| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Basic one-word fraction declaration and manipulation. | 
 | 3 |  */ | 
 | 4 |  | 
 | 5 | #define _FP_FRAC_DECL_1(X)	_FP_W_TYPE X##_f | 
 | 6 | #define _FP_FRAC_COPY_1(D,S)	(D##_f = S##_f) | 
 | 7 | #define _FP_FRAC_SET_1(X,I)	(X##_f = I) | 
 | 8 | #define _FP_FRAC_HIGH_1(X)	(X##_f) | 
 | 9 | #define _FP_FRAC_LOW_1(X)	(X##_f) | 
 | 10 | #define _FP_FRAC_WORD_1(X,w)	(X##_f) | 
 | 11 |  | 
 | 12 | #define _FP_FRAC_ADDI_1(X,I)	(X##_f += I) | 
 | 13 | #define _FP_FRAC_SLL_1(X,N)			\ | 
 | 14 |   do {						\ | 
 | 15 |     if (__builtin_constant_p(N) && (N) == 1)	\ | 
 | 16 |       X##_f += X##_f;				\ | 
 | 17 |     else					\ | 
 | 18 |       X##_f <<= (N);				\ | 
 | 19 |   } while (0) | 
 | 20 | #define _FP_FRAC_SRL_1(X,N)	(X##_f >>= N) | 
 | 21 |  | 
 | 22 | /* Right shift with sticky-lsb.  */ | 
 | 23 | #define _FP_FRAC_SRS_1(X,N,sz)	__FP_FRAC_SRS_1(X##_f, N, sz) | 
 | 24 |  | 
 | 25 | #define __FP_FRAC_SRS_1(X,N,sz)						\ | 
 | 26 |    (X = (X >> (N) | (__builtin_constant_p(N) && (N) == 1		\ | 
 | 27 | 		     ? X & 1 : (X << (_FP_W_TYPE_SIZE - (N))) != 0))) | 
 | 28 |  | 
 | 29 | #define _FP_FRAC_ADD_1(R,X,Y)	(R##_f = X##_f + Y##_f) | 
 | 30 | #define _FP_FRAC_SUB_1(R,X,Y)	(R##_f = X##_f - Y##_f) | 
 | 31 | #define _FP_FRAC_CLZ_1(z, X)	__FP_CLZ(z, X##_f) | 
 | 32 |  | 
 | 33 | /* Predicates */ | 
 | 34 | #define _FP_FRAC_NEGP_1(X)	((_FP_WS_TYPE)X##_f < 0) | 
 | 35 | #define _FP_FRAC_ZEROP_1(X)	(X##_f == 0) | 
 | 36 | #define _FP_FRAC_OVERP_1(fs,X)	(X##_f & _FP_OVERFLOW_##fs) | 
 | 37 | #define _FP_FRAC_EQ_1(X, Y)	(X##_f == Y##_f) | 
 | 38 | #define _FP_FRAC_GE_1(X, Y)	(X##_f >= Y##_f) | 
 | 39 | #define _FP_FRAC_GT_1(X, Y)	(X##_f > Y##_f) | 
 | 40 |  | 
 | 41 | #define _FP_ZEROFRAC_1		0 | 
 | 42 | #define _FP_MINFRAC_1		1 | 
 | 43 |  | 
 | 44 | /* | 
 | 45 |  * Unpack the raw bits of a native fp value.  Do not classify or | 
 | 46 |  * normalize the data. | 
 | 47 |  */ | 
 | 48 |  | 
 | 49 | #define _FP_UNPACK_RAW_1(fs, X, val)				\ | 
 | 50 |   do {								\ | 
 | 51 |     union _FP_UNION_##fs _flo; _flo.flt = (val);		\ | 
 | 52 | 								\ | 
 | 53 |     X##_f = _flo.bits.frac;					\ | 
 | 54 |     X##_e = _flo.bits.exp;					\ | 
 | 55 |     X##_s = _flo.bits.sign;					\ | 
 | 56 |   } while (0) | 
 | 57 |  | 
 | 58 |  | 
 | 59 | /* | 
 | 60 |  * Repack the raw bits of a native fp value. | 
 | 61 |  */ | 
 | 62 |  | 
 | 63 | #define _FP_PACK_RAW_1(fs, val, X)				\ | 
 | 64 |   do {								\ | 
 | 65 |     union _FP_UNION_##fs _flo;					\ | 
 | 66 | 								\ | 
 | 67 |     _flo.bits.frac = X##_f;					\ | 
 | 68 |     _flo.bits.exp  = X##_e;					\ | 
 | 69 |     _flo.bits.sign = X##_s;					\ | 
 | 70 | 								\ | 
 | 71 |     (val) = _flo.flt;						\ | 
 | 72 |   } while (0) | 
 | 73 |  | 
 | 74 |  | 
 | 75 | /* | 
 | 76 |  * Multiplication algorithms: | 
 | 77 |  */ | 
 | 78 |  | 
 | 79 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
 | 80 |    multiplication immediately.  */ | 
 | 81 |  | 
 | 82 | #define _FP_MUL_MEAT_1_imm(fs, R, X, Y)					\ | 
 | 83 |   do {									\ | 
 | 84 |     R##_f = X##_f * Y##_f;						\ | 
 | 85 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 86 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 87 |        at either 2B or 2B-1.  */					\ | 
 | 88 |     _FP_FRAC_SRS_1(R, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
 | 89 |   } while (0) | 
 | 90 |  | 
 | 91 | /* Given a 1W * 1W => 2W primitive, do the extended multiplication.  */ | 
 | 92 |  | 
 | 93 | #define _FP_MUL_MEAT_1_wide(fs, R, X, Y, doit)				\ | 
 | 94 |   do {									\ | 
 | 95 |     _FP_W_TYPE _Z_f0, _Z_f1;						\ | 
 | 96 |     doit(_Z_f1, _Z_f0, X##_f, Y##_f);					\ | 
 | 97 |     /* Normalize since we know where the msb of the multiplicands	\ | 
 | 98 |        were (bit B), we know that the msb of the of the product is	\ | 
 | 99 |        at either 2B or 2B-1.  */					\ | 
 | 100 |     _FP_FRAC_SRS_2(_Z, _FP_WFRACBITS_##fs-1, 2*_FP_WFRACBITS_##fs);	\ | 
 | 101 |     R##_f = _Z_f0;							\ | 
 | 102 |   } while (0) | 
 | 103 |  | 
 | 104 | /* Finally, a simple widening multiply algorithm.  What fun!  */ | 
 | 105 |  | 
 | 106 | #define _FP_MUL_MEAT_1_hard(fs, R, X, Y)				\ | 
 | 107 |   do {									\ | 
 | 108 |     _FP_W_TYPE _xh, _xl, _yh, _yl, _z_f0, _z_f1, _a_f0, _a_f1;		\ | 
 | 109 | 									\ | 
 | 110 |     /* split the words in half */					\ | 
 | 111 |     _xh = X##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
 | 112 |     _xl = X##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
 | 113 |     _yh = Y##_f >> (_FP_W_TYPE_SIZE/2);					\ | 
 | 114 |     _yl = Y##_f & (((_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2)) - 1);		\ | 
 | 115 | 									\ | 
 | 116 |     /* multiply the pieces */						\ | 
 | 117 |     _z_f0 = _xl * _yl;							\ | 
 | 118 |     _a_f0 = _xh * _yl;							\ | 
 | 119 |     _a_f1 = _xl * _yh;							\ | 
 | 120 |     _z_f1 = _xh * _yh;							\ | 
 | 121 | 									\ | 
 | 122 |     /* reassemble into two full words */				\ | 
 | 123 |     if ((_a_f0 += _a_f1) < _a_f1)					\ | 
 | 124 |       _z_f1 += (_FP_W_TYPE)1 << (_FP_W_TYPE_SIZE/2);			\ | 
 | 125 |     _a_f1 = _a_f0 >> (_FP_W_TYPE_SIZE/2);				\ | 
 | 126 |     _a_f0 = _a_f0 << (_FP_W_TYPE_SIZE/2);				\ | 
 | 127 |     _FP_FRAC_ADD_2(_z, _z, _a);						\ | 
 | 128 | 									\ | 
 | 129 |     /* normalize */							\ | 
 | 130 |     _FP_FRAC_SRS_2(_z, _FP_WFRACBITS_##fs - 1, 2*_FP_WFRACBITS_##fs);	\ | 
 | 131 |     R##_f = _z_f0;							\ | 
 | 132 |   } while (0) | 
 | 133 |  | 
 | 134 |  | 
 | 135 | /* | 
 | 136 |  * Division algorithms: | 
 | 137 |  */ | 
 | 138 |  | 
 | 139 | /* Basic.  Assuming the host word size is >= 2*FRACBITS, we can do the | 
 | 140 |    division immediately.  Give this macro either _FP_DIV_HELP_imm for | 
 | 141 |    C primitives or _FP_DIV_HELP_ldiv for the ISO function.  Which you | 
 | 142 |    choose will depend on what the compiler does with divrem4.  */ | 
 | 143 |  | 
 | 144 | #define _FP_DIV_MEAT_1_imm(fs, R, X, Y, doit)		\ | 
 | 145 |   do {							\ | 
 | 146 |     _FP_W_TYPE _q, _r;					\ | 
 | 147 |     X##_f <<= (X##_f < Y##_f				\ | 
 | 148 | 	       ? R##_e--, _FP_WFRACBITS_##fs		\ | 
 | 149 | 	       : _FP_WFRACBITS_##fs - 1);		\ | 
 | 150 |     doit(_q, _r, X##_f, Y##_f);				\ | 
 | 151 |     R##_f = _q | (_r != 0);				\ | 
 | 152 |   } while (0) | 
 | 153 |  | 
 | 154 | /* GCC's longlong.h defines a 2W / 1W => (1W,1W) primitive udiv_qrnnd | 
 | 155 |    that may be useful in this situation.  This first is for a primitive | 
 | 156 |    that requires normalization, the second for one that does not.  Look | 
 | 157 |    for UDIV_NEEDS_NORMALIZATION to tell which your machine needs.  */ | 
 | 158 |  | 
 | 159 | #define _FP_DIV_MEAT_1_udiv_norm(fs, R, X, Y)				\ | 
 | 160 |   do {									\ | 
 | 161 |     _FP_W_TYPE _nh, _nl, _q, _r;					\ | 
 | 162 | 									\ | 
 | 163 |     /* Normalize Y -- i.e. make the most significant bit set.  */	\ | 
 | 164 |     Y##_f <<= _FP_WFRACXBITS_##fs - 1;					\ | 
 | 165 | 									\ | 
 | 166 |     /* Shift X op correspondingly high, that is, up one full word.  */	\ | 
 | 167 |     if (X##_f <= Y##_f)							\ | 
 | 168 |       {									\ | 
 | 169 | 	_nl = 0;							\ | 
 | 170 | 	_nh = X##_f;							\ | 
 | 171 |       }									\ | 
 | 172 |     else								\ | 
 | 173 |       {									\ | 
 | 174 | 	R##_e++;							\ | 
 | 175 | 	_nl = X##_f << (_FP_W_TYPE_SIZE-1);				\ | 
 | 176 | 	_nh = X##_f >> 1;						\ | 
 | 177 |       }									\ | 
 | 178 |     									\ | 
 | 179 |     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);				\ | 
 | 180 |     R##_f = _q | (_r != 0);						\ | 
 | 181 |   } while (0) | 
 | 182 |  | 
 | 183 | #define _FP_DIV_MEAT_1_udiv(fs, R, X, Y)		\ | 
 | 184 |   do {							\ | 
 | 185 |     _FP_W_TYPE _nh, _nl, _q, _r;			\ | 
 | 186 |     if (X##_f < Y##_f)					\ | 
 | 187 |       {							\ | 
 | 188 | 	R##_e--;					\ | 
 | 189 | 	_nl = X##_f << _FP_WFRACBITS_##fs;		\ | 
 | 190 | 	_nh = X##_f >> _FP_WFRACXBITS_##fs;		\ | 
 | 191 |       }							\ | 
 | 192 |     else						\ | 
 | 193 |       {							\ | 
 | 194 | 	_nl = X##_f << (_FP_WFRACBITS_##fs - 1);	\ | 
 | 195 | 	_nh = X##_f >> (_FP_WFRACXBITS_##fs + 1);	\ | 
 | 196 |       }							\ | 
 | 197 |     udiv_qrnnd(_q, _r, _nh, _nl, Y##_f);		\ | 
 | 198 |     R##_f = _q | (_r != 0);				\ | 
 | 199 |   } while (0) | 
 | 200 |  | 
 | 201 |  | 
 | 202 | /* | 
 | 203 |  * Square root algorithms: | 
 | 204 |  * We have just one right now, maybe Newton approximation | 
 | 205 |  * should be added for those machines where division is fast. | 
 | 206 |  */ | 
 | 207 |  | 
 | 208 | #define _FP_SQRT_MEAT_1(R, S, T, X, q)			\ | 
 | 209 |   do {							\ | 
 | 210 |     while (q)						\ | 
 | 211 |       {							\ | 
 | 212 |         T##_f = S##_f + q;				\ | 
 | 213 |         if (T##_f <= X##_f)				\ | 
 | 214 |           {						\ | 
 | 215 |             S##_f = T##_f + q;				\ | 
 | 216 |             X##_f -= T##_f;				\ | 
 | 217 |             R##_f += q;					\ | 
 | 218 |           }						\ | 
 | 219 |         _FP_FRAC_SLL_1(X, 1);				\ | 
 | 220 |         q >>= 1;					\ | 
 | 221 |       }							\ | 
 | 222 |   } while (0) | 
 | 223 |  | 
 | 224 | /* | 
 | 225 |  * Assembly/disassembly for converting to/from integral types. | 
 | 226 |  * No shifting or overflow handled here. | 
 | 227 |  */ | 
 | 228 |  | 
 | 229 | #define _FP_FRAC_ASSEMBLE_1(r, X, rsize)	(r = X##_f) | 
 | 230 | #define _FP_FRAC_DISASSEMBLE_1(X, r, rsize)	(X##_f = r) | 
 | 231 |  | 
 | 232 |  | 
 | 233 | /* | 
 | 234 |  * Convert FP values between word sizes | 
 | 235 |  */ | 
 | 236 |  | 
 | 237 | #define _FP_FRAC_CONV_1_1(dfs, sfs, D, S)				\ | 
 | 238 |   do {									\ | 
 | 239 |     D##_f = S##_f;							\ | 
 | 240 |     if (_FP_WFRACBITS_##sfs > _FP_WFRACBITS_##dfs)			\ | 
 | 241 |       _FP_FRAC_SRS_1(D, (_FP_WFRACBITS_##sfs-_FP_WFRACBITS_##dfs),	\ | 
 | 242 | 		     _FP_WFRACBITS_##sfs);				\ | 
 | 243 |     else								\ | 
 | 244 |       D##_f <<= _FP_WFRACBITS_##dfs - _FP_WFRACBITS_##sfs;		\ | 
 | 245 |   } while (0) |