| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | #ifndef _ASM_IA64_SYSTEM_H | 
|  | 2 | #define _ASM_IA64_SYSTEM_H | 
|  | 3 |  | 
|  | 4 | /* | 
|  | 5 | * System defines. Note that this is included both from .c and .S | 
|  | 6 | * files, so it does only defines, not any C code.  This is based | 
|  | 7 | * on information published in the Processor Abstraction Layer | 
|  | 8 | * and the System Abstraction Layer manual. | 
|  | 9 | * | 
|  | 10 | * Copyright (C) 1998-2003 Hewlett-Packard Co | 
|  | 11 | *	David Mosberger-Tang <davidm@hpl.hp.com> | 
|  | 12 | * Copyright (C) 1999 Asit Mallick <asit.k.mallick@intel.com> | 
|  | 13 | * Copyright (C) 1999 Don Dugger <don.dugger@intel.com> | 
|  | 14 | */ | 
|  | 15 | #include <linux/config.h> | 
|  | 16 |  | 
|  | 17 | #include <asm/kregs.h> | 
|  | 18 | #include <asm/page.h> | 
|  | 19 | #include <asm/pal.h> | 
|  | 20 | #include <asm/percpu.h> | 
|  | 21 |  | 
| Peter Chubb | 0a41e25 | 2005-08-16 19:54:00 -0700 | [diff] [blame] | 22 | #define GATE_ADDR		RGN_BASE(RGN_GATE) | 
|  | 23 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 24 | /* | 
|  | 25 | * 0xa000000000000000+2*PERCPU_PAGE_SIZE | 
|  | 26 | * - 0xa000000000000000+3*PERCPU_PAGE_SIZE remain unmapped (guard page) | 
|  | 27 | */ | 
| Peter Chubb | 0a41e25 | 2005-08-16 19:54:00 -0700 | [diff] [blame] | 28 | #define KERNEL_START		 (GATE_ADDR+0x100000000) | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 29 | #define PERCPU_ADDR		(-PERCPU_PAGE_SIZE) | 
|  | 30 |  | 
|  | 31 | #ifndef __ASSEMBLY__ | 
|  | 32 |  | 
|  | 33 | #include <linux/kernel.h> | 
|  | 34 | #include <linux/types.h> | 
|  | 35 |  | 
|  | 36 | struct pci_vector_struct { | 
|  | 37 | __u16 segment;	/* PCI Segment number */ | 
|  | 38 | __u16 bus;	/* PCI Bus number */ | 
|  | 39 | __u32 pci_id;	/* ACPI split 16 bits device, 16 bits function (see section 6.1.1) */ | 
|  | 40 | __u8 pin;	/* PCI PIN (0 = A, 1 = B, 2 = C, 3 = D) */ | 
|  | 41 | __u32 irq;	/* IRQ assigned */ | 
|  | 42 | }; | 
|  | 43 |  | 
|  | 44 | extern struct ia64_boot_param { | 
|  | 45 | __u64 command_line;		/* physical address of command line arguments */ | 
|  | 46 | __u64 efi_systab;		/* physical address of EFI system table */ | 
|  | 47 | __u64 efi_memmap;		/* physical address of EFI memory map */ | 
|  | 48 | __u64 efi_memmap_size;		/* size of EFI memory map */ | 
|  | 49 | __u64 efi_memdesc_size;		/* size of an EFI memory map descriptor */ | 
|  | 50 | __u32 efi_memdesc_version;	/* memory descriptor version */ | 
|  | 51 | struct { | 
|  | 52 | __u16 num_cols;	/* number of columns on console output device */ | 
|  | 53 | __u16 num_rows;	/* number of rows on console output device */ | 
|  | 54 | __u16 orig_x;	/* cursor's x position */ | 
|  | 55 | __u16 orig_y;	/* cursor's y position */ | 
|  | 56 | } console_info; | 
|  | 57 | __u64 fpswa;		/* physical address of the fpswa interface */ | 
|  | 58 | __u64 initrd_start; | 
|  | 59 | __u64 initrd_size; | 
|  | 60 | } *ia64_boot_param; | 
|  | 61 |  | 
|  | 62 | /* | 
|  | 63 | * Macros to force memory ordering.  In these descriptions, "previous" | 
|  | 64 | * and "subsequent" refer to program order; "visible" means that all | 
|  | 65 | * architecturally visible effects of a memory access have occurred | 
|  | 66 | * (at a minimum, this means the memory has been read or written). | 
|  | 67 | * | 
|  | 68 | *   wmb():	Guarantees that all preceding stores to memory- | 
|  | 69 | *		like regions are visible before any subsequent | 
|  | 70 | *		stores and that all following stores will be | 
|  | 71 | *		visible only after all previous stores. | 
|  | 72 | *   rmb():	Like wmb(), but for reads. | 
|  | 73 | *   mb():	wmb()/rmb() combo, i.e., all previous memory | 
|  | 74 | *		accesses are visible before all subsequent | 
|  | 75 | *		accesses and vice versa.  This is also known as | 
|  | 76 | *		a "fence." | 
|  | 77 | * | 
|  | 78 | * Note: "mb()" and its variants cannot be used as a fence to order | 
|  | 79 | * accesses to memory mapped I/O registers.  For that, mf.a needs to | 
|  | 80 | * be used.  However, we don't want to always use mf.a because (a) | 
|  | 81 | * it's (presumably) much slower than mf and (b) mf.a is supported for | 
|  | 82 | * sequential memory pages only. | 
|  | 83 | */ | 
|  | 84 | #define mb()	ia64_mf() | 
|  | 85 | #define rmb()	mb() | 
|  | 86 | #define wmb()	mb() | 
|  | 87 | #define read_barrier_depends()	do { } while(0) | 
|  | 88 |  | 
|  | 89 | #ifdef CONFIG_SMP | 
|  | 90 | # define smp_mb()	mb() | 
|  | 91 | # define smp_rmb()	rmb() | 
|  | 92 | # define smp_wmb()	wmb() | 
|  | 93 | # define smp_read_barrier_depends()	read_barrier_depends() | 
|  | 94 | #else | 
|  | 95 | # define smp_mb()	barrier() | 
|  | 96 | # define smp_rmb()	barrier() | 
|  | 97 | # define smp_wmb()	barrier() | 
|  | 98 | # define smp_read_barrier_depends()	do { } while(0) | 
|  | 99 | #endif | 
|  | 100 |  | 
|  | 101 | /* | 
|  | 102 | * XXX check on these---I suspect what Linus really wants here is | 
|  | 103 | * acquire vs release semantics but we can't discuss this stuff with | 
|  | 104 | * Linus just yet.  Grrr... | 
|  | 105 | */ | 
|  | 106 | #define set_mb(var, value)	do { (var) = (value); mb(); } while (0) | 
|  | 107 | #define set_wmb(var, value)	do { (var) = (value); mb(); } while (0) | 
|  | 108 |  | 
|  | 109 | #define safe_halt()         ia64_pal_halt_light()    /* PAL_HALT_LIGHT */ | 
|  | 110 |  | 
|  | 111 | /* | 
|  | 112 | * The group barrier in front of the rsm & ssm are necessary to ensure | 
|  | 113 | * that none of the previous instructions in the same group are | 
|  | 114 | * affected by the rsm/ssm. | 
|  | 115 | */ | 
|  | 116 | /* For spinlocks etc */ | 
|  | 117 |  | 
|  | 118 | /* | 
|  | 119 | * - clearing psr.i is implicitly serialized (visible by next insn) | 
|  | 120 | * - setting psr.i requires data serialization | 
|  | 121 | * - we need a stop-bit before reading PSR because we sometimes | 
|  | 122 | *   write a floating-point register right before reading the PSR | 
|  | 123 | *   and that writes to PSR.mfl | 
|  | 124 | */ | 
|  | 125 | #define __local_irq_save(x)			\ | 
|  | 126 | do {						\ | 
|  | 127 | ia64_stop();				\ | 
|  | 128 | (x) = ia64_getreg(_IA64_REG_PSR);	\ | 
|  | 129 | ia64_stop();				\ | 
|  | 130 | ia64_rsm(IA64_PSR_I);			\ | 
|  | 131 | } while (0) | 
|  | 132 |  | 
|  | 133 | #define __local_irq_disable()			\ | 
|  | 134 | do {						\ | 
|  | 135 | ia64_stop();				\ | 
|  | 136 | ia64_rsm(IA64_PSR_I);			\ | 
|  | 137 | } while (0) | 
|  | 138 |  | 
|  | 139 | #define __local_irq_restore(x)	ia64_intrin_local_irq_restore((x) & IA64_PSR_I) | 
|  | 140 |  | 
|  | 141 | #ifdef CONFIG_IA64_DEBUG_IRQ | 
|  | 142 |  | 
|  | 143 | extern unsigned long last_cli_ip; | 
|  | 144 |  | 
|  | 145 | # define __save_ip()		last_cli_ip = ia64_getreg(_IA64_REG_IP) | 
|  | 146 |  | 
|  | 147 | # define local_irq_save(x)					\ | 
|  | 148 | do {								\ | 
|  | 149 | unsigned long psr;					\ | 
|  | 150 | \ | 
|  | 151 | __local_irq_save(psr);					\ | 
|  | 152 | if (psr & IA64_PSR_I)					\ | 
|  | 153 | __save_ip();					\ | 
|  | 154 | (x) = psr;						\ | 
|  | 155 | } while (0) | 
|  | 156 |  | 
|  | 157 | # define local_irq_disable()	do { unsigned long x; local_irq_save(x); } while (0) | 
|  | 158 |  | 
|  | 159 | # define local_irq_restore(x)					\ | 
|  | 160 | do {								\ | 
|  | 161 | unsigned long old_psr, psr = (x);			\ | 
|  | 162 | \ | 
|  | 163 | local_save_flags(old_psr);				\ | 
|  | 164 | __local_irq_restore(psr);				\ | 
|  | 165 | if ((old_psr & IA64_PSR_I) && !(psr & IA64_PSR_I))	\ | 
|  | 166 | __save_ip();					\ | 
|  | 167 | } while (0) | 
|  | 168 |  | 
|  | 169 | #else /* !CONFIG_IA64_DEBUG_IRQ */ | 
|  | 170 | # define local_irq_save(x)	__local_irq_save(x) | 
|  | 171 | # define local_irq_disable()	__local_irq_disable() | 
|  | 172 | # define local_irq_restore(x)	__local_irq_restore(x) | 
|  | 173 | #endif /* !CONFIG_IA64_DEBUG_IRQ */ | 
|  | 174 |  | 
|  | 175 | #define local_irq_enable()	({ ia64_stop(); ia64_ssm(IA64_PSR_I); ia64_srlz_d(); }) | 
|  | 176 | #define local_save_flags(flags)	({ ia64_stop(); (flags) = ia64_getreg(_IA64_REG_PSR); }) | 
|  | 177 |  | 
|  | 178 | #define irqs_disabled()				\ | 
|  | 179 | ({						\ | 
|  | 180 | unsigned long __ia64_id_flags;		\ | 
|  | 181 | local_save_flags(__ia64_id_flags);	\ | 
|  | 182 | (__ia64_id_flags & IA64_PSR_I) == 0;	\ | 
|  | 183 | }) | 
|  | 184 |  | 
|  | 185 | #ifdef __KERNEL__ | 
|  | 186 |  | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 187 | #ifdef CONFIG_IA32_SUPPORT | 
|  | 188 | # define IS_IA32_PROCESS(regs)	(ia64_psr(regs)->is != 0) | 
|  | 189 | #else | 
|  | 190 | # define IS_IA32_PROCESS(regs)		0 | 
|  | 191 | struct task_struct; | 
|  | 192 | static inline void ia32_save_state(struct task_struct *t __attribute__((unused))){} | 
|  | 193 | static inline void ia32_load_state(struct task_struct *t __attribute__((unused))){} | 
|  | 194 | #endif | 
|  | 195 |  | 
|  | 196 | /* | 
|  | 197 | * Context switch from one thread to another.  If the two threads have | 
|  | 198 | * different address spaces, schedule() has already taken care of | 
|  | 199 | * switching to the new address space by calling switch_mm(). | 
|  | 200 | * | 
|  | 201 | * Disabling access to the fph partition and the debug-register | 
|  | 202 | * context switch MUST be done before calling ia64_switch_to() since a | 
|  | 203 | * newly created thread returns directly to | 
|  | 204 | * ia64_ret_from_syscall_clear_r8. | 
|  | 205 | */ | 
|  | 206 | extern struct task_struct *ia64_switch_to (void *next_task); | 
|  | 207 |  | 
|  | 208 | struct task_struct; | 
|  | 209 |  | 
|  | 210 | extern void ia64_save_extra (struct task_struct *task); | 
|  | 211 | extern void ia64_load_extra (struct task_struct *task); | 
|  | 212 |  | 
|  | 213 | #ifdef CONFIG_PERFMON | 
|  | 214 | DECLARE_PER_CPU(unsigned long, pfm_syst_info); | 
|  | 215 | # define PERFMON_IS_SYSWIDE() (__get_cpu_var(pfm_syst_info) & 0x1) | 
|  | 216 | #else | 
|  | 217 | # define PERFMON_IS_SYSWIDE() (0) | 
|  | 218 | #endif | 
|  | 219 |  | 
|  | 220 | #define IA64_HAS_EXTRA_STATE(t)							\ | 
|  | 221 | ((t)->thread.flags & (IA64_THREAD_DBG_VALID|IA64_THREAD_PM_VALID)	\ | 
|  | 222 | || IS_IA32_PROCESS(ia64_task_regs(t)) || PERFMON_IS_SYSWIDE()) | 
|  | 223 |  | 
|  | 224 | #define __switch_to(prev,next,last) do {							 \ | 
|  | 225 | if (IA64_HAS_EXTRA_STATE(prev))								 \ | 
|  | 226 | ia64_save_extra(prev);								 \ | 
|  | 227 | if (IA64_HAS_EXTRA_STATE(next))								 \ | 
|  | 228 | ia64_load_extra(next);								 \ | 
|  | 229 | ia64_psr(ia64_task_regs(next))->dfh = !ia64_is_local_fpu_owner(next);			 \ | 
|  | 230 | (last) = ia64_switch_to((next));							 \ | 
|  | 231 | } while (0) | 
|  | 232 |  | 
|  | 233 | #ifdef CONFIG_SMP | 
|  | 234 | /* | 
|  | 235 | * In the SMP case, we save the fph state when context-switching away from a thread that | 
|  | 236 | * modified fph.  This way, when the thread gets scheduled on another CPU, the CPU can | 
|  | 237 | * pick up the state from task->thread.fph, avoiding the complication of having to fetch | 
|  | 238 | * the latest fph state from another CPU.  In other words: eager save, lazy restore. | 
|  | 239 | */ | 
|  | 240 | # define switch_to(prev,next,last) do {						\ | 
|  | 241 | if (ia64_psr(ia64_task_regs(prev))->mfh && ia64_is_local_fpu_owner(prev)) {				\ | 
|  | 242 | ia64_psr(ia64_task_regs(prev))->mfh = 0;			\ | 
|  | 243 | (prev)->thread.flags |= IA64_THREAD_FPH_VALID;			\ | 
|  | 244 | __ia64_save_fpu((prev)->thread.fph);				\ | 
|  | 245 | }									\ | 
|  | 246 | __switch_to(prev, next, last);						\ | 
|  | 247 | } while (0) | 
|  | 248 | #else | 
|  | 249 | # define switch_to(prev,next,last)	__switch_to(prev, next, last) | 
|  | 250 | #endif | 
|  | 251 |  | 
|  | 252 | /* | 
|  | 253 | * On IA-64, we don't want to hold the runqueue's lock during the low-level context-switch, | 
|  | 254 | * because that could cause a deadlock.  Here is an example by Erich Focht: | 
|  | 255 | * | 
|  | 256 | * Example: | 
|  | 257 | * CPU#0: | 
|  | 258 | * schedule() | 
|  | 259 | *    -> spin_lock_irq(&rq->lock) | 
|  | 260 | *    -> context_switch() | 
|  | 261 | *       -> wrap_mmu_context() | 
|  | 262 | *          -> read_lock(&tasklist_lock) | 
|  | 263 | * | 
|  | 264 | * CPU#1: | 
|  | 265 | * sys_wait4() or release_task() or forget_original_parent() | 
|  | 266 | *    -> write_lock(&tasklist_lock) | 
|  | 267 | *    -> do_notify_parent() | 
|  | 268 | *       -> wake_up_parent() | 
|  | 269 | *          -> try_to_wake_up() | 
|  | 270 | *             -> spin_lock_irq(&parent_rq->lock) | 
|  | 271 | * | 
|  | 272 | * If the parent's rq happens to be on CPU#0, we'll wait for the rq->lock | 
|  | 273 | * of that CPU which will not be released, because there we wait for the | 
|  | 274 | * tasklist_lock to become available. | 
|  | 275 | */ | 
| Nick Piggin | 4866cde | 2005-06-25 14:57:23 -0700 | [diff] [blame] | 276 | #define __ARCH_WANT_UNLOCKED_CTXSW | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 277 |  | 
| Chen, Kenneth W | 383f283 | 2005-09-09 13:02:02 -0700 | [diff] [blame] | 278 | #define ARCH_HAS_PREFETCH_SWITCH_STACK | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 279 | #define ia64_platform_is(x) (strcmp(x, platform_name) == 0) | 
|  | 280 |  | 
|  | 281 | void cpu_idle_wait(void); | 
|  | 282 |  | 
|  | 283 | #define arch_align_stack(x) (x) | 
|  | 284 |  | 
|  | 285 | #endif /* __KERNEL__ */ | 
|  | 286 |  | 
|  | 287 | #endif /* __ASSEMBLY__ */ | 
|  | 288 |  | 
|  | 289 | #endif /* _ASM_IA64_SYSTEM_H */ |