->nopage callback | 
 | 1854 | 	 * (for the pagecache lookup) that acts as an implicit | 
 | 1855 | 	 * smp_mb() and prevents the i_size read to happen | 
 | 1856 | 	 * after the next truncate_count read. | 
 | 1857 | 	 */ | 
 | 1858 |  | 
 | 1859 | 	/* no page was available -- either SIGBUS or OOM */ | 
 | 1860 | 	if (new_page == NOPAGE_SIGBUS) | 
 | 1861 | 		return VM_FAULT_SIGBUS; | 
 | 1862 | 	if (new_page == NOPAGE_OOM) | 
 | 1863 | 		return VM_FAULT_OOM; | 
 | 1864 |  | 
 | 1865 | 	/* | 
 | 1866 | 	 * Should we do an early C-O-W break? | 
 | 1867 | 	 */ | 
 | 1868 | 	if (write_access && !(vma->vm_flags & VM_SHARED)) { | 
 | 1869 | 		struct page *page; | 
 | 1870 |  | 
 | 1871 | 		if (unlikely(anon_vma_prepare(vma))) | 
 | 1872 | 			goto oom; | 
 | 1873 | 		page = alloc_page_vma(GFP_HIGHUSER, vma, address); | 
 | 1874 | 		if (!page) | 
 | 1875 | 			goto oom; | 
 | 1876 | 		copy_user_highpage(page, new_page, address); | 
 | 1877 | 		page_cache_release(new_page); | 
 | 1878 | 		new_page = page; | 
 | 1879 | 		anon = 1; | 
 | 1880 | 	} | 
 | 1881 |  | 
 | 1882 | 	spin_lock(&mm->page_table_lock); | 
 | 1883 | 	/* | 
 | 1884 | 	 * For a file-backed vma, someone could have truncated or otherwise | 
 | 1885 | 	 * invalidated this page.  If unmap_mapping_range got called, | 
 | 1886 | 	 * retry getting the page. | 
 | 1887 | 	 */ | 
 | 1888 | 	if (mapping && unlikely(sequence != mapping->truncate_count)) { | 
 | 1889 | 		sequence = mapping->truncate_count; | 
 | 1890 | 		spin_unlock(&mm->page_table_lock); | 
 | 1891 | 		page_cache_release(new_page); | 
 | 1892 | 		goto retry; | 
 | 1893 | 	} | 
 | 1894 | 	page_table = pte_offset_map(pmd, address); | 
 | 1895 |  | 
 | 1896 | 	/* | 
 | 1897 | 	 * This silly early PAGE_DIRTY setting removes a race | 
 | 1898 | 	 * due to the bad i386 page protection. But it's valid | 
 | 1899 | 	 * for other architectures too. | 
 | 1900 | 	 * | 
 | 1901 | 	 * Note that if write_access is true, we either now have | 
 | 1902 | 	 * an exclusive copy of the page, or this is a shared mapping, | 
 | 1903 | 	 * so we can make it writable and dirty to avoid having to | 
 | 1904 | 	 * handle that later. | 
 | 1905 | 	 */ | 
 | 1906 | 	/* Only go through if we didn't race with anybody else... */ | 
 | 1907 | 	if (pte_none(*page_table)) { | 
 | 1908 | 		if (!PageReserved(new_page)) | 
 | 1909 | 			inc_mm_counter(mm, rss); | 
 | 1910 |  | 
 | 1911 | 		flush_icache_page(vma, new_page); | 
 | 1912 | 		entry = mk_pte(new_page, vma->vm_page_prot); | 
 | 1913 | 		if (write_access) | 
 | 1914 | 			entry = maybe_mkwrite(pte_mkdirty(entry), vma); | 
 | 1915 | 		set_pte_at(mm, address, page_table, entry); | 
 | 1916 | 		if (anon) { | 
 | 1917 | 			lru_cache_add_active(new_page); | 
 | 1918 | 			page_add_anon_rmap(new_page, vma, address); | 
 | 1919 | 		} else | 
 | 1920 | 			page_add_file_rmap(new_page); | 
 | 1921 | 		pte_unmap(page_table); | 
 | 1922 | 	} else { | 
 | 1923 | 		/* One of our sibling threads was faster, back out. */ | 
 | 1924 | 		pte_unmap(page_table); | 
 | 1925 | 		page_cache_release(new_page); | 
 | 1926 | 		spin_unlock(&mm->page_table_lock); | 
 | 1927 | 		goto out; | 
 | 1928 | 	} | 
 | 1929 |  | 
 | 1930 | 	/* no need to invalidate: a not-present page shouldn't be cached */ | 
 | 1931 | 	update_mmu_cache(vma, address, entry); | 
 | 1932 | 	lazy_mmu_prot_update(entry); | 
 | 1933 | 	spin_unlock(&mm->page_table_lock); | 
 | 1934 | out: | 
 | 1935 | 	return ret; | 
 | 1936 | oom: | 
 | 1937 | 	page_cache_release(new_page); | 
 | 1938 | 	ret = VM_FAULT_OOM; | 
 | 1939 | 	goto out; | 
 | 1940 | } | 
 | 1941 |  | 
 | 1942 | /* | 
 | 1943 |  * Fault of a previously existing named mapping. Repopulate the pte | 
 | 1944 |  * from the encoded file_pte if possible. This enables swappable | 
 | 1945 |  * nonlinear vmas. | 
 | 1946 |  */ | 
 | 1947 | static int do_file_page(struct mm_struct * mm, struct vm_area_struct * vma, | 
 | 1948 | 	unsigned long address, int write_access, pte_t *pte, pmd_t *pmd) | 
 | 1949 | { | 
 | 1950 | 	unsigned long pgoff; | 
 | 1951 | 	int err; | 
 | 1952 |  | 
 | 1953 | 	BUG_ON(!vma->vm_ops || !vma->vm_ops->nopage); | 
 | 1954 | 	/* | 
 | 1955 | 	 * Fall back to the linear mapping if the fs does not support | 
 | 1956 | 	 * ->populate: | 
 | 1957 | 	 */ | 
 | 1958 | 	if (!vma->vm_ops || !vma->vm_ops->populate ||  | 
 | 1959 | 			(write_access && !(vma->vm_flags & VM_SHARED))) { | 
 | 1960 | 		pte_clear(mm, address, pte); | 
 | 1961 | 		return do_no_page(mm, vma, address, write_access, pte, pmd); | 
 | 1962 | 	} | 
 | 1963 |  | 
 | 1964 | 	pgoff = pte_to_pgoff(*pte); | 
 | 1965 |  | 
 | 1966 | 	pte_unmap(pte); | 
 | 1967 | 	spin_unlock(&mm->page_table_lock); | 
 | 1968 |  | 
 | 1969 | 	err = vma->vm_ops->populate(vma, address & PAGE_MASK, PAGE_SIZE, vma->vm_page_prot, pgoff, 0); | 
 | 1970 | 	if (err == -ENOMEM) | 
 | 1971 | 		return VM_FAULT_OOM; | 
 | 1972 | 	if (err) | 
 | 1973 | 		return VM_FAULT_SIGBUS; | 
 | 1974 | 	return VM_FAULT_MAJOR; | 
 | 1975 | } | 
 | 1976 |  | 
 | 1977 | /* | 
 | 1978 |  * These routines also need to handle stuff like marking pages dirty | 
 | 1979 |  * and/or accessed for architectures that don't do it in hardware (most | 
 | 1980 |  * RISC architectures).  The early dirtying is also good on the i386. | 
 | 1981 |  * | 
 | 1982 |  * There is also a hook called "update_mmu_cache()" that architectures | 
 | 1983 |  * with external mmu caches can use to update those (ie the Sparc or | 
 | 1984 |  * PowerPC hashed page tables that act as extended TLBs). | 
 | 1985 |  * | 
 | 1986 |  * Note the "page_table_lock". It is to protect against kswapd removing | 
 | 1987 |  * pages from under us. Note that kswapd only ever _removes_ pages, never | 
 | 1988 |  * adds them. As such, once we have noticed that the page is not present, | 
 | 1989 |  * we can drop the lock early. | 
 | 1990 |  * | 
 | 1991 |  * The adding of pages is protected by the MM semaphore (which we hold), | 
 | 1992 |  * so we don't need to worry about a page being suddenly been added into | 
 | 1993 |  * our VM. | 
 | 1994 |  * | 
 | 1995 |  * We enter with the pagetable spinlock held, we are supposed to | 
 | 1996 |  * release it when done. | 
 | 1997 |  */ | 
 | 1998 | static inline int handle_pte_fault(struct mm_struct *mm, | 
 | 1999 | 	struct vm_area_struct * vma, unsigned long address, | 
 | 2000 | 	int write_access, pte_t *pte, pmd_t *pmd) | 
 | 2001 | { | 
 | 2002 | 	pte_t entry; | 
 | 2003 |  | 
 | 2004 | 	entry = *pte; | 
 | 2005 | 	if (!pte_present(entry)) { | 
 | 2006 | 		/* | 
 | 2007 | 		 * If it truly wasn't present, we know that kswapd | 
 | 2008 | 		 * and the PTE updates will not touch it later. So | 
 | 2009 | 		 * drop the lock. | 
 | 2010 | 		 */ | 
 | 2011 | 		if (pte_none(entry)) | 
 | 2012 | 			return do_no_page(mm, vma, address, write_access, pte, pmd); | 
 | 2013 | 		if (pte_file(entry)) | 
 | 2014 | 			return do_file_page(mm, vma, address, write_access, pte, pmd); | 
 | 2015 | 		return do_swap_page(mm, vma, address, pte, pmd, entry, write_access); | 
 | 2016 | 	} | 
 | 2017 |  | 
 | 2018 | 	if (write_access) { | 
 | 2019 | 		if (!pte_write(entry)) | 
 | 2020 | 			return do_wp_page(mm, vma, address, pte, pmd, entry); | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2021 | 		entry = pte_mkdirty(entry); | 
 | 2022 | 	} | 
 | 2023 | 	entry = pte_mkyoung(entry); | 
 | 2024 | 	ptep_set_access_flags(vma, address, pte, entry, write_access); | 
 | 2025 | 	update_mmu_cache(vma, address, entry); | 
 | 2026 | 	lazy_mmu_prot_update(entry); | 
 | 2027 | 	pte_unmap(pte); | 
 | 2028 | 	spin_unlock(&mm->page_table_lock); | 
 | 2029 | 	return VM_FAULT_MINOR; | 
 | 2030 | } | 
 | 2031 |  | 
 | 2032 | /* | 
 | 2033 |  * By the time we get here, we already hold the mm semaphore | 
 | 2034 |  */ | 
| Nick Piggin | f33ea7f | 2005-08-03 20:24:01 +1000 | [diff] [blame] | 2035 | int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct * vma, | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 2036 | 		unsigned long address, int write_access) | 
 | 2037 | { | 
 | 2038 | 	pgd_t *pgd; | 
 | 2039 | 	pud_t *pud; | 
 | 2040 | 	pmd_t *pmd; | 
 | 2041 | 	pte_t *pte; | 
 | 2042 |  | 
 | 2043 | 	__set_current_state(TASK_RUNNING); | 
 | 2044 |  | 
 | 2045 | 	inc_page_state(pgfault); | 
 | 2046 |  | 
 | 2047 | 	if (is_vm_hugetlb_page(vma)) | 
 | 2048 | 		return VM_FAULT_SIGBUS;	/* mapping truncation does this. */ | 
 | 2049 |  | 
 | 2050 | 	/* | 
 | 2051 | 	 * We need the page table lock to synchronize with kswapd | 
 | 2052 | 	 * and the SMP-safe atomic PTE updates. | 
 | 2053 | 	 */ | 
 | 2054 | 	pgd = pgd_offset(mm, address); | 
 | 2055 | 	spin_lock(&mm->page_table_lock); | 
 | 2056 |  | 
 | 2057 | 	pud = pud_alloc(mm, pgd, address); | 
 | 2058 | 	if (!pud) | 
 | 2059 | 		goto oom; | 
 | 2060 |  | 
 | 2061 | 	pmd = pmd_alloc(mm, pud, address); | 
 | 2062 | 	if (!pmd) | 
 | 2063 | 		goto oom; | 
 | 2064 |  | 
 | 2065 | 	pte = pte_alloc_map(mm, pmd, address); | 
 | 2066 | 	if (!pte) | 
 | 2067 | 		goto oom; | 
 | 2068 | 	 | 
 | 2069 | 	return handle_pte_fault(mm, vma, address, write_access, pte, pmd); | 
 | 2070 |  | 
 | 2071 |  oom: | 
 | 2072 | 	spin_unlock(&mm->page_table_lock); | 
 | 2073 | 	return VM_FAULT_OOM; | 
 | 2074 | } | 
 | 2075 |  | 
 | 2076 | #ifndef __PAGETABLE_PUD_FOLDED | 
 | 2077 | /* | 
 | 2078 |  * Allocate page upper directory. | 
 | 2079 |  * | 
 | 2080 |  * We've already handled the fast-path in-line, and we own the | 
 | 2081 |  * page table lock. | 
 | 2082 |  */ | 
 | 2083 | pud_t fastcall *__pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address) | 
 | 2084 | { | 
 | 2085 | 	pud_t *new; | 
 | 2086 |  | 
 | 2087 | 	spin_unlock(&mm->page_table_lock); | 
 | 2088 | 	new = pud_alloc_one(mm, address); | 
 | 2089 | 	spin_lock(&mm->page_table_lock); | 
 | 2090 | 	if (!new) | 
 | 2091 | 		return NULL; | 
 | 2092 |  | 
 | 2093 | 	/* | 
 | 2094 | 	 * Because we dropped the lock, we should re-check the | 
 | 2095 | 	 * entry, as somebody else could have populated it.. | 
 | 2096 | 	 */ | 
 | 2097 | 	if (pgd_present(*pgd)) { | 
 | 2098 | 		pud_free(new); | 
 | 2099 | 		goto out; | 
 | 2100 | 	} | 
 | 2101 | 	pgd_populate(mm, pgd, new); | 
 | 2102 |  out: | 
 | 2103 | 	return pud_offset(pgd, address); | 
 | 2104 | } | 
 | 2105 | #endif /* __PAGETABLE_PUD_FOLDED */ | 
 | 2106 |  | 
 | 2107 | #ifndef __PAGETABLE_PMD_FOLDED | 
 | 2108 | /* | 
 | 2109 |  * Allocate page middle directory. | 
 | 2110 |  * | 
 | 2111 |  * We've already handled the fast-path in-line, and we own the | 
 | 2112 |  * page table lock. | 
 | 2113 |  */ | 
 | 2114 | pmd_t fastcall *__pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address) | 
 | 2115 | { | 
 | 2116 | 	pmd_t *new; | 
 | 2117 |  | 
 | 2118 | 	spin_unlock(&mm->page_table_lock); | 
 | 2119 | 	new = pmd_alloc_one(mm, address); | 
 | 2120 | 	spin_lock(&mm->page_table_lock); | 
 | 2121 | 	if (!new) | 
 | 2122 | 		return NULL; | 
 | 2123 |  | 
 | 2124 | 	/* | 
 | 2125 | 	 * Because we dropped the lock, we should re-check the | 
 | 2126 | 	 * entry, as somebody else could have populated it.. | 
 | 2127 | 	 */ | 
 | 2128 | #ifndef __ARCH_HAS_4LEVEL_HACK | 
 | 2129 | 	if (pud_present(*pud)) { | 
 | 2130 | 		pmd_free(new); | 
 | 2131 | 		goto out; | 
 | 2132 | 	} | 
 | 2133 | 	pud_populate(mm, pud, new); | 
 | 2134 | #else | 
 | 2135 | 	if (pgd_present(*pud)) { | 
 | 2136 | 		pmd_free(new); | 
 | 2137 | 		goto out; | 
 | 2138 | 	} | 
 | 2139 | 	pgd_populate(mm, pud, new); | 
 | 2140 | #endif /* __ARCH_HAS_4LEVEL_HACK */ | 
 | 2141 |  | 
 | 2142 |  out: | 
 | 2143 | 	return pmd_offset(pud, address); | 
 | 2144 | } | 
 | 2145 | #endif /* __PAGETABLE_PMD_FOLDED */ | 
 | 2146 |  | 
 | 2147 | int make_pages_present(unsigned long addr, unsigned long end) | 
 | 2148 | { | 
 | 2149 | 	int ret, len, write; | 
 | 2150 | 	struct vm_area_struct * vma; | 
 | 2151 |  | 
 | 2152 | 	vma = find_vma(current->mm, addr); | 
 | 2153 | 	if (!vma) | 
 | 2154 | 		return -1; | 
 | 2155 | 	write = (vma->vm_flags & VM_WRITE) != 0; | 
 | 2156 | 	if (addr >= end) | 
 | 2157 | 		BUG(); | 
 | 2158 | 	if (end > vma->vm_end) | 
 | 2159 | 		BUG(); | 
 | 2160 | 	len = (end+PAGE_SIZE-1)/PAGE_SIZE-addr/PAGE_SIZE; | 
 | 2161 | 	ret = get_user_pages(current, current->mm, addr, | 
 | 2162 | 			len, write, 0, NULL, NULL); | 
 | 2163 | 	if (ret < 0) | 
 | 2164 | 		return ret; | 
 | 2165 | 	return ret == len ? 0 : -1; | 
 | 2166 | } | 
 | 2167 |  | 
 | 2168 | /*  | 
 | 2169 |  * Map a vmalloc()-space virtual address to the physical page. | 
 | 2170 |  */ | 
 | 2171 | struct page * vmalloc_to_page(void * vmalloc_addr) | 
 | 2172 | { | 
 | 2173 | 	unsigned long addr = (unsigned long) vmalloc_addr; | 
 | 2174 | 	struct page *page = NULL; | 
 | 2175 | 	pgd_t *pgd = pgd_offset_k(addr); | 
 | 2176 | 	pud_t *pud; | 
 | 2177 | 	pmd_t *pmd; | 
 | 2178 | 	pte_t *ptep, pte; | 
 | 2179 |    | 
 | 2180 | 	if (!pgd_none(*pgd)) { | 
 | 2181 | 		pud = pud_offset(pgd, addr); | 
 | 2182 | 		if (!pud_none(*pud)) { | 
 | 2183 | 			pmd = pmd_offset(pud, addr); | 
 | 2184 | 			if (!pmd_none(*pmd)) { | 
 | 2185 | 				ptep = pte_offset_map(pmd, addr); | 
 | 2186 | 				pte = *ptep; | 
 | 2187 | 				if (pte_present(pte)) | 
 | 2188 | 					page = pte_page(pte); | 
 | 2189 | 				pte_unmap(ptep); | 
 | 2190 | 			} | 
 | 2191 | 		} | 
 | 2192 | 	} | 
 | 2193 | 	return page; | 
 | 2194 | } | 
 | 2195 |  | 
 | 2196 | EXPORT_SYMBOL(vmalloc_to_page); | 
 | 2197 |  | 
 | 2198 | /* | 
 | 2199 |  * Map a vmalloc()-space virtual address to the physical page frame number. | 
 | 2200 |  */ | 
 | 2201 | unsigned long vmalloc_to_pfn(void * vmalloc_addr) | 
 | 2202 | { | 
 | 2203 | 	return page_to_pfn(vmalloc_to_page(vmalloc_addr)); | 
 | 2204 | } | 
 | 2205 |  | 
 | 2206 | EXPORT_SYMBOL(vmalloc_to_pfn); | 
 | 2207 |  | 
 | 2208 | /* | 
 | 2209 |  * update_mem_hiwater | 
 | 2210 |  *	- update per process rss and vm high water data | 
 | 2211 |  */ | 
 | 2212 | void update_mem_hiwater(struct task_struct *tsk) | 
 | 2213 | { | 
 | 2214 | 	if (tsk->mm) { | 
 | 2215 | 		unsigned long rss = get_mm_counter(tsk->mm, rss); | 
 | 2216 |  | 
 | 2217 | 		if (tsk->mm->hiwater_rss < rss) | 
 | 2218 | 			tsk->mm->hiwater_rss = rss; | 
 | 2219 | 		if (tsk->mm->hiwater_vm < tsk->mm->total_vm) | 
 | 2220 | 			tsk->mm->hiwater_vm = tsk->mm->total_vm; | 
 | 2221 | 	} | 
 | 2222 | } | 
 | 2223 |  | 
 | 2224 | #if !defined(__HAVE_ARCH_GATE_AREA) | 
 | 2225 |  | 
 | 2226 | #if defined(AT_SYSINFO_EHDR) | 
 | 2227 | struct vm_area_struct gate_vma; | 
 | 2228 |  | 
 | 2229 | static int __init gate_vma_init(void) | 
 | 2230 | { | 
 | 2231 | 	gate_vma.vm_mm = NULL; | 
 | 2232 | 	gate_vma.vm_start = FIXADDR_USER_START; | 
 | 2233 | 	gate_vma.vm_end = FIXADDR_USER_END; | 
 | 2234 | 	gate_vma.vm_page_prot = PAGE_READONLY; | 
 | 2235 | 	gate_vma.vm_flags = 0; | 
 | 2236 | 	return 0; | 
 | 2237 | } | 
 | 2238 | __initcall(gate_vma_init); | 
 | 2239 | #endif | 
 | 2240 |  | 
 | 2241 | struct vm_area_struct *get_gate_vma(struct task_struct *tsk) | 
 | 2242 | { | 
 | 2243 | #ifdef AT_SYSINFO_EHDR | 
 | 2244 | 	return &gate_vma; | 
 | 2245 | #else | 
 | 2246 | 	return NULL; | 
 | 2247 | #endif | 
 | 2248 | } | 
 | 2249 |  | 
 | 2250 | int in_gate_area_no_task(unsigned long addr) | 
 | 2251 | { | 
 | 2252 | #ifdef AT_SYSINFO_EHDR | 
 | 2253 | 	if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END)) | 
 | 2254 | 		return 1; | 
 | 2255 | #endif | 
 | 2256 | 	return 0; | 
 | 2257 | } | 
 | 2258 |  | 
 | 2259 | #endif	/* __HAVE_ARCH_GATE_AREA */ |