blob: 04b852d446a3a1ff14a71f80d72a53dd3e574adf [file] [log] [blame]
Linus Torvalds1da177e2005-04-16 15:20:36 -07001/*
2 *
3 *
4 * Procedures for interfacing to Open Firmware.
5 *
6 * Paul Mackerras August 1996.
7 * Copyright (C) 1996 Paul Mackerras.
8 *
9 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
10 * {engebret|bergner}@us.ibm.com
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 */
17
18#undef DEBUG
19
20#include <stdarg.h>
21#include <linux/config.h>
22#include <linux/kernel.h>
23#include <linux/string.h>
24#include <linux/init.h>
25#include <linux/version.h>
26#include <linux/threads.h>
27#include <linux/spinlock.h>
28#include <linux/types.h>
29#include <linux/pci.h>
30#include <linux/stringify.h>
31#include <linux/delay.h>
32#include <linux/initrd.h>
33#include <linux/bitops.h>
34#include <linux/module.h>
35
36#include <asm/prom.h>
37#include <asm/rtas.h>
38#include <asm/lmb.h>
39#include <asm/abs_addr.h>
40#include <asm/page.h>
41#include <asm/processor.h>
42#include <asm/irq.h>
43#include <asm/io.h>
44#include <asm/smp.h>
45#include <asm/system.h>
46#include <asm/mmu.h>
47#include <asm/pgtable.h>
48#include <asm/pci.h>
49#include <asm/iommu.h>
50#include <asm/bootinfo.h>
51#include <asm/ppcdebug.h>
52#include <asm/btext.h>
53#include <asm/sections.h>
54#include <asm/machdep.h>
55#include <asm/pSeries_reconfig.h>
56
57#ifdef DEBUG
58#define DBG(fmt...) udbg_printf(fmt)
59#else
60#define DBG(fmt...)
61#endif
62
63struct pci_reg_property {
64 struct pci_address addr;
65 u32 size_hi;
66 u32 size_lo;
67};
68
69struct isa_reg_property {
70 u32 space;
71 u32 address;
72 u32 size;
73};
74
75
76typedef int interpret_func(struct device_node *, unsigned long *,
77 int, int, int);
78
79extern struct rtas_t rtas;
80extern struct lmb lmb;
81extern unsigned long klimit;
82
83static int __initdata dt_root_addr_cells;
84static int __initdata dt_root_size_cells;
85static int __initdata iommu_is_off;
86int __initdata iommu_force_on;
87typedef u32 cell_t;
88
89#if 0
90static struct boot_param_header *initial_boot_params __initdata;
91#else
92struct boot_param_header *initial_boot_params;
93#endif
94
95static struct device_node *allnodes = NULL;
96
97/* use when traversing tree through the allnext, child, sibling,
98 * or parent members of struct device_node.
99 */
100static DEFINE_RWLOCK(devtree_lock);
101
102/* export that to outside world */
103struct device_node *of_chosen;
104
105/*
106 * Wrapper for allocating memory for various data that needs to be
107 * attached to device nodes as they are processed at boot or when
108 * added to the device tree later (e.g. DLPAR). At boot there is
109 * already a region reserved so we just increment *mem_start by size;
110 * otherwise we call kmalloc.
111 */
112static void * prom_alloc(unsigned long size, unsigned long *mem_start)
113{
114 unsigned long tmp;
115
116 if (!mem_start)
117 return kmalloc(size, GFP_KERNEL);
118
119 tmp = *mem_start;
120 *mem_start += size;
121 return (void *)tmp;
122}
123
124/*
125 * Find the device_node with a given phandle.
126 */
127static struct device_node * find_phandle(phandle ph)
128{
129 struct device_node *np;
130
131 for (np = allnodes; np != 0; np = np->allnext)
132 if (np->linux_phandle == ph)
133 return np;
134 return NULL;
135}
136
137/*
138 * Find the interrupt parent of a node.
139 */
140static struct device_node * __devinit intr_parent(struct device_node *p)
141{
142 phandle *parp;
143
144 parp = (phandle *) get_property(p, "interrupt-parent", NULL);
145 if (parp == NULL)
146 return p->parent;
147 return find_phandle(*parp);
148}
149
150/*
151 * Find out the size of each entry of the interrupts property
152 * for a node.
153 */
154int __devinit prom_n_intr_cells(struct device_node *np)
155{
156 struct device_node *p;
157 unsigned int *icp;
158
159 for (p = np; (p = intr_parent(p)) != NULL; ) {
160 icp = (unsigned int *)
161 get_property(p, "#interrupt-cells", NULL);
162 if (icp != NULL)
163 return *icp;
164 if (get_property(p, "interrupt-controller", NULL) != NULL
165 || get_property(p, "interrupt-map", NULL) != NULL) {
166 printk("oops, node %s doesn't have #interrupt-cells\n",
167 p->full_name);
168 return 1;
169 }
170 }
171#ifdef DEBUG_IRQ
172 printk("prom_n_intr_cells failed for %s\n", np->full_name);
173#endif
174 return 1;
175}
176
177/*
178 * Map an interrupt from a device up to the platform interrupt
179 * descriptor.
180 */
181static int __devinit map_interrupt(unsigned int **irq, struct device_node **ictrler,
182 struct device_node *np, unsigned int *ints,
183 int nintrc)
184{
185 struct device_node *p, *ipar;
186 unsigned int *imap, *imask, *ip;
187 int i, imaplen, match;
188 int newintrc = 0, newaddrc = 0;
189 unsigned int *reg;
190 int naddrc;
191
192 reg = (unsigned int *) get_property(np, "reg", NULL);
193 naddrc = prom_n_addr_cells(np);
194 p = intr_parent(np);
195 while (p != NULL) {
196 if (get_property(p, "interrupt-controller", NULL) != NULL)
197 /* this node is an interrupt controller, stop here */
198 break;
199 imap = (unsigned int *)
200 get_property(p, "interrupt-map", &imaplen);
201 if (imap == NULL) {
202 p = intr_parent(p);
203 continue;
204 }
205 imask = (unsigned int *)
206 get_property(p, "interrupt-map-mask", NULL);
207 if (imask == NULL) {
208 printk("oops, %s has interrupt-map but no mask\n",
209 p->full_name);
210 return 0;
211 }
212 imaplen /= sizeof(unsigned int);
213 match = 0;
214 ipar = NULL;
215 while (imaplen > 0 && !match) {
216 /* check the child-interrupt field */
217 match = 1;
218 for (i = 0; i < naddrc && match; ++i)
219 match = ((reg[i] ^ imap[i]) & imask[i]) == 0;
220 for (; i < naddrc + nintrc && match; ++i)
221 match = ((ints[i-naddrc] ^ imap[i]) & imask[i]) == 0;
222 imap += naddrc + nintrc;
223 imaplen -= naddrc + nintrc;
224 /* grab the interrupt parent */
225 ipar = find_phandle((phandle) *imap++);
226 --imaplen;
227 if (ipar == NULL) {
228 printk("oops, no int parent %x in map of %s\n",
229 imap[-1], p->full_name);
230 return 0;
231 }
232 /* find the parent's # addr and intr cells */
233 ip = (unsigned int *)
234 get_property(ipar, "#interrupt-cells", NULL);
235 if (ip == NULL) {
236 printk("oops, no #interrupt-cells on %s\n",
237 ipar->full_name);
238 return 0;
239 }
240 newintrc = *ip;
241 ip = (unsigned int *)
242 get_property(ipar, "#address-cells", NULL);
243 newaddrc = (ip == NULL)? 0: *ip;
244 imap += newaddrc + newintrc;
245 imaplen -= newaddrc + newintrc;
246 }
247 if (imaplen < 0) {
248 printk("oops, error decoding int-map on %s, len=%d\n",
249 p->full_name, imaplen);
250 return 0;
251 }
252 if (!match) {
253#ifdef DEBUG_IRQ
254 printk("oops, no match in %s int-map for %s\n",
255 p->full_name, np->full_name);
256#endif
257 return 0;
258 }
259 p = ipar;
260 naddrc = newaddrc;
261 nintrc = newintrc;
262 ints = imap - nintrc;
263 reg = ints - naddrc;
264 }
265 if (p == NULL) {
266#ifdef DEBUG_IRQ
267 printk("hmmm, int tree for %s doesn't have ctrler\n",
268 np->full_name);
269#endif
270 return 0;
271 }
272 *irq = ints;
273 *ictrler = p;
274 return nintrc;
275}
276
277static int __devinit finish_node_interrupts(struct device_node *np,
278 unsigned long *mem_start,
279 int measure_only)
280{
281 unsigned int *ints;
282 int intlen, intrcells, intrcount;
283 int i, j, n;
284 unsigned int *irq, virq;
285 struct device_node *ic;
286
287 ints = (unsigned int *) get_property(np, "interrupts", &intlen);
288 if (ints == NULL)
289 return 0;
290 intrcells = prom_n_intr_cells(np);
291 intlen /= intrcells * sizeof(unsigned int);
292
293 np->intrs = prom_alloc(intlen * sizeof(*(np->intrs)), mem_start);
294 if (!np->intrs)
295 return -ENOMEM;
296
297 if (measure_only)
298 return 0;
299
300 intrcount = 0;
301 for (i = 0; i < intlen; ++i, ints += intrcells) {
302 n = map_interrupt(&irq, &ic, np, ints, intrcells);
303 if (n <= 0)
304 continue;
305
306 /* don't map IRQ numbers under a cascaded 8259 controller */
307 if (ic && device_is_compatible(ic, "chrp,iic")) {
308 np->intrs[intrcount].line = irq[0];
309 } else {
310 virq = virt_irq_create_mapping(irq[0]);
311 if (virq == NO_IRQ) {
312 printk(KERN_CRIT "Could not allocate interrupt"
313 " number for %s\n", np->full_name);
314 continue;
315 }
316 np->intrs[intrcount].line = irq_offset_up(virq);
317 }
318
319 /* We offset irq numbers for the u3 MPIC by 128 in PowerMac */
320 if (systemcfg->platform == PLATFORM_POWERMAC && ic && ic->parent) {
321 char *name = get_property(ic->parent, "name", NULL);
322 if (name && !strcmp(name, "u3"))
323 np->intrs[intrcount].line += 128;
Paul Mackerrasdc3ec752005-05-01 08:58:44 -0700324 else if (!(name && !strcmp(name, "mac-io")))
325 /* ignore other cascaded controllers, such as
326 the k2-sata-root */
327 break;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700328 }
329 np->intrs[intrcount].sense = 1;
330 if (n > 1)
331 np->intrs[intrcount].sense = irq[1];
332 if (n > 2) {
333 printk("hmmm, got %d intr cells for %s:", n,
334 np->full_name);
335 for (j = 0; j < n; ++j)
336 printk(" %d", irq[j]);
337 printk("\n");
338 }
339 ++intrcount;
340 }
341 np->n_intrs = intrcount;
342
343 return 0;
344}
345
346static int __devinit interpret_pci_props(struct device_node *np,
347 unsigned long *mem_start,
348 int naddrc, int nsizec,
349 int measure_only)
350{
351 struct address_range *adr;
352 struct pci_reg_property *pci_addrs;
353 int i, l, n_addrs;
354
355 pci_addrs = (struct pci_reg_property *)
356 get_property(np, "assigned-addresses", &l);
357 if (!pci_addrs)
358 return 0;
359
360 n_addrs = l / sizeof(*pci_addrs);
361
362 adr = prom_alloc(n_addrs * sizeof(*adr), mem_start);
363 if (!adr)
364 return -ENOMEM;
365
366 if (measure_only)
367 return 0;
368
369 np->addrs = adr;
370 np->n_addrs = n_addrs;
371
372 for (i = 0; i < n_addrs; i++) {
373 adr[i].space = pci_addrs[i].addr.a_hi;
374 adr[i].address = pci_addrs[i].addr.a_lo |
375 ((u64)pci_addrs[i].addr.a_mid << 32);
376 adr[i].size = pci_addrs[i].size_lo;
377 }
378
379 return 0;
380}
381
382static int __init interpret_dbdma_props(struct device_node *np,
383 unsigned long *mem_start,
384 int naddrc, int nsizec,
385 int measure_only)
386{
387 struct reg_property32 *rp;
388 struct address_range *adr;
389 unsigned long base_address;
390 int i, l;
391 struct device_node *db;
392
393 base_address = 0;
394 if (!measure_only) {
395 for (db = np->parent; db != NULL; db = db->parent) {
396 if (!strcmp(db->type, "dbdma") && db->n_addrs != 0) {
397 base_address = db->addrs[0].address;
398 break;
399 }
400 }
401 }
402
403 rp = (struct reg_property32 *) get_property(np, "reg", &l);
404 if (rp != 0 && l >= sizeof(struct reg_property32)) {
405 i = 0;
406 adr = (struct address_range *) (*mem_start);
407 while ((l -= sizeof(struct reg_property32)) >= 0) {
408 if (!measure_only) {
409 adr[i].space = 2;
410 adr[i].address = rp[i].address + base_address;
411 adr[i].size = rp[i].size;
412 }
413 ++i;
414 }
415 np->addrs = adr;
416 np->n_addrs = i;
417 (*mem_start) += i * sizeof(struct address_range);
418 }
419
420 return 0;
421}
422
423static int __init interpret_macio_props(struct device_node *np,
424 unsigned long *mem_start,
425 int naddrc, int nsizec,
426 int measure_only)
427{
428 struct reg_property32 *rp;
429 struct address_range *adr;
430 unsigned long base_address;
431 int i, l;
432 struct device_node *db;
433
434 base_address = 0;
435 if (!measure_only) {
436 for (db = np->parent; db != NULL; db = db->parent) {
437 if (!strcmp(db->type, "mac-io") && db->n_addrs != 0) {
438 base_address = db->addrs[0].address;
439 break;
440 }
441 }
442 }
443
444 rp = (struct reg_property32 *) get_property(np, "reg", &l);
445 if (rp != 0 && l >= sizeof(struct reg_property32)) {
446 i = 0;
447 adr = (struct address_range *) (*mem_start);
448 while ((l -= sizeof(struct reg_property32)) >= 0) {
449 if (!measure_only) {
450 adr[i].space = 2;
451 adr[i].address = rp[i].address + base_address;
452 adr[i].size = rp[i].size;
453 }
454 ++i;
455 }
456 np->addrs = adr;
457 np->n_addrs = i;
458 (*mem_start) += i * sizeof(struct address_range);
459 }
460
461 return 0;
462}
463
464static int __init interpret_isa_props(struct device_node *np,
465 unsigned long *mem_start,
466 int naddrc, int nsizec,
467 int measure_only)
468{
469 struct isa_reg_property *rp;
470 struct address_range *adr;
471 int i, l;
472
473 rp = (struct isa_reg_property *) get_property(np, "reg", &l);
474 if (rp != 0 && l >= sizeof(struct isa_reg_property)) {
475 i = 0;
476 adr = (struct address_range *) (*mem_start);
477 while ((l -= sizeof(struct isa_reg_property)) >= 0) {
478 if (!measure_only) {
479 adr[i].space = rp[i].space;
480 adr[i].address = rp[i].address;
481 adr[i].size = rp[i].size;
482 }
483 ++i;
484 }
485 np->addrs = adr;
486 np->n_addrs = i;
487 (*mem_start) += i * sizeof(struct address_range);
488 }
489
490 return 0;
491}
492
493static int __init interpret_root_props(struct device_node *np,
494 unsigned long *mem_start,
495 int naddrc, int nsizec,
496 int measure_only)
497{
498 struct address_range *adr;
499 int i, l;
500 unsigned int *rp;
501 int rpsize = (naddrc + nsizec) * sizeof(unsigned int);
502
503 rp = (unsigned int *) get_property(np, "reg", &l);
504 if (rp != 0 && l >= rpsize) {
505 i = 0;
506 adr = (struct address_range *) (*mem_start);
507 while ((l -= rpsize) >= 0) {
508 if (!measure_only) {
509 adr[i].space = 0;
510 adr[i].address = rp[naddrc - 1];
511 adr[i].size = rp[naddrc + nsizec - 1];
512 }
513 ++i;
514 rp += naddrc + nsizec;
515 }
516 np->addrs = adr;
517 np->n_addrs = i;
518 (*mem_start) += i * sizeof(struct address_range);
519 }
520
521 return 0;
522}
523
524static int __devinit finish_node(struct device_node *np,
525 unsigned long *mem_start,
526 interpret_func *ifunc,
527 int naddrc, int nsizec,
528 int measure_only)
529{
530 struct device_node *child;
531 int *ip, rc = 0;
532
533 /* get the device addresses and interrupts */
534 if (ifunc != NULL)
535 rc = ifunc(np, mem_start, naddrc, nsizec, measure_only);
536 if (rc)
537 goto out;
538
539 rc = finish_node_interrupts(np, mem_start, measure_only);
540 if (rc)
541 goto out;
542
543 /* Look for #address-cells and #size-cells properties. */
544 ip = (int *) get_property(np, "#address-cells", NULL);
545 if (ip != NULL)
546 naddrc = *ip;
547 ip = (int *) get_property(np, "#size-cells", NULL);
548 if (ip != NULL)
549 nsizec = *ip;
550
Linus Torvalds1da177e2005-04-16 15:20:36 -0700551 if (!strcmp(np->name, "device-tree") || np->parent == NULL)
552 ifunc = interpret_root_props;
553 else if (np->type == 0)
554 ifunc = NULL;
555 else if (!strcmp(np->type, "pci") || !strcmp(np->type, "vci"))
556 ifunc = interpret_pci_props;
557 else if (!strcmp(np->type, "dbdma"))
558 ifunc = interpret_dbdma_props;
559 else if (!strcmp(np->type, "mac-io") || ifunc == interpret_macio_props)
560 ifunc = interpret_macio_props;
561 else if (!strcmp(np->type, "isa"))
562 ifunc = interpret_isa_props;
563 else if (!strcmp(np->name, "uni-n") || !strcmp(np->name, "u3"))
564 ifunc = interpret_root_props;
565 else if (!((ifunc == interpret_dbdma_props
566 || ifunc == interpret_macio_props)
567 && (!strcmp(np->type, "escc")
568 || !strcmp(np->type, "media-bay"))))
569 ifunc = NULL;
570
571 for (child = np->child; child != NULL; child = child->sibling) {
572 rc = finish_node(child, mem_start, ifunc,
573 naddrc, nsizec, measure_only);
574 if (rc)
575 goto out;
576 }
577out:
578 return rc;
579}
580
581/**
582 * finish_device_tree is called once things are running normally
583 * (i.e. with text and data mapped to the address they were linked at).
584 * It traverses the device tree and fills in some of the additional,
585 * fields in each node like {n_}addrs and {n_}intrs, the virt interrupt
586 * mapping is also initialized at this point.
587 */
588void __init finish_device_tree(void)
589{
590 unsigned long start, end, size = 0;
591
592 DBG(" -> finish_device_tree\n");
593
594 if (ppc64_interrupt_controller == IC_INVALID) {
595 DBG("failed to configure interrupt controller type\n");
596 panic("failed to configure interrupt controller type\n");
597 }
598
599 /* Initialize virtual IRQ map */
600 virt_irq_init();
601
602 /*
603 * Finish device-tree (pre-parsing some properties etc...)
604 * We do this in 2 passes. One with "measure_only" set, which
605 * will only measure the amount of memory needed, then we can
606 * allocate that memory, and call finish_node again. However,
607 * we must be careful as most routines will fail nowadays when
608 * prom_alloc() returns 0, so we must make sure our first pass
609 * doesn't start at 0. We pre-initialize size to 16 for that
610 * reason and then remove those additional 16 bytes
611 */
612 size = 16;
613 finish_node(allnodes, &size, NULL, 0, 0, 1);
614 size -= 16;
615 end = start = (unsigned long)abs_to_virt(lmb_alloc(size, 128));
616 finish_node(allnodes, &end, NULL, 0, 0, 0);
617 BUG_ON(end != start + size);
618
619 DBG(" <- finish_device_tree\n");
620}
621
622#ifdef DEBUG
623#define printk udbg_printf
624#endif
625
626static inline char *find_flat_dt_string(u32 offset)
627{
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200628 return ((char *)initial_boot_params) +
629 initial_boot_params->off_dt_strings + offset;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700630}
631
632/**
633 * This function is used to scan the flattened device-tree, it is
634 * used to extract the memory informations at boot before we can
635 * unflatten the tree
636 */
637static int __init scan_flat_dt(int (*it)(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200638 const char *uname, int depth,
639 void *data),
Linus Torvalds1da177e2005-04-16 15:20:36 -0700640 void *data)
641{
642 unsigned long p = ((unsigned long)initial_boot_params) +
643 initial_boot_params->off_dt_struct;
644 int rc = 0;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200645 int depth = -1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700646
647 do {
648 u32 tag = *((u32 *)p);
649 char *pathp;
650
651 p += 4;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200652 if (tag == OF_DT_END_NODE) {
653 depth --;
654 continue;
655 }
656 if (tag == OF_DT_NOP)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700657 continue;
658 if (tag == OF_DT_END)
659 break;
660 if (tag == OF_DT_PROP) {
661 u32 sz = *((u32 *)p);
662 p += 8;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200663 if (initial_boot_params->version < 0x10)
664 p = _ALIGN(p, sz >= 8 ? 8 : 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700665 p += sz;
666 p = _ALIGN(p, 4);
667 continue;
668 }
669 if (tag != OF_DT_BEGIN_NODE) {
670 printk(KERN_WARNING "Invalid tag %x scanning flattened"
671 " device tree !\n", tag);
672 return -EINVAL;
673 }
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200674 depth++;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700675 pathp = (char *)p;
676 p = _ALIGN(p + strlen(pathp) + 1, 4);
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200677 if ((*pathp) == '/') {
678 char *lp, *np;
679 for (lp = NULL, np = pathp; *np; np++)
680 if ((*np) == '/')
681 lp = np+1;
682 if (lp != NULL)
683 pathp = lp;
684 }
685 rc = it(p, pathp, depth, data);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700686 if (rc != 0)
687 break;
688 } while(1);
689
690 return rc;
691}
692
693/**
694 * This function can be used within scan_flattened_dt callback to get
695 * access to properties
696 */
697static void* __init get_flat_dt_prop(unsigned long node, const char *name,
698 unsigned long *size)
699{
700 unsigned long p = node;
701
702 do {
703 u32 tag = *((u32 *)p);
704 u32 sz, noff;
705 const char *nstr;
706
707 p += 4;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200708 if (tag == OF_DT_NOP)
709 continue;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700710 if (tag != OF_DT_PROP)
711 return NULL;
712
713 sz = *((u32 *)p);
714 noff = *((u32 *)(p + 4));
715 p += 8;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200716 if (initial_boot_params->version < 0x10)
717 p = _ALIGN(p, sz >= 8 ? 8 : 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700718
719 nstr = find_flat_dt_string(noff);
720 if (nstr == NULL) {
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200721 printk(KERN_WARNING "Can't find property index"
722 " name !\n");
Linus Torvalds1da177e2005-04-16 15:20:36 -0700723 return NULL;
724 }
725 if (strcmp(name, nstr) == 0) {
726 if (size)
727 *size = sz;
728 return (void *)p;
729 }
730 p += sz;
731 p = _ALIGN(p, 4);
732 } while(1);
733}
734
735static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200736 unsigned long align)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700737{
738 void *res;
739
740 *mem = _ALIGN(*mem, align);
741 res = (void *)*mem;
742 *mem += size;
743
744 return res;
745}
746
747static unsigned long __init unflatten_dt_node(unsigned long mem,
748 unsigned long *p,
749 struct device_node *dad,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200750 struct device_node ***allnextpp,
751 unsigned long fpsize)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700752{
753 struct device_node *np;
754 struct property *pp, **prev_pp = NULL;
755 char *pathp;
756 u32 tag;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200757 unsigned int l, allocl;
758 int has_name = 0;
759 int new_format = 0;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700760
761 tag = *((u32 *)(*p));
762 if (tag != OF_DT_BEGIN_NODE) {
763 printk("Weird tag at start of node: %x\n", tag);
764 return mem;
765 }
766 *p += 4;
767 pathp = (char *)*p;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200768 l = allocl = strlen(pathp) + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700769 *p = _ALIGN(*p + l, 4);
770
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200771 /* version 0x10 has a more compact unit name here instead of the full
772 * path. we accumulate the full path size using "fpsize", we'll rebuild
773 * it later. We detect this because the first character of the name is
774 * not '/'.
775 */
776 if ((*pathp) != '/') {
777 new_format = 1;
778 if (fpsize == 0) {
779 /* root node: special case. fpsize accounts for path
780 * plus terminating zero. root node only has '/', so
781 * fpsize should be 2, but we want to avoid the first
782 * level nodes to have two '/' so we use fpsize 1 here
783 */
784 fpsize = 1;
785 allocl = 2;
786 } else {
787 /* account for '/' and path size minus terminal 0
788 * already in 'l'
789 */
790 fpsize += l;
791 allocl = fpsize;
792 }
793 }
794
795
796 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700797 __alignof__(struct device_node));
798 if (allnextpp) {
799 memset(np, 0, sizeof(*np));
800 np->full_name = ((char*)np) + sizeof(struct device_node);
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200801 if (new_format) {
802 char *p = np->full_name;
803 /* rebuild full path for new format */
804 if (dad && dad->parent) {
805 strcpy(p, dad->full_name);
806#ifdef DEBUG
807 if ((strlen(p) + l + 1) != allocl) {
808 DBG("%s: p: %d, l: %d, a: %d\n",
809 pathp, strlen(p), l, allocl);
810 }
811#endif
812 p += strlen(p);
813 }
814 *(p++) = '/';
815 memcpy(p, pathp, l);
816 } else
817 memcpy(np->full_name, pathp, l);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700818 prev_pp = &np->properties;
819 **allnextpp = np;
820 *allnextpp = &np->allnext;
821 if (dad != NULL) {
822 np->parent = dad;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200823 /* we temporarily use the next field as `last_child'*/
Linus Torvalds1da177e2005-04-16 15:20:36 -0700824 if (dad->next == 0)
825 dad->child = np;
826 else
827 dad->next->sibling = np;
828 dad->next = np;
829 }
830 kref_init(&np->kref);
831 }
832 while(1) {
833 u32 sz, noff;
834 char *pname;
835
836 tag = *((u32 *)(*p));
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200837 if (tag == OF_DT_NOP) {
838 *p += 4;
839 continue;
840 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700841 if (tag != OF_DT_PROP)
842 break;
843 *p += 4;
844 sz = *((u32 *)(*p));
845 noff = *((u32 *)((*p) + 4));
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200846 *p += 8;
847 if (initial_boot_params->version < 0x10)
848 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700849
850 pname = find_flat_dt_string(noff);
851 if (pname == NULL) {
852 printk("Can't find property name in list !\n");
853 break;
854 }
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200855 if (strcmp(pname, "name") == 0)
856 has_name = 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700857 l = strlen(pname) + 1;
858 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
859 __alignof__(struct property));
860 if (allnextpp) {
861 if (strcmp(pname, "linux,phandle") == 0) {
862 np->node = *((u32 *)*p);
863 if (np->linux_phandle == 0)
864 np->linux_phandle = np->node;
865 }
866 if (strcmp(pname, "ibm,phandle") == 0)
867 np->linux_phandle = *((u32 *)*p);
868 pp->name = pname;
869 pp->length = sz;
870 pp->value = (void *)*p;
871 *prev_pp = pp;
872 prev_pp = &pp->next;
873 }
874 *p = _ALIGN((*p) + sz, 4);
875 }
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200876 /* with version 0x10 we may not have the name property, recreate
877 * it here from the unit name if absent
878 */
879 if (!has_name) {
880 char *p = pathp, *ps = pathp, *pa = NULL;
881 int sz;
882
883 while (*p) {
884 if ((*p) == '@')
885 pa = p;
886 if ((*p) == '/')
887 ps = p + 1;
888 p++;
889 }
890 if (pa < ps)
891 pa = p;
892 sz = (pa - ps) + 1;
893 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
894 __alignof__(struct property));
895 if (allnextpp) {
896 pp->name = "name";
897 pp->length = sz;
898 pp->value = (unsigned char *)(pp + 1);
899 *prev_pp = pp;
900 prev_pp = &pp->next;
901 memcpy(pp->value, ps, sz - 1);
902 ((char *)pp->value)[sz - 1] = 0;
903 DBG("fixed up name for %s -> %s\n", pathp, pp->value);
904 }
905 }
Linus Torvalds1da177e2005-04-16 15:20:36 -0700906 if (allnextpp) {
907 *prev_pp = NULL;
908 np->name = get_property(np, "name", NULL);
909 np->type = get_property(np, "device_type", NULL);
910
911 if (!np->name)
912 np->name = "<NULL>";
913 if (!np->type)
914 np->type = "<NULL>";
915 }
916 while (tag == OF_DT_BEGIN_NODE) {
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200917 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700918 tag = *((u32 *)(*p));
919 }
920 if (tag != OF_DT_END_NODE) {
Michael Ellerman145ec7d2005-08-09 15:20:18 +1000921 printk("Weird tag at end of node: %x\n", tag);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700922 return mem;
923 }
924 *p += 4;
925 return mem;
926}
927
928
929/**
930 * unflattens the device-tree passed by the firmware, creating the
931 * tree of struct device_node. It also fills the "name" and "type"
932 * pointers of the nodes so the normal device-tree walking functions
933 * can be used (this used to be done by finish_device_tree)
934 */
935void __init unflatten_device_tree(void)
936{
937 unsigned long start, mem, size;
938 struct device_node **allnextp = &allnodes;
Paul Mackerras3892c5f2005-05-06 13:29:34 +1000939 char *p = NULL;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700940 int l = 0;
941
942 DBG(" -> unflatten_device_tree()\n");
943
944 /* First pass, scan for size */
945 start = ((unsigned long)initial_boot_params) +
946 initial_boot_params->off_dt_struct;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200947 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
948 size = (size | 3) + 1;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700949
950 DBG(" size is %lx, allocating...\n", size);
951
952 /* Allocate memory for the expanded device tree */
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200953 mem = (unsigned long)abs_to_virt(lmb_alloc(size + 4,
Linus Torvalds1da177e2005-04-16 15:20:36 -0700954 __alignof__(struct device_node)));
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200955 ((u32 *)mem)[size / 4] = 0xdeadbeef;
956
Linus Torvalds1da177e2005-04-16 15:20:36 -0700957 DBG(" unflattening...\n", mem);
958
959 /* Second pass, do actual unflattening */
960 start = ((unsigned long)initial_boot_params) +
961 initial_boot_params->off_dt_struct;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200962 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
Linus Torvalds1da177e2005-04-16 15:20:36 -0700963 if (*((u32 *)start) != OF_DT_END)
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200964 printk(KERN_WARNING "Weird tag at end of tree: %08x\n", *((u32 *)start));
965 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
966 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
967 ((u32 *)mem)[size / 4] );
Linus Torvalds1da177e2005-04-16 15:20:36 -0700968 *allnextp = NULL;
969
970 /* Get pointer to OF "/chosen" node for use everywhere */
971 of_chosen = of_find_node_by_path("/chosen");
972
973 /* Retreive command line */
974 if (of_chosen != NULL) {
975 p = (char *)get_property(of_chosen, "bootargs", &l);
976 if (p != NULL && l > 0)
977 strlcpy(cmd_line, p, min(l, COMMAND_LINE_SIZE));
978 }
979#ifdef CONFIG_CMDLINE
980 if (l == 0 || (l == 1 && (*p) == 0))
981 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
982#endif /* CONFIG_CMDLINE */
983
984 DBG("Command line is: %s\n", cmd_line);
985
986 DBG(" <- unflatten_device_tree()\n");
987}
988
989
990static int __init early_init_dt_scan_cpus(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +0200991 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -0700992{
993 char *type = get_flat_dt_prop(node, "device_type", NULL);
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -0700994 u32 *prop;
Anton Blanchard9b843cd2005-06-21 17:15:55 -0700995 unsigned long size;
Linus Torvalds1da177e2005-04-16 15:20:36 -0700996
997 /* We are scanning "cpu" nodes only */
998 if (type == NULL || strcmp(type, "cpu") != 0)
999 return 0;
1000
1001 /* On LPAR, look for the first ibm,pft-size property for the hash table size
1002 */
1003 if (systemcfg->platform == PLATFORM_PSERIES_LPAR && ppc64_pft_size == 0) {
1004 u32 *pft_size;
1005 pft_size = (u32 *)get_flat_dt_prop(node, "ibm,pft-size", NULL);
1006 if (pft_size != NULL) {
1007 /* pft_size[0] is the NUMA CEC cookie */
1008 ppc64_pft_size = pft_size[1];
1009 }
1010 }
1011
1012 if (initial_boot_params && initial_boot_params->version >= 2) {
1013 /* version 2 of the kexec param format adds the phys cpuid
1014 * of booted proc.
1015 */
1016 boot_cpuid_phys = initial_boot_params->boot_cpuid_phys;
1017 boot_cpuid = 0;
1018 } else {
1019 /* Check if it's the boot-cpu, set it's hw index in paca now */
1020 if (get_flat_dt_prop(node, "linux,boot-cpu", NULL) != NULL) {
1021 u32 *prop = get_flat_dt_prop(node, "reg", NULL);
1022 set_hard_smp_processor_id(0, prop == NULL ? 0 : *prop);
1023 boot_cpuid_phys = get_hard_smp_processor_id(0);
1024 }
1025 }
1026
Benjamin Herrenschmidt57ee67a2005-07-31 22:34:49 -07001027#ifdef CONFIG_ALTIVEC
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001028 /* Check if we have a VMX and eventually update CPU features */
1029 prop = (u32 *)get_flat_dt_prop(node, "ibm,vmx", NULL);
1030 if (prop && (*prop) > 0) {
1031 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1032 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1033 }
1034
1035 /* Same goes for Apple's "altivec" property */
1036 prop = (u32 *)get_flat_dt_prop(node, "altivec", NULL);
1037 if (prop) {
1038 cur_cpu_spec->cpu_features |= CPU_FTR_ALTIVEC;
1039 cur_cpu_spec->cpu_user_features |= PPC_FEATURE_HAS_ALTIVEC;
1040 }
Benjamin Herrenschmidt57ee67a2005-07-31 22:34:49 -07001041#endif /* CONFIG_ALTIVEC */
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001042
Anton Blanchard9b843cd2005-06-21 17:15:55 -07001043 /*
1044 * Check for an SMT capable CPU and set the CPU feature. We do
1045 * this by looking at the size of the ibm,ppc-interrupt-server#s
1046 * property
1047 */
1048 prop = (u32 *)get_flat_dt_prop(node, "ibm,ppc-interrupt-server#s",
1049 &size);
1050 cur_cpu_spec->cpu_features &= ~CPU_FTR_SMT;
1051 if (prop && ((size / sizeof(u32)) > 1))
1052 cur_cpu_spec->cpu_features |= CPU_FTR_SMT;
1053
Linus Torvalds1da177e2005-04-16 15:20:36 -07001054 return 0;
1055}
1056
1057static int __init early_init_dt_scan_chosen(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001058 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001059{
1060 u32 *prop;
1061 u64 *prop64;
1062 extern unsigned long memory_limit, tce_alloc_start, tce_alloc_end;
1063
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001064 DBG("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
1065
1066 if (depth != 1 || strcmp(uname, "chosen") != 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001067 return 0;
1068
1069 /* get platform type */
1070 prop = (u32 *)get_flat_dt_prop(node, "linux,platform", NULL);
1071 if (prop == NULL)
1072 return 0;
1073 systemcfg->platform = *prop;
1074
1075 /* check if iommu is forced on or off */
1076 if (get_flat_dt_prop(node, "linux,iommu-off", NULL) != NULL)
1077 iommu_is_off = 1;
1078 if (get_flat_dt_prop(node, "linux,iommu-force-on", NULL) != NULL)
1079 iommu_force_on = 1;
1080
1081 prop64 = (u64*)get_flat_dt_prop(node, "linux,memory-limit", NULL);
1082 if (prop64)
1083 memory_limit = *prop64;
1084
1085 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-start", NULL);
1086 if (prop64)
1087 tce_alloc_start = *prop64;
1088
1089 prop64 = (u64*)get_flat_dt_prop(node, "linux,tce-alloc-end", NULL);
1090 if (prop64)
1091 tce_alloc_end = *prop64;
1092
1093#ifdef CONFIG_PPC_RTAS
1094 /* To help early debugging via the front panel, we retreive a minimal
1095 * set of RTAS infos now if available
1096 */
1097 {
1098 u64 *basep, *entryp;
1099
1100 basep = (u64*)get_flat_dt_prop(node, "linux,rtas-base", NULL);
1101 entryp = (u64*)get_flat_dt_prop(node, "linux,rtas-entry", NULL);
1102 prop = (u32*)get_flat_dt_prop(node, "linux,rtas-size", NULL);
1103 if (basep && entryp && prop) {
1104 rtas.base = *basep;
1105 rtas.entry = *entryp;
1106 rtas.size = *prop;
1107 }
1108 }
1109#endif /* CONFIG_PPC_RTAS */
1110
1111 /* break now */
1112 return 1;
1113}
1114
1115static int __init early_init_dt_scan_root(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001116 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001117{
1118 u32 *prop;
1119
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001120 if (depth != 0)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001121 return 0;
1122
1123 prop = (u32 *)get_flat_dt_prop(node, "#size-cells", NULL);
1124 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001125 DBG("dt_root_size_cells = %x\n", dt_root_size_cells);
1126
Linus Torvalds1da177e2005-04-16 15:20:36 -07001127 prop = (u32 *)get_flat_dt_prop(node, "#address-cells", NULL);
1128 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001129 DBG("dt_root_addr_cells = %x\n", dt_root_addr_cells);
Linus Torvalds1da177e2005-04-16 15:20:36 -07001130
1131 /* break now */
1132 return 1;
1133}
1134
1135static unsigned long __init dt_mem_next_cell(int s, cell_t **cellp)
1136{
1137 cell_t *p = *cellp;
1138 unsigned long r = 0;
1139
1140 /* Ignore more than 2 cells */
1141 while (s > 2) {
1142 p++;
1143 s--;
1144 }
1145 while (s) {
1146 r <<= 32;
1147 r |= *(p++);
1148 s--;
1149 }
1150
1151 *cellp = p;
1152 return r;
1153}
1154
1155
1156static int __init early_init_dt_scan_memory(unsigned long node,
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001157 const char *uname, int depth, void *data)
Linus Torvalds1da177e2005-04-16 15:20:36 -07001158{
1159 char *type = get_flat_dt_prop(node, "device_type", NULL);
1160 cell_t *reg, *endp;
1161 unsigned long l;
1162
1163 /* We are scanning "memory" nodes only */
1164 if (type == NULL || strcmp(type, "memory") != 0)
1165 return 0;
1166
1167 reg = (cell_t *)get_flat_dt_prop(node, "reg", &l);
1168 if (reg == NULL)
1169 return 0;
1170
1171 endp = reg + (l / sizeof(cell_t));
1172
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001173 DBG("memory scan node %s ..., reg size %ld, data: %x %x %x %x, ...\n",
1174 uname, l, reg[0], reg[1], reg[2], reg[3]);
1175
Linus Torvalds1da177e2005-04-16 15:20:36 -07001176 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
1177 unsigned long base, size;
1178
1179 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
1180 size = dt_mem_next_cell(dt_root_size_cells, &reg);
1181
1182 if (size == 0)
1183 continue;
1184 DBG(" - %lx , %lx\n", base, size);
1185 if (iommu_is_off) {
1186 if (base >= 0x80000000ul)
1187 continue;
1188 if ((base + size) > 0x80000000ul)
1189 size = 0x80000000ul - base;
1190 }
1191 lmb_add(base, size);
1192 }
1193 return 0;
1194}
1195
1196static void __init early_reserve_mem(void)
1197{
1198 u64 base, size;
1199 u64 *reserve_map = (u64 *)(((unsigned long)initial_boot_params) +
1200 initial_boot_params->off_mem_rsvmap);
1201 while (1) {
1202 base = *(reserve_map++);
1203 size = *(reserve_map++);
1204 if (size == 0)
1205 break;
1206 DBG("reserving: %lx -> %lx\n", base, size);
1207 lmb_reserve(base, size);
1208 }
1209
1210#if 0
1211 DBG("memory reserved, lmbs :\n");
1212 lmb_dump_all();
1213#endif
1214}
1215
1216void __init early_init_devtree(void *params)
1217{
1218 DBG(" -> early_init_devtree()\n");
1219
1220 /* Setup flat device-tree pointer */
1221 initial_boot_params = params;
1222
1223 /* By default, hash size is not set */
1224 ppc64_pft_size = 0;
1225
1226 /* Retreive various informations from the /chosen node of the
1227 * device-tree, including the platform type, initrd location and
1228 * size, TCE reserve, and more ...
1229 */
1230 scan_flat_dt(early_init_dt_scan_chosen, NULL);
1231
1232 /* Scan memory nodes and rebuild LMBs */
1233 lmb_init();
1234 scan_flat_dt(early_init_dt_scan_root, NULL);
1235 scan_flat_dt(early_init_dt_scan_memory, NULL);
1236 lmb_enforce_memory_limit();
1237 lmb_analyze();
1238 systemcfg->physicalMemorySize = lmb_phys_mem_size();
1239 lmb_reserve(0, __pa(klimit));
1240
1241 DBG("Phys. mem: %lx\n", systemcfg->physicalMemorySize);
1242
1243 /* Reserve LMB regions used by kernel, initrd, dt, etc... */
1244 early_reserve_mem();
1245
1246 DBG("Scanning CPUs ...\n");
1247
Benjamin Herrenschmidt187335a2005-04-16 15:24:36 -07001248 /* Retreive hash table size from flattened tree plus other
1249 * CPU related informations (altivec support, boot CPU ID, ...)
1250 */
Linus Torvalds1da177e2005-04-16 15:20:36 -07001251 scan_flat_dt(early_init_dt_scan_cpus, NULL);
1252
1253 /* If hash size wasn't obtained above, we calculate it now based on
1254 * the total RAM size
1255 */
1256 if (ppc64_pft_size == 0) {
1257 unsigned long rnd_mem_size, pteg_count;
1258
1259 /* round mem_size up to next power of 2 */
1260 rnd_mem_size = 1UL << __ilog2(systemcfg->physicalMemorySize);
1261 if (rnd_mem_size < systemcfg->physicalMemorySize)
1262 rnd_mem_size <<= 1;
1263
1264 /* # pages / 2 */
1265 pteg_count = max(rnd_mem_size >> (12 + 1), 1UL << 11);
1266
1267 ppc64_pft_size = __ilog2(pteg_count << 7);
1268 }
1269
1270 DBG("Hash pftSize: %x\n", (int)ppc64_pft_size);
1271 DBG(" <- early_init_devtree()\n");
1272}
1273
1274#undef printk
1275
1276int
1277prom_n_addr_cells(struct device_node* np)
1278{
1279 int* ip;
1280 do {
1281 if (np->parent)
1282 np = np->parent;
1283 ip = (int *) get_property(np, "#address-cells", NULL);
1284 if (ip != NULL)
1285 return *ip;
1286 } while (np->parent);
1287 /* No #address-cells property for the root node, default to 1 */
1288 return 1;
1289}
1290
1291int
1292prom_n_size_cells(struct device_node* np)
1293{
1294 int* ip;
1295 do {
1296 if (np->parent)
1297 np = np->parent;
1298 ip = (int *) get_property(np, "#size-cells", NULL);
1299 if (ip != NULL)
1300 return *ip;
1301 } while (np->parent);
1302 /* No #size-cells property for the root node, default to 1 */
1303 return 1;
1304}
1305
1306/**
1307 * Work out the sense (active-low level / active-high edge)
1308 * of each interrupt from the device tree.
1309 */
1310void __init prom_get_irq_senses(unsigned char *senses, int off, int max)
1311{
1312 struct device_node *np;
1313 int i, j;
1314
1315 /* default to level-triggered */
1316 memset(senses, 1, max - off);
1317
1318 for (np = allnodes; np != 0; np = np->allnext) {
1319 for (j = 0; j < np->n_intrs; j++) {
1320 i = np->intrs[j].line;
1321 if (i >= off && i < max)
1322 senses[i-off] = np->intrs[j].sense ?
1323 IRQ_SENSE_LEVEL | IRQ_POLARITY_NEGATIVE :
1324 IRQ_SENSE_EDGE | IRQ_POLARITY_POSITIVE;
1325 }
1326 }
1327}
1328
1329/**
1330 * Construct and return a list of the device_nodes with a given name.
1331 */
1332struct device_node *
1333find_devices(const char *name)
1334{
1335 struct device_node *head, **prevp, *np;
1336
1337 prevp = &head;
1338 for (np = allnodes; np != 0; np = np->allnext) {
1339 if (np->name != 0 && strcasecmp(np->name, name) == 0) {
1340 *prevp = np;
1341 prevp = &np->next;
1342 }
1343 }
1344 *prevp = NULL;
1345 return head;
1346}
1347EXPORT_SYMBOL(find_devices);
1348
1349/**
1350 * Construct and return a list of the device_nodes with a given type.
1351 */
1352struct device_node *
1353find_type_devices(const char *type)
1354{
1355 struct device_node *head, **prevp, *np;
1356
1357 prevp = &head;
1358 for (np = allnodes; np != 0; np = np->allnext) {
1359 if (np->type != 0 && strcasecmp(np->type, type) == 0) {
1360 *prevp = np;
1361 prevp = &np->next;
1362 }
1363 }
1364 *prevp = NULL;
1365 return head;
1366}
1367EXPORT_SYMBOL(find_type_devices);
1368
1369/**
1370 * Returns all nodes linked together
1371 */
1372struct device_node *
1373find_all_nodes(void)
1374{
1375 struct device_node *head, **prevp, *np;
1376
1377 prevp = &head;
1378 for (np = allnodes; np != 0; np = np->allnext) {
1379 *prevp = np;
1380 prevp = &np->next;
1381 }
1382 *prevp = NULL;
1383 return head;
1384}
1385EXPORT_SYMBOL(find_all_nodes);
1386
1387/** Checks if the given "compat" string matches one of the strings in
1388 * the device's "compatible" property
1389 */
1390int
1391device_is_compatible(struct device_node *device, const char *compat)
1392{
1393 const char* cp;
1394 int cplen, l;
1395
1396 cp = (char *) get_property(device, "compatible", &cplen);
1397 if (cp == NULL)
1398 return 0;
1399 while (cplen > 0) {
1400 if (strncasecmp(cp, compat, strlen(compat)) == 0)
1401 return 1;
1402 l = strlen(cp) + 1;
1403 cp += l;
1404 cplen -= l;
1405 }
1406
1407 return 0;
1408}
1409EXPORT_SYMBOL(device_is_compatible);
1410
1411
1412/**
1413 * Indicates whether the root node has a given value in its
1414 * compatible property.
1415 */
1416int
1417machine_is_compatible(const char *compat)
1418{
1419 struct device_node *root;
1420 int rc = 0;
1421
1422 root = of_find_node_by_path("/");
1423 if (root) {
1424 rc = device_is_compatible(root, compat);
1425 of_node_put(root);
1426 }
1427 return rc;
1428}
1429EXPORT_SYMBOL(machine_is_compatible);
1430
1431/**
1432 * Construct and return a list of the device_nodes with a given type
1433 * and compatible property.
1434 */
1435struct device_node *
1436find_compatible_devices(const char *type, const char *compat)
1437{
1438 struct device_node *head, **prevp, *np;
1439
1440 prevp = &head;
1441 for (np = allnodes; np != 0; np = np->allnext) {
1442 if (type != NULL
1443 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1444 continue;
1445 if (device_is_compatible(np, compat)) {
1446 *prevp = np;
1447 prevp = &np->next;
1448 }
1449 }
1450 *prevp = NULL;
1451 return head;
1452}
1453EXPORT_SYMBOL(find_compatible_devices);
1454
1455/**
1456 * Find the device_node with a given full_name.
1457 */
1458struct device_node *
1459find_path_device(const char *path)
1460{
1461 struct device_node *np;
1462
1463 for (np = allnodes; np != 0; np = np->allnext)
1464 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0)
1465 return np;
1466 return NULL;
1467}
1468EXPORT_SYMBOL(find_path_device);
1469
1470/*******
1471 *
1472 * New implementation of the OF "find" APIs, return a refcounted
1473 * object, call of_node_put() when done. The device tree and list
1474 * are protected by a rw_lock.
1475 *
1476 * Note that property management will need some locking as well,
1477 * this isn't dealt with yet.
1478 *
1479 *******/
1480
1481/**
1482 * of_find_node_by_name - Find a node by its "name" property
1483 * @from: The node to start searching from or NULL, the node
1484 * you pass will not be searched, only the next one
1485 * will; typically, you pass what the previous call
1486 * returned. of_node_put() will be called on it
1487 * @name: The name string to match against
1488 *
1489 * Returns a node pointer with refcount incremented, use
1490 * of_node_put() on it when done.
1491 */
1492struct device_node *of_find_node_by_name(struct device_node *from,
1493 const char *name)
1494{
1495 struct device_node *np;
1496
1497 read_lock(&devtree_lock);
1498 np = from ? from->allnext : allnodes;
1499 for (; np != 0; np = np->allnext)
1500 if (np->name != 0 && strcasecmp(np->name, name) == 0
1501 && of_node_get(np))
1502 break;
1503 if (from)
1504 of_node_put(from);
1505 read_unlock(&devtree_lock);
1506 return np;
1507}
1508EXPORT_SYMBOL(of_find_node_by_name);
1509
1510/**
1511 * of_find_node_by_type - Find a node by its "device_type" property
1512 * @from: The node to start searching from or NULL, the node
1513 * you pass will not be searched, only the next one
1514 * will; typically, you pass what the previous call
1515 * returned. of_node_put() will be called on it
1516 * @name: The type string to match against
1517 *
1518 * Returns a node pointer with refcount incremented, use
1519 * of_node_put() on it when done.
1520 */
1521struct device_node *of_find_node_by_type(struct device_node *from,
1522 const char *type)
1523{
1524 struct device_node *np;
1525
1526 read_lock(&devtree_lock);
1527 np = from ? from->allnext : allnodes;
1528 for (; np != 0; np = np->allnext)
1529 if (np->type != 0 && strcasecmp(np->type, type) == 0
1530 && of_node_get(np))
1531 break;
1532 if (from)
1533 of_node_put(from);
1534 read_unlock(&devtree_lock);
1535 return np;
1536}
1537EXPORT_SYMBOL(of_find_node_by_type);
1538
1539/**
1540 * of_find_compatible_node - Find a node based on type and one of the
1541 * tokens in its "compatible" property
1542 * @from: The node to start searching from or NULL, the node
1543 * you pass will not be searched, only the next one
1544 * will; typically, you pass what the previous call
1545 * returned. of_node_put() will be called on it
1546 * @type: The type string to match "device_type" or NULL to ignore
1547 * @compatible: The string to match to one of the tokens in the device
1548 * "compatible" list.
1549 *
1550 * Returns a node pointer with refcount incremented, use
1551 * of_node_put() on it when done.
1552 */
1553struct device_node *of_find_compatible_node(struct device_node *from,
1554 const char *type, const char *compatible)
1555{
1556 struct device_node *np;
1557
1558 read_lock(&devtree_lock);
1559 np = from ? from->allnext : allnodes;
1560 for (; np != 0; np = np->allnext) {
1561 if (type != NULL
1562 && !(np->type != 0 && strcasecmp(np->type, type) == 0))
1563 continue;
1564 if (device_is_compatible(np, compatible) && of_node_get(np))
1565 break;
1566 }
1567 if (from)
1568 of_node_put(from);
1569 read_unlock(&devtree_lock);
1570 return np;
1571}
1572EXPORT_SYMBOL(of_find_compatible_node);
1573
1574/**
1575 * of_find_node_by_path - Find a node matching a full OF path
1576 * @path: The full path to match
1577 *
1578 * Returns a node pointer with refcount incremented, use
1579 * of_node_put() on it when done.
1580 */
1581struct device_node *of_find_node_by_path(const char *path)
1582{
1583 struct device_node *np = allnodes;
1584
1585 read_lock(&devtree_lock);
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001586 for (; np != 0; np = np->allnext) {
Linus Torvalds1da177e2005-04-16 15:20:36 -07001587 if (np->full_name != 0 && strcasecmp(np->full_name, path) == 0
1588 && of_node_get(np))
1589 break;
Benjamin Herrenschmidt34153fa2005-08-09 10:36:34 +02001590 }
Linus Torvalds1da177e2005-04-16 15:20:36 -07001591 read_unlock(&devtree_lock);
1592 return np;
1593}
1594EXPORT_SYMBOL(of_find_node_by_path);
1595
1596/**
1597 * of_find_node_by_phandle - Find a node given a phandle
1598 * @handle: phandle of the node to find
1599 *
1600 * Returns a node pointer with refcount incremented, use
1601 * of_node_put() on it when done.
1602 */
1603struct device_node *of_find_node_by_phandle(phandle handle)
1604{
1605 struct device_node *np;
1606
1607 read_lock(&devtree_lock);
1608 for (np = allnodes; np != 0; np = np->allnext)
1609 if (np->linux_phandle == handle)
1610 break;
1611 if (np)
1612 of_node_get(np);
1613 read_unlock(&devtree_lock);
1614 return np;
1615}
1616EXPORT_SYMBOL(of_find_node_by_phandle);
1617
1618/**
1619 * of_find_all_nodes - Get next node in global list
1620 * @prev: Previous node or NULL to start iteration
1621 * of_node_put() will be called on it
1622 *
1623 * Returns a node pointer with refcount incremented, use
1624 * of_node_put() on it when done.
1625 */
1626struct device_node *of_find_all_nodes(struct device_node *prev)
1627{
1628 struct device_node *np;
1629
1630 read_lock(&devtree_lock);
1631 np = prev ? prev->allnext : allnodes;
1632 for (; np != 0; np = np->allnext)
1633 if (of_node_get(np))
1634 break;
1635 if (prev)
1636 of_node_put(prev);
1637 read_unlock(&devtree_lock);
1638 return np;
1639}
1640EXPORT_SYMBOL(of_find_all_nodes);
1641
1642/**
1643 * of_get_parent - Get a node's parent if any
1644 * @node: Node to get parent
1645 *
1646 * Returns a node pointer with refcount incremented, use
1647 * of_node_put() on it when done.
1648 */
1649struct device_node *of_get_parent(const struct device_node *node)
1650{
1651 struct device_node *np;
1652
1653 if (!node)
1654 return NULL;
1655
1656 read_lock(&devtree_lock);
1657 np = of_node_get(node->parent);
1658 read_unlock(&devtree_lock);
1659 return np;
1660}
1661EXPORT_SYMBOL(of_get_parent);
1662
1663/**
1664 * of_get_next_child - Iterate a node childs
1665 * @node: parent node
1666 * @prev: previous child of the parent node, or NULL to get first
1667 *
1668 * Returns a node pointer with refcount incremented, use
1669 * of_node_put() on it when done.
1670 */
1671struct device_node *of_get_next_child(const struct device_node *node,
1672 struct device_node *prev)
1673{
1674 struct device_node *next;
1675
1676 read_lock(&devtree_lock);
1677 next = prev ? prev->sibling : node->child;
1678 for (; next != 0; next = next->sibling)
1679 if (of_node_get(next))
1680 break;
1681 if (prev)
1682 of_node_put(prev);
1683 read_unlock(&devtree_lock);
1684 return next;
1685}
1686EXPORT_SYMBOL(of_get_next_child);
1687
1688/**
1689 * of_node_get - Increment refcount of a node
1690 * @node: Node to inc refcount, NULL is supported to
1691 * simplify writing of callers
1692 *
1693 * Returns node.
1694 */
1695struct device_node *of_node_get(struct device_node *node)
1696{
1697 if (node)
1698 kref_get(&node->kref);
1699 return node;
1700}
1701EXPORT_SYMBOL(of_node_get);
1702
1703static inline struct device_node * kref_to_device_node(struct kref *kref)
1704{
1705 return container_of(kref, struct device_node, kref);
1706}
1707
1708/**
1709 * of_node_release - release a dynamically allocated node
1710 * @kref: kref element of the node to be released
1711 *
1712 * In of_node_put() this function is passed to kref_put()
1713 * as the destructor.
1714 */
1715static void of_node_release(struct kref *kref)
1716{
1717 struct device_node *node = kref_to_device_node(kref);
1718 struct property *prop = node->properties;
1719
1720 if (!OF_IS_DYNAMIC(node))
1721 return;
1722 while (prop) {
1723 struct property *next = prop->next;
1724 kfree(prop->name);
1725 kfree(prop->value);
1726 kfree(prop);
1727 prop = next;
1728 }
1729 kfree(node->intrs);
1730 kfree(node->addrs);
1731 kfree(node->full_name);
1732 kfree(node);
1733}
1734
1735/**
1736 * of_node_put - Decrement refcount of a node
1737 * @node: Node to dec refcount, NULL is supported to
1738 * simplify writing of callers
1739 *
1740 */
1741void of_node_put(struct device_node *node)
1742{
1743 if (node)
1744 kref_put(&node->kref, of_node_release);
1745}
1746EXPORT_SYMBOL(of_node_put);
1747
1748/*
1749 * Fix up the uninitialized fields in a new device node:
1750 * name, type, n_addrs, addrs, n_intrs, intrs, and pci-specific fields
1751 *
1752 * A lot of boot-time code is duplicated here, because functions such
1753 * as finish_node_interrupts, interpret_pci_props, etc. cannot use the
1754 * slab allocator.
1755 *
1756 * This should probably be split up into smaller chunks.
1757 */
1758
1759static int of_finish_dynamic_node(struct device_node *node,
1760 unsigned long *unused1, int unused2,
1761 int unused3, int unused4)
1762{
1763 struct device_node *parent = of_get_parent(node);
1764 int err = 0;
1765 phandle *ibm_phandle;
1766
1767 node->name = get_property(node, "name", NULL);
1768 node->type = get_property(node, "device_type", NULL);
1769
1770 if (!parent) {
1771 err = -ENODEV;
1772 goto out;
1773 }
1774
1775 /* We don't support that function on PowerMac, at least
1776 * not yet
1777 */
1778 if (systemcfg->platform == PLATFORM_POWERMAC)
1779 return -ENODEV;
1780
1781 /* fix up new node's linux_phandle field */
1782 if ((ibm_phandle = (unsigned int *)get_property(node, "ibm,phandle", NULL)))
1783 node->linux_phandle = *ibm_phandle;
1784
1785out:
1786 of_node_put(parent);
1787 return err;
1788}
1789
1790/*
1791 * Plug a device node into the tree and global list.
1792 */
1793void of_attach_node(struct device_node *np)
1794{
1795 write_lock(&devtree_lock);
1796 np->sibling = np->parent->child;
1797 np->allnext = allnodes;
1798 np->parent->child = np;
1799 allnodes = np;
1800 write_unlock(&devtree_lock);
1801}
1802
1803/*
1804 * "Unplug" a node from the device tree. The caller must hold
1805 * a reference to the node. The memory associated with the node
1806 * is not freed until its refcount goes to zero.
1807 */
1808void of_detach_node(const struct device_node *np)
1809{
1810 struct device_node *parent;
1811
1812 write_lock(&devtree_lock);
1813
1814 parent = np->parent;
1815
1816 if (allnodes == np)
1817 allnodes = np->allnext;
1818 else {
1819 struct device_node *prev;
1820 for (prev = allnodes;
1821 prev->allnext != np;
1822 prev = prev->allnext)
1823 ;
1824 prev->allnext = np->allnext;
1825 }
1826
1827 if (parent->child == np)
1828 parent->child = np->sibling;
1829 else {
1830 struct device_node *prevsib;
1831 for (prevsib = np->parent->child;
1832 prevsib->sibling != np;
1833 prevsib = prevsib->sibling)
1834 ;
1835 prevsib->sibling = np->sibling;
1836 }
1837
1838 write_unlock(&devtree_lock);
1839}
1840
1841static int prom_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *node)
1842{
1843 int err;
1844
1845 switch (action) {
1846 case PSERIES_RECONFIG_ADD:
1847 err = finish_node(node, NULL, of_finish_dynamic_node, 0, 0, 0);
1848 if (err < 0) {
1849 printk(KERN_ERR "finish_node returned %d\n", err);
1850 err = NOTIFY_BAD;
1851 }
1852 break;
1853 default:
1854 err = NOTIFY_DONE;
1855 break;
1856 }
1857 return err;
1858}
1859
1860static struct notifier_block prom_reconfig_nb = {
1861 .notifier_call = prom_reconfig_notifier,
1862 .priority = 10, /* This one needs to run first */
1863};
1864
1865static int __init prom_reconfig_setup(void)
1866{
1867 return pSeries_reconfig_notifier_register(&prom_reconfig_nb);
1868}
1869__initcall(prom_reconfig_setup);
1870
1871/*
1872 * Find a property with a given name for a given node
1873 * and return the value.
1874 */
1875unsigned char *
1876get_property(struct device_node *np, const char *name, int *lenp)
1877{
1878 struct property *pp;
1879
1880 for (pp = np->properties; pp != 0; pp = pp->next)
1881 if (strcmp(pp->name, name) == 0) {
1882 if (lenp != 0)
1883 *lenp = pp->length;
1884 return pp->value;
1885 }
1886 return NULL;
1887}
1888EXPORT_SYMBOL(get_property);
1889
1890/*
1891 * Add a property to a node
1892 */
1893void
1894prom_add_property(struct device_node* np, struct property* prop)
1895{
1896 struct property **next = &np->properties;
1897
1898 prop->next = NULL;
1899 while (*next)
1900 next = &(*next)->next;
1901 *next = prop;
1902}
1903
1904#if 0
1905void
1906print_properties(struct device_node *np)
1907{
1908 struct property *pp;
1909 char *cp;
1910 int i, n;
1911
1912 for (pp = np->properties; pp != 0; pp = pp->next) {
1913 printk(KERN_INFO "%s", pp->name);
1914 for (i = strlen(pp->name); i < 16; ++i)
1915 printk(" ");
1916 cp = (char *) pp->value;
1917 for (i = pp->length; i > 0; --i, ++cp)
1918 if ((i > 1 && (*cp < 0x20 || *cp > 0x7e))
1919 || (i == 1 && *cp != 0))
1920 break;
1921 if (i == 0 && pp->length > 1) {
1922 /* looks like a string */
1923 printk(" %s\n", (char *) pp->value);
1924 } else {
1925 /* dump it in hex */
1926 n = pp->length;
1927 if (n > 64)
1928 n = 64;
1929 if (pp->length % 4 == 0) {
1930 unsigned int *p = (unsigned int *) pp->value;
1931
1932 n /= 4;
1933 for (i = 0; i < n; ++i) {
1934 if (i != 0 && (i % 4) == 0)
1935 printk("\n ");
1936 printk(" %08x", *p++);
1937 }
1938 } else {
1939 unsigned char *bp = pp->value;
1940
1941 for (i = 0; i < n; ++i) {
1942 if (i != 0 && (i % 16) == 0)
1943 printk("\n ");
1944 printk(" %02x", *bp++);
1945 }
1946 }
1947 printk("\n");
1948 if (pp->length > 64)
1949 printk(" ... (length = %d)\n",
1950 pp->length);
1951 }
1952 }
1953}
1954#endif
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964