| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */ | 
 | 2 | /* | 
 | 3 | 	Written/copyright 1999-2001 by Donald Becker. | 
 | 4 | 	Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com) | 
 | 5 | 	Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com) | 
 | 6 |  | 
 | 7 | 	This software may be used and distributed according to the terms of | 
 | 8 | 	the GNU General Public License (GPL), incorporated herein by reference. | 
 | 9 | 	Drivers based on or derived from this code fall under the GPL and must | 
 | 10 | 	retain the authorship, copyright and license notice.  This file is not | 
 | 11 | 	a complete program and may only be used when the entire operating | 
 | 12 | 	system is licensed under the GPL.  License for under other terms may be | 
 | 13 | 	available.  Contact the original author for details. | 
 | 14 |  | 
 | 15 | 	The original author may be reached as becker@scyld.com, or at | 
 | 16 | 	Scyld Computing Corporation | 
 | 17 | 	410 Severn Ave., Suite 210 | 
 | 18 | 	Annapolis MD 21403 | 
 | 19 |  | 
 | 20 | 	Support information and updates available at | 
 | 21 | 	http://www.scyld.com/network/netsemi.html | 
 | 22 |  | 
 | 23 |  | 
 | 24 | 	Linux kernel modifications: | 
 | 25 |  | 
 | 26 | 	Version 1.0.1: | 
 | 27 | 		- Spinlock fixes | 
 | 28 | 		- Bug fixes and better intr performance (Tjeerd) | 
 | 29 | 	Version 1.0.2: | 
 | 30 | 		- Now reads correct MAC address from eeprom | 
 | 31 | 	Version 1.0.3: | 
 | 32 | 		- Eliminate redundant priv->tx_full flag | 
 | 33 | 		- Call netif_start_queue from dev->tx_timeout | 
 | 34 | 		- wmb() in start_tx() to flush data | 
 | 35 | 		- Update Tx locking | 
 | 36 | 		- Clean up PCI enable (davej) | 
 | 37 | 	Version 1.0.4: | 
 | 38 | 		- Merge Donald Becker's natsemi.c version 1.07 | 
 | 39 | 	Version 1.0.5: | 
 | 40 | 		- { fill me in } | 
 | 41 | 	Version 1.0.6: | 
 | 42 | 		* ethtool support (jgarzik) | 
 | 43 | 		* Proper initialization of the card (which sometimes | 
 | 44 | 		fails to occur and leaves the card in a non-functional | 
 | 45 | 		state). (uzi) | 
 | 46 |  | 
 | 47 | 		* Some documented register settings to optimize some | 
 | 48 | 		of the 100Mbit autodetection circuitry in rev C cards. (uzi) | 
 | 49 |  | 
 | 50 | 		* Polling of the PHY intr for stuff like link state | 
 | 51 | 		change and auto- negotiation to finally work properly. (uzi) | 
 | 52 |  | 
 | 53 | 		* One-liner removal of a duplicate declaration of | 
 | 54 | 		netdev_error(). (uzi) | 
 | 55 |  | 
 | 56 | 	Version 1.0.7: (Manfred Spraul) | 
 | 57 | 		* pci dma | 
 | 58 | 		* SMP locking update | 
 | 59 | 		* full reset added into tx_timeout | 
 | 60 | 		* correct multicast hash generation (both big and little endian) | 
 | 61 | 			[copied from a natsemi driver version | 
 | 62 | 			 from Myrio Corporation, Greg Smith] | 
 | 63 | 		* suspend/resume | 
 | 64 |  | 
 | 65 | 	version 1.0.8 (Tim Hockin <thockin@sun.com>) | 
 | 66 | 		* ETHTOOL_* support | 
 | 67 | 		* Wake on lan support (Erik Gilling) | 
 | 68 | 		* MXDMA fixes for serverworks | 
 | 69 | 		* EEPROM reload | 
 | 70 |  | 
 | 71 | 	version 1.0.9 (Manfred Spraul) | 
 | 72 | 		* Main change: fix lack of synchronize | 
 | 73 | 		netif_close/netif_suspend against a last interrupt | 
 | 74 | 		or packet. | 
 | 75 | 		* do not enable superflous interrupts (e.g. the | 
 | 76 | 		drivers relies on TxDone - TxIntr not needed) | 
 | 77 | 		* wait that the hardware has really stopped in close | 
 | 78 | 		and suspend. | 
 | 79 | 		* workaround for the (at least) gcc-2.95.1 compiler | 
 | 80 | 		problem. Also simplifies the code a bit. | 
 | 81 | 		* disable_irq() in tx_timeout - needed to protect | 
 | 82 | 		against rx interrupts. | 
 | 83 | 		* stop the nic before switching into silent rx mode | 
 | 84 | 		for wol (required according to docu). | 
 | 85 |  | 
 | 86 | 	version 1.0.10: | 
 | 87 | 		* use long for ee_addr (various) | 
 | 88 | 		* print pointers properly (DaveM) | 
 | 89 | 		* include asm/irq.h (?) | 
 | 90 |  | 
 | 91 | 	version 1.0.11: | 
 | 92 | 		* check and reset if PHY errors appear (Adrian Sun) | 
 | 93 | 		* WoL cleanup (Tim Hockin) | 
 | 94 | 		* Magic number cleanup (Tim Hockin) | 
 | 95 | 		* Don't reload EEPROM on every reset (Tim Hockin) | 
 | 96 | 		* Save and restore EEPROM state across reset (Tim Hockin) | 
 | 97 | 		* MDIO Cleanup (Tim Hockin) | 
 | 98 | 		* Reformat register offsets/bits (jgarzik) | 
 | 99 |  | 
 | 100 | 	version 1.0.12: | 
 | 101 | 		* ETHTOOL_* further support (Tim Hockin) | 
 | 102 |  | 
 | 103 | 	version 1.0.13: | 
 | 104 | 		* ETHTOOL_[G]EEPROM support (Tim Hockin) | 
 | 105 |  | 
 | 106 | 	version 1.0.13: | 
 | 107 | 		* crc cleanup (Matt Domsch <Matt_Domsch@dell.com>) | 
 | 108 |  | 
 | 109 | 	version 1.0.14: | 
 | 110 | 		* Cleanup some messages and autoneg in ethtool (Tim Hockin) | 
 | 111 |  | 
 | 112 | 	version 1.0.15: | 
 | 113 | 		* Get rid of cable_magic flag | 
 | 114 | 		* use new (National provided) solution for cable magic issue | 
 | 115 |  | 
 | 116 | 	version 1.0.16: | 
 | 117 | 		* call netdev_rx() for RxErrors (Manfred Spraul) | 
 | 118 | 		* formatting and cleanups | 
 | 119 | 		* change options and full_duplex arrays to be zero | 
 | 120 | 		  initialized | 
 | 121 | 		* enable only the WoL and PHY interrupts in wol mode | 
 | 122 |  | 
 | 123 | 	version 1.0.17: | 
 | 124 | 		* only do cable_magic on 83815 and early 83816 (Tim Hockin) | 
 | 125 | 		* create a function for rx refill (Manfred Spraul) | 
 | 126 | 		* combine drain_ring and init_ring (Manfred Spraul) | 
 | 127 | 		* oom handling (Manfred Spraul) | 
 | 128 | 		* hands_off instead of playing with netif_device_{de,a}ttach | 
 | 129 | 		  (Manfred Spraul) | 
 | 130 | 		* be sure to write the MAC back to the chip (Manfred Spraul) | 
 | 131 | 		* lengthen EEPROM timeout, and always warn about timeouts | 
 | 132 | 		  (Manfred Spraul) | 
 | 133 | 		* comments update (Manfred) | 
 | 134 | 		* do the right thing on a phy-reset (Manfred and Tim) | 
 | 135 |  | 
 | 136 | 	TODO: | 
 | 137 | 	* big endian support with CFG:BEM instead of cpu_to_le32 | 
 | 138 | 	* support for an external PHY | 
 | 139 | 	* NAPI | 
 | 140 | */ | 
 | 141 |  | 
 | 142 | #include <linux/config.h> | 
 | 143 | #include <linux/module.h> | 
 | 144 | #include <linux/kernel.h> | 
 | 145 | #include <linux/string.h> | 
 | 146 | #include <linux/timer.h> | 
 | 147 | #include <linux/errno.h> | 
 | 148 | #include <linux/ioport.h> | 
 | 149 | #include <linux/slab.h> | 
 | 150 | #include <linux/interrupt.h> | 
 | 151 | #include <linux/pci.h> | 
 | 152 | #include <linux/netdevice.h> | 
 | 153 | #include <linux/etherdevice.h> | 
 | 154 | #include <linux/skbuff.h> | 
 | 155 | #include <linux/init.h> | 
 | 156 | #include <linux/spinlock.h> | 
 | 157 | #include <linux/ethtool.h> | 
 | 158 | #include <linux/delay.h> | 
 | 159 | #include <linux/rtnetlink.h> | 
 | 160 | #include <linux/mii.h> | 
 | 161 | #include <linux/crc32.h> | 
 | 162 | #include <linux/bitops.h> | 
 | 163 | #include <asm/processor.h>	/* Processor type for cache alignment. */ | 
 | 164 | #include <asm/io.h> | 
 | 165 | #include <asm/irq.h> | 
 | 166 | #include <asm/uaccess.h> | 
 | 167 |  | 
 | 168 | #define DRV_NAME	"natsemi" | 
 | 169 | #define DRV_VERSION	"1.07+LK1.0.17" | 
 | 170 | #define DRV_RELDATE	"Sep 27, 2002" | 
 | 171 |  | 
 | 172 | #define RX_OFFSET	2 | 
 | 173 |  | 
 | 174 | /* Updated to recommendations in pci-skeleton v2.03. */ | 
 | 175 |  | 
 | 176 | /* The user-configurable values. | 
 | 177 |    These may be modified when a driver module is loaded.*/ | 
 | 178 |  | 
 | 179 | #define NATSEMI_DEF_MSG		(NETIF_MSG_DRV		| \ | 
 | 180 | 				 NETIF_MSG_LINK		| \ | 
 | 181 | 				 NETIF_MSG_WOL		| \ | 
 | 182 | 				 NETIF_MSG_RX_ERR	| \ | 
 | 183 | 				 NETIF_MSG_TX_ERR) | 
 | 184 | static int debug = -1; | 
 | 185 |  | 
 | 186 | /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ | 
 | 187 | static int max_interrupt_work = 20; | 
 | 188 | static int mtu; | 
 | 189 |  | 
 | 190 | /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). | 
 | 191 |    This chip uses a 512 element hash table based on the Ethernet CRC.  */ | 
 | 192 | static int multicast_filter_limit = 100; | 
 | 193 |  | 
 | 194 | /* Set the copy breakpoint for the copy-only-tiny-frames scheme. | 
 | 195 |    Setting to > 1518 effectively disables this feature. */ | 
 | 196 | static int rx_copybreak; | 
 | 197 |  | 
 | 198 | /* Used to pass the media type, etc. | 
 | 199 |    Both 'options[]' and 'full_duplex[]' should exist for driver | 
 | 200 |    interoperability. | 
 | 201 |    The media type is usually passed in 'options[]'. | 
 | 202 | */ | 
 | 203 | #define MAX_UNITS 8		/* More are supported, limit only on options */ | 
 | 204 | static int options[MAX_UNITS]; | 
 | 205 | static int full_duplex[MAX_UNITS]; | 
 | 206 |  | 
 | 207 | /* Operational parameters that are set at compile time. */ | 
 | 208 |  | 
 | 209 | /* Keep the ring sizes a power of two for compile efficiency. | 
 | 210 |    The compiler will convert <unsigned>'%'<2^N> into a bit mask. | 
 | 211 |    Making the Tx ring too large decreases the effectiveness of channel | 
 | 212 |    bonding and packet priority. | 
 | 213 |    There are no ill effects from too-large receive rings. */ | 
 | 214 | #define TX_RING_SIZE	16 | 
 | 215 | #define TX_QUEUE_LEN	10 /* Limit ring entries actually used, min 4. */ | 
 | 216 | #define RX_RING_SIZE	32 | 
 | 217 |  | 
 | 218 | /* Operational parameters that usually are not changed. */ | 
 | 219 | /* Time in jiffies before concluding the transmitter is hung. */ | 
 | 220 | #define TX_TIMEOUT  (2*HZ) | 
 | 221 |  | 
 | 222 | #define NATSEMI_HW_TIMEOUT	400 | 
 | 223 | #define NATSEMI_TIMER_FREQ	3*HZ | 
 | 224 | #define NATSEMI_PG0_NREGS	64 | 
 | 225 | #define NATSEMI_RFDR_NREGS	8 | 
 | 226 | #define NATSEMI_PG1_NREGS	4 | 
 | 227 | #define NATSEMI_NREGS		(NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \ | 
 | 228 | 				 NATSEMI_PG1_NREGS) | 
 | 229 | #define NATSEMI_REGS_VER	1 /* v1 added RFDR registers */ | 
 | 230 | #define NATSEMI_REGS_SIZE	(NATSEMI_NREGS * sizeof(u32)) | 
 | 231 | #define NATSEMI_EEPROM_SIZE	24 /* 12 16-bit values */ | 
 | 232 |  | 
 | 233 | /* Buffer sizes: | 
 | 234 |  * The nic writes 32-bit values, even if the upper bytes of | 
 | 235 |  * a 32-bit value are beyond the end of the buffer. | 
 | 236 |  */ | 
 | 237 | #define NATSEMI_HEADERS		22	/* 2*mac,type,vlan,crc */ | 
 | 238 | #define NATSEMI_PADDING		16	/* 2 bytes should be sufficient */ | 
 | 239 | #define NATSEMI_LONGPKT		1518	/* limit for normal packets */ | 
 | 240 | #define NATSEMI_RX_LIMIT	2046	/* maximum supported by hardware */ | 
 | 241 |  | 
 | 242 | /* These identify the driver base version and may not be removed. */ | 
 | 243 | static char version[] __devinitdata = | 
 | 244 |   KERN_INFO DRV_NAME " dp8381x driver, version " | 
 | 245 |       DRV_VERSION ", " DRV_RELDATE "\n" | 
 | 246 |   KERN_INFO "  originally by Donald Becker <becker@scyld.com>\n" | 
 | 247 |   KERN_INFO "  http://www.scyld.com/network/natsemi.html\n" | 
 | 248 |   KERN_INFO "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n"; | 
 | 249 |  | 
 | 250 | MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); | 
 | 251 | MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver"); | 
 | 252 | MODULE_LICENSE("GPL"); | 
 | 253 |  | 
 | 254 | module_param(max_interrupt_work, int, 0); | 
 | 255 | module_param(mtu, int, 0); | 
 | 256 | module_param(debug, int, 0); | 
 | 257 | module_param(rx_copybreak, int, 0); | 
 | 258 | module_param_array(options, int, NULL, 0); | 
 | 259 | module_param_array(full_duplex, int, NULL, 0); | 
 | 260 | MODULE_PARM_DESC(max_interrupt_work,  | 
 | 261 | 	"DP8381x maximum events handled per interrupt"); | 
 | 262 | MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)"); | 
 | 263 | MODULE_PARM_DESC(debug, "DP8381x default debug level"); | 
 | 264 | MODULE_PARM_DESC(rx_copybreak,  | 
 | 265 | 	"DP8381x copy breakpoint for copy-only-tiny-frames"); | 
 | 266 | MODULE_PARM_DESC(options,  | 
 | 267 | 	"DP8381x: Bits 0-3: media type, bit 17: full duplex"); | 
 | 268 | MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)"); | 
 | 269 |  | 
 | 270 | /* | 
 | 271 | 				Theory of Operation | 
 | 272 |  | 
 | 273 | I. Board Compatibility | 
 | 274 |  | 
 | 275 | This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC. | 
 | 276 | It also works with other chips in in the DP83810 series. | 
 | 277 |  | 
 | 278 | II. Board-specific settings | 
 | 279 |  | 
 | 280 | This driver requires the PCI interrupt line to be valid. | 
 | 281 | It honors the EEPROM-set values. | 
 | 282 |  | 
 | 283 | III. Driver operation | 
 | 284 |  | 
 | 285 | IIIa. Ring buffers | 
 | 286 |  | 
 | 287 | This driver uses two statically allocated fixed-size descriptor lists | 
 | 288 | formed into rings by a branch from the final descriptor to the beginning of | 
 | 289 | the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE. | 
 | 290 | The NatSemi design uses a 'next descriptor' pointer that the driver forms | 
 | 291 | into a list. | 
 | 292 |  | 
 | 293 | IIIb/c. Transmit/Receive Structure | 
 | 294 |  | 
 | 295 | This driver uses a zero-copy receive and transmit scheme. | 
 | 296 | The driver allocates full frame size skbuffs for the Rx ring buffers at | 
 | 297 | open() time and passes the skb->data field to the chip as receive data | 
 | 298 | buffers.  When an incoming frame is less than RX_COPYBREAK bytes long, | 
 | 299 | a fresh skbuff is allocated and the frame is copied to the new skbuff. | 
 | 300 | When the incoming frame is larger, the skbuff is passed directly up the | 
 | 301 | protocol stack.  Buffers consumed this way are replaced by newly allocated | 
 | 302 | skbuffs in a later phase of receives. | 
 | 303 |  | 
 | 304 | The RX_COPYBREAK value is chosen to trade-off the memory wasted by | 
 | 305 | using a full-sized skbuff for small frames vs. the copying costs of larger | 
 | 306 | frames.  New boards are typically used in generously configured machines | 
 | 307 | and the underfilled buffers have negligible impact compared to the benefit of | 
 | 308 | a single allocation size, so the default value of zero results in never | 
 | 309 | copying packets.  When copying is done, the cost is usually mitigated by using | 
 | 310 | a combined copy/checksum routine.  Copying also preloads the cache, which is | 
 | 311 | most useful with small frames. | 
 | 312 |  | 
 | 313 | A subtle aspect of the operation is that unaligned buffers are not permitted | 
 | 314 | by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't | 
 | 315 | longword aligned for further processing.  On copies frames are put into the | 
 | 316 | skbuff at an offset of "+2", 16-byte aligning the IP header. | 
 | 317 |  | 
 | 318 | IIId. Synchronization | 
 | 319 |  | 
 | 320 | Most operations are synchronized on the np->lock irq spinlock, except the | 
 | 321 | performance critical codepaths: | 
 | 322 |  | 
 | 323 | The rx process only runs in the interrupt handler. Access from outside | 
 | 324 | the interrupt handler is only permitted after disable_irq(). | 
 | 325 |  | 
 | 326 | The rx process usually runs under the dev->xmit_lock. If np->intr_tx_reap | 
 | 327 | is set, then access is permitted under spin_lock_irq(&np->lock). | 
 | 328 |  | 
 | 329 | Thus configuration functions that want to access everything must call | 
 | 330 | 	disable_irq(dev->irq); | 
 | 331 | 	spin_lock_bh(dev->xmit_lock); | 
 | 332 | 	spin_lock_irq(&np->lock); | 
 | 333 |  | 
 | 334 | IV. Notes | 
 | 335 |  | 
 | 336 | NatSemi PCI network controllers are very uncommon. | 
 | 337 |  | 
 | 338 | IVb. References | 
 | 339 |  | 
 | 340 | http://www.scyld.com/expert/100mbps.html | 
 | 341 | http://www.scyld.com/expert/NWay.html | 
 | 342 | Datasheet is available from: | 
 | 343 | http://www.national.com/pf/DP/DP83815.html | 
 | 344 |  | 
 | 345 | IVc. Errata | 
 | 346 |  | 
 | 347 | None characterised. | 
 | 348 | */ | 
 | 349 |  | 
 | 350 |  | 
 | 351 |  | 
 | 352 | enum pcistuff { | 
 | 353 | 	PCI_USES_IO = 0x01, | 
 | 354 | 	PCI_USES_MEM = 0x02, | 
 | 355 | 	PCI_USES_MASTER = 0x04, | 
 | 356 | 	PCI_ADDR0 = 0x08, | 
 | 357 | 	PCI_ADDR1 = 0x10, | 
 | 358 | }; | 
 | 359 |  | 
 | 360 | /* MMIO operations required */ | 
 | 361 | #define PCI_IOTYPE (PCI_USES_MASTER | PCI_USES_MEM | PCI_ADDR1) | 
 | 362 |  | 
 | 363 |  | 
 | 364 | /* | 
 | 365 |  * Support for fibre connections on Am79C874: | 
 | 366 |  * This phy needs a special setup when connected to a fibre cable. | 
 | 367 |  * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf | 
 | 368 |  */ | 
 | 369 | #define PHYID_AM79C874	0x0022561b | 
 | 370 |  | 
 | 371 | #define MII_MCTRL	0x15	/* mode control register */ | 
 | 372 | #define MII_FX_SEL	0x0001	/* 100BASE-FX (fiber) */ | 
 | 373 | #define MII_EN_SCRM	0x0004	/* enable scrambler (tp) */ | 
 | 374 |  | 
 | 375 |   | 
 | 376 | /* array of board data directly indexed by pci_tbl[x].driver_data */ | 
 | 377 | static struct { | 
 | 378 | 	const char *name; | 
 | 379 | 	unsigned long flags; | 
 | 380 | } natsemi_pci_info[] __devinitdata = { | 
 | 381 | 	{ "NatSemi DP8381[56]", PCI_IOTYPE }, | 
 | 382 | }; | 
 | 383 |  | 
 | 384 | static struct pci_device_id natsemi_pci_tbl[] = { | 
 | 385 | 	{ PCI_VENDOR_ID_NS, PCI_DEVICE_ID_NS_83815, PCI_ANY_ID, PCI_ANY_ID, }, | 
 | 386 | 	{ 0, }, | 
 | 387 | }; | 
 | 388 | MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl); | 
 | 389 |  | 
 | 390 | /* Offsets to the device registers. | 
 | 391 |    Unlike software-only systems, device drivers interact with complex hardware. | 
 | 392 |    It's not useful to define symbolic names for every register bit in the | 
 | 393 |    device. | 
 | 394 | */ | 
 | 395 | enum register_offsets { | 
 | 396 | 	ChipCmd			= 0x00, | 
 | 397 | 	ChipConfig		= 0x04, | 
 | 398 | 	EECtrl			= 0x08, | 
 | 399 | 	PCIBusCfg		= 0x0C, | 
 | 400 | 	IntrStatus		= 0x10, | 
 | 401 | 	IntrMask		= 0x14, | 
 | 402 | 	IntrEnable		= 0x18, | 
 | 403 | 	IntrHoldoff		= 0x1C, /* DP83816 only */ | 
 | 404 | 	TxRingPtr		= 0x20, | 
 | 405 | 	TxConfig		= 0x24, | 
 | 406 | 	RxRingPtr		= 0x30, | 
 | 407 | 	RxConfig		= 0x34, | 
 | 408 | 	ClkRun			= 0x3C, | 
 | 409 | 	WOLCmd			= 0x40, | 
 | 410 | 	PauseCmd		= 0x44, | 
 | 411 | 	RxFilterAddr		= 0x48, | 
 | 412 | 	RxFilterData		= 0x4C, | 
 | 413 | 	BootRomAddr		= 0x50, | 
 | 414 | 	BootRomData		= 0x54, | 
 | 415 | 	SiliconRev		= 0x58, | 
 | 416 | 	StatsCtrl		= 0x5C, | 
 | 417 | 	StatsData		= 0x60, | 
 | 418 | 	RxPktErrs		= 0x60, | 
 | 419 | 	RxMissed		= 0x68, | 
 | 420 | 	RxCRCErrs		= 0x64, | 
 | 421 | 	BasicControl		= 0x80, | 
 | 422 | 	BasicStatus		= 0x84, | 
 | 423 | 	AnegAdv			= 0x90, | 
 | 424 | 	AnegPeer		= 0x94, | 
 | 425 | 	PhyStatus		= 0xC0, | 
 | 426 | 	MIntrCtrl		= 0xC4, | 
 | 427 | 	MIntrStatus		= 0xC8, | 
 | 428 | 	PhyCtrl			= 0xE4, | 
 | 429 |  | 
 | 430 | 	/* These are from the spec, around page 78... on a separate table. | 
 | 431 | 	 * The meaning of these registers depend on the value of PGSEL. */ | 
 | 432 | 	PGSEL			= 0xCC, | 
 | 433 | 	PMDCSR			= 0xE4, | 
 | 434 | 	TSTDAT			= 0xFC, | 
 | 435 | 	DSPCFG			= 0xF4, | 
 | 436 | 	SDCFG			= 0xF8 | 
 | 437 | }; | 
 | 438 | /* the values for the 'magic' registers above (PGSEL=1) */ | 
 | 439 | #define PMDCSR_VAL	0x189c	/* enable preferred adaptation circuitry */ | 
 | 440 | #define TSTDAT_VAL	0x0 | 
 | 441 | #define DSPCFG_VAL	0x5040 | 
 | 442 | #define SDCFG_VAL	0x008c	/* set voltage thresholds for Signal Detect */ | 
 | 443 | #define DSPCFG_LOCK	0x20	/* coefficient lock bit in DSPCFG */ | 
 | 444 | #define DSPCFG_COEF	0x1000	/* see coefficient (in TSTDAT) bit in DSPCFG */ | 
 | 445 | #define TSTDAT_FIXED	0xe8	/* magic number for bad coefficients */ | 
 | 446 |  | 
 | 447 | /* misc PCI space registers */ | 
 | 448 | enum pci_register_offsets { | 
 | 449 | 	PCIPM			= 0x44, | 
 | 450 | }; | 
 | 451 |  | 
 | 452 | enum ChipCmd_bits { | 
 | 453 | 	ChipReset		= 0x100, | 
 | 454 | 	RxReset			= 0x20, | 
 | 455 | 	TxReset			= 0x10, | 
 | 456 | 	RxOff			= 0x08, | 
 | 457 | 	RxOn			= 0x04, | 
 | 458 | 	TxOff			= 0x02, | 
 | 459 | 	TxOn			= 0x01, | 
 | 460 | }; | 
 | 461 |  | 
 | 462 | enum ChipConfig_bits { | 
 | 463 | 	CfgPhyDis		= 0x200, | 
 | 464 | 	CfgPhyRst		= 0x400, | 
 | 465 | 	CfgExtPhy		= 0x1000, | 
 | 466 | 	CfgAnegEnable		= 0x2000, | 
 | 467 | 	CfgAneg100		= 0x4000, | 
 | 468 | 	CfgAnegFull		= 0x8000, | 
 | 469 | 	CfgAnegDone		= 0x8000000, | 
 | 470 | 	CfgFullDuplex		= 0x20000000, | 
 | 471 | 	CfgSpeed100		= 0x40000000, | 
 | 472 | 	CfgLink			= 0x80000000, | 
 | 473 | }; | 
 | 474 |  | 
 | 475 | enum EECtrl_bits { | 
 | 476 | 	EE_ShiftClk		= 0x04, | 
 | 477 | 	EE_DataIn		= 0x01, | 
 | 478 | 	EE_ChipSelect		= 0x08, | 
 | 479 | 	EE_DataOut		= 0x02, | 
 | 480 | 	MII_Data 		= 0x10, | 
 | 481 | 	MII_Write		= 0x20, | 
 | 482 | 	MII_ShiftClk		= 0x40, | 
 | 483 | }; | 
 | 484 |  | 
 | 485 | enum PCIBusCfg_bits { | 
 | 486 | 	EepromReload		= 0x4, | 
 | 487 | }; | 
 | 488 |  | 
 | 489 | /* Bits in the interrupt status/mask registers. */ | 
 | 490 | enum IntrStatus_bits { | 
 | 491 | 	IntrRxDone		= 0x0001, | 
 | 492 | 	IntrRxIntr		= 0x0002, | 
 | 493 | 	IntrRxErr		= 0x0004, | 
 | 494 | 	IntrRxEarly		= 0x0008, | 
 | 495 | 	IntrRxIdle		= 0x0010, | 
 | 496 | 	IntrRxOverrun		= 0x0020, | 
 | 497 | 	IntrTxDone		= 0x0040, | 
 | 498 | 	IntrTxIntr		= 0x0080, | 
 | 499 | 	IntrTxErr		= 0x0100, | 
 | 500 | 	IntrTxIdle		= 0x0200, | 
 | 501 | 	IntrTxUnderrun		= 0x0400, | 
 | 502 | 	StatsMax		= 0x0800, | 
 | 503 | 	SWInt			= 0x1000, | 
 | 504 | 	WOLPkt			= 0x2000, | 
 | 505 | 	LinkChange		= 0x4000, | 
 | 506 | 	IntrHighBits		= 0x8000, | 
 | 507 | 	RxStatusFIFOOver	= 0x10000, | 
 | 508 | 	IntrPCIErr		= 0xf00000, | 
 | 509 | 	RxResetDone		= 0x1000000, | 
 | 510 | 	TxResetDone		= 0x2000000, | 
 | 511 | 	IntrAbnormalSummary	= 0xCD20, | 
 | 512 | }; | 
 | 513 |  | 
 | 514 | /* | 
 | 515 |  * Default Interrupts: | 
 | 516 |  * Rx OK, Rx Packet Error, Rx Overrun, | 
 | 517 |  * Tx OK, Tx Packet Error, Tx Underrun, | 
 | 518 |  * MIB Service, Phy Interrupt, High Bits, | 
 | 519 |  * Rx Status FIFO overrun, | 
 | 520 |  * Received Target Abort, Received Master Abort, | 
 | 521 |  * Signalled System Error, Received Parity Error | 
 | 522 |  */ | 
 | 523 | #define DEFAULT_INTR 0x00f1cd65 | 
 | 524 |  | 
 | 525 | enum TxConfig_bits { | 
 | 526 | 	TxDrthMask		= 0x3f, | 
 | 527 | 	TxFlthMask		= 0x3f00, | 
 | 528 | 	TxMxdmaMask		= 0x700000, | 
 | 529 | 	TxMxdma_512		= 0x0, | 
 | 530 | 	TxMxdma_4		= 0x100000, | 
 | 531 | 	TxMxdma_8		= 0x200000, | 
 | 532 | 	TxMxdma_16		= 0x300000, | 
 | 533 | 	TxMxdma_32		= 0x400000, | 
 | 534 | 	TxMxdma_64		= 0x500000, | 
 | 535 | 	TxMxdma_128		= 0x600000, | 
 | 536 | 	TxMxdma_256		= 0x700000, | 
 | 537 | 	TxCollRetry		= 0x800000, | 
 | 538 | 	TxAutoPad		= 0x10000000, | 
 | 539 | 	TxMacLoop		= 0x20000000, | 
 | 540 | 	TxHeartIgn		= 0x40000000, | 
 | 541 | 	TxCarrierIgn		= 0x80000000 | 
 | 542 | }; | 
 | 543 |  | 
 | 544 | /*  | 
 | 545 |  * Tx Configuration: | 
 | 546 |  * - 256 byte DMA burst length | 
 | 547 |  * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free) | 
 | 548 |  * - 64 bytes initial drain threshold (i.e. begin actual transmission | 
 | 549 |  *   when 64 byte are in the fifo) | 
 | 550 |  * - on tx underruns, increase drain threshold by 64. | 
 | 551 |  * - at most use a drain threshold of 1472 bytes: The sum of the fill | 
 | 552 |  *   threshold and the drain threshold must be less than 2016 bytes. | 
 | 553 |  * | 
 | 554 |  */ | 
 | 555 | #define TX_FLTH_VAL		((512/32) << 8) | 
 | 556 | #define TX_DRTH_VAL_START	(64/32) | 
 | 557 | #define TX_DRTH_VAL_INC		2 | 
 | 558 | #define TX_DRTH_VAL_LIMIT	(1472/32) | 
 | 559 |  | 
 | 560 | enum RxConfig_bits { | 
 | 561 | 	RxDrthMask		= 0x3e, | 
 | 562 | 	RxMxdmaMask		= 0x700000, | 
 | 563 | 	RxMxdma_512		= 0x0, | 
 | 564 | 	RxMxdma_4		= 0x100000, | 
 | 565 | 	RxMxdma_8		= 0x200000, | 
 | 566 | 	RxMxdma_16		= 0x300000, | 
 | 567 | 	RxMxdma_32		= 0x400000, | 
 | 568 | 	RxMxdma_64		= 0x500000, | 
 | 569 | 	RxMxdma_128		= 0x600000, | 
 | 570 | 	RxMxdma_256		= 0x700000, | 
 | 571 | 	RxAcceptLong		= 0x8000000, | 
 | 572 | 	RxAcceptTx		= 0x10000000, | 
 | 573 | 	RxAcceptRunt		= 0x40000000, | 
 | 574 | 	RxAcceptErr		= 0x80000000 | 
 | 575 | }; | 
 | 576 | #define RX_DRTH_VAL		(128/8) | 
 | 577 |  | 
 | 578 | enum ClkRun_bits { | 
 | 579 | 	PMEEnable		= 0x100, | 
 | 580 | 	PMEStatus		= 0x8000, | 
 | 581 | }; | 
 | 582 |  | 
 | 583 | enum WolCmd_bits { | 
 | 584 | 	WakePhy			= 0x1, | 
 | 585 | 	WakeUnicast		= 0x2, | 
 | 586 | 	WakeMulticast		= 0x4, | 
 | 587 | 	WakeBroadcast		= 0x8, | 
 | 588 | 	WakeArp			= 0x10, | 
 | 589 | 	WakePMatch0		= 0x20, | 
 | 590 | 	WakePMatch1		= 0x40, | 
 | 591 | 	WakePMatch2		= 0x80, | 
 | 592 | 	WakePMatch3		= 0x100, | 
 | 593 | 	WakeMagic		= 0x200, | 
 | 594 | 	WakeMagicSecure		= 0x400, | 
 | 595 | 	SecureHack		= 0x100000, | 
 | 596 | 	WokePhy			= 0x400000, | 
 | 597 | 	WokeUnicast		= 0x800000, | 
 | 598 | 	WokeMulticast		= 0x1000000, | 
 | 599 | 	WokeBroadcast		= 0x2000000, | 
 | 600 | 	WokeArp			= 0x4000000, | 
 | 601 | 	WokePMatch0		= 0x8000000, | 
 | 602 | 	WokePMatch1		= 0x10000000, | 
 | 603 | 	WokePMatch2		= 0x20000000, | 
 | 604 | 	WokePMatch3		= 0x40000000, | 
 | 605 | 	WokeMagic		= 0x80000000, | 
 | 606 | 	WakeOptsSummary		= 0x7ff | 
 | 607 | }; | 
 | 608 |  | 
 | 609 | enum RxFilterAddr_bits { | 
 | 610 | 	RFCRAddressMask		= 0x3ff, | 
 | 611 | 	AcceptMulticast		= 0x00200000, | 
 | 612 | 	AcceptMyPhys		= 0x08000000, | 
 | 613 | 	AcceptAllPhys		= 0x10000000, | 
 | 614 | 	AcceptAllMulticast	= 0x20000000, | 
 | 615 | 	AcceptBroadcast		= 0x40000000, | 
 | 616 | 	RxFilterEnable		= 0x80000000 | 
 | 617 | }; | 
 | 618 |  | 
 | 619 | enum StatsCtrl_bits { | 
 | 620 | 	StatsWarn		= 0x1, | 
 | 621 | 	StatsFreeze		= 0x2, | 
 | 622 | 	StatsClear		= 0x4, | 
 | 623 | 	StatsStrobe		= 0x8, | 
 | 624 | }; | 
 | 625 |  | 
 | 626 | enum MIntrCtrl_bits { | 
 | 627 | 	MICRIntEn		= 0x2, | 
 | 628 | }; | 
 | 629 |  | 
 | 630 | enum PhyCtrl_bits { | 
 | 631 | 	PhyAddrMask		= 0x1f, | 
 | 632 | }; | 
 | 633 |  | 
 | 634 | #define PHY_ADDR_NONE		32 | 
 | 635 | #define PHY_ADDR_INTERNAL	1 | 
 | 636 |  | 
 | 637 | /* values we might find in the silicon revision register */ | 
 | 638 | #define SRR_DP83815_C	0x0302 | 
 | 639 | #define SRR_DP83815_D	0x0403 | 
 | 640 | #define SRR_DP83816_A4	0x0504 | 
 | 641 | #define SRR_DP83816_A5	0x0505 | 
 | 642 |  | 
 | 643 | /* The Rx and Tx buffer descriptors. */ | 
 | 644 | /* Note that using only 32 bit fields simplifies conversion to big-endian | 
 | 645 |    architectures. */ | 
 | 646 | struct netdev_desc { | 
 | 647 | 	u32 next_desc; | 
 | 648 | 	s32 cmd_status; | 
 | 649 | 	u32 addr; | 
 | 650 | 	u32 software_use; | 
 | 651 | }; | 
 | 652 |  | 
 | 653 | /* Bits in network_desc.status */ | 
 | 654 | enum desc_status_bits { | 
 | 655 | 	DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000, | 
 | 656 | 	DescNoCRC=0x10000000, DescPktOK=0x08000000, | 
 | 657 | 	DescSizeMask=0xfff, | 
 | 658 |  | 
 | 659 | 	DescTxAbort=0x04000000, DescTxFIFO=0x02000000, | 
 | 660 | 	DescTxCarrier=0x01000000, DescTxDefer=0x00800000, | 
 | 661 | 	DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000, | 
 | 662 | 	DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000, | 
 | 663 |  | 
 | 664 | 	DescRxAbort=0x04000000, DescRxOver=0x02000000, | 
 | 665 | 	DescRxDest=0x01800000, DescRxLong=0x00400000, | 
 | 666 | 	DescRxRunt=0x00200000, DescRxInvalid=0x00100000, | 
 | 667 | 	DescRxCRC=0x00080000, DescRxAlign=0x00040000, | 
 | 668 | 	DescRxLoop=0x00020000, DesRxColl=0x00010000, | 
 | 669 | }; | 
 | 670 |  | 
 | 671 | struct netdev_private { | 
 | 672 | 	/* Descriptor rings first for alignment */ | 
 | 673 | 	dma_addr_t ring_dma; | 
 | 674 | 	struct netdev_desc *rx_ring; | 
 | 675 | 	struct netdev_desc *tx_ring; | 
 | 676 | 	/* The addresses of receive-in-place skbuffs */ | 
 | 677 | 	struct sk_buff *rx_skbuff[RX_RING_SIZE]; | 
 | 678 | 	dma_addr_t rx_dma[RX_RING_SIZE]; | 
 | 679 | 	/* address of a sent-in-place packet/buffer, for later free() */ | 
 | 680 | 	struct sk_buff *tx_skbuff[TX_RING_SIZE]; | 
 | 681 | 	dma_addr_t tx_dma[TX_RING_SIZE]; | 
 | 682 | 	struct net_device_stats stats; | 
 | 683 | 	/* Media monitoring timer */ | 
 | 684 | 	struct timer_list timer; | 
 | 685 | 	/* Frequently used values: keep some adjacent for cache effect */ | 
 | 686 | 	struct pci_dev *pci_dev; | 
 | 687 | 	struct netdev_desc *rx_head_desc; | 
 | 688 | 	/* Producer/consumer ring indices */ | 
 | 689 | 	unsigned int cur_rx, dirty_rx; | 
 | 690 | 	unsigned int cur_tx, dirty_tx; | 
 | 691 | 	/* Based on MTU+slack. */ | 
 | 692 | 	unsigned int rx_buf_sz; | 
 | 693 | 	int oom; | 
 | 694 | 	/* Do not touch the nic registers */ | 
 | 695 | 	int hands_off; | 
 | 696 | 	/* external phy that is used: only valid if dev->if_port != PORT_TP */ | 
 | 697 | 	int mii; | 
 | 698 | 	int phy_addr_external; | 
 | 699 | 	unsigned int full_duplex; | 
 | 700 | 	/* Rx filter */ | 
 | 701 | 	u32 cur_rx_mode; | 
 | 702 | 	u32 rx_filter[16]; | 
 | 703 | 	/* FIFO and PCI burst thresholds */ | 
 | 704 | 	u32 tx_config, rx_config; | 
 | 705 | 	/* original contents of ClkRun register */ | 
 | 706 | 	u32 SavedClkRun; | 
 | 707 | 	/* silicon revision */ | 
 | 708 | 	u32 srr; | 
 | 709 | 	/* expected DSPCFG value */ | 
 | 710 | 	u16 dspcfg; | 
 | 711 | 	/* parms saved in ethtool format */ | 
 | 712 | 	u16	speed;		/* The forced speed, 10Mb, 100Mb, gigabit */ | 
 | 713 | 	u8	duplex;		/* Duplex, half or full */ | 
 | 714 | 	u8	autoneg;	/* Autonegotiation enabled */ | 
 | 715 | 	/* MII transceiver section */ | 
 | 716 | 	u16 advertising; | 
 | 717 | 	unsigned int iosize; | 
 | 718 | 	spinlock_t lock; | 
 | 719 | 	u32 msg_enable; | 
 | 720 | }; | 
 | 721 |  | 
 | 722 | static void move_int_phy(struct net_device *dev, int addr); | 
 | 723 | static int eeprom_read(void __iomem *ioaddr, int location); | 
 | 724 | static int mdio_read(struct net_device *dev, int reg); | 
 | 725 | static void mdio_write(struct net_device *dev, int reg, u16 data); | 
 | 726 | static void init_phy_fixup(struct net_device *dev); | 
 | 727 | static int miiport_read(struct net_device *dev, int phy_id, int reg); | 
 | 728 | static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data); | 
 | 729 | static int find_mii(struct net_device *dev); | 
 | 730 | static void natsemi_reset(struct net_device *dev); | 
 | 731 | static void natsemi_reload_eeprom(struct net_device *dev); | 
 | 732 | static void natsemi_stop_rxtx(struct net_device *dev); | 
 | 733 | static int netdev_open(struct net_device *dev); | 
 | 734 | static void do_cable_magic(struct net_device *dev); | 
 | 735 | static void undo_cable_magic(struct net_device *dev); | 
 | 736 | static void check_link(struct net_device *dev); | 
 | 737 | static void netdev_timer(unsigned long data); | 
 | 738 | static void dump_ring(struct net_device *dev); | 
 | 739 | static void tx_timeout(struct net_device *dev); | 
 | 740 | static int alloc_ring(struct net_device *dev); | 
 | 741 | static void refill_rx(struct net_device *dev); | 
 | 742 | static void init_ring(struct net_device *dev); | 
 | 743 | static void drain_tx(struct net_device *dev); | 
 | 744 | static void drain_ring(struct net_device *dev); | 
 | 745 | static void free_ring(struct net_device *dev); | 
 | 746 | static void reinit_ring(struct net_device *dev); | 
 | 747 | static void init_registers(struct net_device *dev); | 
 | 748 | static int start_tx(struct sk_buff *skb, struct net_device *dev); | 
 | 749 | static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *regs); | 
 | 750 | static void netdev_error(struct net_device *dev, int intr_status); | 
 | 751 | static void netdev_rx(struct net_device *dev); | 
 | 752 | static void netdev_tx_done(struct net_device *dev); | 
 | 753 | static int natsemi_change_mtu(struct net_device *dev, int new_mtu); | 
 | 754 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 755 | static void natsemi_poll_controller(struct net_device *dev); | 
 | 756 | #endif | 
 | 757 | static void __set_rx_mode(struct net_device *dev); | 
 | 758 | static void set_rx_mode(struct net_device *dev); | 
 | 759 | static void __get_stats(struct net_device *dev); | 
 | 760 | static struct net_device_stats *get_stats(struct net_device *dev); | 
 | 761 | static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); | 
 | 762 | static int netdev_set_wol(struct net_device *dev, u32 newval); | 
 | 763 | static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur); | 
 | 764 | static int netdev_set_sopass(struct net_device *dev, u8 *newval); | 
 | 765 | static int netdev_get_sopass(struct net_device *dev, u8 *data); | 
 | 766 | static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd); | 
 | 767 | static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd); | 
 | 768 | static void enable_wol_mode(struct net_device *dev, int enable_intr); | 
 | 769 | static int netdev_close(struct net_device *dev); | 
 | 770 | static int netdev_get_regs(struct net_device *dev, u8 *buf); | 
 | 771 | static int netdev_get_eeprom(struct net_device *dev, u8 *buf); | 
 | 772 | static struct ethtool_ops ethtool_ops; | 
 | 773 |  | 
 | 774 | static inline void __iomem *ns_ioaddr(struct net_device *dev) | 
 | 775 | { | 
 | 776 | 	return (void __iomem *) dev->base_addr; | 
 | 777 | } | 
 | 778 |  | 
 | 779 | static void move_int_phy(struct net_device *dev, int addr) | 
 | 780 | { | 
 | 781 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 782 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 783 | 	int target = 31; | 
 | 784 |  | 
 | 785 | 	/*  | 
 | 786 | 	 * The internal phy is visible on the external mii bus. Therefore we must | 
 | 787 | 	 * move it away before we can send commands to an external phy. | 
 | 788 | 	 * There are two addresses we must avoid: | 
 | 789 | 	 * - the address on the external phy that is used for transmission. | 
 | 790 | 	 * - the address that we want to access. User space can access phys | 
 | 791 | 	 *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independant from the | 
 | 792 | 	 *   phy that is used for transmission. | 
 | 793 | 	 */ | 
 | 794 |  | 
 | 795 | 	if (target == addr) | 
 | 796 | 		target--; | 
 | 797 | 	if (target == np->phy_addr_external) | 
 | 798 | 		target--; | 
 | 799 | 	writew(target, ioaddr + PhyCtrl); | 
 | 800 | 	readw(ioaddr + PhyCtrl); | 
 | 801 | 	udelay(1); | 
 | 802 | } | 
 | 803 |  | 
 | 804 | static int __devinit natsemi_probe1 (struct pci_dev *pdev, | 
 | 805 | 	const struct pci_device_id *ent) | 
 | 806 | { | 
 | 807 | 	struct net_device *dev; | 
 | 808 | 	struct netdev_private *np; | 
 | 809 | 	int i, option, irq, chip_idx = ent->driver_data; | 
 | 810 | 	static int find_cnt = -1; | 
 | 811 | 	unsigned long iostart, iosize; | 
 | 812 | 	void __iomem *ioaddr; | 
 | 813 | 	const int pcibar = 1; /* PCI base address register */ | 
 | 814 | 	int prev_eedata; | 
 | 815 | 	u32 tmp; | 
 | 816 |  | 
 | 817 | /* when built into the kernel, we only print version if device is found */ | 
 | 818 | #ifndef MODULE | 
 | 819 | 	static int printed_version; | 
 | 820 | 	if (!printed_version++) | 
 | 821 | 		printk(version); | 
 | 822 | #endif | 
 | 823 |  | 
 | 824 | 	i = pci_enable_device(pdev); | 
 | 825 | 	if (i) return i; | 
 | 826 |  | 
 | 827 | 	/* natsemi has a non-standard PM control register | 
 | 828 | 	 * in PCI config space.  Some boards apparently need | 
 | 829 | 	 * to be brought to D0 in this manner. | 
 | 830 | 	 */ | 
 | 831 | 	pci_read_config_dword(pdev, PCIPM, &tmp); | 
 | 832 | 	if (tmp & PCI_PM_CTRL_STATE_MASK) { | 
 | 833 | 		/* D0 state, disable PME assertion */ | 
 | 834 | 		u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK; | 
 | 835 | 		pci_write_config_dword(pdev, PCIPM, newtmp); | 
 | 836 | 	} | 
 | 837 |  | 
 | 838 | 	find_cnt++; | 
 | 839 | 	iostart = pci_resource_start(pdev, pcibar); | 
 | 840 | 	iosize = pci_resource_len(pdev, pcibar); | 
 | 841 | 	irq = pdev->irq; | 
 | 842 |  | 
 | 843 | 	if (natsemi_pci_info[chip_idx].flags & PCI_USES_MASTER) | 
 | 844 | 		pci_set_master(pdev); | 
 | 845 |  | 
 | 846 | 	dev = alloc_etherdev(sizeof (struct netdev_private)); | 
 | 847 | 	if (!dev) | 
 | 848 | 		return -ENOMEM; | 
 | 849 | 	SET_MODULE_OWNER(dev); | 
 | 850 | 	SET_NETDEV_DEV(dev, &pdev->dev); | 
 | 851 |  | 
 | 852 | 	i = pci_request_regions(pdev, DRV_NAME); | 
 | 853 | 	if (i) | 
 | 854 | 		goto err_pci_request_regions; | 
 | 855 |  | 
 | 856 | 	ioaddr = ioremap(iostart, iosize); | 
 | 857 | 	if (!ioaddr) { | 
 | 858 | 		i = -ENOMEM; | 
 | 859 | 		goto err_ioremap; | 
 | 860 | 	} | 
 | 861 |  | 
 | 862 | 	/* Work around the dropped serial bit. */ | 
 | 863 | 	prev_eedata = eeprom_read(ioaddr, 6); | 
 | 864 | 	for (i = 0; i < 3; i++) { | 
 | 865 | 		int eedata = eeprom_read(ioaddr, i + 7); | 
 | 866 | 		dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15); | 
 | 867 | 		dev->dev_addr[i*2+1] = eedata >> 7; | 
 | 868 | 		prev_eedata = eedata; | 
 | 869 | 	} | 
 | 870 |  | 
 | 871 | 	dev->base_addr = (unsigned long __force) ioaddr; | 
 | 872 | 	dev->irq = irq; | 
 | 873 |  | 
 | 874 | 	np = netdev_priv(dev); | 
 | 875 |  | 
 | 876 | 	np->pci_dev = pdev; | 
 | 877 | 	pci_set_drvdata(pdev, dev); | 
 | 878 | 	np->iosize = iosize; | 
 | 879 | 	spin_lock_init(&np->lock); | 
 | 880 | 	np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG; | 
 | 881 | 	np->hands_off = 0; | 
 | 882 |  | 
 | 883 | 	/* Initial port: | 
 | 884 | 	 * - If the nic was configured to use an external phy and if find_mii | 
 | 885 | 	 *   finds a phy: use external port, first phy that replies. | 
 | 886 | 	 * - Otherwise: internal port. | 
 | 887 | 	 * Note that the phy address for the internal phy doesn't matter: | 
 | 888 | 	 * The address would be used to access a phy over the mii bus, but | 
 | 889 | 	 * the internal phy is accessed through mapped registers. | 
 | 890 | 	 */ | 
 | 891 | 	if (readl(ioaddr + ChipConfig) & CfgExtPhy) | 
 | 892 | 		dev->if_port = PORT_MII; | 
 | 893 | 	else | 
 | 894 | 		dev->if_port = PORT_TP; | 
 | 895 | 	/* Reset the chip to erase previous misconfiguration. */ | 
 | 896 | 	natsemi_reload_eeprom(dev); | 
 | 897 | 	natsemi_reset(dev); | 
 | 898 |  | 
 | 899 | 	if (dev->if_port != PORT_TP) { | 
 | 900 | 		np->phy_addr_external = find_mii(dev); | 
 | 901 | 		if (np->phy_addr_external == PHY_ADDR_NONE) { | 
 | 902 | 			dev->if_port = PORT_TP; | 
 | 903 | 			np->phy_addr_external = PHY_ADDR_INTERNAL; | 
 | 904 | 		} | 
 | 905 | 	} else { | 
 | 906 | 		np->phy_addr_external = PHY_ADDR_INTERNAL; | 
 | 907 | 	} | 
 | 908 |  | 
 | 909 | 	option = find_cnt < MAX_UNITS ? options[find_cnt] : 0; | 
 | 910 | 	if (dev->mem_start) | 
 | 911 | 		option = dev->mem_start; | 
 | 912 |  | 
 | 913 | 	/* The lower four bits are the media type. */ | 
 | 914 | 	if (option) { | 
 | 915 | 		if (option & 0x200) | 
 | 916 | 			np->full_duplex = 1; | 
 | 917 | 		if (option & 15) | 
 | 918 | 			printk(KERN_INFO | 
 | 919 | 				"natsemi %s: ignoring user supplied media type %d", | 
 | 920 | 				pci_name(np->pci_dev), option & 15); | 
 | 921 | 	} | 
 | 922 | 	if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt]) | 
 | 923 | 		np->full_duplex = 1; | 
 | 924 |  | 
 | 925 | 	/* The chip-specific entries in the device structure. */ | 
 | 926 | 	dev->open = &netdev_open; | 
 | 927 | 	dev->hard_start_xmit = &start_tx; | 
 | 928 | 	dev->stop = &netdev_close; | 
 | 929 | 	dev->get_stats = &get_stats; | 
 | 930 | 	dev->set_multicast_list = &set_rx_mode; | 
 | 931 | 	dev->change_mtu = &natsemi_change_mtu; | 
 | 932 | 	dev->do_ioctl = &netdev_ioctl; | 
 | 933 | 	dev->tx_timeout = &tx_timeout; | 
 | 934 | 	dev->watchdog_timeo = TX_TIMEOUT; | 
 | 935 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 936 | 	dev->poll_controller = &natsemi_poll_controller; | 
 | 937 | #endif | 
 | 938 | 	SET_ETHTOOL_OPS(dev, ðtool_ops); | 
 | 939 |  | 
 | 940 | 	if (mtu) | 
 | 941 | 		dev->mtu = mtu; | 
 | 942 |  | 
 | 943 | 	netif_carrier_off(dev); | 
 | 944 |  | 
 | 945 | 	/* get the initial settings from hardware */ | 
 | 946 | 	tmp            = mdio_read(dev, MII_BMCR); | 
 | 947 | 	np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10; | 
 | 948 | 	np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF; | 
 | 949 | 	np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE; | 
 | 950 | 	np->advertising= mdio_read(dev, MII_ADVERTISE); | 
 | 951 |  | 
 | 952 | 	if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL | 
 | 953 | 	 && netif_msg_probe(np)) { | 
 | 954 | 		printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s " | 
 | 955 | 			"10%s %s duplex.\n", | 
 | 956 | 			pci_name(np->pci_dev), | 
 | 957 | 			(mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)? | 
 | 958 | 			  "enabled, advertise" : "disabled, force", | 
 | 959 | 			(np->advertising & | 
 | 960 | 			  (ADVERTISE_100FULL|ADVERTISE_100HALF))? | 
 | 961 | 			    "0" : "", | 
 | 962 | 			(np->advertising & | 
 | 963 | 			  (ADVERTISE_100FULL|ADVERTISE_10FULL))? | 
 | 964 | 			    "full" : "half"); | 
 | 965 | 	} | 
 | 966 | 	if (netif_msg_probe(np)) | 
 | 967 | 		printk(KERN_INFO | 
 | 968 | 			"natsemi %s: Transceiver status %#04x advertising %#04x.\n", | 
 | 969 | 			pci_name(np->pci_dev), mdio_read(dev, MII_BMSR), | 
 | 970 | 			np->advertising); | 
 | 971 |  | 
 | 972 | 	/* save the silicon revision for later querying */ | 
 | 973 | 	np->srr = readl(ioaddr + SiliconRev); | 
 | 974 | 	if (netif_msg_hw(np)) | 
 | 975 | 		printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n", | 
 | 976 | 				pci_name(np->pci_dev), np->srr); | 
 | 977 |  | 
 | 978 | 	i = register_netdev(dev); | 
 | 979 | 	if (i) | 
 | 980 | 		goto err_register_netdev; | 
 | 981 |  | 
 | 982 | 	if (netif_msg_drv(np)) { | 
 | 983 | 		printk(KERN_INFO "natsemi %s: %s at %#08lx (%s), ", | 
 | 984 | 			dev->name, natsemi_pci_info[chip_idx].name, iostart, | 
 | 985 | 			pci_name(np->pci_dev)); | 
 | 986 | 		for (i = 0; i < ETH_ALEN-1; i++) | 
 | 987 | 				printk("%02x:", dev->dev_addr[i]); | 
 | 988 | 		printk("%02x, IRQ %d", dev->dev_addr[i], irq); | 
 | 989 | 		if (dev->if_port == PORT_TP) | 
 | 990 | 			printk(", port TP.\n"); | 
 | 991 | 		else | 
 | 992 | 			printk(", port MII, phy ad %d.\n", np->phy_addr_external); | 
 | 993 | 	} | 
 | 994 | 	return 0; | 
 | 995 |  | 
 | 996 |  err_register_netdev: | 
 | 997 | 	iounmap(ioaddr); | 
 | 998 |  | 
 | 999 |  err_ioremap: | 
 | 1000 | 	pci_release_regions(pdev); | 
 | 1001 | 	pci_set_drvdata(pdev, NULL); | 
 | 1002 |  | 
 | 1003 |  err_pci_request_regions: | 
 | 1004 | 	free_netdev(dev); | 
 | 1005 | 	return i; | 
 | 1006 | } | 
 | 1007 |  | 
 | 1008 |  | 
 | 1009 | /* Read the EEPROM and MII Management Data I/O (MDIO) interfaces. | 
 | 1010 |    The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */ | 
 | 1011 |  | 
 | 1012 | /* Delay between EEPROM clock transitions. | 
 | 1013 |    No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need | 
 | 1014 |    a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that | 
 | 1015 |    made udelay() unreliable. | 
 | 1016 |    The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is | 
 | 1017 |    depricated. | 
 | 1018 | */ | 
 | 1019 | #define eeprom_delay(ee_addr)	readl(ee_addr) | 
 | 1020 |  | 
 | 1021 | #define EE_Write0 (EE_ChipSelect) | 
 | 1022 | #define EE_Write1 (EE_ChipSelect | EE_DataIn) | 
 | 1023 |  | 
 | 1024 | /* The EEPROM commands include the alway-set leading bit. */ | 
 | 1025 | enum EEPROM_Cmds { | 
 | 1026 | 	EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6), | 
 | 1027 | }; | 
 | 1028 |  | 
 | 1029 | static int eeprom_read(void __iomem *addr, int location) | 
 | 1030 | { | 
 | 1031 | 	int i; | 
 | 1032 | 	int retval = 0; | 
 | 1033 | 	void __iomem *ee_addr = addr + EECtrl; | 
 | 1034 | 	int read_cmd = location | EE_ReadCmd; | 
 | 1035 |  | 
 | 1036 | 	writel(EE_Write0, ee_addr); | 
 | 1037 |  | 
 | 1038 | 	/* Shift the read command bits out. */ | 
 | 1039 | 	for (i = 10; i >= 0; i--) { | 
 | 1040 | 		short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0; | 
 | 1041 | 		writel(dataval, ee_addr); | 
 | 1042 | 		eeprom_delay(ee_addr); | 
 | 1043 | 		writel(dataval | EE_ShiftClk, ee_addr); | 
 | 1044 | 		eeprom_delay(ee_addr); | 
 | 1045 | 	} | 
 | 1046 | 	writel(EE_ChipSelect, ee_addr); | 
 | 1047 | 	eeprom_delay(ee_addr); | 
 | 1048 |  | 
 | 1049 | 	for (i = 0; i < 16; i++) { | 
 | 1050 | 		writel(EE_ChipSelect | EE_ShiftClk, ee_addr); | 
 | 1051 | 		eeprom_delay(ee_addr); | 
 | 1052 | 		retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0; | 
 | 1053 | 		writel(EE_ChipSelect, ee_addr); | 
 | 1054 | 		eeprom_delay(ee_addr); | 
 | 1055 | 	} | 
 | 1056 |  | 
 | 1057 | 	/* Terminate the EEPROM access. */ | 
 | 1058 | 	writel(EE_Write0, ee_addr); | 
 | 1059 | 	writel(0, ee_addr); | 
 | 1060 | 	return retval; | 
 | 1061 | } | 
 | 1062 |  | 
 | 1063 | /* MII transceiver control section. | 
 | 1064 |  * The 83815 series has an internal transceiver, and we present the | 
 | 1065 |  * internal management registers as if they were MII connected. | 
 | 1066 |  * External Phy registers are referenced through the MII interface. | 
 | 1067 |  */ | 
 | 1068 |  | 
 | 1069 | /* clock transitions >= 20ns (25MHz) | 
 | 1070 |  * One readl should be good to PCI @ 100MHz | 
 | 1071 |  */ | 
 | 1072 | #define mii_delay(ioaddr)  readl(ioaddr + EECtrl) | 
 | 1073 |  | 
 | 1074 | static int mii_getbit (struct net_device *dev) | 
 | 1075 | { | 
 | 1076 | 	int data; | 
 | 1077 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1078 |  | 
 | 1079 | 	writel(MII_ShiftClk, ioaddr + EECtrl); | 
 | 1080 | 	data = readl(ioaddr + EECtrl); | 
 | 1081 | 	writel(0, ioaddr + EECtrl); | 
 | 1082 | 	mii_delay(ioaddr); | 
 | 1083 | 	return (data & MII_Data)? 1 : 0; | 
 | 1084 | } | 
 | 1085 |  | 
 | 1086 | static void mii_send_bits (struct net_device *dev, u32 data, int len) | 
 | 1087 | { | 
 | 1088 | 	u32 i; | 
 | 1089 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1090 |  | 
 | 1091 | 	for (i = (1 << (len-1)); i; i >>= 1) | 
 | 1092 | 	{ | 
 | 1093 | 		u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0); | 
 | 1094 | 		writel(mdio_val, ioaddr + EECtrl); | 
 | 1095 | 		mii_delay(ioaddr); | 
 | 1096 | 		writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl); | 
 | 1097 | 		mii_delay(ioaddr); | 
 | 1098 | 	} | 
 | 1099 | 	writel(0, ioaddr + EECtrl); | 
 | 1100 | 	mii_delay(ioaddr); | 
 | 1101 | } | 
 | 1102 |  | 
 | 1103 | static int miiport_read(struct net_device *dev, int phy_id, int reg) | 
 | 1104 | { | 
 | 1105 | 	u32 cmd; | 
 | 1106 | 	int i; | 
 | 1107 | 	u32 retval = 0; | 
 | 1108 |  | 
 | 1109 | 	/* Ensure sync */ | 
 | 1110 | 	mii_send_bits (dev, 0xffffffff, 32); | 
 | 1111 | 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ | 
 | 1112 | 	/* ST,OP = 0110'b for read operation */ | 
 | 1113 | 	cmd = (0x06 << 10) | (phy_id << 5) | reg; | 
 | 1114 | 	mii_send_bits (dev, cmd, 14); | 
 | 1115 | 	/* Turnaround */ | 
 | 1116 | 	if (mii_getbit (dev)) | 
 | 1117 | 		return 0; | 
 | 1118 | 	/* Read data */ | 
 | 1119 | 	for (i = 0; i < 16; i++) { | 
 | 1120 | 		retval <<= 1; | 
 | 1121 | 		retval |= mii_getbit (dev); | 
 | 1122 | 	} | 
 | 1123 | 	/* End cycle */ | 
 | 1124 | 	mii_getbit (dev); | 
 | 1125 | 	return retval; | 
 | 1126 | } | 
 | 1127 |  | 
 | 1128 | static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data) | 
 | 1129 | { | 
 | 1130 | 	u32 cmd; | 
 | 1131 |  | 
 | 1132 | 	/* Ensure sync */ | 
 | 1133 | 	mii_send_bits (dev, 0xffffffff, 32); | 
 | 1134 | 	/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */ | 
 | 1135 | 	/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */ | 
 | 1136 | 	cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data; | 
 | 1137 | 	mii_send_bits (dev, cmd, 32); | 
 | 1138 | 	/* End cycle */ | 
 | 1139 | 	mii_getbit (dev); | 
 | 1140 | } | 
 | 1141 |  | 
 | 1142 | static int mdio_read(struct net_device *dev, int reg) | 
 | 1143 | { | 
 | 1144 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1145 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1146 |  | 
 | 1147 | 	/* The 83815 series has two ports: | 
 | 1148 | 	 * - an internal transceiver | 
 | 1149 | 	 * - an external mii bus | 
 | 1150 | 	 */ | 
 | 1151 | 	if (dev->if_port == PORT_TP) | 
 | 1152 | 		return readw(ioaddr+BasicControl+(reg<<2)); | 
 | 1153 | 	else | 
 | 1154 | 		return miiport_read(dev, np->phy_addr_external, reg); | 
 | 1155 | } | 
 | 1156 |  | 
 | 1157 | static void mdio_write(struct net_device *dev, int reg, u16 data) | 
 | 1158 | { | 
 | 1159 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1160 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1161 |  | 
 | 1162 | 	/* The 83815 series has an internal transceiver; handle separately */ | 
 | 1163 | 	if (dev->if_port == PORT_TP) | 
 | 1164 | 		writew(data, ioaddr+BasicControl+(reg<<2)); | 
 | 1165 | 	else | 
 | 1166 | 		miiport_write(dev, np->phy_addr_external, reg, data); | 
 | 1167 | } | 
 | 1168 |  | 
 | 1169 | static void init_phy_fixup(struct net_device *dev) | 
 | 1170 | { | 
 | 1171 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1172 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1173 | 	int i; | 
 | 1174 | 	u32 cfg; | 
 | 1175 | 	u16 tmp; | 
 | 1176 |  | 
 | 1177 | 	/* restore stuff lost when power was out */ | 
 | 1178 | 	tmp = mdio_read(dev, MII_BMCR); | 
 | 1179 | 	if (np->autoneg == AUTONEG_ENABLE) { | 
 | 1180 | 		/* renegotiate if something changed */ | 
 | 1181 | 		if ((tmp & BMCR_ANENABLE) == 0 | 
 | 1182 | 		 || np->advertising != mdio_read(dev, MII_ADVERTISE)) | 
 | 1183 | 		{ | 
 | 1184 | 			/* turn on autonegotiation and force negotiation */ | 
 | 1185 | 			tmp |= (BMCR_ANENABLE | BMCR_ANRESTART); | 
 | 1186 | 			mdio_write(dev, MII_ADVERTISE, np->advertising); | 
 | 1187 | 		} | 
 | 1188 | 	} else { | 
 | 1189 | 		/* turn off auto negotiation, set speed and duplexity */ | 
 | 1190 | 		tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX); | 
 | 1191 | 		if (np->speed == SPEED_100) | 
 | 1192 | 			tmp |= BMCR_SPEED100; | 
 | 1193 | 		if (np->duplex == DUPLEX_FULL) | 
 | 1194 | 			tmp |= BMCR_FULLDPLX; | 
 | 1195 | 		/*  | 
 | 1196 | 		 * Note: there is no good way to inform the link partner | 
 | 1197 | 		 * that our capabilities changed. The user has to unplug | 
 | 1198 | 		 * and replug the network cable after some changes, e.g. | 
 | 1199 | 		 * after switching from 10HD, autoneg off to 100 HD, | 
 | 1200 | 		 * autoneg off. | 
 | 1201 | 		 */ | 
 | 1202 | 	} | 
 | 1203 | 	mdio_write(dev, MII_BMCR, tmp); | 
 | 1204 | 	readl(ioaddr + ChipConfig); | 
 | 1205 | 	udelay(1); | 
 | 1206 |  | 
 | 1207 | 	/* find out what phy this is */ | 
 | 1208 | 	np->mii = (mdio_read(dev, MII_PHYSID1) << 16) | 
 | 1209 | 				+ mdio_read(dev, MII_PHYSID2); | 
 | 1210 |  | 
 | 1211 | 	/* handle external phys here */ | 
 | 1212 | 	switch (np->mii) { | 
 | 1213 | 	case PHYID_AM79C874: | 
 | 1214 | 		/* phy specific configuration for fibre/tp operation */ | 
 | 1215 | 		tmp = mdio_read(dev, MII_MCTRL); | 
 | 1216 | 		tmp &= ~(MII_FX_SEL | MII_EN_SCRM); | 
 | 1217 | 		if (dev->if_port == PORT_FIBRE) | 
 | 1218 | 			tmp |= MII_FX_SEL; | 
 | 1219 | 		else | 
 | 1220 | 			tmp |= MII_EN_SCRM; | 
 | 1221 | 		mdio_write(dev, MII_MCTRL, tmp); | 
 | 1222 | 		break; | 
 | 1223 | 	default: | 
 | 1224 | 		break; | 
 | 1225 | 	} | 
 | 1226 | 	cfg = readl(ioaddr + ChipConfig); | 
 | 1227 | 	if (cfg & CfgExtPhy) | 
 | 1228 | 		return; | 
 | 1229 |  | 
 | 1230 | 	/* On page 78 of the spec, they recommend some settings for "optimum | 
 | 1231 | 	   performance" to be done in sequence.  These settings optimize some | 
 | 1232 | 	   of the 100Mbit autodetection circuitry.  They say we only want to | 
 | 1233 | 	   do this for rev C of the chip, but engineers at NSC (Bradley | 
 | 1234 | 	   Kennedy) recommends always setting them.  If you don't, you get | 
 | 1235 | 	   errors on some autonegotiations that make the device unusable. | 
 | 1236 |  | 
 | 1237 | 	   It seems that the DSP needs a few usec to reinitialize after | 
 | 1238 | 	   the start of the phy. Just retry writing these values until they | 
 | 1239 | 	   stick. | 
 | 1240 | 	*/ | 
 | 1241 | 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { | 
 | 1242 |  | 
 | 1243 | 		int dspcfg; | 
 | 1244 | 		writew(1, ioaddr + PGSEL); | 
 | 1245 | 		writew(PMDCSR_VAL, ioaddr + PMDCSR); | 
 | 1246 | 		writew(TSTDAT_VAL, ioaddr + TSTDAT); | 
 | 1247 | 		np->dspcfg = (np->srr <= SRR_DP83815_C)? | 
 | 1248 | 			DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG)); | 
 | 1249 | 		writew(np->dspcfg, ioaddr + DSPCFG); | 
 | 1250 | 		writew(SDCFG_VAL, ioaddr + SDCFG); | 
 | 1251 | 		writew(0, ioaddr + PGSEL); | 
 | 1252 | 		readl(ioaddr + ChipConfig); | 
 | 1253 | 		udelay(10); | 
 | 1254 |  | 
 | 1255 | 		writew(1, ioaddr + PGSEL); | 
 | 1256 | 		dspcfg = readw(ioaddr + DSPCFG); | 
 | 1257 | 		writew(0, ioaddr + PGSEL); | 
 | 1258 | 		if (np->dspcfg == dspcfg) | 
 | 1259 | 			break; | 
 | 1260 | 	} | 
 | 1261 |  | 
 | 1262 | 	if (netif_msg_link(np)) { | 
 | 1263 | 		if (i==NATSEMI_HW_TIMEOUT) { | 
 | 1264 | 			printk(KERN_INFO | 
 | 1265 | 				"%s: DSPCFG mismatch after retrying for %d usec.\n", | 
 | 1266 | 				dev->name, i*10); | 
 | 1267 | 		} else { | 
 | 1268 | 			printk(KERN_INFO | 
 | 1269 | 				"%s: DSPCFG accepted after %d usec.\n", | 
 | 1270 | 				dev->name, i*10); | 
 | 1271 | 		} | 
 | 1272 | 	} | 
 | 1273 | 	/* | 
 | 1274 | 	 * Enable PHY Specific event based interrupts.  Link state change | 
 | 1275 | 	 * and Auto-Negotiation Completion are among the affected. | 
 | 1276 | 	 * Read the intr status to clear it (needed for wake events). | 
 | 1277 | 	 */ | 
 | 1278 | 	readw(ioaddr + MIntrStatus); | 
 | 1279 | 	writew(MICRIntEn, ioaddr + MIntrCtrl); | 
 | 1280 | } | 
 | 1281 |  | 
 | 1282 | static int switch_port_external(struct net_device *dev) | 
 | 1283 | { | 
 | 1284 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1285 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1286 | 	u32 cfg; | 
 | 1287 |  | 
 | 1288 | 	cfg = readl(ioaddr + ChipConfig); | 
 | 1289 | 	if (cfg & CfgExtPhy) | 
 | 1290 | 		return 0; | 
 | 1291 |  | 
 | 1292 | 	if (netif_msg_link(np)) { | 
 | 1293 | 		printk(KERN_INFO "%s: switching to external transceiver.\n", | 
 | 1294 | 				dev->name); | 
 | 1295 | 	} | 
 | 1296 |  | 
 | 1297 | 	/* 1) switch back to external phy */ | 
 | 1298 | 	writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig); | 
 | 1299 | 	readl(ioaddr + ChipConfig); | 
 | 1300 | 	udelay(1); | 
 | 1301 |  | 
 | 1302 | 	/* 2) reset the external phy: */ | 
 | 1303 | 	/* resetting the external PHY has been known to cause a hub supplying | 
 | 1304 | 	 * power over Ethernet to kill the power.  We don't want to kill | 
 | 1305 | 	 * power to this computer, so we avoid resetting the phy. | 
 | 1306 | 	 */ | 
 | 1307 |  | 
 | 1308 | 	/* 3) reinit the phy fixup, it got lost during power down. */ | 
 | 1309 | 	move_int_phy(dev, np->phy_addr_external); | 
 | 1310 | 	init_phy_fixup(dev); | 
 | 1311 |  | 
 | 1312 | 	return 1; | 
 | 1313 | } | 
 | 1314 |  | 
 | 1315 | static int switch_port_internal(struct net_device *dev) | 
 | 1316 | { | 
 | 1317 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1318 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1319 | 	int i; | 
 | 1320 | 	u32 cfg; | 
 | 1321 | 	u16 bmcr; | 
 | 1322 |  | 
 | 1323 | 	cfg = readl(ioaddr + ChipConfig); | 
 | 1324 | 	if (!(cfg &CfgExtPhy)) | 
 | 1325 | 		return 0; | 
 | 1326 |  | 
 | 1327 | 	if (netif_msg_link(np)) { | 
 | 1328 | 		printk(KERN_INFO "%s: switching to internal transceiver.\n", | 
 | 1329 | 				dev->name); | 
 | 1330 | 	} | 
 | 1331 | 	/* 1) switch back to internal phy: */ | 
 | 1332 | 	cfg = cfg & ~(CfgExtPhy | CfgPhyDis); | 
 | 1333 | 	writel(cfg, ioaddr + ChipConfig); | 
 | 1334 | 	readl(ioaddr + ChipConfig); | 
 | 1335 | 	udelay(1); | 
 | 1336 | 	 | 
 | 1337 | 	/* 2) reset the internal phy: */ | 
 | 1338 | 	bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); | 
 | 1339 | 	writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2)); | 
 | 1340 | 	readl(ioaddr + ChipConfig); | 
 | 1341 | 	udelay(10); | 
 | 1342 | 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { | 
 | 1343 | 		bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2)); | 
 | 1344 | 		if (!(bmcr & BMCR_RESET)) | 
 | 1345 | 			break; | 
 | 1346 | 		udelay(10); | 
 | 1347 | 	} | 
 | 1348 | 	if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) { | 
 | 1349 | 		printk(KERN_INFO | 
 | 1350 | 			"%s: phy reset did not complete in %d usec.\n", | 
 | 1351 | 			dev->name, i*10); | 
 | 1352 | 	} | 
 | 1353 | 	/* 3) reinit the phy fixup, it got lost during power down. */ | 
 | 1354 | 	init_phy_fixup(dev); | 
 | 1355 |  | 
 | 1356 | 	return 1; | 
 | 1357 | } | 
 | 1358 |  | 
 | 1359 | /* Scan for a PHY on the external mii bus. | 
 | 1360 |  * There are two tricky points: | 
 | 1361 |  * - Do not scan while the internal phy is enabled. The internal phy will | 
 | 1362 |  *   crash: e.g. reads from the DSPCFG register will return odd values and | 
 | 1363 |  *   the nasty random phy reset code will reset the nic every few seconds. | 
 | 1364 |  * - The internal phy must be moved around, an external phy could | 
 | 1365 |  *   have the same address as the internal phy. | 
 | 1366 |  */ | 
 | 1367 | static int find_mii(struct net_device *dev) | 
 | 1368 | { | 
 | 1369 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1370 | 	int tmp; | 
 | 1371 | 	int i; | 
 | 1372 | 	int did_switch; | 
 | 1373 |  | 
 | 1374 | 	/* Switch to external phy */ | 
 | 1375 | 	did_switch = switch_port_external(dev); | 
 | 1376 | 		 | 
 | 1377 | 	/* Scan the possible phy addresses: | 
 | 1378 | 	 * | 
 | 1379 | 	 * PHY address 0 means that the phy is in isolate mode. Not yet | 
 | 1380 | 	 * supported due to lack of test hardware. User space should | 
 | 1381 | 	 * handle it through ethtool. | 
 | 1382 | 	 */ | 
 | 1383 | 	for (i = 1; i <= 31; i++) { | 
 | 1384 | 		move_int_phy(dev, i); | 
 | 1385 | 		tmp = miiport_read(dev, i, MII_BMSR); | 
 | 1386 | 		if (tmp != 0xffff && tmp != 0x0000) { | 
 | 1387 | 			/* found something! */ | 
 | 1388 | 			np->mii = (mdio_read(dev, MII_PHYSID1) << 16) | 
 | 1389 | 					+ mdio_read(dev, MII_PHYSID2); | 
 | 1390 | 	 		if (netif_msg_probe(np)) { | 
 | 1391 | 				printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n", | 
 | 1392 | 						pci_name(np->pci_dev), np->mii, i); | 
 | 1393 | 			} | 
 | 1394 | 			break; | 
 | 1395 | 		} | 
 | 1396 | 	} | 
 | 1397 | 	/* And switch back to internal phy: */ | 
 | 1398 | 	if (did_switch) | 
 | 1399 | 		switch_port_internal(dev); | 
 | 1400 | 	return i; | 
 | 1401 | } | 
 | 1402 |  | 
 | 1403 | /* CFG bits [13:16] [18:23] */ | 
 | 1404 | #define CFG_RESET_SAVE 0xfde000 | 
 | 1405 | /* WCSR bits [0:4] [9:10] */ | 
 | 1406 | #define WCSR_RESET_SAVE 0x61f | 
 | 1407 | /* RFCR bits [20] [22] [27:31] */ | 
 | 1408 | #define RFCR_RESET_SAVE 0xf8500000; | 
 | 1409 |  | 
 | 1410 | static void natsemi_reset(struct net_device *dev) | 
 | 1411 | { | 
 | 1412 | 	int i; | 
 | 1413 | 	u32 cfg; | 
 | 1414 | 	u32 wcsr; | 
 | 1415 | 	u32 rfcr; | 
 | 1416 | 	u16 pmatch[3]; | 
 | 1417 | 	u16 sopass[3]; | 
 | 1418 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1419 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1420 |  | 
 | 1421 | 	/* | 
 | 1422 | 	 * Resetting the chip causes some registers to be lost. | 
 | 1423 | 	 * Natsemi suggests NOT reloading the EEPROM while live, so instead | 
 | 1424 | 	 * we save the state that would have been loaded from EEPROM | 
 | 1425 | 	 * on a normal power-up (see the spec EEPROM map).  This assumes | 
 | 1426 | 	 * whoever calls this will follow up with init_registers() eventually. | 
 | 1427 | 	 */ | 
 | 1428 |  | 
 | 1429 | 	/* CFG */ | 
 | 1430 | 	cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE; | 
 | 1431 | 	/* WCSR */ | 
 | 1432 | 	wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE; | 
 | 1433 | 	/* RFCR */ | 
 | 1434 | 	rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE; | 
 | 1435 | 	/* PMATCH */ | 
 | 1436 | 	for (i = 0; i < 3; i++) { | 
 | 1437 | 		writel(i*2, ioaddr + RxFilterAddr); | 
 | 1438 | 		pmatch[i] = readw(ioaddr + RxFilterData); | 
 | 1439 | 	} | 
 | 1440 | 	/* SOPAS */ | 
 | 1441 | 	for (i = 0; i < 3; i++) { | 
 | 1442 | 		writel(0xa+(i*2), ioaddr + RxFilterAddr); | 
 | 1443 | 		sopass[i] = readw(ioaddr + RxFilterData); | 
 | 1444 | 	} | 
 | 1445 |  | 
 | 1446 | 	/* now whack the chip */ | 
 | 1447 | 	writel(ChipReset, ioaddr + ChipCmd); | 
 | 1448 | 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { | 
 | 1449 | 		if (!(readl(ioaddr + ChipCmd) & ChipReset)) | 
 | 1450 | 			break; | 
 | 1451 | 		udelay(5); | 
 | 1452 | 	} | 
 | 1453 | 	if (i==NATSEMI_HW_TIMEOUT) { | 
 | 1454 | 		printk(KERN_WARNING "%s: reset did not complete in %d usec.\n", | 
 | 1455 | 			dev->name, i*5); | 
 | 1456 | 	} else if (netif_msg_hw(np)) { | 
 | 1457 | 		printk(KERN_DEBUG "%s: reset completed in %d usec.\n", | 
 | 1458 | 			dev->name, i*5); | 
 | 1459 | 	} | 
 | 1460 |  | 
 | 1461 | 	/* restore CFG */ | 
 | 1462 | 	cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE; | 
 | 1463 | 	/* turn on external phy if it was selected */ | 
 | 1464 | 	if (dev->if_port == PORT_TP) | 
 | 1465 | 		cfg &= ~(CfgExtPhy | CfgPhyDis); | 
 | 1466 | 	else | 
 | 1467 | 		cfg |= (CfgExtPhy | CfgPhyDis); | 
 | 1468 | 	writel(cfg, ioaddr + ChipConfig); | 
 | 1469 | 	/* restore WCSR */ | 
 | 1470 | 	wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE; | 
 | 1471 | 	writel(wcsr, ioaddr + WOLCmd); | 
 | 1472 | 	/* read RFCR */ | 
 | 1473 | 	rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE; | 
 | 1474 | 	/* restore PMATCH */ | 
 | 1475 | 	for (i = 0; i < 3; i++) { | 
 | 1476 | 		writel(i*2, ioaddr + RxFilterAddr); | 
 | 1477 | 		writew(pmatch[i], ioaddr + RxFilterData); | 
 | 1478 | 	} | 
 | 1479 | 	for (i = 0; i < 3; i++) { | 
 | 1480 | 		writel(0xa+(i*2), ioaddr + RxFilterAddr); | 
 | 1481 | 		writew(sopass[i], ioaddr + RxFilterData); | 
 | 1482 | 	} | 
 | 1483 | 	/* restore RFCR */ | 
 | 1484 | 	writel(rfcr, ioaddr + RxFilterAddr); | 
 | 1485 | } | 
 | 1486 |  | 
 | 1487 | static void natsemi_reload_eeprom(struct net_device *dev) | 
 | 1488 | { | 
 | 1489 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1490 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1491 | 	int i; | 
 | 1492 |  | 
 | 1493 | 	writel(EepromReload, ioaddr + PCIBusCfg); | 
 | 1494 | 	for (i=0;i<NATSEMI_HW_TIMEOUT;i++) { | 
 | 1495 | 		udelay(50); | 
 | 1496 | 		if (!(readl(ioaddr + PCIBusCfg) & EepromReload)) | 
 | 1497 | 			break; | 
 | 1498 | 	} | 
 | 1499 | 	if (i==NATSEMI_HW_TIMEOUT) { | 
 | 1500 | 		printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n", | 
 | 1501 | 			pci_name(np->pci_dev), i*50); | 
 | 1502 | 	} else if (netif_msg_hw(np)) { | 
 | 1503 | 		printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n", | 
 | 1504 | 			pci_name(np->pci_dev), i*50); | 
 | 1505 | 	} | 
 | 1506 | } | 
 | 1507 |  | 
 | 1508 | static void natsemi_stop_rxtx(struct net_device *dev) | 
 | 1509 | { | 
 | 1510 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1511 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1512 | 	int i; | 
 | 1513 |  | 
 | 1514 | 	writel(RxOff | TxOff, ioaddr + ChipCmd); | 
 | 1515 | 	for(i=0;i< NATSEMI_HW_TIMEOUT;i++) { | 
 | 1516 | 		if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0) | 
 | 1517 | 			break; | 
 | 1518 | 		udelay(5); | 
 | 1519 | 	} | 
 | 1520 | 	if (i==NATSEMI_HW_TIMEOUT) { | 
 | 1521 | 		printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n", | 
 | 1522 | 			dev->name, i*5); | 
 | 1523 | 	} else if (netif_msg_hw(np)) { | 
 | 1524 | 		printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n", | 
 | 1525 | 			dev->name, i*5); | 
 | 1526 | 	} | 
 | 1527 | } | 
 | 1528 |  | 
 | 1529 | static int netdev_open(struct net_device *dev) | 
 | 1530 | { | 
 | 1531 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1532 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1533 | 	int i; | 
 | 1534 |  | 
 | 1535 | 	/* Reset the chip, just in case. */ | 
 | 1536 | 	natsemi_reset(dev); | 
 | 1537 |  | 
 | 1538 | 	i = request_irq(dev->irq, &intr_handler, SA_SHIRQ, dev->name, dev); | 
 | 1539 | 	if (i) return i; | 
 | 1540 |  | 
 | 1541 | 	if (netif_msg_ifup(np)) | 
 | 1542 | 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", | 
 | 1543 | 			dev->name, dev->irq); | 
 | 1544 | 	i = alloc_ring(dev); | 
 | 1545 | 	if (i < 0) { | 
 | 1546 | 		free_irq(dev->irq, dev); | 
 | 1547 | 		return i; | 
 | 1548 | 	} | 
 | 1549 | 	init_ring(dev); | 
 | 1550 | 	spin_lock_irq(&np->lock); | 
 | 1551 | 	init_registers(dev); | 
 | 1552 | 	/* now set the MAC address according to dev->dev_addr */ | 
 | 1553 | 	for (i = 0; i < 3; i++) { | 
 | 1554 | 		u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i]; | 
 | 1555 |  | 
 | 1556 | 		writel(i*2, ioaddr + RxFilterAddr); | 
 | 1557 | 		writew(mac, ioaddr + RxFilterData); | 
 | 1558 | 	} | 
 | 1559 | 	writel(np->cur_rx_mode, ioaddr + RxFilterAddr); | 
 | 1560 | 	spin_unlock_irq(&np->lock); | 
 | 1561 |  | 
 | 1562 | 	netif_start_queue(dev); | 
 | 1563 |  | 
 | 1564 | 	if (netif_msg_ifup(np)) | 
 | 1565 | 		printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n", | 
 | 1566 | 			dev->name, (int)readl(ioaddr + ChipCmd)); | 
 | 1567 |  | 
 | 1568 | 	/* Set the timer to check for link beat. */ | 
 | 1569 | 	init_timer(&np->timer); | 
 | 1570 | 	np->timer.expires = jiffies + NATSEMI_TIMER_FREQ; | 
 | 1571 | 	np->timer.data = (unsigned long)dev; | 
 | 1572 | 	np->timer.function = &netdev_timer; /* timer handler */ | 
 | 1573 | 	add_timer(&np->timer); | 
 | 1574 |  | 
 | 1575 | 	return 0; | 
 | 1576 | } | 
 | 1577 |  | 
 | 1578 | static void do_cable_magic(struct net_device *dev) | 
 | 1579 | { | 
 | 1580 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1581 | 	void __iomem *ioaddr = ns_ioaddr(dev); | 
 | 1582 |  | 
 | 1583 | 	if (dev->if_port != PORT_TP) | 
 | 1584 | 		return; | 
 | 1585 |  | 
 | 1586 | 	if (np->srr >= SRR_DP83816_A5) | 
 | 1587 | 		return; | 
 | 1588 |  | 
 | 1589 | 	/* | 
 | 1590 | 	 * 100 MBit links with short cables can trip an issue with the chip. | 
 | 1591 | 	 * The problem manifests as lots of CRC errors and/or flickering | 
 | 1592 | 	 * activity LED while idle.  This process is based on instructions | 
 | 1593 | 	 * from engineers at National. | 
 | 1594 | 	 */ | 
 | 1595 | 	if (readl(ioaddr + ChipConfig) & CfgSpeed100) { | 
 | 1596 | 		u16 data; | 
 | 1597 |  | 
 | 1598 | 		writew(1, ioaddr + PGSEL); | 
 | 1599 | 		/* | 
 | 1600 | 		 * coefficient visibility should already be enabled via | 
 | 1601 | 		 * DSPCFG | 0x1000 | 
 | 1602 | 		 */ | 
 | 1603 | 		data = readw(ioaddr + TSTDAT) & 0xff; | 
 | 1604 | 		/* | 
 | 1605 | 		 * the value must be negative, and within certain values | 
 | 1606 | 		 * (these values all come from National) | 
 | 1607 | 		 */ | 
 | 1608 | 		if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) { | 
 | 1609 | 			struct netdev_private *np = netdev_priv(dev); | 
 | 1610 |  | 
 | 1611 | 			/* the bug has been triggered - fix the coefficient */ | 
 | 1612 | 			writew(TSTDAT_FIXED, ioaddr + TSTDAT); | 
 | 1613 | 			/* lock the value */ | 
 | 1614 | 			data = readw(ioaddr + DSPCFG); | 
 | 1615 | 			np->dspcfg = data | DSPCFG_LOCK; | 
 | 1616 | 			writew(np->dspcfg, ioaddr + DSPCFG); | 
 | 1617 | 		} | 
 | 1618 | 		writew(0, ioaddr + PGSEL); | 
 | 1619 | 	} | 
 | 1620 | } | 
 | 1621 |  | 
 | 1622 | static void undo_cable_magic(struct net_device *dev) | 
 | 1623 | { | 
 | 1624 | 	u16 data; | 
 | 1625 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1626 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1627 |  | 
 | 1628 | 	if (dev->if_port != PORT_TP) | 
 | 1629 | 		return; | 
 | 1630 |  | 
 | 1631 | 	if (np->srr >= SRR_DP83816_A5) | 
 | 1632 | 		return; | 
 | 1633 |  | 
 | 1634 | 	writew(1, ioaddr + PGSEL); | 
 | 1635 | 	/* make sure the lock bit is clear */ | 
 | 1636 | 	data = readw(ioaddr + DSPCFG); | 
 | 1637 | 	np->dspcfg = data & ~DSPCFG_LOCK; | 
 | 1638 | 	writew(np->dspcfg, ioaddr + DSPCFG); | 
 | 1639 | 	writew(0, ioaddr + PGSEL); | 
 | 1640 | } | 
 | 1641 |  | 
 | 1642 | static void check_link(struct net_device *dev) | 
 | 1643 | { | 
 | 1644 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1645 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1646 | 	int duplex; | 
 | 1647 | 	u16 bmsr; | 
 | 1648 |         | 
 | 1649 | 	/* The link status field is latched: it remains low after a temporary | 
 | 1650 | 	 * link failure until it's read. We need the current link status, | 
 | 1651 | 	 * thus read twice. | 
 | 1652 | 	 */ | 
 | 1653 | 	mdio_read(dev, MII_BMSR); | 
 | 1654 | 	bmsr = mdio_read(dev, MII_BMSR); | 
 | 1655 |  | 
 | 1656 | 	if (!(bmsr & BMSR_LSTATUS)) { | 
 | 1657 | 		if (netif_carrier_ok(dev)) { | 
 | 1658 | 			if (netif_msg_link(np)) | 
 | 1659 | 				printk(KERN_NOTICE "%s: link down.\n", | 
 | 1660 | 					dev->name); | 
 | 1661 | 			netif_carrier_off(dev); | 
 | 1662 | 			undo_cable_magic(dev); | 
 | 1663 | 		} | 
 | 1664 | 		return; | 
 | 1665 | 	} | 
 | 1666 | 	if (!netif_carrier_ok(dev)) { | 
 | 1667 | 		if (netif_msg_link(np)) | 
 | 1668 | 			printk(KERN_NOTICE "%s: link up.\n", dev->name); | 
 | 1669 | 		netif_carrier_on(dev); | 
 | 1670 | 		do_cable_magic(dev); | 
 | 1671 | 	} | 
 | 1672 |  | 
 | 1673 | 	duplex = np->full_duplex; | 
 | 1674 | 	if (!duplex) { | 
 | 1675 | 		if (bmsr & BMSR_ANEGCOMPLETE) { | 
 | 1676 | 			int tmp = mii_nway_result( | 
 | 1677 | 				np->advertising & mdio_read(dev, MII_LPA)); | 
 | 1678 | 			if (tmp == LPA_100FULL || tmp == LPA_10FULL) | 
 | 1679 | 				duplex = 1; | 
 | 1680 | 		} else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX) | 
 | 1681 | 			duplex = 1; | 
 | 1682 | 	} | 
 | 1683 |  | 
 | 1684 | 	/* if duplex is set then bit 28 must be set, too */ | 
 | 1685 | 	if (duplex ^ !!(np->rx_config & RxAcceptTx)) { | 
 | 1686 | 		if (netif_msg_link(np)) | 
 | 1687 | 			printk(KERN_INFO | 
 | 1688 | 				"%s: Setting %s-duplex based on negotiated " | 
 | 1689 | 				"link capability.\n", dev->name, | 
 | 1690 | 				duplex ? "full" : "half"); | 
 | 1691 | 		if (duplex) { | 
 | 1692 | 			np->rx_config |= RxAcceptTx; | 
 | 1693 | 			np->tx_config |= TxCarrierIgn | TxHeartIgn; | 
 | 1694 | 		} else { | 
 | 1695 | 			np->rx_config &= ~RxAcceptTx; | 
 | 1696 | 			np->tx_config &= ~(TxCarrierIgn | TxHeartIgn); | 
 | 1697 | 		} | 
 | 1698 | 		writel(np->tx_config, ioaddr + TxConfig); | 
 | 1699 | 		writel(np->rx_config, ioaddr + RxConfig); | 
 | 1700 | 	} | 
 | 1701 | } | 
 | 1702 |  | 
 | 1703 | static void init_registers(struct net_device *dev) | 
 | 1704 | { | 
 | 1705 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1706 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1707 |  | 
 | 1708 | 	init_phy_fixup(dev); | 
 | 1709 |  | 
 | 1710 | 	/* clear any interrupts that are pending, such as wake events */ | 
 | 1711 | 	readl(ioaddr + IntrStatus); | 
 | 1712 |  | 
 | 1713 | 	writel(np->ring_dma, ioaddr + RxRingPtr); | 
 | 1714 | 	writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc), | 
 | 1715 | 		ioaddr + TxRingPtr); | 
 | 1716 |  | 
 | 1717 | 	/* Initialize other registers. | 
 | 1718 | 	 * Configure the PCI bus bursts and FIFO thresholds. | 
 | 1719 | 	 * Configure for standard, in-spec Ethernet. | 
 | 1720 | 	 * Start with half-duplex. check_link will update | 
 | 1721 | 	 * to the correct settings. | 
 | 1722 | 	 */ | 
 | 1723 |  | 
 | 1724 | 	/* DRTH: 2: start tx if 64 bytes are in the fifo | 
 | 1725 | 	 * FLTH: 0x10: refill with next packet if 512 bytes are free | 
 | 1726 | 	 * MXDMA: 0: up to 256 byte bursts. | 
 | 1727 | 	 * 	MXDMA must be <= FLTH | 
 | 1728 | 	 * ECRETRY=1 | 
 | 1729 | 	 * ATP=1 | 
 | 1730 | 	 */ | 
 | 1731 | 	np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 | | 
 | 1732 | 				TX_FLTH_VAL | TX_DRTH_VAL_START; | 
 | 1733 | 	writel(np->tx_config, ioaddr + TxConfig); | 
 | 1734 |  | 
 | 1735 | 	/* DRTH 0x10: start copying to memory if 128 bytes are in the fifo | 
 | 1736 | 	 * MXDMA 0: up to 256 byte bursts | 
 | 1737 | 	 */ | 
 | 1738 | 	np->rx_config = RxMxdma_256 | RX_DRTH_VAL; | 
 | 1739 | 	/* if receive ring now has bigger buffers than normal, enable jumbo */ | 
 | 1740 | 	if (np->rx_buf_sz > NATSEMI_LONGPKT) | 
 | 1741 | 		np->rx_config |= RxAcceptLong; | 
 | 1742 |  | 
 | 1743 | 	writel(np->rx_config, ioaddr + RxConfig); | 
 | 1744 |  | 
 | 1745 | 	/* Disable PME: | 
 | 1746 | 	 * The PME bit is initialized from the EEPROM contents. | 
 | 1747 | 	 * PCI cards probably have PME disabled, but motherboard | 
 | 1748 | 	 * implementations may have PME set to enable WakeOnLan. | 
 | 1749 | 	 * With PME set the chip will scan incoming packets but | 
 | 1750 | 	 * nothing will be written to memory. */ | 
 | 1751 | 	np->SavedClkRun = readl(ioaddr + ClkRun); | 
 | 1752 | 	writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun); | 
 | 1753 | 	if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) { | 
 | 1754 | 		printk(KERN_NOTICE "%s: Wake-up event %#08x\n", | 
 | 1755 | 			dev->name, readl(ioaddr + WOLCmd)); | 
 | 1756 | 	} | 
 | 1757 |  | 
 | 1758 | 	check_link(dev); | 
 | 1759 | 	__set_rx_mode(dev); | 
 | 1760 |  | 
 | 1761 | 	/* Enable interrupts by setting the interrupt mask. */ | 
 | 1762 | 	writel(DEFAULT_INTR, ioaddr + IntrMask); | 
 | 1763 | 	writel(1, ioaddr + IntrEnable); | 
 | 1764 |  | 
 | 1765 | 	writel(RxOn | TxOn, ioaddr + ChipCmd); | 
 | 1766 | 	writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */ | 
 | 1767 | } | 
 | 1768 |  | 
 | 1769 | /* | 
 | 1770 |  * netdev_timer: | 
 | 1771 |  * Purpose: | 
 | 1772 |  * 1) check for link changes. Usually they are handled by the MII interrupt | 
 | 1773 |  *    but it doesn't hurt to check twice. | 
 | 1774 |  * 2) check for sudden death of the NIC: | 
 | 1775 |  *    It seems that a reference set for this chip went out with incorrect info, | 
 | 1776 |  *    and there exist boards that aren't quite right.  An unexpected voltage | 
 | 1777 |  *    drop can cause the PHY to get itself in a weird state (basically reset). | 
 | 1778 |  *    NOTE: this only seems to affect revC chips. | 
 | 1779 |  * 3) check of death of the RX path due to OOM | 
 | 1780 |  */ | 
 | 1781 | static void netdev_timer(unsigned long data) | 
 | 1782 | { | 
 | 1783 | 	struct net_device *dev = (struct net_device *)data; | 
 | 1784 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1785 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1786 | 	int next_tick = 5*HZ; | 
 | 1787 |  | 
 | 1788 | 	if (netif_msg_timer(np)) { | 
 | 1789 | 		/* DO NOT read the IntrStatus register, | 
 | 1790 | 		 * a read clears any pending interrupts. | 
 | 1791 | 		 */ | 
 | 1792 | 		printk(KERN_DEBUG "%s: Media selection timer tick.\n", | 
 | 1793 | 			dev->name); | 
 | 1794 | 	} | 
 | 1795 |  | 
 | 1796 | 	if (dev->if_port == PORT_TP) { | 
 | 1797 | 		u16 dspcfg; | 
 | 1798 |  | 
 | 1799 | 		spin_lock_irq(&np->lock); | 
 | 1800 | 		/* check for a nasty random phy-reset - use dspcfg as a flag */ | 
 | 1801 | 		writew(1, ioaddr+PGSEL); | 
 | 1802 | 		dspcfg = readw(ioaddr+DSPCFG); | 
 | 1803 | 		writew(0, ioaddr+PGSEL); | 
 | 1804 | 		if (dspcfg != np->dspcfg) { | 
 | 1805 | 			if (!netif_queue_stopped(dev)) { | 
 | 1806 | 				spin_unlock_irq(&np->lock); | 
 | 1807 | 				if (netif_msg_hw(np)) | 
 | 1808 | 					printk(KERN_NOTICE "%s: possible phy reset: " | 
 | 1809 | 						"re-initializing\n", dev->name); | 
 | 1810 | 				disable_irq(dev->irq); | 
 | 1811 | 				spin_lock_irq(&np->lock); | 
 | 1812 | 				natsemi_stop_rxtx(dev); | 
 | 1813 | 				dump_ring(dev); | 
 | 1814 | 				reinit_ring(dev); | 
 | 1815 | 				init_registers(dev); | 
 | 1816 | 				spin_unlock_irq(&np->lock); | 
 | 1817 | 				enable_irq(dev->irq); | 
 | 1818 | 			} else { | 
 | 1819 | 				/* hurry back */ | 
 | 1820 | 				next_tick = HZ; | 
 | 1821 | 				spin_unlock_irq(&np->lock); | 
 | 1822 | 			} | 
 | 1823 | 		} else { | 
 | 1824 | 			/* init_registers() calls check_link() for the above case */ | 
 | 1825 | 			check_link(dev); | 
 | 1826 | 			spin_unlock_irq(&np->lock); | 
 | 1827 | 		} | 
 | 1828 | 	} else { | 
 | 1829 | 		spin_lock_irq(&np->lock); | 
 | 1830 | 		check_link(dev); | 
 | 1831 | 		spin_unlock_irq(&np->lock); | 
 | 1832 | 	} | 
 | 1833 | 	if (np->oom) { | 
 | 1834 | 		disable_irq(dev->irq); | 
 | 1835 | 		np->oom = 0; | 
 | 1836 | 		refill_rx(dev); | 
 | 1837 | 		enable_irq(dev->irq); | 
 | 1838 | 		if (!np->oom) { | 
 | 1839 | 			writel(RxOn, ioaddr + ChipCmd); | 
 | 1840 | 		} else { | 
 | 1841 | 			next_tick = 1; | 
 | 1842 | 		} | 
 | 1843 | 	} | 
 | 1844 | 	mod_timer(&np->timer, jiffies + next_tick); | 
 | 1845 | } | 
 | 1846 |  | 
 | 1847 | static void dump_ring(struct net_device *dev) | 
 | 1848 | { | 
 | 1849 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1850 |  | 
 | 1851 | 	if (netif_msg_pktdata(np)) { | 
 | 1852 | 		int i; | 
 | 1853 | 		printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring); | 
 | 1854 | 		for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 1855 | 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", | 
 | 1856 | 				i, np->tx_ring[i].next_desc, | 
 | 1857 | 				np->tx_ring[i].cmd_status, | 
 | 1858 | 				np->tx_ring[i].addr); | 
 | 1859 | 		} | 
 | 1860 | 		printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring); | 
 | 1861 | 		for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 1862 | 			printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n", | 
 | 1863 | 				i, np->rx_ring[i].next_desc, | 
 | 1864 | 				np->rx_ring[i].cmd_status, | 
 | 1865 | 				np->rx_ring[i].addr); | 
 | 1866 | 		} | 
 | 1867 | 	} | 
 | 1868 | } | 
 | 1869 |  | 
 | 1870 | static void tx_timeout(struct net_device *dev) | 
 | 1871 | { | 
 | 1872 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1873 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 1874 |  | 
 | 1875 | 	disable_irq(dev->irq); | 
 | 1876 | 	spin_lock_irq(&np->lock); | 
 | 1877 | 	if (!np->hands_off) { | 
 | 1878 | 		if (netif_msg_tx_err(np)) | 
 | 1879 | 			printk(KERN_WARNING | 
 | 1880 | 				"%s: Transmit timed out, status %#08x," | 
 | 1881 | 				" resetting...\n", | 
 | 1882 | 				dev->name, readl(ioaddr + IntrStatus)); | 
 | 1883 | 		dump_ring(dev); | 
 | 1884 |  | 
 | 1885 | 		natsemi_reset(dev); | 
 | 1886 | 		reinit_ring(dev); | 
 | 1887 | 		init_registers(dev); | 
 | 1888 | 	} else { | 
 | 1889 | 		printk(KERN_WARNING | 
 | 1890 | 			"%s: tx_timeout while in hands_off state?\n", | 
 | 1891 | 			dev->name); | 
 | 1892 | 	} | 
 | 1893 | 	spin_unlock_irq(&np->lock); | 
 | 1894 | 	enable_irq(dev->irq); | 
 | 1895 |  | 
 | 1896 | 	dev->trans_start = jiffies; | 
 | 1897 | 	np->stats.tx_errors++; | 
 | 1898 | 	netif_wake_queue(dev); | 
 | 1899 | } | 
 | 1900 |  | 
 | 1901 | static int alloc_ring(struct net_device *dev) | 
 | 1902 | { | 
 | 1903 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1904 | 	np->rx_ring = pci_alloc_consistent(np->pci_dev, | 
 | 1905 | 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), | 
 | 1906 | 		&np->ring_dma); | 
 | 1907 | 	if (!np->rx_ring) | 
 | 1908 | 		return -ENOMEM; | 
 | 1909 | 	np->tx_ring = &np->rx_ring[RX_RING_SIZE]; | 
 | 1910 | 	return 0; | 
 | 1911 | } | 
 | 1912 |  | 
 | 1913 | static void refill_rx(struct net_device *dev) | 
 | 1914 | { | 
 | 1915 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1916 |  | 
 | 1917 | 	/* Refill the Rx ring buffers. */ | 
 | 1918 | 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { | 
 | 1919 | 		struct sk_buff *skb; | 
 | 1920 | 		int entry = np->dirty_rx % RX_RING_SIZE; | 
 | 1921 | 		if (np->rx_skbuff[entry] == NULL) { | 
 | 1922 | 			unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING; | 
 | 1923 | 			skb = dev_alloc_skb(buflen); | 
 | 1924 | 			np->rx_skbuff[entry] = skb; | 
 | 1925 | 			if (skb == NULL) | 
 | 1926 | 				break; /* Better luck next round. */ | 
 | 1927 | 			skb->dev = dev; /* Mark as being used by this device. */ | 
 | 1928 | 			np->rx_dma[entry] = pci_map_single(np->pci_dev, | 
 | 1929 | 				skb->tail, buflen, PCI_DMA_FROMDEVICE); | 
 | 1930 | 			np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]); | 
 | 1931 | 		} | 
 | 1932 | 		np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz); | 
 | 1933 | 	} | 
 | 1934 | 	if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) { | 
 | 1935 | 		if (netif_msg_rx_err(np)) | 
 | 1936 | 			printk(KERN_WARNING "%s: going OOM.\n", dev->name); | 
 | 1937 | 		np->oom = 1; | 
 | 1938 | 	} | 
 | 1939 | } | 
 | 1940 |  | 
 | 1941 | static void set_bufsize(struct net_device *dev) | 
 | 1942 | { | 
 | 1943 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1944 | 	if (dev->mtu <= ETH_DATA_LEN) | 
 | 1945 | 		np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS; | 
 | 1946 | 	else | 
 | 1947 | 		np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS; | 
 | 1948 | } | 
 | 1949 |  | 
 | 1950 | /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ | 
 | 1951 | static void init_ring(struct net_device *dev) | 
 | 1952 | { | 
 | 1953 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1954 | 	int i; | 
 | 1955 |  | 
 | 1956 | 	/* 1) TX ring */ | 
 | 1957 | 	np->dirty_tx = np->cur_tx = 0; | 
 | 1958 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 1959 | 		np->tx_skbuff[i] = NULL; | 
 | 1960 | 		np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma | 
 | 1961 | 			+sizeof(struct netdev_desc) | 
 | 1962 | 			*((i+1)%TX_RING_SIZE+RX_RING_SIZE)); | 
 | 1963 | 		np->tx_ring[i].cmd_status = 0; | 
 | 1964 | 	} | 
 | 1965 |  | 
 | 1966 | 	/* 2) RX ring */ | 
 | 1967 | 	np->dirty_rx = 0; | 
 | 1968 | 	np->cur_rx = RX_RING_SIZE; | 
 | 1969 | 	np->oom = 0; | 
 | 1970 | 	set_bufsize(dev); | 
 | 1971 |  | 
 | 1972 | 	np->rx_head_desc = &np->rx_ring[0]; | 
 | 1973 |  | 
 | 1974 | 	/* Please be carefull before changing this loop - at least gcc-2.95.1 | 
 | 1975 | 	 * miscompiles it otherwise. | 
 | 1976 | 	 */ | 
 | 1977 | 	/* Initialize all Rx descriptors. */ | 
 | 1978 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 1979 | 		np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma | 
 | 1980 | 				+sizeof(struct netdev_desc) | 
 | 1981 | 				*((i+1)%RX_RING_SIZE)); | 
 | 1982 | 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); | 
 | 1983 | 		np->rx_skbuff[i] = NULL; | 
 | 1984 | 	} | 
 | 1985 | 	refill_rx(dev); | 
 | 1986 | 	dump_ring(dev); | 
 | 1987 | } | 
 | 1988 |  | 
 | 1989 | static void drain_tx(struct net_device *dev) | 
 | 1990 | { | 
 | 1991 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 1992 | 	int i; | 
 | 1993 |  | 
 | 1994 | 	for (i = 0; i < TX_RING_SIZE; i++) { | 
 | 1995 | 		if (np->tx_skbuff[i]) { | 
 | 1996 | 			pci_unmap_single(np->pci_dev, | 
 | 1997 | 				np->tx_dma[i], np->tx_skbuff[i]->len, | 
 | 1998 | 				PCI_DMA_TODEVICE); | 
 | 1999 | 			dev_kfree_skb(np->tx_skbuff[i]); | 
 | 2000 | 			np->stats.tx_dropped++; | 
 | 2001 | 		} | 
 | 2002 | 		np->tx_skbuff[i] = NULL; | 
 | 2003 | 	} | 
 | 2004 | } | 
 | 2005 |  | 
 | 2006 | static void drain_rx(struct net_device *dev) | 
 | 2007 | { | 
 | 2008 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2009 | 	unsigned int buflen = np->rx_buf_sz; | 
 | 2010 | 	int i; | 
 | 2011 |  | 
 | 2012 | 	/* Free all the skbuffs in the Rx queue. */ | 
 | 2013 | 	for (i = 0; i < RX_RING_SIZE; i++) { | 
 | 2014 | 		np->rx_ring[i].cmd_status = 0; | 
 | 2015 | 		np->rx_ring[i].addr = 0xBADF00D0; /* An invalid address. */ | 
 | 2016 | 		if (np->rx_skbuff[i]) { | 
 | 2017 | 			pci_unmap_single(np->pci_dev, | 
 | 2018 | 				np->rx_dma[i], buflen, | 
 | 2019 | 				PCI_DMA_FROMDEVICE); | 
 | 2020 | 			dev_kfree_skb(np->rx_skbuff[i]); | 
 | 2021 | 		} | 
 | 2022 | 		np->rx_skbuff[i] = NULL; | 
 | 2023 | 	} | 
 | 2024 | } | 
 | 2025 |  | 
 | 2026 | static void drain_ring(struct net_device *dev) | 
 | 2027 | { | 
 | 2028 | 	drain_rx(dev); | 
 | 2029 | 	drain_tx(dev); | 
 | 2030 | } | 
 | 2031 |  | 
 | 2032 | static void free_ring(struct net_device *dev) | 
 | 2033 | { | 
 | 2034 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2035 | 	pci_free_consistent(np->pci_dev, | 
 | 2036 | 		sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE), | 
 | 2037 | 		np->rx_ring, np->ring_dma); | 
 | 2038 | } | 
 | 2039 |  | 
 | 2040 | static void reinit_rx(struct net_device *dev) | 
 | 2041 | { | 
 | 2042 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2043 | 	int i; | 
 | 2044 |  | 
 | 2045 | 	/* RX Ring */ | 
 | 2046 | 	np->dirty_rx = 0; | 
 | 2047 | 	np->cur_rx = RX_RING_SIZE; | 
 | 2048 | 	np->rx_head_desc = &np->rx_ring[0]; | 
 | 2049 | 	/* Initialize all Rx descriptors. */ | 
 | 2050 | 	for (i = 0; i < RX_RING_SIZE; i++) | 
 | 2051 | 		np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn); | 
 | 2052 |  | 
 | 2053 | 	refill_rx(dev); | 
 | 2054 | } | 
 | 2055 |  | 
 | 2056 | static void reinit_ring(struct net_device *dev) | 
 | 2057 | { | 
 | 2058 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2059 | 	int i; | 
 | 2060 |  | 
 | 2061 | 	/* drain TX ring */ | 
 | 2062 | 	drain_tx(dev); | 
 | 2063 | 	np->dirty_tx = np->cur_tx = 0; | 
 | 2064 | 	for (i=0;i<TX_RING_SIZE;i++) | 
 | 2065 | 		np->tx_ring[i].cmd_status = 0; | 
 | 2066 |  | 
 | 2067 | 	reinit_rx(dev); | 
 | 2068 | } | 
 | 2069 |  | 
 | 2070 | static int start_tx(struct sk_buff *skb, struct net_device *dev) | 
 | 2071 | { | 
 | 2072 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2073 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2074 | 	unsigned entry; | 
 | 2075 |  | 
 | 2076 | 	/* Note: Ordering is important here, set the field with the | 
 | 2077 | 	   "ownership" bit last, and only then increment cur_tx. */ | 
 | 2078 |  | 
 | 2079 | 	/* Calculate the next Tx descriptor entry. */ | 
 | 2080 | 	entry = np->cur_tx % TX_RING_SIZE; | 
 | 2081 |  | 
 | 2082 | 	np->tx_skbuff[entry] = skb; | 
 | 2083 | 	np->tx_dma[entry] = pci_map_single(np->pci_dev, | 
 | 2084 | 				skb->data,skb->len, PCI_DMA_TODEVICE); | 
 | 2085 |  | 
 | 2086 | 	np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]); | 
 | 2087 |  | 
 | 2088 | 	spin_lock_irq(&np->lock); | 
 | 2089 |  | 
 | 2090 | 	if (!np->hands_off) { | 
 | 2091 | 		np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len); | 
 | 2092 | 		/* StrongARM: Explicitly cache flush np->tx_ring and | 
 | 2093 | 		 * skb->data,skb->len. */ | 
 | 2094 | 		wmb(); | 
 | 2095 | 		np->cur_tx++; | 
 | 2096 | 		if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) { | 
 | 2097 | 			netdev_tx_done(dev); | 
 | 2098 | 			if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) | 
 | 2099 | 				netif_stop_queue(dev); | 
 | 2100 | 		} | 
 | 2101 | 		/* Wake the potentially-idle transmit channel. */ | 
 | 2102 | 		writel(TxOn, ioaddr + ChipCmd); | 
 | 2103 | 	} else { | 
 | 2104 | 		dev_kfree_skb_irq(skb); | 
 | 2105 | 		np->stats.tx_dropped++; | 
 | 2106 | 	} | 
 | 2107 | 	spin_unlock_irq(&np->lock); | 
 | 2108 |  | 
 | 2109 | 	dev->trans_start = jiffies; | 
 | 2110 |  | 
 | 2111 | 	if (netif_msg_tx_queued(np)) { | 
 | 2112 | 		printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n", | 
 | 2113 | 			dev->name, np->cur_tx, entry); | 
 | 2114 | 	} | 
 | 2115 | 	return 0; | 
 | 2116 | } | 
 | 2117 |  | 
 | 2118 | static void netdev_tx_done(struct net_device *dev) | 
 | 2119 | { | 
 | 2120 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2121 |  | 
 | 2122 | 	for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) { | 
 | 2123 | 		int entry = np->dirty_tx % TX_RING_SIZE; | 
 | 2124 | 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn)) | 
 | 2125 | 			break; | 
 | 2126 | 		if (netif_msg_tx_done(np)) | 
 | 2127 | 			printk(KERN_DEBUG | 
 | 2128 | 				"%s: tx frame #%d finished, status %#08x.\n", | 
 | 2129 | 					dev->name, np->dirty_tx, | 
 | 2130 | 					le32_to_cpu(np->tx_ring[entry].cmd_status)); | 
 | 2131 | 		if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) { | 
 | 2132 | 			np->stats.tx_packets++; | 
 | 2133 | 			np->stats.tx_bytes += np->tx_skbuff[entry]->len; | 
 | 2134 | 		} else { /* Various Tx errors */ | 
 | 2135 | 			int tx_status = | 
 | 2136 | 				le32_to_cpu(np->tx_ring[entry].cmd_status); | 
 | 2137 | 			if (tx_status & (DescTxAbort|DescTxExcColl)) | 
 | 2138 | 				np->stats.tx_aborted_errors++; | 
 | 2139 | 			if (tx_status & DescTxFIFO) | 
 | 2140 | 				np->stats.tx_fifo_errors++; | 
 | 2141 | 			if (tx_status & DescTxCarrier) | 
 | 2142 | 				np->stats.tx_carrier_errors++; | 
 | 2143 | 			if (tx_status & DescTxOOWCol) | 
 | 2144 | 				np->stats.tx_window_errors++; | 
 | 2145 | 			np->stats.tx_errors++; | 
 | 2146 | 		} | 
 | 2147 | 		pci_unmap_single(np->pci_dev,np->tx_dma[entry], | 
 | 2148 | 					np->tx_skbuff[entry]->len, | 
 | 2149 | 					PCI_DMA_TODEVICE); | 
 | 2150 | 		/* Free the original skb. */ | 
 | 2151 | 		dev_kfree_skb_irq(np->tx_skbuff[entry]); | 
 | 2152 | 		np->tx_skbuff[entry] = NULL; | 
 | 2153 | 	} | 
 | 2154 | 	if (netif_queue_stopped(dev) | 
 | 2155 | 		&& np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) { | 
 | 2156 | 		/* The ring is no longer full, wake queue. */ | 
 | 2157 | 		netif_wake_queue(dev); | 
 | 2158 | 	} | 
 | 2159 | } | 
 | 2160 |  | 
 | 2161 | /* The interrupt handler does all of the Rx thread work and cleans up | 
 | 2162 |    after the Tx thread. */ | 
 | 2163 | static irqreturn_t intr_handler(int irq, void *dev_instance, struct pt_regs *rgs) | 
 | 2164 | { | 
 | 2165 | 	struct net_device *dev = dev_instance; | 
 | 2166 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2167 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2168 | 	int boguscnt = max_interrupt_work; | 
 | 2169 | 	unsigned int handled = 0; | 
 | 2170 |  | 
 | 2171 | 	if (np->hands_off) | 
 | 2172 | 		return IRQ_NONE; | 
 | 2173 | 	do { | 
 | 2174 | 		/* Reading automatically acknowledges all int sources. */ | 
 | 2175 | 		u32 intr_status = readl(ioaddr + IntrStatus); | 
 | 2176 |  | 
 | 2177 | 		if (netif_msg_intr(np)) | 
 | 2178 | 			printk(KERN_DEBUG | 
 | 2179 | 				"%s: Interrupt, status %#08x, mask %#08x.\n", | 
 | 2180 | 				dev->name, intr_status, | 
 | 2181 | 				readl(ioaddr + IntrMask)); | 
 | 2182 |  | 
 | 2183 | 		if (intr_status == 0) | 
 | 2184 | 			break; | 
 | 2185 | 		handled = 1; | 
 | 2186 |  | 
 | 2187 | 		if (intr_status & | 
 | 2188 | 		   (IntrRxDone | IntrRxIntr | RxStatusFIFOOver | | 
 | 2189 | 		    IntrRxErr | IntrRxOverrun)) { | 
 | 2190 | 			netdev_rx(dev); | 
 | 2191 | 		} | 
 | 2192 |  | 
 | 2193 | 		if (intr_status & | 
 | 2194 | 		   (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) { | 
 | 2195 | 			spin_lock(&np->lock); | 
 | 2196 | 			netdev_tx_done(dev); | 
 | 2197 | 			spin_unlock(&np->lock); | 
 | 2198 | 		} | 
 | 2199 |  | 
 | 2200 | 		/* Abnormal error summary/uncommon events handlers. */ | 
 | 2201 | 		if (intr_status & IntrAbnormalSummary) | 
 | 2202 | 			netdev_error(dev, intr_status); | 
 | 2203 |  | 
 | 2204 | 		if (--boguscnt < 0) { | 
 | 2205 | 			if (netif_msg_intr(np)) | 
 | 2206 | 				printk(KERN_WARNING | 
 | 2207 | 					"%s: Too much work at interrupt, " | 
 | 2208 | 					"status=%#08x.\n", | 
 | 2209 | 					dev->name, intr_status); | 
 | 2210 | 			break; | 
 | 2211 | 		} | 
 | 2212 | 	} while (1); | 
 | 2213 |  | 
 | 2214 | 	if (netif_msg_intr(np)) | 
 | 2215 | 		printk(KERN_DEBUG "%s: exiting interrupt.\n", dev->name); | 
 | 2216 |  | 
 | 2217 | 	return IRQ_RETVAL(handled); | 
 | 2218 | } | 
 | 2219 |  | 
 | 2220 | /* This routine is logically part of the interrupt handler, but separated | 
 | 2221 |    for clarity and better register allocation. */ | 
 | 2222 | static void netdev_rx(struct net_device *dev) | 
 | 2223 | { | 
 | 2224 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2225 | 	int entry = np->cur_rx % RX_RING_SIZE; | 
 | 2226 | 	int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx; | 
 | 2227 | 	s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); | 
 | 2228 | 	unsigned int buflen = np->rx_buf_sz; | 
 | 2229 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2230 |  | 
 | 2231 | 	/* If the driver owns the next entry it's a new packet. Send it up. */ | 
 | 2232 | 	while (desc_status < 0) { /* e.g. & DescOwn */ | 
 | 2233 | 		int pkt_len; | 
 | 2234 | 		if (netif_msg_rx_status(np)) | 
 | 2235 | 			printk(KERN_DEBUG | 
 | 2236 | 				"  netdev_rx() entry %d status was %#08x.\n", | 
 | 2237 | 				entry, desc_status); | 
 | 2238 | 		if (--boguscnt < 0) | 
 | 2239 | 			break; | 
 | 2240 | 		pkt_len = (desc_status & DescSizeMask) - 4; | 
 | 2241 | 		if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){ | 
 | 2242 | 			if (desc_status & DescMore) { | 
 | 2243 | 				if (netif_msg_rx_err(np)) | 
 | 2244 | 					printk(KERN_WARNING | 
 | 2245 | 						"%s: Oversized(?) Ethernet " | 
 | 2246 | 						"frame spanned multiple " | 
 | 2247 | 						"buffers, entry %#08x " | 
 | 2248 | 						"status %#08x.\n", dev->name, | 
 | 2249 | 						np->cur_rx, desc_status); | 
 | 2250 | 				np->stats.rx_length_errors++; | 
 | 2251 | 			} else { | 
 | 2252 | 				/* There was an error. */ | 
 | 2253 | 				np->stats.rx_errors++; | 
 | 2254 | 				if (desc_status & (DescRxAbort|DescRxOver)) | 
 | 2255 | 					np->stats.rx_over_errors++; | 
 | 2256 | 				if (desc_status & (DescRxLong|DescRxRunt)) | 
 | 2257 | 					np->stats.rx_length_errors++; | 
 | 2258 | 				if (desc_status & (DescRxInvalid|DescRxAlign)) | 
 | 2259 | 					np->stats.rx_frame_errors++; | 
 | 2260 | 				if (desc_status & DescRxCRC) | 
 | 2261 | 					np->stats.rx_crc_errors++; | 
 | 2262 | 			} | 
 | 2263 | 		} else if (pkt_len > np->rx_buf_sz) { | 
 | 2264 | 			/* if this is the tail of a double buffer | 
 | 2265 | 			 * packet, we've already counted the error | 
 | 2266 | 			 * on the first part.  Ignore the second half. | 
 | 2267 | 			 */ | 
 | 2268 | 		} else { | 
 | 2269 | 			struct sk_buff *skb; | 
 | 2270 | 			/* Omit CRC size. */ | 
 | 2271 | 			/* Check if the packet is long enough to accept | 
 | 2272 | 			 * without copying to a minimally-sized skbuff. */ | 
 | 2273 | 			if (pkt_len < rx_copybreak | 
 | 2274 | 			    && (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) { | 
 | 2275 | 				skb->dev = dev; | 
 | 2276 | 				/* 16 byte align the IP header */ | 
 | 2277 | 				skb_reserve(skb, RX_OFFSET); | 
 | 2278 | 				pci_dma_sync_single_for_cpu(np->pci_dev, | 
 | 2279 | 					np->rx_dma[entry], | 
 | 2280 | 					buflen, | 
 | 2281 | 					PCI_DMA_FROMDEVICE); | 
 | 2282 | 				eth_copy_and_sum(skb, | 
 | 2283 | 					np->rx_skbuff[entry]->tail, pkt_len, 0); | 
 | 2284 | 				skb_put(skb, pkt_len); | 
 | 2285 | 				pci_dma_sync_single_for_device(np->pci_dev, | 
 | 2286 | 					np->rx_dma[entry], | 
 | 2287 | 					buflen, | 
 | 2288 | 					PCI_DMA_FROMDEVICE); | 
 | 2289 | 			} else { | 
 | 2290 | 				pci_unmap_single(np->pci_dev, np->rx_dma[entry], | 
 | 2291 | 					buflen, PCI_DMA_FROMDEVICE); | 
 | 2292 | 				skb_put(skb = np->rx_skbuff[entry], pkt_len); | 
 | 2293 | 				np->rx_skbuff[entry] = NULL; | 
 | 2294 | 			} | 
 | 2295 | 			skb->protocol = eth_type_trans(skb, dev); | 
 | 2296 | 			netif_rx(skb); | 
 | 2297 | 			dev->last_rx = jiffies; | 
 | 2298 | 			np->stats.rx_packets++; | 
 | 2299 | 			np->stats.rx_bytes += pkt_len; | 
 | 2300 | 		} | 
 | 2301 | 		entry = (++np->cur_rx) % RX_RING_SIZE; | 
 | 2302 | 		np->rx_head_desc = &np->rx_ring[entry]; | 
 | 2303 | 		desc_status = le32_to_cpu(np->rx_head_desc->cmd_status); | 
 | 2304 | 	} | 
 | 2305 | 	refill_rx(dev); | 
 | 2306 |  | 
 | 2307 | 	/* Restart Rx engine if stopped. */ | 
 | 2308 | 	if (np->oom) | 
 | 2309 | 		mod_timer(&np->timer, jiffies + 1); | 
 | 2310 | 	else | 
 | 2311 | 		writel(RxOn, ioaddr + ChipCmd); | 
 | 2312 | } | 
 | 2313 |  | 
 | 2314 | static void netdev_error(struct net_device *dev, int intr_status) | 
 | 2315 | { | 
 | 2316 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2317 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2318 |  | 
 | 2319 | 	spin_lock(&np->lock); | 
 | 2320 | 	if (intr_status & LinkChange) { | 
 | 2321 | 		u16 lpa = mdio_read(dev, MII_LPA); | 
 | 2322 | 		if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE | 
 | 2323 | 		 && netif_msg_link(np)) { | 
 | 2324 | 			printk(KERN_INFO | 
 | 2325 | 				"%s: Autonegotiation advertising" | 
 | 2326 | 				" %#04x  partner %#04x.\n", dev->name, | 
 | 2327 | 				np->advertising, lpa); | 
 | 2328 | 		} | 
 | 2329 |  | 
 | 2330 | 		/* read MII int status to clear the flag */ | 
 | 2331 | 		readw(ioaddr + MIntrStatus); | 
 | 2332 | 		check_link(dev); | 
 | 2333 | 	} | 
 | 2334 | 	if (intr_status & StatsMax) { | 
 | 2335 | 		__get_stats(dev); | 
 | 2336 | 	} | 
 | 2337 | 	if (intr_status & IntrTxUnderrun) { | 
 | 2338 | 		if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) { | 
 | 2339 | 			np->tx_config += TX_DRTH_VAL_INC; | 
 | 2340 | 			if (netif_msg_tx_err(np)) | 
 | 2341 | 				printk(KERN_NOTICE | 
 | 2342 | 					"%s: increased tx threshold, txcfg %#08x.\n", | 
 | 2343 | 					dev->name, np->tx_config); | 
 | 2344 | 		} else { | 
 | 2345 | 			if (netif_msg_tx_err(np)) | 
 | 2346 | 				printk(KERN_NOTICE | 
 | 2347 | 					"%s: tx underrun with maximum tx threshold, txcfg %#08x.\n", | 
 | 2348 | 					dev->name, np->tx_config); | 
 | 2349 | 		} | 
 | 2350 | 		writel(np->tx_config, ioaddr + TxConfig); | 
 | 2351 | 	} | 
 | 2352 | 	if (intr_status & WOLPkt && netif_msg_wol(np)) { | 
 | 2353 | 		int wol_status = readl(ioaddr + WOLCmd); | 
 | 2354 | 		printk(KERN_NOTICE "%s: Link wake-up event %#08x\n", | 
 | 2355 | 			dev->name, wol_status); | 
 | 2356 | 	} | 
 | 2357 | 	if (intr_status & RxStatusFIFOOver) { | 
 | 2358 | 		if (netif_msg_rx_err(np) && netif_msg_intr(np)) { | 
 | 2359 | 			printk(KERN_NOTICE "%s: Rx status FIFO overrun\n", | 
 | 2360 | 				dev->name); | 
 | 2361 | 		} | 
 | 2362 | 		np->stats.rx_fifo_errors++; | 
 | 2363 | 	} | 
 | 2364 | 	/* Hmmmmm, it's not clear how to recover from PCI faults. */ | 
 | 2365 | 	if (intr_status & IntrPCIErr) { | 
 | 2366 | 		printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name, | 
 | 2367 | 			intr_status & IntrPCIErr); | 
 | 2368 | 		np->stats.tx_fifo_errors++; | 
 | 2369 | 		np->stats.rx_fifo_errors++; | 
 | 2370 | 	} | 
 | 2371 | 	spin_unlock(&np->lock); | 
 | 2372 | } | 
 | 2373 |  | 
 | 2374 | static void __get_stats(struct net_device *dev) | 
 | 2375 | { | 
 | 2376 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2377 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2378 |  | 
 | 2379 | 	/* The chip only need report frame silently dropped. */ | 
 | 2380 | 	np->stats.rx_crc_errors	+= readl(ioaddr + RxCRCErrs); | 
 | 2381 | 	np->stats.rx_missed_errors += readl(ioaddr + RxMissed); | 
 | 2382 | } | 
 | 2383 |  | 
 | 2384 | static struct net_device_stats *get_stats(struct net_device *dev) | 
 | 2385 | { | 
 | 2386 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2387 |  | 
 | 2388 | 	/* The chip only need report frame silently dropped. */ | 
 | 2389 | 	spin_lock_irq(&np->lock); | 
 | 2390 | 	if (netif_running(dev) && !np->hands_off) | 
 | 2391 | 		__get_stats(dev); | 
 | 2392 | 	spin_unlock_irq(&np->lock); | 
 | 2393 |  | 
 | 2394 | 	return &np->stats; | 
 | 2395 | } | 
 | 2396 |  | 
 | 2397 | #ifdef CONFIG_NET_POLL_CONTROLLER | 
 | 2398 | static void natsemi_poll_controller(struct net_device *dev) | 
 | 2399 | { | 
 | 2400 | 	disable_irq(dev->irq); | 
 | 2401 | 	intr_handler(dev->irq, dev, NULL); | 
 | 2402 | 	enable_irq(dev->irq); | 
 | 2403 | } | 
 | 2404 | #endif | 
 | 2405 |  | 
 | 2406 | #define HASH_TABLE	0x200 | 
 | 2407 | static void __set_rx_mode(struct net_device *dev) | 
 | 2408 | { | 
 | 2409 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2410 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2411 | 	u8 mc_filter[64]; /* Multicast hash filter */ | 
 | 2412 | 	u32 rx_mode; | 
 | 2413 |  | 
 | 2414 | 	if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ | 
 | 2415 | 		/* Unconditionally log net taps. */ | 
 | 2416 | 		printk(KERN_NOTICE "%s: Promiscuous mode enabled.\n", | 
 | 2417 | 			dev->name); | 
 | 2418 | 		rx_mode = RxFilterEnable | AcceptBroadcast | 
 | 2419 | 			| AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys; | 
 | 2420 | 	} else if ((dev->mc_count > multicast_filter_limit) | 
 | 2421 | 	  || (dev->flags & IFF_ALLMULTI)) { | 
 | 2422 | 		rx_mode = RxFilterEnable | AcceptBroadcast | 
 | 2423 | 			| AcceptAllMulticast | AcceptMyPhys; | 
 | 2424 | 	} else { | 
 | 2425 | 		struct dev_mc_list *mclist; | 
 | 2426 | 		int i; | 
 | 2427 | 		memset(mc_filter, 0, sizeof(mc_filter)); | 
 | 2428 | 		for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; | 
 | 2429 | 			 i++, mclist = mclist->next) { | 
 | 2430 | 			int i = (ether_crc(ETH_ALEN, mclist->dmi_addr) >> 23) & 0x1ff; | 
 | 2431 | 			mc_filter[i/8] |= (1 << (i & 0x07)); | 
 | 2432 | 		} | 
 | 2433 | 		rx_mode = RxFilterEnable | AcceptBroadcast | 
 | 2434 | 			| AcceptMulticast | AcceptMyPhys; | 
 | 2435 | 		for (i = 0; i < 64; i += 2) { | 
 | 2436 | 			writew(HASH_TABLE + i, ioaddr + RxFilterAddr); | 
 | 2437 | 			writew((mc_filter[i+1]<<8) + mc_filter[i], | 
 | 2438 | 				ioaddr + RxFilterData); | 
 | 2439 | 		} | 
 | 2440 | 	} | 
 | 2441 | 	writel(rx_mode, ioaddr + RxFilterAddr); | 
 | 2442 | 	np->cur_rx_mode = rx_mode; | 
 | 2443 | } | 
 | 2444 |  | 
 | 2445 | static int natsemi_change_mtu(struct net_device *dev, int new_mtu) | 
 | 2446 | { | 
 | 2447 | 	if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS) | 
 | 2448 | 		return -EINVAL; | 
 | 2449 |  | 
 | 2450 | 	dev->mtu = new_mtu; | 
 | 2451 |  | 
 | 2452 | 	/* synchronized against open : rtnl_lock() held by caller */ | 
 | 2453 | 	if (netif_running(dev)) { | 
 | 2454 | 		struct netdev_private *np = netdev_priv(dev); | 
 | 2455 | 		void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2456 |  | 
 | 2457 | 		disable_irq(dev->irq); | 
 | 2458 | 		spin_lock(&np->lock); | 
 | 2459 | 		/* stop engines */ | 
 | 2460 | 		natsemi_stop_rxtx(dev); | 
 | 2461 | 		/* drain rx queue */ | 
 | 2462 | 		drain_rx(dev); | 
 | 2463 | 		/* change buffers */ | 
 | 2464 | 		set_bufsize(dev); | 
 | 2465 | 		reinit_rx(dev); | 
 | 2466 | 		writel(np->ring_dma, ioaddr + RxRingPtr); | 
 | 2467 | 		/* restart engines */ | 
 | 2468 | 		writel(RxOn | TxOn, ioaddr + ChipCmd); | 
 | 2469 | 		spin_unlock(&np->lock); | 
 | 2470 | 		enable_irq(dev->irq); | 
 | 2471 | 	} | 
 | 2472 | 	return 0; | 
 | 2473 | } | 
 | 2474 |  | 
 | 2475 | static void set_rx_mode(struct net_device *dev) | 
 | 2476 | { | 
 | 2477 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2478 | 	spin_lock_irq(&np->lock); | 
 | 2479 | 	if (!np->hands_off) | 
 | 2480 | 		__set_rx_mode(dev); | 
 | 2481 | 	spin_unlock_irq(&np->lock); | 
 | 2482 | } | 
 | 2483 |  | 
 | 2484 | static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) | 
 | 2485 | { | 
 | 2486 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2487 | 	strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN); | 
 | 2488 | 	strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN); | 
 | 2489 | 	strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN); | 
 | 2490 | } | 
 | 2491 |  | 
 | 2492 | static int get_regs_len(struct net_device *dev) | 
 | 2493 | { | 
 | 2494 | 	return NATSEMI_REGS_SIZE; | 
 | 2495 | } | 
 | 2496 |  | 
 | 2497 | static int get_eeprom_len(struct net_device *dev) | 
 | 2498 | { | 
 | 2499 | 	return NATSEMI_EEPROM_SIZE; | 
 | 2500 | } | 
 | 2501 |  | 
 | 2502 | static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | 2503 | { | 
 | 2504 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2505 | 	spin_lock_irq(&np->lock); | 
 | 2506 | 	netdev_get_ecmd(dev, ecmd); | 
 | 2507 | 	spin_unlock_irq(&np->lock); | 
 | 2508 | 	return 0; | 
 | 2509 | } | 
 | 2510 |  | 
 | 2511 | static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | 2512 | { | 
 | 2513 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2514 | 	int res; | 
 | 2515 | 	spin_lock_irq(&np->lock); | 
 | 2516 | 	res = netdev_set_ecmd(dev, ecmd); | 
 | 2517 | 	spin_unlock_irq(&np->lock); | 
 | 2518 | 	return res; | 
 | 2519 | } | 
 | 2520 |  | 
 | 2521 | static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | 2522 | { | 
 | 2523 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2524 | 	spin_lock_irq(&np->lock); | 
 | 2525 | 	netdev_get_wol(dev, &wol->supported, &wol->wolopts); | 
 | 2526 | 	netdev_get_sopass(dev, wol->sopass); | 
 | 2527 | 	spin_unlock_irq(&np->lock); | 
 | 2528 | } | 
 | 2529 |  | 
 | 2530 | static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) | 
 | 2531 | { | 
 | 2532 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2533 | 	int res; | 
 | 2534 | 	spin_lock_irq(&np->lock); | 
 | 2535 | 	netdev_set_wol(dev, wol->wolopts); | 
 | 2536 | 	res = netdev_set_sopass(dev, wol->sopass); | 
 | 2537 | 	spin_unlock_irq(&np->lock); | 
 | 2538 | 	return res; | 
 | 2539 | } | 
 | 2540 |  | 
 | 2541 | static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) | 
 | 2542 | { | 
 | 2543 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2544 | 	regs->version = NATSEMI_REGS_VER; | 
 | 2545 | 	spin_lock_irq(&np->lock); | 
 | 2546 | 	netdev_get_regs(dev, buf); | 
 | 2547 | 	spin_unlock_irq(&np->lock); | 
 | 2548 | } | 
 | 2549 |  | 
 | 2550 | static u32 get_msglevel(struct net_device *dev) | 
 | 2551 | { | 
 | 2552 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2553 | 	return np->msg_enable; | 
 | 2554 | } | 
 | 2555 |  | 
 | 2556 | static void set_msglevel(struct net_device *dev, u32 val) | 
 | 2557 | { | 
 | 2558 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2559 | 	np->msg_enable = val; | 
 | 2560 | } | 
 | 2561 |  | 
 | 2562 | static int nway_reset(struct net_device *dev) | 
 | 2563 | { | 
 | 2564 | 	int tmp; | 
 | 2565 | 	int r = -EINVAL; | 
 | 2566 | 	/* if autoneg is off, it's an error */ | 
 | 2567 | 	tmp = mdio_read(dev, MII_BMCR); | 
 | 2568 | 	if (tmp & BMCR_ANENABLE) { | 
 | 2569 | 		tmp |= (BMCR_ANRESTART); | 
 | 2570 | 		mdio_write(dev, MII_BMCR, tmp); | 
 | 2571 | 		r = 0; | 
 | 2572 | 	} | 
 | 2573 | 	return r; | 
 | 2574 | } | 
 | 2575 |  | 
 | 2576 | static u32 get_link(struct net_device *dev) | 
 | 2577 | { | 
 | 2578 | 	/* LSTATUS is latched low until a read - so read twice */ | 
 | 2579 | 	mdio_read(dev, MII_BMSR); | 
 | 2580 | 	return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0; | 
 | 2581 | } | 
 | 2582 |  | 
 | 2583 | static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data) | 
 | 2584 | { | 
 | 2585 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2586 | 	u8 eebuf[NATSEMI_EEPROM_SIZE]; | 
 | 2587 | 	int res; | 
 | 2588 |  | 
 | 2589 | 	eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16); | 
 | 2590 | 	spin_lock_irq(&np->lock); | 
 | 2591 | 	res = netdev_get_eeprom(dev, eebuf); | 
 | 2592 | 	spin_unlock_irq(&np->lock); | 
 | 2593 | 	if (!res) | 
 | 2594 | 		memcpy(data, eebuf+eeprom->offset, eeprom->len); | 
 | 2595 | 	return res; | 
 | 2596 | } | 
 | 2597 |  | 
 | 2598 | static struct ethtool_ops ethtool_ops = { | 
 | 2599 | 	.get_drvinfo = get_drvinfo, | 
 | 2600 | 	.get_regs_len = get_regs_len, | 
 | 2601 | 	.get_eeprom_len = get_eeprom_len, | 
 | 2602 | 	.get_settings = get_settings, | 
 | 2603 | 	.set_settings = set_settings, | 
 | 2604 | 	.get_wol = get_wol, | 
 | 2605 | 	.set_wol = set_wol, | 
 | 2606 | 	.get_regs = get_regs, | 
 | 2607 | 	.get_msglevel = get_msglevel, | 
 | 2608 | 	.set_msglevel = set_msglevel, | 
 | 2609 | 	.nway_reset = nway_reset, | 
 | 2610 | 	.get_link = get_link, | 
 | 2611 | 	.get_eeprom = get_eeprom, | 
 | 2612 | }; | 
 | 2613 |  | 
 | 2614 | static int netdev_set_wol(struct net_device *dev, u32 newval) | 
 | 2615 | { | 
 | 2616 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2617 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2618 | 	u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary; | 
 | 2619 |  | 
 | 2620 | 	/* translate to bitmasks this chip understands */ | 
 | 2621 | 	if (newval & WAKE_PHY) | 
 | 2622 | 		data |= WakePhy; | 
 | 2623 | 	if (newval & WAKE_UCAST) | 
 | 2624 | 		data |= WakeUnicast; | 
 | 2625 | 	if (newval & WAKE_MCAST) | 
 | 2626 | 		data |= WakeMulticast; | 
 | 2627 | 	if (newval & WAKE_BCAST) | 
 | 2628 | 		data |= WakeBroadcast; | 
 | 2629 | 	if (newval & WAKE_ARP) | 
 | 2630 | 		data |= WakeArp; | 
 | 2631 | 	if (newval & WAKE_MAGIC) | 
 | 2632 | 		data |= WakeMagic; | 
 | 2633 | 	if (np->srr >= SRR_DP83815_D) { | 
 | 2634 | 		if (newval & WAKE_MAGICSECURE) { | 
 | 2635 | 			data |= WakeMagicSecure; | 
 | 2636 | 		} | 
 | 2637 | 	} | 
 | 2638 |  | 
 | 2639 | 	writel(data, ioaddr + WOLCmd); | 
 | 2640 |  | 
 | 2641 | 	return 0; | 
 | 2642 | } | 
 | 2643 |  | 
 | 2644 | static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur) | 
 | 2645 | { | 
 | 2646 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2647 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2648 | 	u32 regval = readl(ioaddr + WOLCmd); | 
 | 2649 |  | 
 | 2650 | 	*supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST | 
 | 2651 | 			| WAKE_ARP | WAKE_MAGIC); | 
 | 2652 |  | 
 | 2653 | 	if (np->srr >= SRR_DP83815_D) { | 
 | 2654 | 		/* SOPASS works on revD and higher */ | 
 | 2655 | 		*supported |= WAKE_MAGICSECURE; | 
 | 2656 | 	} | 
 | 2657 | 	*cur = 0; | 
 | 2658 |  | 
 | 2659 | 	/* translate from chip bitmasks */ | 
 | 2660 | 	if (regval & WakePhy) | 
 | 2661 | 		*cur |= WAKE_PHY; | 
 | 2662 | 	if (regval & WakeUnicast) | 
 | 2663 | 		*cur |= WAKE_UCAST; | 
 | 2664 | 	if (regval & WakeMulticast) | 
 | 2665 | 		*cur |= WAKE_MCAST; | 
 | 2666 | 	if (regval & WakeBroadcast) | 
 | 2667 | 		*cur |= WAKE_BCAST; | 
 | 2668 | 	if (regval & WakeArp) | 
 | 2669 | 		*cur |= WAKE_ARP; | 
 | 2670 | 	if (regval & WakeMagic) | 
 | 2671 | 		*cur |= WAKE_MAGIC; | 
 | 2672 | 	if (regval & WakeMagicSecure) { | 
 | 2673 | 		/* this can be on in revC, but it's broken */ | 
 | 2674 | 		*cur |= WAKE_MAGICSECURE; | 
 | 2675 | 	} | 
 | 2676 |  | 
 | 2677 | 	return 0; | 
 | 2678 | } | 
 | 2679 |  | 
 | 2680 | static int netdev_set_sopass(struct net_device *dev, u8 *newval) | 
 | 2681 | { | 
 | 2682 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2683 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2684 | 	u16 *sval = (u16 *)newval; | 
 | 2685 | 	u32 addr; | 
 | 2686 |  | 
 | 2687 | 	if (np->srr < SRR_DP83815_D) { | 
 | 2688 | 		return 0; | 
 | 2689 | 	} | 
 | 2690 |  | 
 | 2691 | 	/* enable writing to these registers by disabling the RX filter */ | 
 | 2692 | 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; | 
 | 2693 | 	addr &= ~RxFilterEnable; | 
 | 2694 | 	writel(addr, ioaddr + RxFilterAddr); | 
 | 2695 |  | 
 | 2696 | 	/* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */ | 
 | 2697 | 	writel(addr | 0xa, ioaddr + RxFilterAddr); | 
 | 2698 | 	writew(sval[0], ioaddr + RxFilterData); | 
 | 2699 |  | 
 | 2700 | 	writel(addr | 0xc, ioaddr + RxFilterAddr); | 
 | 2701 | 	writew(sval[1], ioaddr + RxFilterData); | 
 | 2702 |  | 
 | 2703 | 	writel(addr | 0xe, ioaddr + RxFilterAddr); | 
 | 2704 | 	writew(sval[2], ioaddr + RxFilterData); | 
 | 2705 |  | 
 | 2706 | 	/* re-enable the RX filter */ | 
 | 2707 | 	writel(addr | RxFilterEnable, ioaddr + RxFilterAddr); | 
 | 2708 |  | 
 | 2709 | 	return 0; | 
 | 2710 | } | 
 | 2711 |  | 
 | 2712 | static int netdev_get_sopass(struct net_device *dev, u8 *data) | 
 | 2713 | { | 
 | 2714 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2715 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2716 | 	u16 *sval = (u16 *)data; | 
 | 2717 | 	u32 addr; | 
 | 2718 |  | 
 | 2719 | 	if (np->srr < SRR_DP83815_D) { | 
 | 2720 | 		sval[0] = sval[1] = sval[2] = 0; | 
 | 2721 | 		return 0; | 
 | 2722 | 	} | 
 | 2723 |  | 
 | 2724 | 	/* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */ | 
 | 2725 | 	addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask; | 
 | 2726 |  | 
 | 2727 | 	writel(addr | 0xa, ioaddr + RxFilterAddr); | 
 | 2728 | 	sval[0] = readw(ioaddr + RxFilterData); | 
 | 2729 |  | 
 | 2730 | 	writel(addr | 0xc, ioaddr + RxFilterAddr); | 
 | 2731 | 	sval[1] = readw(ioaddr + RxFilterData); | 
 | 2732 |  | 
 | 2733 | 	writel(addr | 0xe, ioaddr + RxFilterAddr); | 
 | 2734 | 	sval[2] = readw(ioaddr + RxFilterData); | 
 | 2735 |  | 
 | 2736 | 	writel(addr, ioaddr + RxFilterAddr); | 
 | 2737 |  | 
 | 2738 | 	return 0; | 
 | 2739 | } | 
 | 2740 |  | 
 | 2741 | static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | 2742 | { | 
 | 2743 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2744 | 	u32 tmp; | 
 | 2745 |  | 
 | 2746 | 	ecmd->port        = dev->if_port; | 
 | 2747 | 	ecmd->speed       = np->speed; | 
 | 2748 | 	ecmd->duplex      = np->duplex; | 
 | 2749 | 	ecmd->autoneg     = np->autoneg; | 
 | 2750 | 	ecmd->advertising = 0; | 
 | 2751 | 	if (np->advertising & ADVERTISE_10HALF) | 
 | 2752 | 		ecmd->advertising |= ADVERTISED_10baseT_Half; | 
 | 2753 | 	if (np->advertising & ADVERTISE_10FULL) | 
 | 2754 | 		ecmd->advertising |= ADVERTISED_10baseT_Full; | 
 | 2755 | 	if (np->advertising & ADVERTISE_100HALF) | 
 | 2756 | 		ecmd->advertising |= ADVERTISED_100baseT_Half; | 
 | 2757 | 	if (np->advertising & ADVERTISE_100FULL) | 
 | 2758 | 		ecmd->advertising |= ADVERTISED_100baseT_Full; | 
 | 2759 | 	ecmd->supported   = (SUPPORTED_Autoneg | | 
 | 2760 | 		SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  | | 
 | 2761 | 		SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | | 
 | 2762 | 		SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE); | 
 | 2763 | 	ecmd->phy_address = np->phy_addr_external; | 
 | 2764 | 	/* | 
 | 2765 | 	 * We intentionally report the phy address of the external | 
 | 2766 | 	 * phy, even if the internal phy is used. This is necessary | 
 | 2767 | 	 * to work around a deficiency of the ethtool interface: | 
 | 2768 | 	 * It's only possible to query the settings of the active | 
 | 2769 | 	 * port. Therefore  | 
 | 2770 | 	 * # ethtool -s ethX port mii | 
 | 2771 | 	 * actually sends an ioctl to switch to port mii with the | 
 | 2772 | 	 * settings that are used for the current active port. | 
 | 2773 | 	 * If we would report a different phy address in this | 
 | 2774 | 	 * command, then | 
 | 2775 | 	 * # ethtool -s ethX port tp;ethtool -s ethX port mii | 
 | 2776 | 	 * would unintentionally change the phy address. | 
 | 2777 | 	 * | 
 | 2778 | 	 * Fortunately the phy address doesn't matter with the | 
 | 2779 | 	 * internal phy... | 
 | 2780 | 	 */ | 
 | 2781 |  | 
 | 2782 | 	/* set information based on active port type */ | 
 | 2783 | 	switch (ecmd->port) { | 
 | 2784 | 	default: | 
 | 2785 | 	case PORT_TP: | 
 | 2786 | 		ecmd->advertising |= ADVERTISED_TP; | 
 | 2787 | 		ecmd->transceiver = XCVR_INTERNAL; | 
 | 2788 | 		break; | 
 | 2789 | 	case PORT_MII: | 
 | 2790 | 		ecmd->advertising |= ADVERTISED_MII; | 
 | 2791 | 		ecmd->transceiver = XCVR_EXTERNAL; | 
 | 2792 | 		break; | 
 | 2793 | 	case PORT_FIBRE: | 
 | 2794 | 		ecmd->advertising |= ADVERTISED_FIBRE; | 
 | 2795 | 		ecmd->transceiver = XCVR_EXTERNAL; | 
 | 2796 | 		break; | 
 | 2797 | 	} | 
 | 2798 |  | 
 | 2799 | 	/* if autonegotiation is on, try to return the active speed/duplex */ | 
 | 2800 | 	if (ecmd->autoneg == AUTONEG_ENABLE) { | 
 | 2801 | 		ecmd->advertising |= ADVERTISED_Autoneg; | 
 | 2802 | 		tmp = mii_nway_result( | 
 | 2803 | 			np->advertising & mdio_read(dev, MII_LPA)); | 
 | 2804 | 		if (tmp == LPA_100FULL || tmp == LPA_100HALF) | 
 | 2805 | 			ecmd->speed  = SPEED_100; | 
 | 2806 | 		else | 
 | 2807 | 			ecmd->speed  = SPEED_10; | 
 | 2808 | 		if (tmp == LPA_100FULL || tmp == LPA_10FULL) | 
 | 2809 | 			ecmd->duplex = DUPLEX_FULL; | 
 | 2810 | 		else | 
 | 2811 | 			ecmd->duplex = DUPLEX_HALF; | 
 | 2812 | 	} | 
 | 2813 |  | 
 | 2814 | 	/* ignore maxtxpkt, maxrxpkt for now */ | 
 | 2815 |  | 
 | 2816 | 	return 0; | 
 | 2817 | } | 
 | 2818 |  | 
 | 2819 | static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd) | 
 | 2820 | { | 
 | 2821 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2822 |  | 
 | 2823 | 	if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE) | 
 | 2824 | 		return -EINVAL; | 
 | 2825 | 	if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL) | 
 | 2826 | 		return -EINVAL; | 
 | 2827 | 	if (ecmd->autoneg == AUTONEG_ENABLE) { | 
 | 2828 | 		if ((ecmd->advertising & (ADVERTISED_10baseT_Half | | 
 | 2829 | 					  ADVERTISED_10baseT_Full | | 
 | 2830 | 					  ADVERTISED_100baseT_Half | | 
 | 2831 | 					  ADVERTISED_100baseT_Full)) == 0) { | 
 | 2832 | 			return -EINVAL; | 
 | 2833 | 		} | 
 | 2834 | 	} else if (ecmd->autoneg == AUTONEG_DISABLE) { | 
 | 2835 | 		if (ecmd->speed != SPEED_10 && ecmd->speed != SPEED_100) | 
 | 2836 | 			return -EINVAL; | 
 | 2837 | 		if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL) | 
 | 2838 | 			return -EINVAL; | 
 | 2839 | 	} else { | 
 | 2840 | 		return -EINVAL; | 
 | 2841 | 	} | 
 | 2842 |  | 
 | 2843 | 	/* | 
 | 2844 | 	 * maxtxpkt, maxrxpkt: ignored for now. | 
 | 2845 | 	 * | 
 | 2846 | 	 * transceiver: | 
 | 2847 | 	 * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always | 
 | 2848 | 	 * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and | 
 | 2849 | 	 * selects based on ecmd->port. | 
 | 2850 | 	 * | 
 | 2851 | 	 * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre | 
 | 2852 | 	 * phys that are connected to the mii bus. It's used to apply fibre | 
 | 2853 | 	 * specific updates. | 
 | 2854 | 	 */ | 
 | 2855 |  | 
 | 2856 | 	/* WHEW! now lets bang some bits */ | 
 | 2857 |  | 
 | 2858 | 	/* save the parms */ | 
 | 2859 | 	dev->if_port          = ecmd->port; | 
 | 2860 | 	np->autoneg           = ecmd->autoneg; | 
 | 2861 | 	np->phy_addr_external = ecmd->phy_address & PhyAddrMask; | 
 | 2862 | 	if (np->autoneg == AUTONEG_ENABLE) { | 
 | 2863 | 		/* advertise only what has been requested */ | 
 | 2864 | 		np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4); | 
 | 2865 | 		if (ecmd->advertising & ADVERTISED_10baseT_Half) | 
 | 2866 | 			np->advertising |= ADVERTISE_10HALF; | 
 | 2867 | 		if (ecmd->advertising & ADVERTISED_10baseT_Full) | 
 | 2868 | 			np->advertising |= ADVERTISE_10FULL; | 
 | 2869 | 		if (ecmd->advertising & ADVERTISED_100baseT_Half) | 
 | 2870 | 			np->advertising |= ADVERTISE_100HALF; | 
 | 2871 | 		if (ecmd->advertising & ADVERTISED_100baseT_Full) | 
 | 2872 | 			np->advertising |= ADVERTISE_100FULL; | 
 | 2873 | 	} else { | 
 | 2874 | 		np->speed  = ecmd->speed; | 
 | 2875 | 		np->duplex = ecmd->duplex; | 
 | 2876 | 		/* user overriding the initial full duplex parm? */ | 
 | 2877 | 		if (np->duplex == DUPLEX_HALF) | 
 | 2878 | 			np->full_duplex = 0; | 
 | 2879 | 	} | 
 | 2880 |  | 
 | 2881 | 	/* get the right phy enabled */ | 
 | 2882 | 	if (ecmd->port == PORT_TP) | 
 | 2883 | 		switch_port_internal(dev); | 
 | 2884 | 	else | 
 | 2885 | 		switch_port_external(dev); | 
 | 2886 |  | 
 | 2887 | 	/* set parms and see how this affected our link status */ | 
 | 2888 | 	init_phy_fixup(dev); | 
 | 2889 | 	check_link(dev); | 
 | 2890 | 	return 0; | 
 | 2891 | } | 
 | 2892 |  | 
 | 2893 | static int netdev_get_regs(struct net_device *dev, u8 *buf) | 
 | 2894 | { | 
 | 2895 | 	int i; | 
 | 2896 | 	int j; | 
 | 2897 | 	u32 rfcr; | 
 | 2898 | 	u32 *rbuf = (u32 *)buf; | 
 | 2899 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2900 |  | 
 | 2901 | 	/* read non-mii page 0 of registers */ | 
 | 2902 | 	for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) { | 
 | 2903 | 		rbuf[i] = readl(ioaddr + i*4); | 
 | 2904 | 	} | 
 | 2905 |  | 
 | 2906 | 	/* read current mii registers */ | 
 | 2907 | 	for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++) | 
 | 2908 | 		rbuf[i] = mdio_read(dev, i & 0x1f); | 
 | 2909 |  | 
 | 2910 | 	/* read only the 'magic' registers from page 1 */ | 
 | 2911 | 	writew(1, ioaddr + PGSEL); | 
 | 2912 | 	rbuf[i++] = readw(ioaddr + PMDCSR); | 
 | 2913 | 	rbuf[i++] = readw(ioaddr + TSTDAT); | 
 | 2914 | 	rbuf[i++] = readw(ioaddr + DSPCFG); | 
 | 2915 | 	rbuf[i++] = readw(ioaddr + SDCFG); | 
 | 2916 | 	writew(0, ioaddr + PGSEL); | 
 | 2917 |  | 
 | 2918 | 	/* read RFCR indexed registers */ | 
 | 2919 | 	rfcr = readl(ioaddr + RxFilterAddr); | 
 | 2920 | 	for (j = 0; j < NATSEMI_RFDR_NREGS; j++) { | 
 | 2921 | 		writel(j*2, ioaddr + RxFilterAddr); | 
 | 2922 | 		rbuf[i++] = readw(ioaddr + RxFilterData); | 
 | 2923 | 	} | 
 | 2924 | 	writel(rfcr, ioaddr + RxFilterAddr); | 
 | 2925 |  | 
 | 2926 | 	/* the interrupt status is clear-on-read - see if we missed any */ | 
 | 2927 | 	if (rbuf[4] & rbuf[5]) { | 
 | 2928 | 		printk(KERN_WARNING | 
 | 2929 | 			"%s: shoot, we dropped an interrupt (%#08x)\n", | 
 | 2930 | 			dev->name, rbuf[4] & rbuf[5]); | 
 | 2931 | 	} | 
 | 2932 |  | 
 | 2933 | 	return 0; | 
 | 2934 | } | 
 | 2935 |  | 
 | 2936 | #define SWAP_BITS(x)	( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \ | 
 | 2937 | 			| (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \ | 
 | 2938 | 			| (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \ | 
 | 2939 | 			| (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \ | 
 | 2940 | 			| (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \ | 
 | 2941 | 			| (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \ | 
 | 2942 | 			| (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \ | 
 | 2943 | 			| (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) ) | 
 | 2944 |  | 
 | 2945 | static int netdev_get_eeprom(struct net_device *dev, u8 *buf) | 
 | 2946 | { | 
 | 2947 | 	int i; | 
 | 2948 | 	u16 *ebuf = (u16 *)buf; | 
 | 2949 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 2950 |  | 
 | 2951 | 	/* eeprom_read reads 16 bits, and indexes by 16 bits */ | 
 | 2952 | 	for (i = 0; i < NATSEMI_EEPROM_SIZE/2; i++) { | 
 | 2953 | 		ebuf[i] = eeprom_read(ioaddr, i); | 
 | 2954 | 		/* The EEPROM itself stores data bit-swapped, but eeprom_read | 
 | 2955 | 		 * reads it back "sanely". So we swap it back here in order to | 
 | 2956 | 		 * present it to userland as it is stored. */ | 
 | 2957 | 		ebuf[i] = SWAP_BITS(ebuf[i]); | 
 | 2958 | 	} | 
 | 2959 | 	return 0; | 
 | 2960 | } | 
 | 2961 |  | 
 | 2962 | static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) | 
 | 2963 | { | 
 | 2964 | 	struct mii_ioctl_data *data = if_mii(rq); | 
 | 2965 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 2966 |  | 
 | 2967 | 	switch(cmd) { | 
 | 2968 | 	case SIOCGMIIPHY:		/* Get address of MII PHY in use. */ | 
 | 2969 | 	case SIOCDEVPRIVATE:		/* for binary compat, remove in 2.5 */ | 
 | 2970 | 		data->phy_id = np->phy_addr_external; | 
 | 2971 | 		/* Fall Through */ | 
 | 2972 |  | 
 | 2973 | 	case SIOCGMIIREG:		/* Read MII PHY register. */ | 
 | 2974 | 	case SIOCDEVPRIVATE+1:		/* for binary compat, remove in 2.5 */ | 
 | 2975 | 		/* The phy_id is not enough to uniquely identify | 
 | 2976 | 		 * the intended target. Therefore the command is sent to | 
 | 2977 | 		 * the given mii on the current port. | 
 | 2978 | 		 */ | 
 | 2979 | 		if (dev->if_port == PORT_TP) { | 
 | 2980 | 			if ((data->phy_id & 0x1f) == np->phy_addr_external) | 
 | 2981 | 				data->val_out = mdio_read(dev, | 
 | 2982 | 							data->reg_num & 0x1f); | 
 | 2983 | 			else | 
 | 2984 | 				data->val_out = 0; | 
 | 2985 | 		} else { | 
 | 2986 | 			move_int_phy(dev, data->phy_id & 0x1f); | 
 | 2987 | 			data->val_out = miiport_read(dev, data->phy_id & 0x1f, | 
 | 2988 | 							data->reg_num & 0x1f); | 
 | 2989 | 		} | 
 | 2990 | 		return 0; | 
 | 2991 |  | 
 | 2992 | 	case SIOCSMIIREG:		/* Write MII PHY register. */ | 
 | 2993 | 	case SIOCDEVPRIVATE+2:		/* for binary compat, remove in 2.5 */ | 
 | 2994 | 		if (!capable(CAP_NET_ADMIN)) | 
 | 2995 | 			return -EPERM; | 
 | 2996 | 		if (dev->if_port == PORT_TP) { | 
 | 2997 | 			if ((data->phy_id & 0x1f) == np->phy_addr_external) { | 
 | 2998 |  				if ((data->reg_num & 0x1f) == MII_ADVERTISE) | 
 | 2999 | 					np->advertising = data->val_in; | 
 | 3000 | 				mdio_write(dev, data->reg_num & 0x1f, | 
 | 3001 | 							data->val_in); | 
 | 3002 | 			} | 
 | 3003 | 		} else { | 
 | 3004 | 			if ((data->phy_id & 0x1f) == np->phy_addr_external) { | 
 | 3005 |  				if ((data->reg_num & 0x1f) == MII_ADVERTISE) | 
 | 3006 | 					np->advertising = data->val_in; | 
 | 3007 | 			} | 
 | 3008 | 			move_int_phy(dev, data->phy_id & 0x1f); | 
 | 3009 | 			miiport_write(dev, data->phy_id & 0x1f, | 
 | 3010 | 						data->reg_num & 0x1f, | 
 | 3011 | 						data->val_in); | 
 | 3012 | 		} | 
 | 3013 | 		return 0; | 
 | 3014 | 	default: | 
 | 3015 | 		return -EOPNOTSUPP; | 
 | 3016 | 	} | 
 | 3017 | } | 
 | 3018 |  | 
 | 3019 | static void enable_wol_mode(struct net_device *dev, int enable_intr) | 
 | 3020 | { | 
 | 3021 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 3022 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 3023 |  | 
 | 3024 | 	if (netif_msg_wol(np)) | 
 | 3025 | 		printk(KERN_INFO "%s: remaining active for wake-on-lan\n", | 
 | 3026 | 			dev->name); | 
 | 3027 |  | 
 | 3028 | 	/* For WOL we must restart the rx process in silent mode. | 
 | 3029 | 	 * Write NULL to the RxRingPtr. Only possible if | 
 | 3030 | 	 * rx process is stopped | 
 | 3031 | 	 */ | 
 | 3032 | 	writel(0, ioaddr + RxRingPtr); | 
 | 3033 |  | 
 | 3034 | 	/* read WoL status to clear */ | 
 | 3035 | 	readl(ioaddr + WOLCmd); | 
 | 3036 |  | 
 | 3037 | 	/* PME on, clear status */ | 
 | 3038 | 	writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun); | 
 | 3039 |  | 
 | 3040 | 	/* and restart the rx process */ | 
 | 3041 | 	writel(RxOn, ioaddr + ChipCmd); | 
 | 3042 |  | 
 | 3043 | 	if (enable_intr) { | 
 | 3044 | 		/* enable the WOL interrupt. | 
 | 3045 | 		 * Could be used to send a netlink message. | 
 | 3046 | 		 */ | 
 | 3047 | 		writel(WOLPkt | LinkChange, ioaddr + IntrMask); | 
 | 3048 | 		writel(1, ioaddr + IntrEnable); | 
 | 3049 | 	} | 
 | 3050 | } | 
 | 3051 |  | 
 | 3052 | static int netdev_close(struct net_device *dev) | 
 | 3053 | { | 
 | 3054 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 3055 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 3056 |  | 
 | 3057 | 	if (netif_msg_ifdown(np)) | 
 | 3058 | 		printk(KERN_DEBUG | 
 | 3059 | 			"%s: Shutting down ethercard, status was %#04x.\n", | 
 | 3060 | 			dev->name, (int)readl(ioaddr + ChipCmd)); | 
 | 3061 | 	if (netif_msg_pktdata(np)) | 
 | 3062 | 		printk(KERN_DEBUG | 
 | 3063 | 			"%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n", | 
 | 3064 | 			dev->name, np->cur_tx, np->dirty_tx, | 
 | 3065 | 			np->cur_rx, np->dirty_rx); | 
 | 3066 |  | 
 | 3067 | 	/* | 
 | 3068 | 	 * FIXME: what if someone tries to close a device | 
 | 3069 | 	 * that is suspended? | 
 | 3070 | 	 * Should we reenable the nic to switch to | 
 | 3071 | 	 * the final WOL settings? | 
 | 3072 | 	 */ | 
 | 3073 |  | 
 | 3074 | 	del_timer_sync(&np->timer); | 
 | 3075 | 	disable_irq(dev->irq); | 
 | 3076 | 	spin_lock_irq(&np->lock); | 
 | 3077 | 	/* Disable interrupts, and flush posted writes */ | 
 | 3078 | 	writel(0, ioaddr + IntrEnable); | 
 | 3079 | 	readl(ioaddr + IntrEnable); | 
 | 3080 | 	np->hands_off = 1; | 
 | 3081 | 	spin_unlock_irq(&np->lock); | 
 | 3082 | 	enable_irq(dev->irq); | 
 | 3083 |  | 
 | 3084 | 	free_irq(dev->irq, dev); | 
 | 3085 |  | 
 | 3086 | 	/* Interrupt disabled, interrupt handler released, | 
 | 3087 | 	 * queue stopped, timer deleted, rtnl_lock held | 
 | 3088 | 	 * All async codepaths that access the driver are disabled. | 
 | 3089 | 	 */ | 
 | 3090 | 	spin_lock_irq(&np->lock); | 
 | 3091 | 	np->hands_off = 0; | 
 | 3092 | 	readl(ioaddr + IntrMask); | 
 | 3093 | 	readw(ioaddr + MIntrStatus); | 
 | 3094 |  | 
 | 3095 | 	/* Freeze Stats */ | 
 | 3096 | 	writel(StatsFreeze, ioaddr + StatsCtrl); | 
 | 3097 |  | 
 | 3098 | 	/* Stop the chip's Tx and Rx processes. */ | 
 | 3099 | 	natsemi_stop_rxtx(dev); | 
 | 3100 |  | 
 | 3101 | 	__get_stats(dev); | 
 | 3102 | 	spin_unlock_irq(&np->lock); | 
 | 3103 |  | 
 | 3104 | 	/* clear the carrier last - an interrupt could reenable it otherwise */ | 
 | 3105 | 	netif_carrier_off(dev); | 
 | 3106 | 	netif_stop_queue(dev); | 
 | 3107 |  | 
 | 3108 | 	dump_ring(dev); | 
 | 3109 | 	drain_ring(dev); | 
 | 3110 | 	free_ring(dev); | 
 | 3111 |  | 
 | 3112 | 	{ | 
 | 3113 | 		u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; | 
 | 3114 | 		if (wol) { | 
 | 3115 | 			/* restart the NIC in WOL mode. | 
 | 3116 | 			 * The nic must be stopped for this. | 
 | 3117 | 			 */ | 
 | 3118 | 			enable_wol_mode(dev, 0); | 
 | 3119 | 		} else { | 
 | 3120 | 			/* Restore PME enable bit unmolested */ | 
 | 3121 | 			writel(np->SavedClkRun, ioaddr + ClkRun); | 
 | 3122 | 		} | 
 | 3123 | 	} | 
 | 3124 | 	return 0; | 
 | 3125 | } | 
 | 3126 |  | 
 | 3127 |  | 
 | 3128 | static void __devexit natsemi_remove1 (struct pci_dev *pdev) | 
 | 3129 | { | 
 | 3130 | 	struct net_device *dev = pci_get_drvdata(pdev); | 
 | 3131 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 3132 |  | 
 | 3133 | 	unregister_netdev (dev); | 
 | 3134 | 	pci_release_regions (pdev); | 
 | 3135 | 	iounmap(ioaddr); | 
 | 3136 | 	free_netdev (dev); | 
 | 3137 | 	pci_set_drvdata(pdev, NULL); | 
 | 3138 | } | 
 | 3139 |  | 
 | 3140 | #ifdef CONFIG_PM | 
 | 3141 |  | 
 | 3142 | /* | 
 | 3143 |  * The ns83815 chip doesn't have explicit RxStop bits. | 
 | 3144 |  * Kicking the Rx or Tx process for a new packet reenables the Rx process | 
 | 3145 |  * of the nic, thus this function must be very careful: | 
 | 3146 |  * | 
 | 3147 |  * suspend/resume synchronization: | 
 | 3148 |  * entry points: | 
 | 3149 |  *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler, | 
 | 3150 |  *   start_tx, tx_timeout | 
 | 3151 |  * | 
 | 3152 |  * No function accesses the hardware without checking np->hands_off. | 
 | 3153 |  *	the check occurs under spin_lock_irq(&np->lock); | 
 | 3154 |  * exceptions: | 
 | 3155 |  *	* netdev_ioctl: noncritical access. | 
 | 3156 |  *	* netdev_open: cannot happen due to the device_detach | 
 | 3157 |  *	* netdev_close: doesn't hurt. | 
 | 3158 |  *	* netdev_timer: timer stopped by natsemi_suspend. | 
 | 3159 |  *	* intr_handler: doesn't acquire the spinlock. suspend calls | 
 | 3160 |  *		disable_irq() to enforce synchronization. | 
 | 3161 |  * | 
 | 3162 |  * Interrupts must be disabled, otherwise hands_off can cause irq storms. | 
 | 3163 |  */ | 
 | 3164 |  | 
 | 3165 | static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state) | 
 | 3166 | { | 
 | 3167 | 	struct net_device *dev = pci_get_drvdata (pdev); | 
 | 3168 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 3169 | 	void __iomem * ioaddr = ns_ioaddr(dev); | 
 | 3170 |  | 
 | 3171 | 	rtnl_lock(); | 
 | 3172 | 	if (netif_running (dev)) { | 
 | 3173 | 		del_timer_sync(&np->timer); | 
 | 3174 |  | 
 | 3175 | 		disable_irq(dev->irq); | 
 | 3176 | 		spin_lock_irq(&np->lock); | 
 | 3177 |  | 
 | 3178 | 		writel(0, ioaddr + IntrEnable); | 
 | 3179 | 		np->hands_off = 1; | 
 | 3180 | 		natsemi_stop_rxtx(dev); | 
 | 3181 | 		netif_stop_queue(dev); | 
 | 3182 |  | 
 | 3183 | 		spin_unlock_irq(&np->lock); | 
 | 3184 | 		enable_irq(dev->irq); | 
 | 3185 |  | 
 | 3186 | 		/* Update the error counts. */ | 
 | 3187 | 		__get_stats(dev); | 
 | 3188 |  | 
 | 3189 | 		/* pci_power_off(pdev, -1); */ | 
 | 3190 | 		drain_ring(dev); | 
 | 3191 | 		{ | 
 | 3192 | 			u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary; | 
 | 3193 | 			/* Restore PME enable bit */ | 
 | 3194 | 			if (wol) { | 
 | 3195 | 				/* restart the NIC in WOL mode. | 
 | 3196 | 				 * The nic must be stopped for this. | 
 | 3197 | 				 * FIXME: use the WOL interrupt | 
 | 3198 | 				 */ | 
 | 3199 | 				enable_wol_mode(dev, 0); | 
 | 3200 | 			} else { | 
 | 3201 | 				/* Restore PME enable bit unmolested */ | 
 | 3202 | 				writel(np->SavedClkRun, ioaddr + ClkRun); | 
 | 3203 | 			} | 
 | 3204 | 		} | 
 | 3205 | 	} | 
 | 3206 | 	netif_device_detach(dev); | 
 | 3207 | 	rtnl_unlock(); | 
 | 3208 | 	return 0; | 
 | 3209 | } | 
 | 3210 |  | 
 | 3211 |  | 
 | 3212 | static int natsemi_resume (struct pci_dev *pdev) | 
 | 3213 | { | 
 | 3214 | 	struct net_device *dev = pci_get_drvdata (pdev); | 
 | 3215 | 	struct netdev_private *np = netdev_priv(dev); | 
 | 3216 |  | 
 | 3217 | 	rtnl_lock(); | 
 | 3218 | 	if (netif_device_present(dev)) | 
 | 3219 | 		goto out; | 
 | 3220 | 	if (netif_running(dev)) { | 
 | 3221 | 		BUG_ON(!np->hands_off); | 
 | 3222 | 		pci_enable_device(pdev); | 
 | 3223 | 	/*	pci_power_on(pdev); */ | 
 | 3224 |  | 
 | 3225 | 		natsemi_reset(dev); | 
 | 3226 | 		init_ring(dev); | 
 | 3227 | 		disable_irq(dev->irq); | 
 | 3228 | 		spin_lock_irq(&np->lock); | 
 | 3229 | 		np->hands_off = 0; | 
 | 3230 | 		init_registers(dev); | 
 | 3231 | 		netif_device_attach(dev); | 
 | 3232 | 		spin_unlock_irq(&np->lock); | 
 | 3233 | 		enable_irq(dev->irq); | 
 | 3234 |  | 
 | 3235 | 		mod_timer(&np->timer, jiffies + 1*HZ); | 
 | 3236 | 	} | 
 | 3237 | 	netif_device_attach(dev); | 
 | 3238 | out: | 
 | 3239 | 	rtnl_unlock(); | 
 | 3240 | 	return 0; | 
 | 3241 | } | 
 | 3242 |  | 
 | 3243 | #endif /* CONFIG_PM */ | 
 | 3244 |  | 
 | 3245 | static struct pci_driver natsemi_driver = { | 
 | 3246 | 	.name		= DRV_NAME, | 
 | 3247 | 	.id_table	= natsemi_pci_tbl, | 
 | 3248 | 	.probe		= natsemi_probe1, | 
 | 3249 | 	.remove		= __devexit_p(natsemi_remove1), | 
 | 3250 | #ifdef CONFIG_PM | 
 | 3251 | 	.suspend	= natsemi_suspend, | 
 | 3252 | 	.resume		= natsemi_resume, | 
 | 3253 | #endif | 
 | 3254 | }; | 
 | 3255 |  | 
 | 3256 | static int __init natsemi_init_mod (void) | 
 | 3257 | { | 
 | 3258 | /* when a module, this is printed whether or not devices are found in probe */ | 
 | 3259 | #ifdef MODULE | 
 | 3260 | 	printk(version); | 
 | 3261 | #endif | 
 | 3262 |  | 
 | 3263 | 	return pci_module_init (&natsemi_driver); | 
 | 3264 | } | 
 | 3265 |  | 
 | 3266 | static void __exit natsemi_exit_mod (void) | 
 | 3267 | { | 
 | 3268 | 	pci_unregister_driver (&natsemi_driver); | 
 | 3269 | } | 
 | 3270 |  | 
 | 3271 | module_init(natsemi_init_mod); | 
 | 3272 | module_exit(natsemi_exit_mod); | 
 | 3273 |  |