| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Linux/PA-RISC Project (http://www.parisc-linux.org/) | 
 | 3 |  * | 
 | 4 |  * Floating-point emulation code | 
 | 5 |  *  Copyright (C) 2001 Hewlett-Packard (Paul Bame) <bame@debian.org> | 
 | 6 |  * | 
 | 7 |  *    This program is free software; you can redistribute it and/or modify | 
 | 8 |  *    it under the terms of the GNU General Public License as published by | 
 | 9 |  *    the Free Software Foundation; either version 2, or (at your option) | 
 | 10 |  *    any later version. | 
 | 11 |  * | 
 | 12 |  *    This program is distributed in the hope that it will be useful, | 
 | 13 |  *    but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 14 |  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 15 |  *    GNU General Public License for more details. | 
 | 16 |  * | 
 | 17 |  *    You should have received a copy of the GNU General Public License | 
 | 18 |  *    along with this program; if not, write to the Free Software | 
 | 19 |  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 | 20 |  */ | 
 | 21 | #ifdef __NO_PA_HDRS | 
 | 22 |     PA header file -- do not include this header file for non-PA builds. | 
 | 23 | #endif | 
 | 24 |  | 
| Simon Arlott | 7022672 | 2007-05-11 20:42:34 +0100 | [diff] [blame] | 25 | /* 32-bit word grabbing functions */ | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 26 | #define Dbl_firstword(value) Dallp1(value) | 
 | 27 | #define Dbl_secondword(value) Dallp2(value) | 
 | 28 | #define Dbl_thirdword(value) dummy_location | 
 | 29 | #define Dbl_fourthword(value) dummy_location | 
 | 30 |  | 
 | 31 | #define Dbl_sign(object) Dsign(object) | 
 | 32 | #define Dbl_exponent(object) Dexponent(object) | 
 | 33 | #define Dbl_signexponent(object) Dsignexponent(object) | 
 | 34 | #define Dbl_mantissap1(object) Dmantissap1(object) | 
 | 35 | #define Dbl_mantissap2(object) Dmantissap2(object) | 
 | 36 | #define Dbl_exponentmantissap1(object) Dexponentmantissap1(object) | 
 | 37 | #define Dbl_allp1(object) Dallp1(object) | 
 | 38 | #define Dbl_allp2(object) Dallp2(object) | 
 | 39 |  | 
| Simon Arlott | 7022672 | 2007-05-11 20:42:34 +0100 | [diff] [blame] | 40 | /* dbl_and_signs ANDs the sign bits of each argument and puts the result | 
| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 41 |  * into the first argument. dbl_or_signs ors those same sign bits */ | 
 | 42 | #define Dbl_and_signs( src1dst, src2)		\ | 
 | 43 |     Dallp1(src1dst) = (Dallp1(src2)|~((unsigned int)1<<31)) & Dallp1(src1dst) | 
 | 44 | #define Dbl_or_signs( src1dst, src2)		\ | 
 | 45 |     Dallp1(src1dst) = (Dallp1(src2)&((unsigned int)1<<31)) | Dallp1(src1dst) | 
 | 46 |  | 
 | 47 | /* The hidden bit is always the low bit of the exponent */ | 
 | 48 | #define Dbl_clear_exponent_set_hidden(srcdst) Deposit_dexponent(srcdst,1) | 
 | 49 | #define Dbl_clear_signexponent_set_hidden(srcdst) \ | 
 | 50 |     Deposit_dsignexponent(srcdst,1) | 
 | 51 | #define Dbl_clear_sign(srcdst) Dallp1(srcdst) &= ~((unsigned int)1<<31) | 
 | 52 | #define Dbl_clear_signexponent(srcdst) \ | 
 | 53 |     Dallp1(srcdst) &= Dmantissap1((unsigned int)-1) | 
 | 54 |  | 
 | 55 | /* Exponent field for doubles has already been cleared and may be | 
 | 56 |  * included in the shift.  Here we need to generate two double width | 
 | 57 |  * variable shifts.  The insignificant bits can be ignored. | 
 | 58 |  *      MTSAR f(varamount) | 
 | 59 |  *      VSHD	srcdst.high,srcdst.low => srcdst.low | 
 | 60 |  *	VSHD	0,srcdst.high => srcdst.high  | 
 | 61 |  * This is very difficult to model with C expressions since the shift amount | 
 | 62 |  * could exceed 32.  */ | 
 | 63 | /* varamount must be less than 64 */ | 
 | 64 | #define Dbl_rightshift(srcdstA, srcdstB, varamount)			\ | 
 | 65 |     {if((varamount) >= 32) {						\ | 
 | 66 |         Dallp2(srcdstB) = Dallp1(srcdstA) >> (varamount-32);		\ | 
 | 67 |         Dallp1(srcdstA)=0;						\ | 
 | 68 |     }									\ | 
 | 69 |     else if(varamount > 0) {						\ | 
 | 70 | 	Variable_shift_double(Dallp1(srcdstA), Dallp2(srcdstB), 	\ | 
 | 71 | 	  (varamount), Dallp2(srcdstB));				\ | 
 | 72 | 	Dallp1(srcdstA) >>= varamount;					\ | 
 | 73 |     } } | 
 | 74 | /* varamount must be less than 64 */ | 
 | 75 | #define Dbl_rightshift_exponentmantissa(srcdstA, srcdstB, varamount)	\ | 
 | 76 |     {if((varamount) >= 32) {						\ | 
 | 77 |         Dallp2(srcdstB) = Dexponentmantissap1(srcdstA) >> (varamount-32); \ | 
 | 78 | 	Dallp1(srcdstA) &= ((unsigned int)1<<31);  /* clear expmant field */ \ | 
 | 79 |     }									\ | 
 | 80 |     else if(varamount > 0) {						\ | 
 | 81 | 	Variable_shift_double(Dexponentmantissap1(srcdstA), Dallp2(srcdstB), \ | 
 | 82 | 	(varamount), Dallp2(srcdstB));					\ | 
 | 83 | 	Deposit_dexponentmantissap1(srcdstA,				\ | 
 | 84 | 	    (Dexponentmantissap1(srcdstA)>>varamount));			\ | 
 | 85 |     } } | 
 | 86 | /* varamount must be less than 64 */ | 
 | 87 | #define Dbl_leftshift(srcdstA, srcdstB, varamount)			\ | 
 | 88 |     {if((varamount) >= 32) {						\ | 
 | 89 | 	Dallp1(srcdstA) = Dallp2(srcdstB) << (varamount-32);		\ | 
 | 90 | 	Dallp2(srcdstB)=0;						\ | 
 | 91 |     }									\ | 
 | 92 |     else {								\ | 
 | 93 | 	if ((varamount) > 0) {						\ | 
 | 94 | 	    Dallp1(srcdstA) = (Dallp1(srcdstA) << (varamount)) |	\ | 
 | 95 | 		(Dallp2(srcdstB) >> (32-(varamount)));			\ | 
 | 96 | 	    Dallp2(srcdstB) <<= varamount;				\ | 
 | 97 | 	}								\ | 
 | 98 |     } } | 
 | 99 | #define Dbl_leftshiftby1_withextent(lefta,leftb,right,resulta,resultb)	\ | 
 | 100 |     Shiftdouble(Dallp1(lefta), Dallp2(leftb), 31, Dallp1(resulta));	\ | 
 | 101 |     Shiftdouble(Dallp2(leftb), Extall(right), 31, Dallp2(resultb))  | 
 | 102 |      | 
 | 103 | #define Dbl_rightshiftby1_withextent(leftb,right,dst)		\ | 
 | 104 |     Extall(dst) = (Dallp2(leftb) << 31) | ((unsigned int)Extall(right) >> 1) | \ | 
 | 105 | 		  Extlow(right) | 
 | 106 |  | 
 | 107 | #define Dbl_arithrightshiftby1(srcdstA,srcdstB)			\ | 
 | 108 |     Shiftdouble(Dallp1(srcdstA),Dallp2(srcdstB),1,Dallp2(srcdstB));\ | 
 | 109 |     Dallp1(srcdstA) = (int)Dallp1(srcdstA) >> 1 | 
 | 110 |     | 
 | 111 | /* Sign extend the sign bit with an integer destination */ | 
 | 112 | #define Dbl_signextendedsign(value)  Dsignedsign(value) | 
 | 113 |  | 
 | 114 | #define Dbl_isone_hidden(dbl_value) (Is_dhidden(dbl_value)!=0) | 
 | 115 | /* Singles and doubles may include the sign and exponent fields.  The | 
 | 116 |  * hidden bit and the hidden overflow must be included. */ | 
 | 117 | #define Dbl_increment(dbl_valueA,dbl_valueB) \ | 
 | 118 |     if( (Dallp2(dbl_valueB) += 1) == 0 )  Dallp1(dbl_valueA) += 1 | 
 | 119 | #define Dbl_increment_mantissa(dbl_valueA,dbl_valueB) \ | 
 | 120 |     if( (Dmantissap2(dbl_valueB) += 1) == 0 )  \ | 
 | 121 |     Deposit_dmantissap1(dbl_valueA,dbl_valueA+1) | 
 | 122 | #define Dbl_decrement(dbl_valueA,dbl_valueB) \ | 
 | 123 |     if( Dallp2(dbl_valueB) == 0 )  Dallp1(dbl_valueA) -= 1; \ | 
 | 124 |     Dallp2(dbl_valueB) -= 1 | 
 | 125 |  | 
 | 126 | #define Dbl_isone_sign(dbl_value) (Is_dsign(dbl_value)!=0) | 
 | 127 | #define Dbl_isone_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)!=0) | 
 | 128 | #define Dbl_isone_lowmantissap1(dbl_valueA) (Is_dlowp1(dbl_valueA)!=0) | 
 | 129 | #define Dbl_isone_lowmantissap2(dbl_valueB) (Is_dlowp2(dbl_valueB)!=0) | 
 | 130 | #define Dbl_isone_signaling(dbl_value) (Is_dsignaling(dbl_value)!=0) | 
 | 131 | #define Dbl_is_signalingnan(dbl_value) (Dsignalingnan(dbl_value)==0xfff) | 
 | 132 | #define Dbl_isnotzero(dbl_valueA,dbl_valueB) \ | 
 | 133 |     (Dallp1(dbl_valueA) || Dallp2(dbl_valueB)) | 
 | 134 | #define Dbl_isnotzero_hiddenhigh7mantissa(dbl_value) \ | 
 | 135 |     (Dhiddenhigh7mantissa(dbl_value)!=0) | 
 | 136 | #define Dbl_isnotzero_exponent(dbl_value) (Dexponent(dbl_value)!=0) | 
 | 137 | #define Dbl_isnotzero_mantissa(dbl_valueA,dbl_valueB) \ | 
 | 138 |     (Dmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) | 
 | 139 | #define Dbl_isnotzero_mantissap1(dbl_valueA) (Dmantissap1(dbl_valueA)!=0) | 
 | 140 | #define Dbl_isnotzero_mantissap2(dbl_valueB) (Dmantissap2(dbl_valueB)!=0) | 
 | 141 | #define Dbl_isnotzero_exponentmantissa(dbl_valueA,dbl_valueB) \ | 
 | 142 |     (Dexponentmantissap1(dbl_valueA) || Dmantissap2(dbl_valueB)) | 
 | 143 | #define Dbl_isnotzero_low4p2(dbl_value) (Dlow4p2(dbl_value)!=0) | 
 | 144 | #define Dbl_iszero(dbl_valueA,dbl_valueB) (Dallp1(dbl_valueA)==0 && \ | 
 | 145 |     Dallp2(dbl_valueB)==0) | 
 | 146 | #define Dbl_iszero_allp1(dbl_value) (Dallp1(dbl_value)==0) | 
 | 147 | #define Dbl_iszero_allp2(dbl_value) (Dallp2(dbl_value)==0) | 
 | 148 | #define Dbl_iszero_hidden(dbl_value) (Is_dhidden(dbl_value)==0) | 
 | 149 | #define Dbl_iszero_hiddenoverflow(dbl_value) (Is_dhiddenoverflow(dbl_value)==0) | 
 | 150 | #define Dbl_iszero_hiddenhigh3mantissa(dbl_value) \ | 
 | 151 |     (Dhiddenhigh3mantissa(dbl_value)==0) | 
 | 152 | #define Dbl_iszero_hiddenhigh7mantissa(dbl_value) \ | 
 | 153 |     (Dhiddenhigh7mantissa(dbl_value)==0) | 
 | 154 | #define Dbl_iszero_sign(dbl_value) (Is_dsign(dbl_value)==0) | 
 | 155 | #define Dbl_iszero_exponent(dbl_value) (Dexponent(dbl_value)==0) | 
 | 156 | #define Dbl_iszero_mantissa(dbl_valueA,dbl_valueB) \ | 
 | 157 |     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
 | 158 | #define Dbl_iszero_exponentmantissa(dbl_valueA,dbl_valueB) \ | 
 | 159 |     (Dexponentmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
 | 160 | #define Dbl_isinfinity_exponent(dbl_value)		\ | 
 | 161 |     (Dexponent(dbl_value)==DBL_INFINITY_EXPONENT) | 
 | 162 | #define Dbl_isnotinfinity_exponent(dbl_value)		\ | 
 | 163 |     (Dexponent(dbl_value)!=DBL_INFINITY_EXPONENT) | 
 | 164 | #define Dbl_isinfinity(dbl_valueA,dbl_valueB)			\ | 
 | 165 |     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\ | 
 | 166 |     Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0) | 
 | 167 | #define Dbl_isnan(dbl_valueA,dbl_valueB)		\ | 
 | 168 |     (Dexponent(dbl_valueA)==DBL_INFINITY_EXPONENT &&	\ | 
 | 169 |     (Dmantissap1(dbl_valueA)!=0 || Dmantissap2(dbl_valueB)!=0)) | 
 | 170 | #define Dbl_isnotnan(dbl_valueA,dbl_valueB)		\ | 
 | 171 |     (Dexponent(dbl_valueA)!=DBL_INFINITY_EXPONENT ||	\ | 
 | 172 |     (Dmantissap1(dbl_valueA)==0 && Dmantissap2(dbl_valueB)==0)) | 
 | 173 |  | 
 | 174 | #define Dbl_islessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
 | 175 |     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\ | 
 | 176 |      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
 | 177 |       Dallp2(dbl_op1b) < Dallp2(dbl_op2b))) | 
 | 178 | #define Dbl_isgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
 | 179 |     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\ | 
 | 180 |      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
 | 181 |       Dallp2(dbl_op1b) > Dallp2(dbl_op2b))) | 
 | 182 | #define Dbl_isnotlessthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
 | 183 |     (Dallp1(dbl_op1a) > Dallp1(dbl_op2a) ||			\ | 
 | 184 |      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
 | 185 |       Dallp2(dbl_op1b) >= Dallp2(dbl_op2b))) | 
 | 186 | #define Dbl_isnotgreaterthan(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b) \ | 
 | 187 |     (Dallp1(dbl_op1a) < Dallp1(dbl_op2a) ||			\ | 
 | 188 |      (Dallp1(dbl_op1a) == Dallp1(dbl_op2a) &&			\ | 
 | 189 |       Dallp2(dbl_op1b) <= Dallp2(dbl_op2b))) | 
 | 190 | #define Dbl_isequal(dbl_op1a,dbl_op1b,dbl_op2a,dbl_op2b)	\ | 
 | 191 |      ((Dallp1(dbl_op1a) == Dallp1(dbl_op2a)) &&			\ | 
 | 192 |       (Dallp2(dbl_op1b) == Dallp2(dbl_op2b))) | 
 | 193 |  | 
 | 194 | #define Dbl_leftshiftby8(dbl_valueA,dbl_valueB) \ | 
 | 195 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),24,Dallp1(dbl_valueA)); \ | 
 | 196 |     Dallp2(dbl_valueB) <<= 8 | 
 | 197 | #define Dbl_leftshiftby7(dbl_valueA,dbl_valueB) \ | 
 | 198 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),25,Dallp1(dbl_valueA)); \ | 
 | 199 |     Dallp2(dbl_valueB) <<= 7 | 
 | 200 | #define Dbl_leftshiftby4(dbl_valueA,dbl_valueB) \ | 
 | 201 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),28,Dallp1(dbl_valueA)); \ | 
 | 202 |     Dallp2(dbl_valueB) <<= 4 | 
 | 203 | #define Dbl_leftshiftby3(dbl_valueA,dbl_valueB) \ | 
 | 204 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),29,Dallp1(dbl_valueA)); \ | 
 | 205 |     Dallp2(dbl_valueB) <<= 3 | 
 | 206 | #define Dbl_leftshiftby2(dbl_valueA,dbl_valueB) \ | 
 | 207 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),30,Dallp1(dbl_valueA)); \ | 
 | 208 |     Dallp2(dbl_valueB) <<= 2 | 
 | 209 | #define Dbl_leftshiftby1(dbl_valueA,dbl_valueB) \ | 
 | 210 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),31,Dallp1(dbl_valueA)); \ | 
 | 211 |     Dallp2(dbl_valueB) <<= 1 | 
 | 212 |  | 
 | 213 | #define Dbl_rightshiftby8(dbl_valueA,dbl_valueB) \ | 
 | 214 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),8,Dallp2(dbl_valueB)); \ | 
 | 215 |     Dallp1(dbl_valueA) >>= 8 | 
 | 216 | #define Dbl_rightshiftby4(dbl_valueA,dbl_valueB) \ | 
 | 217 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),4,Dallp2(dbl_valueB)); \ | 
 | 218 |     Dallp1(dbl_valueA) >>= 4 | 
 | 219 | #define Dbl_rightshiftby2(dbl_valueA,dbl_valueB) \ | 
 | 220 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),2,Dallp2(dbl_valueB)); \ | 
 | 221 |     Dallp1(dbl_valueA) >>= 2 | 
 | 222 | #define Dbl_rightshiftby1(dbl_valueA,dbl_valueB) \ | 
 | 223 |     Shiftdouble(Dallp1(dbl_valueA),Dallp2(dbl_valueB),1,Dallp2(dbl_valueB)); \ | 
 | 224 |     Dallp1(dbl_valueA) >>= 1 | 
 | 225 |      | 
 | 226 | /* This magnitude comparison uses the signless first words and | 
 | 227 |  * the regular part2 words.  The comparison is graphically: | 
 | 228 |  * | 
 | 229 |  *       1st greater?  ------------- | 
 | 230 |  *                                 | | 
 | 231 |  *       1st less?-----------------+--------- | 
 | 232 |  *                                 |        | | 
 | 233 |  *       2nd greater or equal----->|        | | 
 | 234 |  *                               False     True | 
 | 235 |  */ | 
 | 236 | #define Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright)	\ | 
 | 237 |       ((signlessleft <= signlessright) &&				\ | 
 | 238 |        ( (signlessleft < signlessright) || (Dallp2(leftB)<Dallp2(rightB)) )) | 
 | 239 |      | 
 | 240 | #define Dbl_copytoint_exponentmantissap1(src,dest) \ | 
 | 241 |     dest = Dexponentmantissap1(src) | 
 | 242 |  | 
 | 243 | /* A quiet NaN has the high mantissa bit clear and at least on other (in this | 
 | 244 |  * case the adjacent bit) bit set. */ | 
 | 245 | #define Dbl_set_quiet(dbl_value) Deposit_dhigh2mantissa(dbl_value,1) | 
 | 246 | #define Dbl_set_exponent(dbl_value, exp) Deposit_dexponent(dbl_value,exp) | 
 | 247 |  | 
 | 248 | #define Dbl_set_mantissa(desta,destb,valuea,valueb)	\ | 
 | 249 |     Deposit_dmantissap1(desta,valuea);			\ | 
 | 250 |     Dmantissap2(destb) = Dmantissap2(valueb) | 
 | 251 | #define Dbl_set_mantissap1(desta,valuea)		\ | 
 | 252 |     Deposit_dmantissap1(desta,valuea) | 
 | 253 | #define Dbl_set_mantissap2(destb,valueb)		\ | 
 | 254 |     Dmantissap2(destb) = Dmantissap2(valueb) | 
 | 255 |  | 
 | 256 | #define Dbl_set_exponentmantissa(desta,destb,valuea,valueb)	\ | 
 | 257 |     Deposit_dexponentmantissap1(desta,valuea);			\ | 
 | 258 |     Dmantissap2(destb) = Dmantissap2(valueb) | 
 | 259 | #define Dbl_set_exponentmantissap1(dest,value)			\ | 
 | 260 |     Deposit_dexponentmantissap1(dest,value) | 
 | 261 |  | 
 | 262 | #define Dbl_copyfromptr(src,desta,destb) \ | 
 | 263 |     Dallp1(desta) = src->wd0;		\ | 
 | 264 |     Dallp2(destb) = src->wd1  | 
 | 265 | #define Dbl_copytoptr(srca,srcb,dest)	\ | 
 | 266 |     dest->wd0 = Dallp1(srca);		\ | 
 | 267 |     dest->wd1 = Dallp2(srcb) | 
 | 268 |  | 
 | 269 | /*  An infinity is represented with the max exponent and a zero mantissa */ | 
 | 270 | #define Dbl_setinfinity_exponent(dbl_value) \ | 
 | 271 |     Deposit_dexponent(dbl_value,DBL_INFINITY_EXPONENT) | 
 | 272 | #define Dbl_setinfinity_exponentmantissa(dbl_valueA,dbl_valueB)	\ | 
 | 273 |     Deposit_dexponentmantissap1(dbl_valueA, 			\ | 
 | 274 |     (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH))));	\ | 
 | 275 |     Dmantissap2(dbl_valueB) = 0 | 
 | 276 | #define Dbl_setinfinitypositive(dbl_valueA,dbl_valueB)		\ | 
 | 277 |     Dallp1(dbl_valueA) 						\ | 
 | 278 |         = (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
 | 279 |     Dmantissap2(dbl_valueB) = 0 | 
 | 280 | #define Dbl_setinfinitynegative(dbl_valueA,dbl_valueB)		\ | 
 | 281 |     Dallp1(dbl_valueA) = ((unsigned int)1<<31) |		\ | 
 | 282 |          (DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
 | 283 |     Dmantissap2(dbl_valueB) = 0 | 
 | 284 | #define Dbl_setinfinity(dbl_valueA,dbl_valueB,sign)		\ | 
 | 285 |     Dallp1(dbl_valueA) = ((unsigned int)sign << 31) | 		\ | 
 | 286 | 	(DBL_INFINITY_EXPONENT << (32-(1+DBL_EXP_LENGTH)));	\ | 
 | 287 |     Dmantissap2(dbl_valueB) = 0 | 
 | 288 |  | 
 | 289 | #define Dbl_sethigh4bits(dbl_value, extsign) Deposit_dhigh4p1(dbl_value,extsign) | 
 | 290 | #define Dbl_set_sign(dbl_value,sign) Deposit_dsign(dbl_value,sign) | 
 | 291 | #define Dbl_invert_sign(dbl_value) Deposit_dsign(dbl_value,~Dsign(dbl_value)) | 
 | 292 | #define Dbl_setone_sign(dbl_value) Deposit_dsign(dbl_value,1) | 
 | 293 | #define Dbl_setone_lowmantissap2(dbl_value) Deposit_dlowp2(dbl_value,1) | 
 | 294 | #define Dbl_setzero_sign(dbl_value) Dallp1(dbl_value) &= 0x7fffffff | 
 | 295 | #define Dbl_setzero_exponent(dbl_value) 		\ | 
 | 296 |     Dallp1(dbl_value) &= 0x800fffff | 
 | 297 | #define Dbl_setzero_mantissa(dbl_valueA,dbl_valueB)	\ | 
 | 298 |     Dallp1(dbl_valueA) &= 0xfff00000; 			\ | 
 | 299 |     Dallp2(dbl_valueB) = 0 | 
 | 300 | #define Dbl_setzero_mantissap1(dbl_value) Dallp1(dbl_value) &= 0xfff00000 | 
 | 301 | #define Dbl_setzero_mantissap2(dbl_value) Dallp2(dbl_value) = 0 | 
 | 302 | #define Dbl_setzero_exponentmantissa(dbl_valueA,dbl_valueB)	\ | 
 | 303 |     Dallp1(dbl_valueA) &= 0x80000000;		\ | 
 | 304 |     Dallp2(dbl_valueB) = 0 | 
 | 305 | #define Dbl_setzero_exponentmantissap1(dbl_valueA)	\ | 
 | 306 |     Dallp1(dbl_valueA) &= 0x80000000 | 
 | 307 | #define Dbl_setzero(dbl_valueA,dbl_valueB) \ | 
 | 308 |     Dallp1(dbl_valueA) = 0; Dallp2(dbl_valueB) = 0 | 
 | 309 | #define Dbl_setzerop1(dbl_value) Dallp1(dbl_value) = 0 | 
 | 310 | #define Dbl_setzerop2(dbl_value) Dallp2(dbl_value) = 0 | 
 | 311 | #define Dbl_setnegativezero(dbl_value) \ | 
 | 312 |     Dallp1(dbl_value) = (unsigned int)1 << 31; Dallp2(dbl_value) = 0 | 
 | 313 | #define Dbl_setnegativezerop1(dbl_value) Dallp1(dbl_value) = (unsigned int)1<<31 | 
 | 314 |  | 
 | 315 | /* Use the following macro for both overflow & underflow conditions */ | 
 | 316 | #define ovfl - | 
 | 317 | #define unfl + | 
 | 318 | #define Dbl_setwrapped_exponent(dbl_value,exponent,op) \ | 
 | 319 |     Deposit_dexponent(dbl_value,(exponent op DBL_WRAP)) | 
 | 320 |  | 
 | 321 | #define Dbl_setlargestpositive(dbl_valueA,dbl_valueB) 			\ | 
 | 322 |     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | 
 | 323 | 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 );		\ | 
 | 324 |     Dallp2(dbl_valueB) = 0xFFFFFFFF | 
 | 325 | #define Dbl_setlargestnegative(dbl_valueA,dbl_valueB) 			\ | 
 | 326 |     Dallp1(dbl_valueA) = ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) \ | 
 | 327 | 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )		\ | 
 | 328 | 			| ((unsigned int)1<<31);			\ | 
 | 329 |     Dallp2(dbl_valueB) = 0xFFFFFFFF | 
 | 330 | #define Dbl_setlargest_exponentmantissa(dbl_valueA,dbl_valueB)		\ | 
 | 331 |     Deposit_dexponentmantissap1(dbl_valueA,				\ | 
 | 332 | 	(((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH)))		\ | 
 | 333 | 			| ((1<<(32-(1+DBL_EXP_LENGTH))) - 1 )));	\ | 
 | 334 |     Dallp2(dbl_valueB) = 0xFFFFFFFF | 
 | 335 |  | 
 | 336 | #define Dbl_setnegativeinfinity(dbl_valueA,dbl_valueB) 			\ | 
 | 337 |     Dallp1(dbl_valueA) = ((1<<DBL_EXP_LENGTH) | DBL_INFINITY_EXPONENT) 	\ | 
 | 338 | 			 << (32-(1+DBL_EXP_LENGTH)) ; 			\ | 
 | 339 |     Dallp2(dbl_valueB) = 0 | 
 | 340 | #define Dbl_setlargest(dbl_valueA,dbl_valueB,sign)			\ | 
 | 341 |     Dallp1(dbl_valueA) = ((unsigned int)sign << 31) |			\ | 
 | 342 |          ((DBL_EMAX+DBL_BIAS) << (32-(1+DBL_EXP_LENGTH))) |	 	\ | 
 | 343 | 	 ((1 << (32-(1+DBL_EXP_LENGTH))) - 1 );				\ | 
 | 344 |     Dallp2(dbl_valueB) = 0xFFFFFFFF | 
 | 345 |      | 
 | 346 |  | 
 | 347 | /* The high bit is always zero so arithmetic or logical shifts will work. */ | 
 | 348 | #define Dbl_right_align(srcdstA,srcdstB,shift,extent)			\ | 
 | 349 |     if( shift >= 32 ) 							\ | 
 | 350 | 	{								\ | 
 | 351 | 	/* Big shift requires examining the portion shift off 		\ | 
 | 352 | 	the end to properly set inexact.  */				\ | 
 | 353 | 	if(shift < 64)							\ | 
 | 354 | 	    {								\ | 
 | 355 | 	    if(shift > 32)						\ | 
 | 356 | 		{							\ | 
 | 357 | 	        Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),	\ | 
 | 358 | 		 shift-32, Extall(extent));				\ | 
 | 359 | 	        if(Dallp2(srcdstB) << 64 - (shift)) Ext_setone_low(extent); \ | 
 | 360 | 	        }							\ | 
 | 361 | 	    else Extall(extent) = Dallp2(srcdstB);			\ | 
 | 362 | 	    Dallp2(srcdstB) = Dallp1(srcdstA) >> (shift - 32);		\ | 
 | 363 | 	    }								\ | 
 | 364 | 	else								\ | 
 | 365 | 	    {								\ | 
 | 366 | 	    Extall(extent) = Dallp1(srcdstA);				\ | 
 | 367 | 	    if(Dallp2(srcdstB)) Ext_setone_low(extent);			\ | 
 | 368 | 	    Dallp2(srcdstB) = 0;					\ | 
 | 369 | 	    }								\ | 
 | 370 | 	Dallp1(srcdstA) = 0;						\ | 
 | 371 | 	}								\ | 
 | 372 |     else								\ | 
 | 373 | 	{								\ | 
 | 374 | 	/* Small alignment is simpler.  Extension is easily set. */	\ | 
 | 375 | 	if (shift > 0)							\ | 
 | 376 | 	    {								\ | 
 | 377 | 	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\ | 
 | 378 | 	    Variable_shift_double(Dallp1(srcdstA),Dallp2(srcdstB),shift, \ | 
 | 379 | 	     Dallp2(srcdstB));						\ | 
 | 380 | 	    Dallp1(srcdstA) >>= shift;					\ | 
 | 381 | 	    }								\ | 
 | 382 | 	else Extall(extent) = 0;					\ | 
 | 383 | 	} | 
 | 384 |  | 
 | 385 | /*  | 
 | 386 |  * Here we need to shift the result right to correct for an overshift | 
 | 387 |  * (due to the exponent becoming negative) during normalization. | 
 | 388 |  */ | 
 | 389 | #define Dbl_fix_overshift(srcdstA,srcdstB,shift,extent)			\ | 
 | 390 | 	    Extall(extent) = Dallp2(srcdstB) << 32 - (shift);		\ | 
 | 391 | 	    Dallp2(srcdstB) = (Dallp1(srcdstA) << 32 - (shift)) |	\ | 
 | 392 | 		(Dallp2(srcdstB) >> (shift));				\ | 
 | 393 | 	    Dallp1(srcdstA) = Dallp1(srcdstA) >> shift | 
 | 394 |  | 
 | 395 | #define Dbl_hiddenhigh3mantissa(dbl_value) Dhiddenhigh3mantissa(dbl_value) | 
 | 396 | #define Dbl_hidden(dbl_value) Dhidden(dbl_value) | 
 | 397 | #define Dbl_lowmantissap2(dbl_value) Dlowp2(dbl_value) | 
 | 398 |  | 
 | 399 | /* The left argument is never smaller than the right argument */ | 
 | 400 | #define Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb)			\ | 
 | 401 |     if( Dallp2(rightb) > Dallp2(leftb) ) Dallp1(lefta)--;	\ | 
 | 402 |     Dallp2(resultb) = Dallp2(leftb) - Dallp2(rightb);		\ | 
 | 403 |     Dallp1(resulta) = Dallp1(lefta) - Dallp1(righta) | 
 | 404 |  | 
 | 405 | /* Subtract right augmented with extension from left augmented with zeros and | 
 | 406 |  * store into result and extension. */ | 
 | 407 | #define Dbl_subtract_withextension(lefta,leftb,righta,rightb,extent,resulta,resultb)	\ | 
 | 408 |     Dbl_subtract(lefta,leftb,righta,rightb,resulta,resultb);		\ | 
 | 409 |     if( (Extall(extent) = 0-Extall(extent)) )				\ | 
 | 410 |         {								\ | 
 | 411 |         if((Dallp2(resultb)--) == 0) Dallp1(resulta)--;			\ | 
 | 412 |         } | 
 | 413 |  | 
 | 414 | #define Dbl_addition(lefta,leftb,righta,rightb,resulta,resultb)		\ | 
 | 415 |     /* If the sum of the low words is less than either source, then	\ | 
 | 416 |      * an overflow into the next word occurred. */			\ | 
 | 417 |     Dallp1(resulta) = Dallp1(lefta) + Dallp1(righta);			\ | 
 | 418 |     if((Dallp2(resultb) = Dallp2(leftb) + Dallp2(rightb)) < Dallp2(rightb)) \ | 
 | 419 | 	Dallp1(resulta)++ | 
 | 420 |  | 
 | 421 | #define Dbl_xortointp1(left,right,result)			\ | 
 | 422 |     result = Dallp1(left) XOR Dallp1(right) | 
 | 423 |  | 
 | 424 | #define Dbl_xorfromintp1(left,right,result)			\ | 
 | 425 |     Dallp1(result) = left XOR Dallp1(right) | 
 | 426 |  | 
 | 427 | #define Dbl_swap_lower(left,right)				\ | 
 | 428 |     Dallp2(left)  = Dallp2(left) XOR Dallp2(right);		\ | 
 | 429 |     Dallp2(right) = Dallp2(left) XOR Dallp2(right);		\ | 
 | 430 |     Dallp2(left)  = Dallp2(left) XOR Dallp2(right) | 
 | 431 |  | 
 | 432 | /* Need to Initialize */ | 
 | 433 | #define Dbl_makequietnan(desta,destb)					\ | 
 | 434 |     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\ | 
 | 435 |                  | (1<<(32-(1+DBL_EXP_LENGTH+2)));			\ | 
 | 436 |     Dallp2(destb) = 0 | 
 | 437 | #define Dbl_makesignalingnan(desta,destb)				\ | 
 | 438 |     Dallp1(desta) = ((DBL_EMAX+DBL_BIAS)+1)<< (32-(1+DBL_EXP_LENGTH))	\ | 
 | 439 |                  | (1<<(32-(1+DBL_EXP_LENGTH+1)));			\ | 
 | 440 |     Dallp2(destb) = 0 | 
 | 441 |  | 
 | 442 | #define Dbl_normalize(dbl_opndA,dbl_opndB,exponent)			\ | 
 | 443 | 	while(Dbl_iszero_hiddenhigh7mantissa(dbl_opndA)) {		\ | 
 | 444 | 		Dbl_leftshiftby8(dbl_opndA,dbl_opndB);			\ | 
 | 445 | 		exponent -= 8;						\ | 
 | 446 | 	}								\ | 
 | 447 | 	if(Dbl_iszero_hiddenhigh3mantissa(dbl_opndA)) {			\ | 
 | 448 | 		Dbl_leftshiftby4(dbl_opndA,dbl_opndB);			\ | 
 | 449 | 		exponent -= 4;						\ | 
 | 450 | 	}								\ | 
 | 451 | 	while(Dbl_iszero_hidden(dbl_opndA)) {				\ | 
 | 452 | 		Dbl_leftshiftby1(dbl_opndA,dbl_opndB);			\ | 
 | 453 | 		exponent -= 1;						\ | 
 | 454 | 	} | 
 | 455 |  | 
 | 456 | #define Twoword_add(src1dstA,src1dstB,src2A,src2B)		\ | 
 | 457 | 	/* 							\ | 
 | 458 | 	 * want this macro to generate:				\ | 
 | 459 | 	 *	ADD	src1dstB,src2B,src1dstB;		\ | 
 | 460 | 	 *	ADDC	src1dstA,src2A,src1dstA;		\ | 
 | 461 | 	 */							\ | 
 | 462 | 	if ((src1dstB) + (src2B) < (src1dstB)) Dallp1(src1dstA)++; \ | 
 | 463 | 	Dallp1(src1dstA) += (src2A);				\ | 
 | 464 | 	Dallp2(src1dstB) += (src2B) | 
 | 465 |  | 
 | 466 | #define Twoword_subtract(src1dstA,src1dstB,src2A,src2B)		\ | 
 | 467 | 	/* 							\ | 
 | 468 | 	 * want this macro to generate:				\ | 
 | 469 | 	 *	SUB	src1dstB,src2B,src1dstB;		\ | 
 | 470 | 	 *	SUBB	src1dstA,src2A,src1dstA;		\ | 
 | 471 | 	 */							\ | 
 | 472 | 	if ((src1dstB) < (src2B)) Dallp1(src1dstA)--;		\ | 
 | 473 | 	Dallp1(src1dstA) -= (src2A);				\ | 
 | 474 | 	Dallp2(src1dstB) -= (src2B) | 
 | 475 |  | 
 | 476 | #define Dbl_setoverflow(resultA,resultB)				\ | 
 | 477 | 	/* set result to infinity or largest number */			\ | 
 | 478 | 	switch (Rounding_mode()) {					\ | 
 | 479 | 		case ROUNDPLUS:						\ | 
 | 480 | 			if (Dbl_isone_sign(resultA)) {			\ | 
 | 481 | 				Dbl_setlargestnegative(resultA,resultB); \ | 
 | 482 | 			}						\ | 
 | 483 | 			else {						\ | 
 | 484 | 				Dbl_setinfinitypositive(resultA,resultB); \ | 
 | 485 | 			}						\ | 
 | 486 | 			break;						\ | 
 | 487 | 		case ROUNDMINUS:					\ | 
 | 488 | 			if (Dbl_iszero_sign(resultA)) {			\ | 
 | 489 | 				Dbl_setlargestpositive(resultA,resultB); \ | 
 | 490 | 			}						\ | 
 | 491 | 			else {						\ | 
 | 492 | 				Dbl_setinfinitynegative(resultA,resultB); \ | 
 | 493 | 			}						\ | 
 | 494 | 			break;						\ | 
 | 495 | 		case ROUNDNEAREST:					\ | 
 | 496 | 			Dbl_setinfinity_exponentmantissa(resultA,resultB); \ | 
 | 497 | 			break;						\ | 
 | 498 | 		case ROUNDZERO:						\ | 
 | 499 | 			Dbl_setlargest_exponentmantissa(resultA,resultB); \ | 
 | 500 | 	} | 
 | 501 |  | 
 | 502 | #define Dbl_denormalize(opndp1,opndp2,exponent,guard,sticky,inexact)	\ | 
 | 503 |     Dbl_clear_signexponent_set_hidden(opndp1);				\ | 
 | 504 |     if (exponent >= (1-DBL_P)) {					\ | 
 | 505 | 	if (exponent >= -31) {						\ | 
 | 506 | 	    guard = (Dallp2(opndp2) >> -exponent) & 1;			\ | 
 | 507 | 	    if (exponent < 0) sticky |= Dallp2(opndp2) << (32+exponent); \ | 
 | 508 | 	    if (exponent > -31) {					\ | 
 | 509 | 		Variable_shift_double(opndp1,opndp2,1-exponent,opndp2);	\ | 
 | 510 | 		Dallp1(opndp1) >>= 1-exponent;				\ | 
 | 511 | 	    }								\ | 
 | 512 | 	    else {							\ | 
 | 513 | 		Dallp2(opndp2) = Dallp1(opndp1);			\ | 
 | 514 | 		Dbl_setzerop1(opndp1);					\ | 
 | 515 | 	    }								\ | 
 | 516 | 	}								\ | 
 | 517 | 	else {								\ | 
 | 518 | 	    guard = (Dallp1(opndp1) >> -32-exponent) & 1;		\ | 
 | 519 | 	    if (exponent == -32) sticky |= Dallp2(opndp2);		\ | 
 | 520 | 	    else sticky |= (Dallp2(opndp2) | Dallp1(opndp1) << 64+exponent); \ | 
 | 521 | 	    Dallp2(opndp2) = Dallp1(opndp1) >> -31-exponent;		\ | 
 | 522 | 	    Dbl_setzerop1(opndp1);					\ | 
 | 523 | 	}								\ | 
 | 524 | 	inexact = guard | sticky;					\ | 
 | 525 |     }									\ | 
 | 526 |     else {								\ | 
 | 527 | 	guard = 0;							\ | 
 | 528 | 	sticky |= (Dallp1(opndp1) | Dallp2(opndp2));			\ | 
 | 529 | 	Dbl_setzero(opndp1,opndp2);					\ | 
 | 530 | 	inexact = sticky;						\ | 
 | 531 |     } | 
 | 532 |  | 
 | 533 | /*  | 
 | 534 |  * The fused multiply add instructions requires a double extended format, | 
 | 535 |  * with 106 bits of mantissa. | 
 | 536 |  */ | 
 | 537 | #define DBLEXT_THRESHOLD 106 | 
 | 538 |  | 
 | 539 | #define Dblext_setzero(valA,valB,valC,valD)	\ | 
 | 540 |     Dextallp1(valA) = 0; Dextallp2(valB) = 0;	\ | 
 | 541 |     Dextallp3(valC) = 0; Dextallp4(valD) = 0 | 
 | 542 |  | 
 | 543 |  | 
 | 544 | #define Dblext_isnotzero_mantissap3(valC) (Dextallp3(valC)!=0) | 
 | 545 | #define Dblext_isnotzero_mantissap4(valD) (Dextallp3(valD)!=0) | 
 | 546 | #define Dblext_isone_lowp2(val) (Dextlowp2(val)!=0) | 
 | 547 | #define Dblext_isone_highp3(val) (Dexthighp3(val)!=0) | 
 | 548 | #define Dblext_isnotzero_low31p3(val) (Dextlow31p3(val)!=0) | 
 | 549 | #define Dblext_iszero(valA,valB,valC,valD) (Dextallp1(valA)==0 && \ | 
 | 550 |     Dextallp2(valB)==0 && Dextallp3(valC)==0 && Dextallp4(valD)==0) | 
 | 551 |  | 
 | 552 | #define Dblext_copy(srca,srcb,srcc,srcd,desta,destb,destc,destd) \ | 
 | 553 |     Dextallp1(desta) = Dextallp4(srca);	\ | 
 | 554 |     Dextallp2(destb) = Dextallp4(srcb);	\ | 
 | 555 |     Dextallp3(destc) = Dextallp4(srcc);	\ | 
 | 556 |     Dextallp4(destd) = Dextallp4(srcd) | 
 | 557 |  | 
 | 558 | #define Dblext_swap_lower(leftp2,leftp3,leftp4,rightp2,rightp3,rightp4)  \ | 
 | 559 |     Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
 | 560 |     Dextallp2(rightp2) = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
 | 561 |     Dextallp2(leftp2)  = Dextallp2(leftp2) XOR Dextallp2(rightp2);  \ | 
 | 562 |     Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
 | 563 |     Dextallp3(rightp3) = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
 | 564 |     Dextallp3(leftp3)  = Dextallp3(leftp3) XOR Dextallp3(rightp3);  \ | 
 | 565 |     Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \ | 
 | 566 |     Dextallp4(rightp4) = Dextallp4(leftp4) XOR Dextallp4(rightp4);  \ | 
 | 567 |     Dextallp4(leftp4)  = Dextallp4(leftp4) XOR Dextallp4(rightp4) | 
 | 568 |  | 
 | 569 | #define Dblext_setone_lowmantissap4(dbl_value) Deposit_dextlowp4(dbl_value,1) | 
 | 570 |  | 
 | 571 | /* The high bit is always zero so arithmetic or logical shifts will work. */ | 
 | 572 | #define Dblext_right_align(srcdstA,srcdstB,srcdstC,srcdstD,shift) \ | 
 | 573 |   {int shiftamt, sticky;						\ | 
 | 574 |     shiftamt = shift % 32;						\ | 
 | 575 |     sticky = 0;								\ | 
 | 576 |     switch (shift/32) {							\ | 
 | 577 |      case 0: if (shiftamt > 0) {					\ | 
 | 578 | 	        sticky = Dextallp4(srcdstD) << 32 - (shiftamt); 	\ | 
 | 579 |                 Variable_shift_double(Dextallp3(srcdstC),		\ | 
 | 580 | 		 Dextallp4(srcdstD),shiftamt,Dextallp4(srcdstD));	\ | 
 | 581 |                 Variable_shift_double(Dextallp2(srcdstB),		\ | 
 | 582 | 		 Dextallp3(srcdstC),shiftamt,Dextallp3(srcdstC));	\ | 
 | 583 |                 Variable_shift_double(Dextallp1(srcdstA),		\ | 
 | 584 | 		 Dextallp2(srcdstB),shiftamt,Dextallp2(srcdstB));	\ | 
 | 585 | 	        Dextallp1(srcdstA) >>= shiftamt;			\ | 
 | 586 | 	     }								\ | 
 | 587 | 	     break;							\ | 
 | 588 |      case 1: if (shiftamt > 0) {					\ | 
 | 589 |                 sticky = (Dextallp3(srcdstC) << 31 - shiftamt) |	\ | 
 | 590 | 			 Dextallp4(srcdstD);				\ | 
 | 591 |                 Variable_shift_double(Dextallp2(srcdstB),		\ | 
 | 592 | 		 Dextallp3(srcdstC),shiftamt,Dextallp4(srcdstD));	\ | 
 | 593 |                 Variable_shift_double(Dextallp1(srcdstA),		\ | 
 | 594 | 		 Dextallp2(srcdstB),shiftamt,Dextallp3(srcdstC));	\ | 
 | 595 | 	     }								\ | 
 | 596 | 	     else {							\ | 
 | 597 | 		sticky = Dextallp4(srcdstD);				\ | 
 | 598 | 		Dextallp4(srcdstD) = Dextallp3(srcdstC);		\ | 
 | 599 | 		Dextallp3(srcdstC) = Dextallp2(srcdstB);		\ | 
 | 600 | 	     }								\ | 
 | 601 | 	     Dextallp2(srcdstB) = Dextallp1(srcdstA) >> shiftamt;	\ | 
 | 602 | 	     Dextallp1(srcdstA) = 0;					\ | 
 | 603 | 	     break;							\ | 
 | 604 |      case 2: if (shiftamt > 0) {					\ | 
 | 605 |                 sticky = (Dextallp2(srcdstB) << 31 - shiftamt) |	\ | 
 | 606 | 			 Dextallp3(srcdstC) | Dextallp4(srcdstD);	\ | 
 | 607 |                 Variable_shift_double(Dextallp1(srcdstA),		\ | 
 | 608 | 		 Dextallp2(srcdstB),shiftamt,Dextallp4(srcdstD));	\ | 
 | 609 | 	     }								\ | 
 | 610 | 	     else {							\ | 
 | 611 | 		sticky = Dextallp3(srcdstC) | Dextallp4(srcdstD);	\ | 
 | 612 | 		Dextallp4(srcdstD) = Dextallp2(srcdstB);		\ | 
 | 613 | 	     }								\ | 
 | 614 | 	     Dextallp3(srcdstC) = Dextallp1(srcdstA) >> shiftamt;	\ | 
 | 615 | 	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\ | 
 | 616 | 	     break;							\ | 
 | 617 |      case 3: if (shiftamt > 0) {					\ | 
 | 618 |                 sticky = (Dextallp1(srcdstA) << 31 - shiftamt) |	\ | 
 | 619 | 			 Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\ | 
 | 620 | 			 Dextallp4(srcdstD);				\ | 
 | 621 | 	     }								\ | 
 | 622 | 	     else {							\ | 
 | 623 | 		sticky = Dextallp2(srcdstB) | Dextallp3(srcdstC) |	\ | 
 | 624 | 		    Dextallp4(srcdstD);					\ | 
 | 625 | 	     }								\ | 
 | 626 | 	     Dextallp4(srcdstD) = Dextallp1(srcdstA) >> shiftamt;	\ | 
 | 627 | 	     Dextallp1(srcdstA) = Dextallp2(srcdstB) = 0;		\ | 
 | 628 | 	     Dextallp3(srcdstC) = 0;					\ | 
 | 629 | 	     break;							\ | 
 | 630 |     }									\ | 
 | 631 |     if (sticky) Dblext_setone_lowmantissap4(srcdstD);			\ | 
 | 632 |   } | 
 | 633 |  | 
 | 634 | /* The left argument is never smaller than the right argument */ | 
 | 635 | #define Dblext_subtract(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ | 
 | 636 |     if( Dextallp4(rightd) > Dextallp4(leftd) ) 			\ | 
 | 637 | 	if( (Dextallp3(leftc)--) == 0)				\ | 
 | 638 | 	    if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\ | 
 | 639 |     Dextallp4(resultd) = Dextallp4(leftd) - Dextallp4(rightd);	\ | 
 | 640 |     if( Dextallp3(rightc) > Dextallp3(leftc) ) 			\ | 
 | 641 |         if( (Dextallp2(leftb)--) == 0) Dextallp1(lefta)--;	\ | 
 | 642 |     Dextallp3(resultc) = Dextallp3(leftc) - Dextallp3(rightc);	\ | 
 | 643 |     if( Dextallp2(rightb) > Dextallp2(leftb) ) Dextallp1(lefta)--; \ | 
 | 644 |     Dextallp2(resultb) = Dextallp2(leftb) - Dextallp2(rightb);	\ | 
 | 645 |     Dextallp1(resulta) = Dextallp1(lefta) - Dextallp1(righta) | 
 | 646 |  | 
 | 647 | #define Dblext_addition(lefta,leftb,leftc,leftd,righta,rightb,rightc,rightd,resulta,resultb,resultc,resultd) \ | 
 | 648 |     /* If the sum of the low words is less than either source, then \ | 
 | 649 |      * an overflow into the next word occurred. */ \ | 
 | 650 |     if ((Dextallp4(resultd) = Dextallp4(leftd)+Dextallp4(rightd)) < \ | 
 | 651 | 	Dextallp4(rightd)) \ | 
 | 652 | 	if((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)+1) <= \ | 
 | 653 | 	    Dextallp3(rightc)) \ | 
 | 654 | 	    if((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ | 
 | 655 | 	        <= Dextallp2(rightb))  \ | 
 | 656 | 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
 | 657 | 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
 | 658 | 	else \ | 
 | 659 | 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ | 
 | 660 | 	        Dextallp2(rightb)) \ | 
 | 661 | 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
 | 662 | 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
 | 663 |     else \ | 
 | 664 | 	if ((Dextallp3(resultc) = Dextallp3(leftc)+Dextallp3(rightc)) < \ | 
 | 665 | 	    Dextallp3(rightc))  \ | 
 | 666 | 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)+1) \ | 
 | 667 | 	        <= Dextallp2(rightb)) \ | 
 | 668 | 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
 | 669 | 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta); \ | 
 | 670 | 	else \ | 
 | 671 | 	    if ((Dextallp2(resultb) = Dextallp2(leftb)+Dextallp2(rightb)) < \ | 
 | 672 | 	        Dextallp2(rightb)) \ | 
 | 673 | 		    Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta)+1; \ | 
 | 674 | 	    else Dextallp1(resulta) = Dextallp1(lefta)+Dextallp1(righta) | 
 | 675 |  | 
 | 676 |  | 
 | 677 | #define Dblext_arithrightshiftby1(srcdstA,srcdstB,srcdstC,srcdstD)	\ | 
 | 678 |     Shiftdouble(Dextallp3(srcdstC),Dextallp4(srcdstD),1,Dextallp4(srcdstD)); \ | 
 | 679 |     Shiftdouble(Dextallp2(srcdstB),Dextallp3(srcdstC),1,Dextallp3(srcdstC)); \ | 
 | 680 |     Shiftdouble(Dextallp1(srcdstA),Dextallp2(srcdstB),1,Dextallp2(srcdstB)); \ | 
 | 681 |     Dextallp1(srcdstA) = (int)Dextallp1(srcdstA) >> 1 | 
 | 682 |     | 
 | 683 | #define Dblext_leftshiftby8(valA,valB,valC,valD) \ | 
 | 684 |     Shiftdouble(Dextallp1(valA),Dextallp2(valB),24,Dextallp1(valA)); \ | 
 | 685 |     Shiftdouble(Dextallp2(valB),Dextallp3(valC),24,Dextallp2(valB)); \ | 
 | 686 |     Shiftdouble(Dextallp3(valC),Dextallp4(valD),24,Dextallp3(valC)); \ | 
 | 687 |     Dextallp4(valD) <<= 8 | 
 | 688 | #define Dblext_leftshiftby4(valA,valB,valC,valD) \ | 
 | 689 |     Shiftdouble(Dextallp1(valA),Dextallp2(valB),28,Dextallp1(valA)); \ | 
 | 690 |     Shiftdouble(Dextallp2(valB),Dextallp3(valC),28,Dextallp2(valB)); \ | 
 | 691 |     Shiftdouble(Dextallp3(valC),Dextallp4(valD),28,Dextallp3(valC)); \ | 
 | 692 |     Dextallp4(valD) <<= 4 | 
 | 693 | #define Dblext_leftshiftby3(valA,valB,valC,valD) \ | 
 | 694 |     Shiftdouble(Dextallp1(valA),Dextallp2(valB),29,Dextallp1(valA)); \ | 
 | 695 |     Shiftdouble(Dextallp2(valB),Dextallp3(valC),29,Dextallp2(valB)); \ | 
 | 696 |     Shiftdouble(Dextallp3(valC),Dextallp4(valD),29,Dextallp3(valC)); \ | 
 | 697 |     Dextallp4(valD) <<= 3 | 
 | 698 | #define Dblext_leftshiftby2(valA,valB,valC,valD) \ | 
 | 699 |     Shiftdouble(Dextallp1(valA),Dextallp2(valB),30,Dextallp1(valA)); \ | 
 | 700 |     Shiftdouble(Dextallp2(valB),Dextallp3(valC),30,Dextallp2(valB)); \ | 
 | 701 |     Shiftdouble(Dextallp3(valC),Dextallp4(valD),30,Dextallp3(valC)); \ | 
 | 702 |     Dextallp4(valD) <<= 2 | 
 | 703 | #define Dblext_leftshiftby1(valA,valB,valC,valD) \ | 
 | 704 |     Shiftdouble(Dextallp1(valA),Dextallp2(valB),31,Dextallp1(valA)); \ | 
 | 705 |     Shiftdouble(Dextallp2(valB),Dextallp3(valC),31,Dextallp2(valB)); \ | 
 | 706 |     Shiftdouble(Dextallp3(valC),Dextallp4(valD),31,Dextallp3(valC)); \ | 
 | 707 |     Dextallp4(valD) <<= 1 | 
 | 708 |  | 
 | 709 | #define Dblext_rightshiftby4(valueA,valueB,valueC,valueD) \ | 
 | 710 |     Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),4,Dextallp4(valueD)); \ | 
 | 711 |     Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),4,Dextallp3(valueC)); \ | 
 | 712 |     Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),4,Dextallp2(valueB)); \ | 
 | 713 |     Dextallp1(valueA) >>= 4 | 
 | 714 | #define Dblext_rightshiftby1(valueA,valueB,valueC,valueD) \ | 
 | 715 |     Shiftdouble(Dextallp3(valueC),Dextallp4(valueD),1,Dextallp4(valueD)); \ | 
 | 716 |     Shiftdouble(Dextallp2(valueB),Dextallp3(valueC),1,Dextallp3(valueC)); \ | 
 | 717 |     Shiftdouble(Dextallp1(valueA),Dextallp2(valueB),1,Dextallp2(valueB)); \ | 
 | 718 |     Dextallp1(valueA) >>= 1 | 
 | 719 |  | 
 | 720 | #define Dblext_xortointp1(left,right,result) Dbl_xortointp1(left,right,result) | 
 | 721 |  | 
 | 722 | #define Dblext_xorfromintp1(left,right,result) \ | 
 | 723 | 	Dbl_xorfromintp1(left,right,result) | 
 | 724 |  | 
 | 725 | #define Dblext_copytoint_exponentmantissap1(src,dest) \ | 
 | 726 | 	Dbl_copytoint_exponentmantissap1(src,dest) | 
 | 727 |  | 
 | 728 | #define Dblext_ismagnitudeless(leftB,rightB,signlessleft,signlessright) \ | 
 | 729 | 	Dbl_ismagnitudeless(leftB,rightB,signlessleft,signlessright) | 
 | 730 |  | 
 | 731 | #define Dbl_copyto_dblext(src1,src2,dest1,dest2,dest3,dest4) \ | 
 | 732 | 	Dextallp1(dest1) = Dallp1(src1); Dextallp2(dest2) = Dallp2(src2); \ | 
 | 733 | 	Dextallp3(dest3) = 0; Dextallp4(dest4) = 0 | 
 | 734 |  | 
 | 735 | #define Dblext_set_sign(dbl_value,sign)  Dbl_set_sign(dbl_value,sign)   | 
 | 736 | #define Dblext_clear_signexponent_set_hidden(srcdst) \ | 
 | 737 | 	Dbl_clear_signexponent_set_hidden(srcdst)  | 
 | 738 | #define Dblext_clear_signexponent(srcdst) Dbl_clear_signexponent(srcdst)  | 
 | 739 | #define Dblext_clear_sign(srcdst) Dbl_clear_sign(srcdst)  | 
 | 740 | #define Dblext_isone_hidden(dbl_value) Dbl_isone_hidden(dbl_value)  | 
 | 741 |  | 
 | 742 | /* | 
 | 743 |  * The Fourword_add() macro assumes that integers are 4 bytes in size. | 
 | 744 |  * It will break if this is not the case. | 
 | 745 |  */ | 
 | 746 |  | 
 | 747 | #define Fourword_add(src1dstA,src1dstB,src1dstC,src1dstD,src2A,src2B,src2C,src2D) \ | 
 | 748 | 	/* 								\ | 
 | 749 | 	 * want this macro to generate:					\ | 
 | 750 | 	 *	ADD	src1dstD,src2D,src1dstD;			\ | 
 | 751 | 	 *	ADDC	src1dstC,src2C,src1dstC;			\ | 
 | 752 | 	 *	ADDC	src1dstB,src2B,src1dstB;			\ | 
 | 753 | 	 *	ADDC	src1dstA,src2A,src1dstA;			\ | 
 | 754 | 	 */								\ | 
 | 755 | 	if ((unsigned int)(src1dstD += (src2D)) < (unsigned int)(src2D)) { \ | 
 | 756 | 	   if ((unsigned int)(src1dstC += (src2C) + 1) <=		\ | 
 | 757 | 	       (unsigned int)(src2C)) {					\ | 
 | 758 | 	     if ((unsigned int)(src1dstB += (src2B) + 1) <=		\ | 
 | 759 | 		 (unsigned int)(src2B)) src1dstA++;			\ | 
 | 760 | 	   }								\ | 
 | 761 | 	   else if ((unsigned int)(src1dstB += (src2B)) < 		\ | 
 | 762 | 		    (unsigned int)(src2B)) src1dstA++;			\ | 
 | 763 | 	}								\ | 
 | 764 | 	else {								\ | 
 | 765 | 	   if ((unsigned int)(src1dstC += (src2C)) <			\ | 
 | 766 | 	       (unsigned int)(src2C)) {					\ | 
 | 767 | 	      if ((unsigned int)(src1dstB += (src2B) + 1) <=		\ | 
 | 768 | 		  (unsigned int)(src2B)) src1dstA++;			\ | 
 | 769 | 	   }								\ | 
 | 770 | 	   else if ((unsigned int)(src1dstB += (src2B)) <		\ | 
 | 771 | 		    (unsigned int)(src2B)) src1dstA++;			\ | 
 | 772 | 	}								\ | 
 | 773 | 	src1dstA += (src2A) | 
 | 774 |  | 
 | 775 | #define Dblext_denormalize(opndp1,opndp2,opndp3,opndp4,exponent,is_tiny) \ | 
 | 776 |   {int shiftamt, sticky;						\ | 
 | 777 |     is_tiny = TRUE;							\ | 
 | 778 |     if (exponent == 0 && (Dextallp3(opndp3) || Dextallp4(opndp4))) {	\ | 
 | 779 | 	switch (Rounding_mode()) {					\ | 
 | 780 | 	case ROUNDPLUS:							\ | 
 | 781 | 		if (Dbl_iszero_sign(opndp1)) {				\ | 
 | 782 | 			Dbl_increment(opndp1,opndp2);			\ | 
 | 783 | 			if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
 | 784 | 				is_tiny = FALSE;			\ | 
 | 785 | 			Dbl_decrement(opndp1,opndp2);			\ | 
 | 786 | 		}							\ | 
 | 787 | 		break;							\ | 
 | 788 | 	case ROUNDMINUS:						\ | 
 | 789 | 		if (Dbl_isone_sign(opndp1)) {				\ | 
 | 790 | 			Dbl_increment(opndp1,opndp2);			\ | 
 | 791 | 			if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
 | 792 | 				is_tiny = FALSE;			\ | 
 | 793 | 			Dbl_decrement(opndp1,opndp2);			\ | 
 | 794 | 		}							\ | 
 | 795 | 		break;							\ | 
 | 796 | 	case ROUNDNEAREST:						\ | 
 | 797 | 		if (Dblext_isone_highp3(opndp3) &&			\ | 
 | 798 | 		    (Dblext_isone_lowp2(opndp2) || 			\ | 
 | 799 | 		     Dblext_isnotzero_low31p3(opndp3)))	{		\ | 
 | 800 | 			Dbl_increment(opndp1,opndp2);			\ | 
 | 801 | 			if (Dbl_isone_hiddenoverflow(opndp1))		\ | 
 | 802 | 				is_tiny = FALSE;			\ | 
 | 803 | 			Dbl_decrement(opndp1,opndp2);			\ | 
 | 804 | 		}							\ | 
 | 805 | 		break;							\ | 
 | 806 | 	}								\ | 
 | 807 |     }									\ | 
 | 808 |     Dblext_clear_signexponent_set_hidden(opndp1);			\ | 
 | 809 |     if (exponent >= (1-QUAD_P)) {					\ | 
 | 810 | 	shiftamt = (1-exponent) % 32;					\ | 
 | 811 | 	switch((1-exponent)/32) {					\ | 
 | 812 | 	  case 0: sticky = Dextallp4(opndp4) << 32-(shiftamt);		\ | 
 | 813 | 		  Variableshiftdouble(opndp3,opndp4,shiftamt,opndp4);	\ | 
 | 814 | 		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp3);	\ | 
 | 815 | 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp2);	\ | 
 | 816 | 		  Dextallp1(opndp1) >>= shiftamt;			\ | 
 | 817 | 		  break;						\ | 
 | 818 | 	  case 1: sticky = (Dextallp3(opndp3) << 32-(shiftamt)) | 	\ | 
 | 819 | 			   Dextallp4(opndp4);				\ | 
 | 820 | 		  Variableshiftdouble(opndp2,opndp3,shiftamt,opndp4);	\ | 
 | 821 | 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp3);	\ | 
 | 822 | 		  Dextallp2(opndp2) = Dextallp1(opndp1) >> shiftamt;	\ | 
 | 823 | 		  Dextallp1(opndp1) = 0;				\ | 
 | 824 | 		  break;						\ | 
 | 825 | 	  case 2: sticky = (Dextallp2(opndp2) << 32-(shiftamt)) |	\ | 
 | 826 | 			    Dextallp3(opndp3) | Dextallp4(opndp4);	\ | 
 | 827 | 		  Variableshiftdouble(opndp1,opndp2,shiftamt,opndp4);	\ | 
 | 828 | 		  Dextallp3(opndp3) = Dextallp1(opndp1) >> shiftamt;	\ | 
 | 829 | 		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\ | 
 | 830 | 		  break;						\ | 
 | 831 | 	  case 3: sticky = (Dextallp1(opndp1) << 32-(shiftamt)) |	\ | 
 | 832 | 		  	Dextallp2(opndp2) | Dextallp3(opndp3) | 	\ | 
 | 833 | 			Dextallp4(opndp4);				\ | 
 | 834 | 		  Dextallp4(opndp4) = Dextallp1(opndp1) >> shiftamt;	\ | 
 | 835 | 		  Dextallp1(opndp1) = Dextallp2(opndp2) = 0;		\ | 
 | 836 | 		  Dextallp3(opndp3) = 0;				\ | 
 | 837 | 		  break;						\ | 
 | 838 | 	}								\ | 
 | 839 |     }									\ | 
 | 840 |     else {								\ | 
 | 841 | 	sticky = Dextallp1(opndp1) | Dextallp2(opndp2) |		\ | 
 | 842 | 		 Dextallp3(opndp3) | Dextallp4(opndp4);			\ | 
 | 843 | 	Dblext_setzero(opndp1,opndp2,opndp3,opndp4);			\ | 
 | 844 |     }									\ | 
 | 845 |     if (sticky) Dblext_setone_lowmantissap4(opndp4);			\ | 
 | 846 |     exponent = 0;							\ | 
 | 847 |   } |