blob: 6069ca20a0149d8764aae1c295c2d8f9ed9bfcbf [file] [log] [blame]
Mike Chan1dab2592010-06-22 11:26:45 -07001/*
2 * drivers/cpufreq/cpufreq_interactive.c
3 *
4 * Copyright (C) 2010 Google, Inc.
5 *
6 * This software is licensed under the terms of the GNU General Public
7 * License version 2, as published by the Free Software Foundation, and
8 * may be copied, distributed, and modified under those terms.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * Author: Mike Chan (mike@android.com)
16 *
17 */
18
19#include <linux/cpu.h>
20#include <linux/cpumask.h>
21#include <linux/cpufreq.h>
22#include <linux/mutex.h>
23#include <linux/sched.h>
24#include <linux/tick.h>
25#include <linux/timer.h>
26#include <linux/workqueue.h>
27#include <linux/kthread.h>
28
29#include <asm/cputime.h>
30
31static void (*pm_idle_old)(void);
32static atomic_t active_count = ATOMIC_INIT(0);
33
34struct cpufreq_interactive_cpuinfo {
35 struct timer_list cpu_timer;
36 int timer_idlecancel;
37 u64 time_in_idle;
38 u64 idle_exit_time;
39 u64 timer_run_time;
40 int idling;
41 u64 freq_change_time;
42 u64 freq_change_time_in_idle;
43 struct cpufreq_policy *policy;
44 struct cpufreq_frequency_table *freq_table;
45 unsigned int target_freq;
46 int governor_enabled;
47};
48
49static DEFINE_PER_CPU(struct cpufreq_interactive_cpuinfo, cpuinfo);
50
51/* Workqueues handle frequency scaling */
52static struct task_struct *up_task;
53static struct workqueue_struct *down_wq;
54static struct work_struct freq_scale_down_work;
55static cpumask_t up_cpumask;
56static spinlock_t up_cpumask_lock;
57static cpumask_t down_cpumask;
58static spinlock_t down_cpumask_lock;
59
60/* Go to max speed when CPU load at or above this value. */
61#define DEFAULT_GO_MAXSPEED_LOAD 85
62static unsigned long go_maxspeed_load;
63
64/*
65 * The minimum amount of time to spend at a frequency before we can ramp down.
66 */
67#define DEFAULT_MIN_SAMPLE_TIME 80000;
68static unsigned long min_sample_time;
69
70#define DEBUG 0
71#define BUFSZ 128
72
73#if DEBUG
74#include <linux/proc_fs.h>
75
76struct dbgln {
77 int cpu;
78 unsigned long jiffy;
79 unsigned long run;
80 char buf[BUFSZ];
81};
82
83#define NDBGLNS 256
84
85static struct dbgln dbgbuf[NDBGLNS];
86static int dbgbufs;
87static int dbgbufe;
88static struct proc_dir_entry *dbg_proc;
89static spinlock_t dbgpr_lock;
90
91static u64 up_request_time;
92static unsigned int up_max_latency;
93
94static void dbgpr(char *fmt, ...)
95{
96 va_list args;
97 int n;
98 unsigned long flags;
99
100 spin_lock_irqsave(&dbgpr_lock, flags);
101 n = dbgbufe;
102 va_start(args, fmt);
103 vsnprintf(dbgbuf[n].buf, BUFSZ, fmt, args);
104 va_end(args);
105 dbgbuf[n].cpu = smp_processor_id();
106 dbgbuf[n].run = nr_running();
107 dbgbuf[n].jiffy = jiffies;
108
109 if (++dbgbufe >= NDBGLNS)
110 dbgbufe = 0;
111
112 if (dbgbufe == dbgbufs)
113 if (++dbgbufs >= NDBGLNS)
114 dbgbufs = 0;
115
116 spin_unlock_irqrestore(&dbgpr_lock, flags);
117}
118
119static void dbgdump(void)
120{
121 int i, j;
122 unsigned long flags;
123 static struct dbgln prbuf[NDBGLNS];
124
125 spin_lock_irqsave(&dbgpr_lock, flags);
126 i = dbgbufs;
127 j = dbgbufe;
128 memcpy(prbuf, dbgbuf, sizeof(dbgbuf));
129 dbgbufs = 0;
130 dbgbufe = 0;
131 spin_unlock_irqrestore(&dbgpr_lock, flags);
132
133 while (i != j)
134 {
135 printk("%lu %d %lu %s",
136 prbuf[i].jiffy, prbuf[i].cpu, prbuf[i].run,
137 prbuf[i].buf);
138 if (++i == NDBGLNS)
139 i = 0;
140 }
141}
142
143static int dbg_proc_read(char *buffer, char **start, off_t offset,
144 int count, int *peof, void *dat)
145{
146 printk("max up_task latency=%uus\n", up_max_latency);
147 dbgdump();
148 *peof = 1;
149 return 0;
150}
151
152
153#else
154#define dbgpr(...) do {} while (0)
155#endif
156
157static int cpufreq_governor_interactive(struct cpufreq_policy *policy,
158 unsigned int event);
159
160#ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
161static
162#endif
163struct cpufreq_governor cpufreq_gov_interactive = {
164 .name = "interactive",
165 .governor = cpufreq_governor_interactive,
166 .max_transition_latency = 10000000,
167 .owner = THIS_MODULE,
168};
169
170static void cpufreq_interactive_timer(unsigned long data)
171{
172 unsigned int delta_idle;
173 unsigned int delta_time;
174 int cpu_load;
175 int load_since_change;
176 u64 time_in_idle;
177 u64 idle_exit_time;
178 struct cpufreq_interactive_cpuinfo *pcpu =
179 &per_cpu(cpuinfo, data);
180 u64 now_idle;
181 unsigned int new_freq;
182 unsigned int index;
183
184 /*
185 * Once pcpu->timer_run_time is updated to >= pcpu->idle_exit_time,
186 * this lets idle exit know the current idle time sample has
187 * been processed, and idle exit can generate a new sample and
188 * re-arm the timer. This prevents a concurrent idle
189 * exit on that CPU from writing a new set of info at the same time
190 * the timer function runs (the timer function can't use that info
191 * until more time passes).
192 */
193 time_in_idle = pcpu->time_in_idle;
194 idle_exit_time = pcpu->idle_exit_time;
195 now_idle = get_cpu_idle_time_us(data, &pcpu->timer_run_time);
196 smp_wmb();
197
198 /* If we raced with cancelling a timer, skip. */
199 if (!idle_exit_time) {
200 dbgpr("timer %d: no valid idle exit sample\n", (int) data);
201 goto exit;
202 }
203
204#if DEBUG
205 if ((int) jiffies - (int) pcpu->cpu_timer.expires >= 10)
206 dbgpr("timer %d: late by %d ticks\n",
207 (int) data, jiffies - pcpu->cpu_timer.expires);
208#endif
209
210 delta_idle = (unsigned int) cputime64_sub(now_idle, time_in_idle);
211 delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
212 idle_exit_time);
213
214 /*
215 * If timer ran less than 1ms after short-term sample started, retry.
216 */
217 if (delta_time < 1000) {
218 dbgpr("timer %d: time delta %u too short exit=%llu now=%llu\n", (int) data,
219 delta_time, idle_exit_time, pcpu->timer_run_time);
220 goto rearm;
221 }
222
223 if (delta_idle > delta_time)
224 cpu_load = 0;
225 else
226 cpu_load = 100 * (delta_time - delta_idle) / delta_time;
227
228 delta_idle = (unsigned int) cputime64_sub(now_idle,
229 pcpu->freq_change_time_in_idle);
230 delta_time = (unsigned int) cputime64_sub(pcpu->timer_run_time,
231 pcpu->freq_change_time);
232
233 if (delta_idle > delta_time)
234 load_since_change = 0;
235 else
236 load_since_change =
237 100 * (delta_time - delta_idle) / delta_time;
238
239 /*
240 * Choose greater of short-term load (since last idle timer
241 * started or timer function re-armed itself) or long-term load
242 * (since last frequency change).
243 */
244 if (load_since_change > cpu_load)
245 cpu_load = load_since_change;
246
247 if (cpu_load >= go_maxspeed_load)
248 new_freq = pcpu->policy->max;
249 else
250 new_freq = pcpu->policy->max * cpu_load / 100;
251
252 if (cpufreq_frequency_table_target(pcpu->policy, pcpu->freq_table,
253 new_freq, CPUFREQ_RELATION_H,
254 &index)) {
255 dbgpr("timer %d: cpufreq_frequency_table_target error\n", (int) data);
256 goto rearm;
257 }
258
259 new_freq = pcpu->freq_table[index].frequency;
260
261 if (pcpu->target_freq == new_freq)
262 {
263 dbgpr("timer %d: load=%d, already at %d\n", (int) data, cpu_load, new_freq);
264 goto rearm_if_notmax;
265 }
266
267 /*
268 * Do not scale down unless we have been at this frequency for the
269 * minimum sample time.
270 */
271 if (new_freq < pcpu->target_freq) {
272 if (cputime64_sub(pcpu->timer_run_time, pcpu->freq_change_time) <
273 min_sample_time) {
274 dbgpr("timer %d: load=%d cur=%d tgt=%d not yet\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
275 goto rearm;
276 }
277 }
278
279 dbgpr("timer %d: load=%d cur=%d tgt=%d queue\n", (int) data, cpu_load, pcpu->target_freq, new_freq);
280
281 if (new_freq < pcpu->target_freq) {
282 pcpu->target_freq = new_freq;
283 spin_lock(&down_cpumask_lock);
284 cpumask_set_cpu(data, &down_cpumask);
285 spin_unlock(&down_cpumask_lock);
286 queue_work(down_wq, &freq_scale_down_work);
287 } else {
288 pcpu->target_freq = new_freq;
289#if DEBUG
290 up_request_time = ktime_to_us(ktime_get());
291#endif
292 spin_lock(&up_cpumask_lock);
293 cpumask_set_cpu(data, &up_cpumask);
294 spin_unlock(&up_cpumask_lock);
295 wake_up_process(up_task);
296 }
297
298rearm_if_notmax:
299 /*
300 * Already set max speed and don't see a need to change that,
301 * wait until next idle to re-evaluate, don't need timer.
302 */
303 if (pcpu->target_freq == pcpu->policy->max)
304 goto exit;
305
306rearm:
307 if (!timer_pending(&pcpu->cpu_timer)) {
308 /*
309 * If already at min: if that CPU is idle, don't set timer.
310 * Else cancel the timer if that CPU goes idle. We don't
311 * need to re-evaluate speed until the next idle exit.
312 */
313 if (pcpu->target_freq == pcpu->policy->min) {
314 smp_rmb();
315
316 if (pcpu->idling) {
317 dbgpr("timer %d: cpu idle, don't re-arm\n", (int) data);
318 goto exit;
319 }
320
321 pcpu->timer_idlecancel = 1;
322 }
323
324 pcpu->time_in_idle = get_cpu_idle_time_us(
325 data, &pcpu->idle_exit_time);
326 mod_timer(&pcpu->cpu_timer, jiffies + 2);
327 dbgpr("timer %d: set timer for %lu exit=%llu\n", (int) data, pcpu->cpu_timer.expires, pcpu->idle_exit_time);
328 }
329
330exit:
331 return;
332}
333
334static void cpufreq_interactive_idle(void)
335{
336 struct cpufreq_interactive_cpuinfo *pcpu =
337 &per_cpu(cpuinfo, smp_processor_id());
338 int pending;
339
340 if (!pcpu->governor_enabled) {
341 pm_idle_old();
342 return;
343 }
344
345 pcpu->idling = 1;
346 smp_wmb();
347 pending = timer_pending(&pcpu->cpu_timer);
348
349 if (pcpu->target_freq != pcpu->policy->min) {
350#ifdef CONFIG_SMP
351 /*
352 * Entering idle while not at lowest speed. On some
353 * platforms this can hold the other CPU(s) at that speed
354 * even though the CPU is idle. Set a timer to re-evaluate
355 * speed so this idle CPU doesn't hold the other CPUs above
356 * min indefinitely. This should probably be a quirk of
357 * the CPUFreq driver.
358 */
359 if (!pending) {
360 pcpu->time_in_idle = get_cpu_idle_time_us(
361 smp_processor_id(), &pcpu->idle_exit_time);
362 pcpu->timer_idlecancel = 0;
363 mod_timer(&pcpu->cpu_timer, jiffies + 2);
364 dbgpr("idle: enter at %d, set timer for %lu exit=%llu\n",
365 pcpu->target_freq, pcpu->cpu_timer.expires,
366 pcpu->idle_exit_time);
367 }
368#endif
369 } else {
370 /*
371 * If at min speed and entering idle after load has
372 * already been evaluated, and a timer has been set just in
373 * case the CPU suddenly goes busy, cancel that timer. The
374 * CPU didn't go busy; we'll recheck things upon idle exit.
375 */
376 if (pending && pcpu->timer_idlecancel) {
377 dbgpr("idle: cancel timer for %lu\n", pcpu->cpu_timer.expires);
378 del_timer(&pcpu->cpu_timer);
379 /*
380 * Ensure last timer run time is after current idle
381 * sample start time, so next idle exit will always
382 * start a new idle sampling period.
383 */
384 pcpu->idle_exit_time = 0;
385 pcpu->timer_idlecancel = 0;
386 }
387 }
388
389 pm_idle_old();
390 pcpu->idling = 0;
391 smp_wmb();
392
393 /*
394 * Arm the timer for 1-2 ticks later if not already, and if the timer
395 * function has already processed the previous load sampling
396 * interval. (If the timer is not pending but has not processed
397 * the previous interval, it is probably racing with us on another
398 * CPU. Let it compute load based on the previous sample and then
399 * re-arm the timer for another interval when it's done, rather
400 * than updating the interval start time to be "now", which doesn't
401 * give the timer function enough time to make a decision on this
402 * run.)
403 */
404 if (timer_pending(&pcpu->cpu_timer) == 0 &&
405 pcpu->timer_run_time >= pcpu->idle_exit_time) {
406 pcpu->time_in_idle =
407 get_cpu_idle_time_us(smp_processor_id(),
408 &pcpu->idle_exit_time);
409 pcpu->timer_idlecancel = 0;
410 mod_timer(&pcpu->cpu_timer, jiffies + 2);
411 dbgpr("idle: exit, set timer for %lu exit=%llu\n", pcpu->cpu_timer.expires, pcpu->idle_exit_time);
412#if DEBUG
413 } else if (timer_pending(&pcpu->cpu_timer) == 0 &&
414 pcpu->timer_run_time < pcpu->idle_exit_time) {
415 dbgpr("idle: timer not run yet: exit=%llu tmrrun=%llu\n",
416 pcpu->idle_exit_time, pcpu->timer_run_time);
417#endif
418 }
419
420}
421
422static int cpufreq_interactive_up_task(void *data)
423{
424 unsigned int cpu;
425 cpumask_t tmp_mask;
426 struct cpufreq_interactive_cpuinfo *pcpu;
427
428#if DEBUG
429 u64 now;
430 u64 then;
431 unsigned int lat;
432#endif
433
434 while (1) {
435 set_current_state(TASK_INTERRUPTIBLE);
436 spin_lock(&up_cpumask_lock);
437
438 if (cpumask_empty(&up_cpumask)) {
439 spin_unlock(&up_cpumask_lock);
440 schedule();
441
442 if (kthread_should_stop())
443 break;
444
445 spin_lock(&up_cpumask_lock);
446 }
447
448 set_current_state(TASK_RUNNING);
449
450#if DEBUG
451 then = up_request_time;
452 now = ktime_to_us(ktime_get());
453
454 if (now > then) {
455 lat = ktime_to_us(ktime_get()) - then;
456
457 if (lat > up_max_latency)
458 up_max_latency = lat;
459 }
460#endif
461
462 tmp_mask = up_cpumask;
463 cpumask_clear(&up_cpumask);
464 spin_unlock(&up_cpumask_lock);
465
466 for_each_cpu(cpu, &tmp_mask) {
467 pcpu = &per_cpu(cpuinfo, cpu);
468
469 if (nr_running() == 1) {
470 dbgpr("up %d: tgt=%d nothing else running\n", cpu,
471 pcpu->target_freq);
472 }
473
474 __cpufreq_driver_target(pcpu->policy,
475 pcpu->target_freq,
476 CPUFREQ_RELATION_H);
477 pcpu->freq_change_time_in_idle =
478 get_cpu_idle_time_us(cpu,
479 &pcpu->freq_change_time);
480 dbgpr("up %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
481 }
482 }
483
484 return 0;
485}
486
487static void cpufreq_interactive_freq_down(struct work_struct *work)
488{
489 unsigned int cpu;
490 cpumask_t tmp_mask;
491 struct cpufreq_interactive_cpuinfo *pcpu;
492
493 spin_lock(&down_cpumask_lock);
494 tmp_mask = down_cpumask;
495 cpumask_clear(&down_cpumask);
496 spin_unlock(&down_cpumask_lock);
497
498 for_each_cpu(cpu, &tmp_mask) {
499 pcpu = &per_cpu(cpuinfo, cpu);
500 __cpufreq_driver_target(pcpu->policy,
501 pcpu->target_freq,
502 CPUFREQ_RELATION_H);
503 pcpu->freq_change_time_in_idle =
504 get_cpu_idle_time_us(cpu,
505 &pcpu->freq_change_time);
506 dbgpr("down %d: set tgt=%d (actual=%d)\n", cpu, pcpu->target_freq, pcpu->policy->cur);
507 }
508}
509
510static ssize_t show_go_maxspeed_load(struct kobject *kobj,
511 struct attribute *attr, char *buf)
512{
513 return sprintf(buf, "%lu\n", go_maxspeed_load);
514}
515
516static ssize_t store_go_maxspeed_load(struct kobject *kobj,
517 struct attribute *attr, const char *buf, size_t count)
518{
519 return strict_strtoul(buf, 0, &go_maxspeed_load);
520}
521
522static struct global_attr go_maxspeed_load_attr = __ATTR(go_maxspeed_load, 0644,
523 show_go_maxspeed_load, store_go_maxspeed_load);
524
525static ssize_t show_min_sample_time(struct kobject *kobj,
526 struct attribute *attr, char *buf)
527{
528 return sprintf(buf, "%lu\n", min_sample_time);
529}
530
531static ssize_t store_min_sample_time(struct kobject *kobj,
532 struct attribute *attr, const char *buf, size_t count)
533{
534 return strict_strtoul(buf, 0, &min_sample_time);
535}
536
537static struct global_attr min_sample_time_attr = __ATTR(min_sample_time, 0644,
538 show_min_sample_time, store_min_sample_time);
539
540static struct attribute *interactive_attributes[] = {
541 &go_maxspeed_load_attr.attr,
542 &min_sample_time_attr.attr,
543 NULL,
544};
545
546static struct attribute_group interactive_attr_group = {
547 .attrs = interactive_attributes,
548 .name = "interactive",
549};
550
551static int cpufreq_governor_interactive(struct cpufreq_policy *new_policy,
552 unsigned int event)
553{
554 int rc;
555 struct cpufreq_interactive_cpuinfo *pcpu =
556 &per_cpu(cpuinfo, new_policy->cpu);
557
558 switch (event) {
559 case CPUFREQ_GOV_START:
560 if (!cpu_online(new_policy->cpu))
561 return -EINVAL;
562
563 pcpu->policy = new_policy;
564 pcpu->freq_table = cpufreq_frequency_get_table(new_policy->cpu);
565 pcpu->target_freq = new_policy->cur;
566 pcpu->freq_change_time_in_idle =
567 get_cpu_idle_time_us(new_policy->cpu,
568 &pcpu->freq_change_time);
569 pcpu->governor_enabled = 1;
570 /*
571 * Do not register the idle hook and create sysfs
572 * entries if we have already done so.
573 */
574 if (atomic_inc_return(&active_count) > 1)
575 return 0;
576
577 rc = sysfs_create_group(cpufreq_global_kobject,
578 &interactive_attr_group);
579 if (rc)
580 return rc;
581
582 pm_idle_old = pm_idle;
583 pm_idle = cpufreq_interactive_idle;
584 break;
585
586 case CPUFREQ_GOV_STOP:
587 pcpu->governor_enabled = 0;
588
589 if (atomic_dec_return(&active_count) > 0)
590 return 0;
591
592 sysfs_remove_group(cpufreq_global_kobject,
593 &interactive_attr_group);
594
595 pm_idle = pm_idle_old;
596 del_timer(&pcpu->cpu_timer);
597 break;
598
599 case CPUFREQ_GOV_LIMITS:
600 if (new_policy->max < new_policy->cur)
601 __cpufreq_driver_target(new_policy,
602 new_policy->max, CPUFREQ_RELATION_H);
603 else if (new_policy->min > new_policy->cur)
604 __cpufreq_driver_target(new_policy,
605 new_policy->min, CPUFREQ_RELATION_L);
606 break;
607 }
608 return 0;
609}
610
611static int __init cpufreq_interactive_init(void)
612{
613 unsigned int i;
614 struct cpufreq_interactive_cpuinfo *pcpu;
615 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
616
617 go_maxspeed_load = DEFAULT_GO_MAXSPEED_LOAD;
618 min_sample_time = DEFAULT_MIN_SAMPLE_TIME;
619
620 /* Initalize per-cpu timers */
621 for_each_possible_cpu(i) {
622 pcpu = &per_cpu(cpuinfo, i);
623 init_timer(&pcpu->cpu_timer);
624 pcpu->cpu_timer.function = cpufreq_interactive_timer;
625 pcpu->cpu_timer.data = i;
626 }
627
628 up_task = kthread_create(cpufreq_interactive_up_task, NULL,
629 "kinteractiveup");
630 if (IS_ERR(up_task))
631 return PTR_ERR(up_task);
632
633 sched_setscheduler_nocheck(up_task, SCHED_FIFO, &param);
634 get_task_struct(up_task);
635
636 /* No rescuer thread, bind to CPU queuing the work for possibly
637 warm cache (probably doesn't matter much). */
638 down_wq = alloc_workqueue("knteractive_down", 0, 1);
639
640 if (! down_wq)
641 goto err_freeuptask;
642
643 INIT_WORK(&freq_scale_down_work,
644 cpufreq_interactive_freq_down);
645
646 spin_lock_init(&up_cpumask_lock);
647 spin_lock_init(&down_cpumask_lock);
648
649#if DEBUG
650 spin_lock_init(&dbgpr_lock);
651 dbg_proc = create_proc_entry("igov", S_IWUSR | S_IRUGO, NULL);
652 dbg_proc->read_proc = dbg_proc_read;
653#endif
654
655 return cpufreq_register_governor(&cpufreq_gov_interactive);
656
657err_freeuptask:
658 put_task_struct(up_task);
659 return -ENOMEM;
660}
661
662#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_INTERACTIVE
663fs_initcall(cpufreq_interactive_init);
664#else
665module_init(cpufreq_interactive_init);
666#endif
667
668static void __exit cpufreq_interactive_exit(void)
669{
670 cpufreq_unregister_governor(&cpufreq_gov_interactive);
671 kthread_stop(up_task);
672 put_task_struct(up_task);
673 destroy_workqueue(down_wq);
674}
675
676module_exit(cpufreq_interactive_exit);
677
678MODULE_AUTHOR("Mike Chan <mike@android.com>");
679MODULE_DESCRIPTION("'cpufreq_interactive' - A cpufreq governor for "
680 "Latency sensitive workloads");
681MODULE_LICENSE("GPL");