| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * | 
|  | 3 | * Optimized version of the copy_user() routine. | 
|  | 4 | * It is used to copy date across the kernel/user boundary. | 
|  | 5 | * | 
|  | 6 | * The source and destination are always on opposite side of | 
|  | 7 | * the boundary. When reading from user space we must catch | 
|  | 8 | * faults on loads. When writing to user space we must catch | 
|  | 9 | * errors on stores. Note that because of the nature of the copy | 
|  | 10 | * we don't need to worry about overlapping regions. | 
|  | 11 | * | 
|  | 12 | * | 
|  | 13 | * Inputs: | 
|  | 14 | *	in0	address of source buffer | 
|  | 15 | *	in1	address of destination buffer | 
|  | 16 | *	in2	number of bytes to copy | 
|  | 17 | * | 
|  | 18 | * Outputs: | 
|  | 19 | *	ret0	0 in case of success. The number of bytes NOT copied in | 
|  | 20 | *		case of error. | 
|  | 21 | * | 
|  | 22 | * Copyright (C) 2000-2001 Hewlett-Packard Co | 
|  | 23 | *	Stephane Eranian <eranian@hpl.hp.com> | 
|  | 24 | * | 
|  | 25 | * Fixme: | 
|  | 26 | *	- handle the case where we have more than 16 bytes and the alignment | 
|  | 27 | *	  are different. | 
|  | 28 | *	- more benchmarking | 
|  | 29 | *	- fix extraneous stop bit introduced by the EX() macro. | 
|  | 30 | */ | 
|  | 31 |  | 
|  | 32 | #include <asm/asmmacro.h> | 
|  | 33 |  | 
|  | 34 | // | 
|  | 35 | // Tuneable parameters | 
|  | 36 | // | 
|  | 37 | #define COPY_BREAK	16	// we do byte copy below (must be >=16) | 
|  | 38 | #define PIPE_DEPTH	21	// pipe depth | 
|  | 39 |  | 
|  | 40 | #define EPI		p[PIPE_DEPTH-1] | 
|  | 41 |  | 
|  | 42 | // | 
|  | 43 | // arguments | 
|  | 44 | // | 
|  | 45 | #define dst		in0 | 
|  | 46 | #define src		in1 | 
|  | 47 | #define len		in2 | 
|  | 48 |  | 
|  | 49 | // | 
|  | 50 | // local registers | 
|  | 51 | // | 
|  | 52 | #define t1		r2	// rshift in bytes | 
|  | 53 | #define t2		r3	// lshift in bytes | 
|  | 54 | #define rshift		r14	// right shift in bits | 
|  | 55 | #define lshift		r15	// left shift in bits | 
|  | 56 | #define word1		r16 | 
|  | 57 | #define word2		r17 | 
|  | 58 | #define cnt		r18 | 
|  | 59 | #define len2		r19 | 
|  | 60 | #define saved_lc	r20 | 
|  | 61 | #define saved_pr	r21 | 
|  | 62 | #define tmp		r22 | 
|  | 63 | #define val		r23 | 
|  | 64 | #define src1		r24 | 
|  | 65 | #define dst1		r25 | 
|  | 66 | #define src2		r26 | 
|  | 67 | #define dst2		r27 | 
|  | 68 | #define len1		r28 | 
|  | 69 | #define enddst		r29 | 
|  | 70 | #define endsrc		r30 | 
|  | 71 | #define saved_pfs	r31 | 
|  | 72 |  | 
|  | 73 | GLOBAL_ENTRY(__copy_user) | 
|  | 74 | .prologue | 
|  | 75 | .save ar.pfs, saved_pfs | 
|  | 76 | alloc saved_pfs=ar.pfs,3,((2*PIPE_DEPTH+7)&~7),0,((2*PIPE_DEPTH+7)&~7) | 
|  | 77 |  | 
|  | 78 | .rotr val1[PIPE_DEPTH],val2[PIPE_DEPTH] | 
|  | 79 | .rotp p[PIPE_DEPTH] | 
|  | 80 |  | 
|  | 81 | adds len2=-1,len	// br.ctop is repeat/until | 
|  | 82 | mov ret0=r0 | 
|  | 83 |  | 
|  | 84 | ;;			// RAW of cfm when len=0 | 
|  | 85 | cmp.eq p8,p0=r0,len	// check for zero length | 
|  | 86 | .save ar.lc, saved_lc | 
|  | 87 | mov saved_lc=ar.lc	// preserve ar.lc (slow) | 
|  | 88 | (p8)	br.ret.spnt.many rp	// empty mempcy() | 
|  | 89 | ;; | 
|  | 90 | add enddst=dst,len	// first byte after end of source | 
|  | 91 | add endsrc=src,len	// first byte after end of destination | 
|  | 92 | .save pr, saved_pr | 
|  | 93 | mov saved_pr=pr		// preserve predicates | 
|  | 94 |  | 
|  | 95 | .body | 
|  | 96 |  | 
|  | 97 | mov dst1=dst		// copy because of rotation | 
|  | 98 | mov ar.ec=PIPE_DEPTH | 
|  | 99 | mov pr.rot=1<<16	// p16=true all others are false | 
|  | 100 |  | 
|  | 101 | mov src1=src		// copy because of rotation | 
|  | 102 | mov ar.lc=len2		// initialize lc for small count | 
|  | 103 | cmp.lt p10,p7=COPY_BREAK,len	// if len > COPY_BREAK then long copy | 
|  | 104 |  | 
|  | 105 | xor tmp=src,dst		// same alignment test prepare | 
|  | 106 | (p10)	br.cond.dptk .long_copy_user | 
|  | 107 | ;;			// RAW pr.rot/p16 ? | 
|  | 108 | // | 
|  | 109 | // Now we do the byte by byte loop with software pipeline | 
|  | 110 | // | 
|  | 111 | // p7 is necessarily false by now | 
|  | 112 | 1: | 
|  | 113 | EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) | 
|  | 114 | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
|  | 115 | br.ctop.dptk.few 1b | 
|  | 116 | ;; | 
|  | 117 | mov ar.lc=saved_lc | 
|  | 118 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 119 | mov ar.pfs=saved_pfs		// restore ar.ec | 
|  | 120 | br.ret.sptk.many rp		// end of short memcpy | 
|  | 121 |  | 
|  | 122 | // | 
|  | 123 | // Not 8-byte aligned | 
|  | 124 | // | 
|  | 125 | .diff_align_copy_user: | 
|  | 126 | // At this point we know we have more than 16 bytes to copy | 
|  | 127 | // and also that src and dest do _not_ have the same alignment. | 
|  | 128 | and src2=0x7,src1				// src offset | 
|  | 129 | and dst2=0x7,dst1				// dst offset | 
|  | 130 | ;; | 
|  | 131 | // The basic idea is that we copy byte-by-byte at the head so | 
|  | 132 | // that we can reach 8-byte alignment for both src1 and dst1. | 
|  | 133 | // Then copy the body using software pipelined 8-byte copy, | 
|  | 134 | // shifting the two back-to-back words right and left, then copy | 
|  | 135 | // the tail by copying byte-by-byte. | 
|  | 136 | // | 
|  | 137 | // Fault handling. If the byte-by-byte at the head fails on the | 
|  | 138 | // load, then restart and finish the pipleline by copying zeros | 
|  | 139 | // to the dst1. Then copy zeros for the rest of dst1. | 
|  | 140 | // If 8-byte software pipeline fails on the load, do the same as | 
|  | 141 | // failure_in3 does. If the byte-by-byte at the tail fails, it is | 
|  | 142 | // handled simply by failure_in_pipe1. | 
|  | 143 | // | 
|  | 144 | // The case p14 represents the source has more bytes in the | 
|  | 145 | // the first word (by the shifted part), whereas the p15 needs to | 
|  | 146 | // copy some bytes from the 2nd word of the source that has the | 
|  | 147 | // tail of the 1st of the destination. | 
|  | 148 | // | 
|  | 149 |  | 
|  | 150 | // | 
|  | 151 | // Optimization. If dst1 is 8-byte aligned (quite common), we don't need | 
|  | 152 | // to copy the head to dst1, to start 8-byte copy software pipeline. | 
|  | 153 | // We know src1 is not 8-byte aligned in this case. | 
|  | 154 | // | 
|  | 155 | cmp.eq p14,p15=r0,dst2 | 
|  | 156 | (p15)	br.cond.spnt 1f | 
|  | 157 | ;; | 
|  | 158 | sub t1=8,src2 | 
|  | 159 | mov t2=src2 | 
|  | 160 | ;; | 
|  | 161 | shl rshift=t2,3 | 
|  | 162 | sub len1=len,t1					// set len1 | 
|  | 163 | ;; | 
|  | 164 | sub lshift=64,rshift | 
|  | 165 | ;; | 
|  | 166 | br.cond.spnt .word_copy_user | 
|  | 167 | ;; | 
|  | 168 | 1: | 
|  | 169 | cmp.leu	p14,p15=src2,dst2 | 
|  | 170 | sub t1=dst2,src2 | 
|  | 171 | ;; | 
|  | 172 | .pred.rel "mutex", p14, p15 | 
|  | 173 | (p14)	sub word1=8,src2				// (8 - src offset) | 
|  | 174 | (p15)	sub t1=r0,t1					// absolute value | 
|  | 175 | (p15)	sub word1=8,dst2				// (8 - dst offset) | 
|  | 176 | ;; | 
|  | 177 | // For the case p14, we don't need to copy the shifted part to | 
|  | 178 | // the 1st word of destination. | 
|  | 179 | sub t2=8,t1 | 
|  | 180 | (p14)	sub word1=word1,t1 | 
|  | 181 | ;; | 
|  | 182 | sub len1=len,word1				// resulting len | 
|  | 183 | (p15)	shl rshift=t1,3					// in bits | 
|  | 184 | (p14)	shl rshift=t2,3 | 
|  | 185 | ;; | 
|  | 186 | (p14)	sub len1=len1,t1 | 
|  | 187 | adds cnt=-1,word1 | 
|  | 188 | ;; | 
|  | 189 | sub lshift=64,rshift | 
|  | 190 | mov ar.ec=PIPE_DEPTH | 
|  | 191 | mov pr.rot=1<<16	// p16=true all others are false | 
|  | 192 | mov ar.lc=cnt | 
|  | 193 | ;; | 
|  | 194 | 2: | 
|  | 195 | EX(.failure_in_pipe2,(p16) ld1 val1[0]=[src1],1) | 
|  | 196 | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
|  | 197 | br.ctop.dptk.few 2b | 
|  | 198 | ;; | 
|  | 199 | clrrrb | 
|  | 200 | ;; | 
|  | 201 | .word_copy_user: | 
|  | 202 | cmp.gtu p9,p0=16,len1 | 
|  | 203 | (p9)	br.cond.spnt 4f			// if (16 > len1) skip 8-byte copy | 
|  | 204 | ;; | 
|  | 205 | shr.u cnt=len1,3		// number of 64-bit words | 
|  | 206 | ;; | 
|  | 207 | adds cnt=-1,cnt | 
|  | 208 | ;; | 
|  | 209 | .pred.rel "mutex", p14, p15 | 
|  | 210 | (p14)	sub src1=src1,t2 | 
|  | 211 | (p15)	sub src1=src1,t1 | 
|  | 212 | // | 
|  | 213 | // Now both src1 and dst1 point to an 8-byte aligned address. And | 
|  | 214 | // we have more than 8 bytes to copy. | 
|  | 215 | // | 
|  | 216 | mov ar.lc=cnt | 
|  | 217 | mov ar.ec=PIPE_DEPTH | 
|  | 218 | mov pr.rot=1<<16	// p16=true all others are false | 
|  | 219 | ;; | 
|  | 220 | 3: | 
|  | 221 | // | 
|  | 222 | // The pipleline consists of 3 stages: | 
|  | 223 | // 1 (p16):	Load a word from src1 | 
|  | 224 | // 2 (EPI_1):	Shift right pair, saving to tmp | 
|  | 225 | // 3 (EPI):	Store tmp to dst1 | 
|  | 226 | // | 
|  | 227 | // To make it simple, use at least 2 (p16) loops to set up val1[n] | 
|  | 228 | // because we need 2 back-to-back val1[] to get tmp. | 
|  | 229 | // Note that this implies EPI_2 must be p18 or greater. | 
|  | 230 | // | 
|  | 231 |  | 
|  | 232 | #define EPI_1		p[PIPE_DEPTH-2] | 
|  | 233 | #define SWITCH(pred, shift)	cmp.eq pred,p0=shift,rshift | 
|  | 234 | #define CASE(pred, shift)	\ | 
|  | 235 | (pred)	br.cond.spnt .copy_user_bit##shift | 
|  | 236 | #define BODY(rshift)						\ | 
|  | 237 | .copy_user_bit##rshift:						\ | 
|  | 238 | 1:								\ | 
|  | 239 | EX(.failure_out,(EPI) st8 [dst1]=tmp,8);		\ | 
|  | 240 | (EPI_1) shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\ | 
|  | 241 | EX(3f,(p16) ld8 val1[1]=[src1],8);			\ | 
|  | 242 | (p16)	mov val1[0]=r0;						\ | 
|  | 243 | br.ctop.dptk 1b;					\ | 
|  | 244 | ;;							\ | 
|  | 245 | br.cond.sptk.many .diff_align_do_tail;			\ | 
|  | 246 | 2:								\ | 
|  | 247 | (EPI)	st8 [dst1]=tmp,8;					\ | 
|  | 248 | (EPI_1)	shrp tmp=val1[PIPE_DEPTH-2],val1[PIPE_DEPTH-1],rshift;	\ | 
|  | 249 | 3:								\ | 
|  | 250 | (p16)	mov val1[1]=r0;						\ | 
|  | 251 | (p16)	mov val1[0]=r0;						\ | 
|  | 252 | br.ctop.dptk 2b;					\ | 
|  | 253 | ;;							\ | 
|  | 254 | br.cond.sptk.many .failure_in2 | 
|  | 255 |  | 
|  | 256 | // | 
|  | 257 | // Since the instruction 'shrp' requires a fixed 128-bit value | 
|  | 258 | // specifying the bits to shift, we need to provide 7 cases | 
|  | 259 | // below. | 
|  | 260 | // | 
|  | 261 | SWITCH(p6, 8) | 
|  | 262 | SWITCH(p7, 16) | 
|  | 263 | SWITCH(p8, 24) | 
|  | 264 | SWITCH(p9, 32) | 
|  | 265 | SWITCH(p10, 40) | 
|  | 266 | SWITCH(p11, 48) | 
|  | 267 | SWITCH(p12, 56) | 
|  | 268 | ;; | 
|  | 269 | CASE(p6, 8) | 
|  | 270 | CASE(p7, 16) | 
|  | 271 | CASE(p8, 24) | 
|  | 272 | CASE(p9, 32) | 
|  | 273 | CASE(p10, 40) | 
|  | 274 | CASE(p11, 48) | 
|  | 275 | CASE(p12, 56) | 
|  | 276 | ;; | 
|  | 277 | BODY(8) | 
|  | 278 | BODY(16) | 
|  | 279 | BODY(24) | 
|  | 280 | BODY(32) | 
|  | 281 | BODY(40) | 
|  | 282 | BODY(48) | 
|  | 283 | BODY(56) | 
|  | 284 | ;; | 
|  | 285 | .diff_align_do_tail: | 
|  | 286 | .pred.rel "mutex", p14, p15 | 
|  | 287 | (p14)	sub src1=src1,t1 | 
|  | 288 | (p14)	adds dst1=-8,dst1 | 
|  | 289 | (p15)	sub dst1=dst1,t1 | 
|  | 290 | ;; | 
|  | 291 | 4: | 
|  | 292 | // Tail correction. | 
|  | 293 | // | 
|  | 294 | // The problem with this piplelined loop is that the last word is not | 
|  | 295 | // loaded and thus parf of the last word written is not correct. | 
|  | 296 | // To fix that, we simply copy the tail byte by byte. | 
|  | 297 |  | 
|  | 298 | sub len1=endsrc,src1,1 | 
|  | 299 | clrrrb | 
|  | 300 | ;; | 
|  | 301 | mov ar.ec=PIPE_DEPTH | 
|  | 302 | mov pr.rot=1<<16	// p16=true all others are false | 
|  | 303 | mov ar.lc=len1 | 
|  | 304 | ;; | 
|  | 305 | 5: | 
|  | 306 | EX(.failure_in_pipe1,(p16) ld1 val1[0]=[src1],1) | 
|  | 307 | EX(.failure_out,(EPI) st1 [dst1]=val1[PIPE_DEPTH-1],1) | 
|  | 308 | br.ctop.dptk.few 5b | 
|  | 309 | ;; | 
|  | 310 | mov ar.lc=saved_lc | 
|  | 311 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 312 | mov ar.pfs=saved_pfs | 
|  | 313 | br.ret.sptk.many rp | 
|  | 314 |  | 
|  | 315 | // | 
|  | 316 | // Beginning of long mempcy (i.e. > 16 bytes) | 
|  | 317 | // | 
|  | 318 | .long_copy_user: | 
|  | 319 | tbit.nz p6,p7=src1,0	// odd alignment | 
|  | 320 | and tmp=7,tmp | 
|  | 321 | ;; | 
|  | 322 | cmp.eq p10,p8=r0,tmp | 
|  | 323 | mov len1=len		// copy because of rotation | 
|  | 324 | (p8)	br.cond.dpnt .diff_align_copy_user | 
|  | 325 | ;; | 
|  | 326 | // At this point we know we have more than 16 bytes to copy | 
|  | 327 | // and also that both src and dest have the same alignment | 
|  | 328 | // which may not be the one we want. So for now we must move | 
|  | 329 | // forward slowly until we reach 16byte alignment: no need to | 
|  | 330 | // worry about reaching the end of buffer. | 
|  | 331 | // | 
|  | 332 | EX(.failure_in1,(p6) ld1 val1[0]=[src1],1)	// 1-byte aligned | 
|  | 333 | (p6)	adds len1=-1,len1;; | 
|  | 334 | tbit.nz p7,p0=src1,1 | 
|  | 335 | ;; | 
|  | 336 | EX(.failure_in1,(p7) ld2 val1[1]=[src1],2)	// 2-byte aligned | 
|  | 337 | (p7)	adds len1=-2,len1;; | 
|  | 338 | tbit.nz p8,p0=src1,2 | 
|  | 339 | ;; | 
|  | 340 | // | 
|  | 341 | // Stop bit not required after ld4 because if we fail on ld4 | 
|  | 342 | // we have never executed the ld1, therefore st1 is not executed. | 
|  | 343 | // | 
|  | 344 | EX(.failure_in1,(p8) ld4 val2[0]=[src1],4)	// 4-byte aligned | 
|  | 345 | ;; | 
|  | 346 | EX(.failure_out,(p6) st1 [dst1]=val1[0],1) | 
|  | 347 | tbit.nz p9,p0=src1,3 | 
|  | 348 | ;; | 
|  | 349 | // | 
|  | 350 | // Stop bit not required after ld8 because if we fail on ld8 | 
|  | 351 | // we have never executed the ld2, therefore st2 is not executed. | 
|  | 352 | // | 
|  | 353 | EX(.failure_in1,(p9) ld8 val2[1]=[src1],8)	// 8-byte aligned | 
|  | 354 | EX(.failure_out,(p7) st2 [dst1]=val1[1],2) | 
|  | 355 | (p8)	adds len1=-4,len1 | 
|  | 356 | ;; | 
|  | 357 | EX(.failure_out, (p8) st4 [dst1]=val2[0],4) | 
|  | 358 | (p9)	adds len1=-8,len1;; | 
|  | 359 | shr.u cnt=len1,4		// number of 128-bit (2x64bit) words | 
|  | 360 | ;; | 
|  | 361 | EX(.failure_out, (p9) st8 [dst1]=val2[1],8) | 
|  | 362 | tbit.nz p6,p0=len1,3 | 
|  | 363 | cmp.eq p7,p0=r0,cnt | 
|  | 364 | adds tmp=-1,cnt			// br.ctop is repeat/until | 
|  | 365 | (p7)	br.cond.dpnt .dotail		// we have less than 16 bytes left | 
|  | 366 | ;; | 
|  | 367 | adds src2=8,src1 | 
|  | 368 | adds dst2=8,dst1 | 
|  | 369 | mov ar.lc=tmp | 
|  | 370 | ;; | 
|  | 371 | // | 
|  | 372 | // 16bytes/iteration | 
|  | 373 | // | 
|  | 374 | 2: | 
|  | 375 | EX(.failure_in3,(p16) ld8 val1[0]=[src1],16) | 
|  | 376 | (p16)	ld8 val2[0]=[src2],16 | 
|  | 377 |  | 
|  | 378 | EX(.failure_out, (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16) | 
|  | 379 | (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16 | 
|  | 380 | br.ctop.dptk 2b | 
|  | 381 | ;;			// RAW on src1 when fall through from loop | 
|  | 382 | // | 
|  | 383 | // Tail correction based on len only | 
|  | 384 | // | 
|  | 385 | // No matter where we come from (loop or test) the src1 pointer | 
|  | 386 | // is 16 byte aligned AND we have less than 16 bytes to copy. | 
|  | 387 | // | 
|  | 388 | .dotail: | 
|  | 389 | EX(.failure_in1,(p6) ld8 val1[0]=[src1],8)	// at least 8 bytes | 
|  | 390 | tbit.nz p7,p0=len1,2 | 
|  | 391 | ;; | 
|  | 392 | EX(.failure_in1,(p7) ld4 val1[1]=[src1],4)	// at least 4 bytes | 
|  | 393 | tbit.nz p8,p0=len1,1 | 
|  | 394 | ;; | 
|  | 395 | EX(.failure_in1,(p8) ld2 val2[0]=[src1],2)	// at least 2 bytes | 
|  | 396 | tbit.nz p9,p0=len1,0 | 
|  | 397 | ;; | 
|  | 398 | EX(.failure_out, (p6) st8 [dst1]=val1[0],8) | 
|  | 399 | ;; | 
|  | 400 | EX(.failure_in1,(p9) ld1 val2[1]=[src1])	// only 1 byte left | 
|  | 401 | mov ar.lc=saved_lc | 
|  | 402 | ;; | 
|  | 403 | EX(.failure_out,(p7) st4 [dst1]=val1[1],4) | 
|  | 404 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 405 | ;; | 
|  | 406 | EX(.failure_out, (p8)	st2 [dst1]=val2[0],2) | 
|  | 407 | mov ar.pfs=saved_pfs | 
|  | 408 | ;; | 
|  | 409 | EX(.failure_out, (p9)	st1 [dst1]=val2[1]) | 
|  | 410 | br.ret.sptk.many rp | 
|  | 411 |  | 
|  | 412 |  | 
|  | 413 | // | 
|  | 414 | // Here we handle the case where the byte by byte copy fails | 
|  | 415 | // on the load. | 
|  | 416 | // Several factors make the zeroing of the rest of the buffer kind of | 
|  | 417 | // tricky: | 
|  | 418 | //	- the pipeline: loads/stores are not in sync (pipeline) | 
|  | 419 | // | 
|  | 420 | //	  In the same loop iteration, the dst1 pointer does not directly | 
|  | 421 | //	  reflect where the faulty load was. | 
|  | 422 | // | 
|  | 423 | //	- pipeline effect | 
|  | 424 | //	  When you get a fault on load, you may have valid data from | 
|  | 425 | //	  previous loads not yet store in transit. Such data must be | 
|  | 426 | //	  store normally before moving onto zeroing the rest. | 
|  | 427 | // | 
|  | 428 | //	- single/multi dispersal independence. | 
|  | 429 | // | 
|  | 430 | // solution: | 
|  | 431 | //	- we don't disrupt the pipeline, i.e. data in transit in | 
|  | 432 | //	  the software pipeline will be eventually move to memory. | 
|  | 433 | //	  We simply replace the load with a simple mov and keep the | 
|  | 434 | //	  pipeline going. We can't really do this inline because | 
|  | 435 | //	  p16 is always reset to 1 when lc > 0. | 
|  | 436 | // | 
|  | 437 | .failure_in_pipe1: | 
|  | 438 | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | 439 | 1: | 
|  | 440 | (p16)	mov val1[0]=r0 | 
|  | 441 | (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1 | 
|  | 442 | br.ctop.dptk 1b | 
|  | 443 | ;; | 
|  | 444 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 445 | mov ar.lc=saved_lc | 
|  | 446 | mov ar.pfs=saved_pfs | 
|  | 447 | br.ret.sptk.many rp | 
|  | 448 |  | 
|  | 449 | // | 
|  | 450 | // This is the case where the byte by byte copy fails on the load | 
|  | 451 | // when we copy the head. We need to finish the pipeline and copy | 
|  | 452 | // zeros for the rest of the destination. Since this happens | 
|  | 453 | // at the top we still need to fill the body and tail. | 
|  | 454 | .failure_in_pipe2: | 
|  | 455 | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | 456 | 2: | 
|  | 457 | (p16)	mov val1[0]=r0 | 
|  | 458 | (EPI)	st1 [dst1]=val1[PIPE_DEPTH-1],1 | 
|  | 459 | br.ctop.dptk 2b | 
|  | 460 | ;; | 
|  | 461 | sub len=enddst,dst1,1		// precompute len | 
|  | 462 | br.cond.dptk.many .failure_in1bis | 
|  | 463 | ;; | 
|  | 464 |  | 
|  | 465 | // | 
|  | 466 | // Here we handle the head & tail part when we check for alignment. | 
|  | 467 | // The following code handles only the load failures. The | 
|  | 468 | // main diffculty comes from the fact that loads/stores are | 
|  | 469 | // scheduled. So when you fail on a load, the stores corresponding | 
|  | 470 | // to previous successful loads must be executed. | 
|  | 471 | // | 
|  | 472 | // However some simplifications are possible given the way | 
|  | 473 | // things work. | 
|  | 474 | // | 
|  | 475 | // 1) HEAD | 
|  | 476 | // Theory of operation: | 
|  | 477 | // | 
|  | 478 | //  Page A   | Page B | 
|  | 479 | //  ---------|----- | 
|  | 480 | //          1|8 x | 
|  | 481 | //	  1 2|8 x | 
|  | 482 | //	    4|8 x | 
|  | 483 | //	  1 4|8 x | 
|  | 484 | //        2 4|8 x | 
|  | 485 | //      1 2 4|8 x | 
|  | 486 | //	     |1 | 
|  | 487 | //	     |2 x | 
|  | 488 | //	     |4 x | 
|  | 489 | // | 
|  | 490 | // page_size >= 4k (2^12).  (x means 4, 2, 1) | 
|  | 491 | // Here we suppose Page A exists and Page B does not. | 
|  | 492 | // | 
|  | 493 | // As we move towards eight byte alignment we may encounter faults. | 
|  | 494 | // The numbers on each page show the size of the load (current alignment). | 
|  | 495 | // | 
|  | 496 | // Key point: | 
|  | 497 | //	- if you fail on 1, 2, 4 then you have never executed any smaller | 
|  | 498 | //	  size loads, e.g. failing ld4 means no ld1 nor ld2 executed | 
|  | 499 | //	  before. | 
|  | 500 | // | 
|  | 501 | // This allows us to simplify the cleanup code, because basically you | 
|  | 502 | // only have to worry about "pending" stores in the case of a failing | 
|  | 503 | // ld8(). Given the way the code is written today, this means only | 
|  | 504 | // worry about st2, st4. There we can use the information encapsulated | 
|  | 505 | // into the predicates. | 
|  | 506 | // | 
|  | 507 | // Other key point: | 
|  | 508 | //	- if you fail on the ld8 in the head, it means you went straight | 
|  | 509 | //	  to it, i.e. 8byte alignment within an unexisting page. | 
|  | 510 | // Again this comes from the fact that if you crossed just for the ld8 then | 
|  | 511 | // you are 8byte aligned but also 16byte align, therefore you would | 
|  | 512 | // either go for the 16byte copy loop OR the ld8 in the tail part. | 
|  | 513 | // The combination ld1, ld2, ld4, ld8 where you fail on ld8 is impossible | 
|  | 514 | // because it would mean you had 15bytes to copy in which case you | 
|  | 515 | // would have defaulted to the byte by byte copy. | 
|  | 516 | // | 
|  | 517 | // | 
|  | 518 | // 2) TAIL | 
|  | 519 | // Here we now we have less than 16 bytes AND we are either 8 or 16 byte | 
|  | 520 | // aligned. | 
|  | 521 | // | 
|  | 522 | // Key point: | 
|  | 523 | // This means that we either: | 
|  | 524 | //		- are right on a page boundary | 
|  | 525 | //	OR | 
|  | 526 | //		- are at more than 16 bytes from a page boundary with | 
|  | 527 | //		  at most 15 bytes to copy: no chance of crossing. | 
|  | 528 | // | 
|  | 529 | // This allows us to assume that if we fail on a load we haven't possibly | 
|  | 530 | // executed any of the previous (tail) ones, so we don't need to do | 
|  | 531 | // any stores. For instance, if we fail on ld2, this means we had | 
|  | 532 | // 2 or 3 bytes left to copy and we did not execute the ld8 nor ld4. | 
|  | 533 | // | 
|  | 534 | // This means that we are in a situation similar the a fault in the | 
|  | 535 | // head part. That's nice! | 
|  | 536 | // | 
|  | 537 | .failure_in1: | 
|  | 538 | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | 539 | sub len=endsrc,src1,1 | 
|  | 540 | // | 
|  | 541 | // we know that ret0 can never be zero at this point | 
|  | 542 | // because we failed why trying to do a load, i.e. there is still | 
|  | 543 | // some work to do. | 
|  | 544 | // The failure_in1bis and length problem is taken care of at the | 
|  | 545 | // calling side. | 
|  | 546 | // | 
|  | 547 | ;; | 
|  | 548 | .failure_in1bis:		// from (.failure_in3) | 
|  | 549 | mov ar.lc=len		// Continue with a stupid byte store. | 
|  | 550 | ;; | 
|  | 551 | 5: | 
|  | 552 | st1 [dst1]=r0,1 | 
|  | 553 | br.cloop.dptk 5b | 
|  | 554 | ;; | 
|  | 555 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 556 | mov ar.lc=saved_lc | 
|  | 557 | mov ar.pfs=saved_pfs | 
|  | 558 | br.ret.sptk.many rp | 
|  | 559 |  | 
|  | 560 | // | 
|  | 561 | // Here we simply restart the loop but instead | 
|  | 562 | // of doing loads we fill the pipeline with zeroes | 
|  | 563 | // We can't simply store r0 because we may have valid | 
|  | 564 | // data in transit in the pipeline. | 
|  | 565 | // ar.lc and ar.ec are setup correctly at this point | 
|  | 566 | // | 
|  | 567 | // we MUST use src1/endsrc here and not dst1/enddst because | 
|  | 568 | // of the pipeline effect. | 
|  | 569 | // | 
|  | 570 | .failure_in3: | 
|  | 571 | sub ret0=endsrc,src1	// number of bytes to zero, i.e. not copied | 
|  | 572 | ;; | 
|  | 573 | 2: | 
|  | 574 | (p16)	mov val1[0]=r0 | 
|  | 575 | (p16)	mov val2[0]=r0 | 
|  | 576 | (EPI)	st8 [dst1]=val1[PIPE_DEPTH-1],16 | 
|  | 577 | (EPI)	st8 [dst2]=val2[PIPE_DEPTH-1],16 | 
|  | 578 | br.ctop.dptk 2b | 
|  | 579 | ;; | 
|  | 580 | cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ? | 
|  | 581 | sub len=enddst,dst1,1		// precompute len | 
|  | 582 | (p6)	br.cond.dptk .failure_in1bis | 
|  | 583 | ;; | 
|  | 584 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 585 | mov ar.lc=saved_lc | 
|  | 586 | mov ar.pfs=saved_pfs | 
|  | 587 | br.ret.sptk.many rp | 
|  | 588 |  | 
|  | 589 | .failure_in2: | 
|  | 590 | sub ret0=endsrc,src1 | 
|  | 591 | cmp.ne p6,p0=dst1,enddst	// Do we need to finish the tail ? | 
|  | 592 | sub len=enddst,dst1,1		// precompute len | 
|  | 593 | (p6)	br.cond.dptk .failure_in1bis | 
|  | 594 | ;; | 
|  | 595 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 596 | mov ar.lc=saved_lc | 
|  | 597 | mov ar.pfs=saved_pfs | 
|  | 598 | br.ret.sptk.many rp | 
|  | 599 |  | 
|  | 600 | // | 
|  | 601 | // handling of failures on stores: that's the easy part | 
|  | 602 | // | 
|  | 603 | .failure_out: | 
|  | 604 | sub ret0=enddst,dst1 | 
|  | 605 | mov pr=saved_pr,0xffffffffffff0000 | 
|  | 606 | mov ar.lc=saved_lc | 
|  | 607 |  | 
|  | 608 | mov ar.pfs=saved_pfs | 
|  | 609 | br.ret.sptk.many rp | 
|  | 610 | END(__copy_user) |