| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  * Generic waiting primitives. | 
 | 3 |  * | 
 | 4 |  * (C) 2004 William Irwin, Oracle | 
 | 5 |  */ | 
 | 6 | #include <linux/config.h> | 
 | 7 | #include <linux/init.h> | 
 | 8 | #include <linux/module.h> | 
 | 9 | #include <linux/sched.h> | 
 | 10 | #include <linux/mm.h> | 
 | 11 | #include <linux/wait.h> | 
 | 12 | #include <linux/hash.h> | 
 | 13 |  | 
 | 14 | void fastcall add_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 
 | 15 | { | 
 | 16 | 	unsigned long flags; | 
 | 17 |  | 
 | 18 | 	wait->flags &= ~WQ_FLAG_EXCLUSIVE; | 
 | 19 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 20 | 	__add_wait_queue(q, wait); | 
 | 21 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | 22 | } | 
 | 23 | EXPORT_SYMBOL(add_wait_queue); | 
 | 24 |  | 
 | 25 | void fastcall add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t *wait) | 
 | 26 | { | 
 | 27 | 	unsigned long flags; | 
 | 28 |  | 
 | 29 | 	wait->flags |= WQ_FLAG_EXCLUSIVE; | 
 | 30 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 31 | 	__add_wait_queue_tail(q, wait); | 
 | 32 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | 33 | } | 
 | 34 | EXPORT_SYMBOL(add_wait_queue_exclusive); | 
 | 35 |  | 
 | 36 | void fastcall remove_wait_queue(wait_queue_head_t *q, wait_queue_t *wait) | 
 | 37 | { | 
 | 38 | 	unsigned long flags; | 
 | 39 |  | 
 | 40 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 41 | 	__remove_wait_queue(q, wait); | 
 | 42 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | 43 | } | 
 | 44 | EXPORT_SYMBOL(remove_wait_queue); | 
 | 45 |  | 
 | 46 |  | 
 | 47 | /* | 
 | 48 |  * Note: we use "set_current_state()" _after_ the wait-queue add, | 
 | 49 |  * because we need a memory barrier there on SMP, so that any | 
 | 50 |  * wake-function that tests for the wait-queue being active | 
 | 51 |  * will be guaranteed to see waitqueue addition _or_ subsequent | 
 | 52 |  * tests in this thread will see the wakeup having taken place. | 
 | 53 |  * | 
 | 54 |  * The spin_unlock() itself is semi-permeable and only protects | 
 | 55 |  * one way (it only protects stuff inside the critical region and | 
 | 56 |  * stops them from bleeding out - it would still allow subsequent | 
 | 57 |  * loads to move into the the critical region). | 
 | 58 |  */ | 
 | 59 | void fastcall | 
 | 60 | prepare_to_wait(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
 | 61 | { | 
 | 62 | 	unsigned long flags; | 
 | 63 |  | 
 | 64 | 	wait->flags &= ~WQ_FLAG_EXCLUSIVE; | 
 | 65 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 66 | 	if (list_empty(&wait->task_list)) | 
 | 67 | 		__add_wait_queue(q, wait); | 
 | 68 | 	/* | 
 | 69 | 	 * don't alter the task state if this is just going to | 
 | 70 | 	 * queue an async wait queue callback | 
 | 71 | 	 */ | 
 | 72 | 	if (is_sync_wait(wait)) | 
 | 73 | 		set_current_state(state); | 
 | 74 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | 75 | } | 
 | 76 | EXPORT_SYMBOL(prepare_to_wait); | 
 | 77 |  | 
 | 78 | void fastcall | 
 | 79 | prepare_to_wait_exclusive(wait_queue_head_t *q, wait_queue_t *wait, int state) | 
 | 80 | { | 
 | 81 | 	unsigned long flags; | 
 | 82 |  | 
 | 83 | 	wait->flags |= WQ_FLAG_EXCLUSIVE; | 
 | 84 | 	spin_lock_irqsave(&q->lock, flags); | 
 | 85 | 	if (list_empty(&wait->task_list)) | 
 | 86 | 		__add_wait_queue_tail(q, wait); | 
 | 87 | 	/* | 
 | 88 | 	 * don't alter the task state if this is just going to | 
 | 89 |  	 * queue an async wait queue callback | 
 | 90 | 	 */ | 
 | 91 | 	if (is_sync_wait(wait)) | 
 | 92 | 		set_current_state(state); | 
 | 93 | 	spin_unlock_irqrestore(&q->lock, flags); | 
 | 94 | } | 
 | 95 | EXPORT_SYMBOL(prepare_to_wait_exclusive); | 
 | 96 |  | 
 | 97 | void fastcall finish_wait(wait_queue_head_t *q, wait_queue_t *wait) | 
 | 98 | { | 
 | 99 | 	unsigned long flags; | 
 | 100 |  | 
 | 101 | 	__set_current_state(TASK_RUNNING); | 
 | 102 | 	/* | 
 | 103 | 	 * We can check for list emptiness outside the lock | 
 | 104 | 	 * IFF: | 
 | 105 | 	 *  - we use the "careful" check that verifies both | 
 | 106 | 	 *    the next and prev pointers, so that there cannot | 
 | 107 | 	 *    be any half-pending updates in progress on other | 
 | 108 | 	 *    CPU's that we haven't seen yet (and that might | 
 | 109 | 	 *    still change the stack area. | 
 | 110 | 	 * and | 
 | 111 | 	 *  - all other users take the lock (ie we can only | 
 | 112 | 	 *    have _one_ other CPU that looks at or modifies | 
 | 113 | 	 *    the list). | 
 | 114 | 	 */ | 
 | 115 | 	if (!list_empty_careful(&wait->task_list)) { | 
 | 116 | 		spin_lock_irqsave(&q->lock, flags); | 
 | 117 | 		list_del_init(&wait->task_list); | 
 | 118 | 		spin_unlock_irqrestore(&q->lock, flags); | 
 | 119 | 	} | 
 | 120 | } | 
 | 121 | EXPORT_SYMBOL(finish_wait); | 
 | 122 |  | 
 | 123 | int autoremove_wake_function(wait_queue_t *wait, unsigned mode, int sync, void *key) | 
 | 124 | { | 
 | 125 | 	int ret = default_wake_function(wait, mode, sync, key); | 
 | 126 |  | 
 | 127 | 	if (ret) | 
 | 128 | 		list_del_init(&wait->task_list); | 
 | 129 | 	return ret; | 
 | 130 | } | 
 | 131 | EXPORT_SYMBOL(autoremove_wake_function); | 
 | 132 |  | 
 | 133 | int wake_bit_function(wait_queue_t *wait, unsigned mode, int sync, void *arg) | 
 | 134 | { | 
 | 135 | 	struct wait_bit_key *key = arg; | 
 | 136 | 	struct wait_bit_queue *wait_bit | 
 | 137 | 		= container_of(wait, struct wait_bit_queue, wait); | 
 | 138 |  | 
 | 139 | 	if (wait_bit->key.flags != key->flags || | 
 | 140 | 			wait_bit->key.bit_nr != key->bit_nr || | 
 | 141 | 			test_bit(key->bit_nr, key->flags)) | 
 | 142 | 		return 0; | 
 | 143 | 	else | 
 | 144 | 		return autoremove_wake_function(wait, mode, sync, key); | 
 | 145 | } | 
 | 146 | EXPORT_SYMBOL(wake_bit_function); | 
 | 147 |  | 
 | 148 | /* | 
 | 149 |  * To allow interruptible waiting and asynchronous (i.e. nonblocking) | 
 | 150 |  * waiting, the actions of __wait_on_bit() and __wait_on_bit_lock() are | 
 | 151 |  * permitted return codes. Nonzero return codes halt waiting and return. | 
 | 152 |  */ | 
 | 153 | int __sched fastcall | 
 | 154 | __wait_on_bit(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
 | 155 | 			int (*action)(void *), unsigned mode) | 
 | 156 | { | 
 | 157 | 	int ret = 0; | 
 | 158 |  | 
 | 159 | 	do { | 
 | 160 | 		prepare_to_wait(wq, &q->wait, mode); | 
 | 161 | 		if (test_bit(q->key.bit_nr, q->key.flags)) | 
 | 162 | 			ret = (*action)(q->key.flags); | 
 | 163 | 	} while (test_bit(q->key.bit_nr, q->key.flags) && !ret); | 
 | 164 | 	finish_wait(wq, &q->wait); | 
 | 165 | 	return ret; | 
 | 166 | } | 
 | 167 | EXPORT_SYMBOL(__wait_on_bit); | 
 | 168 |  | 
 | 169 | int __sched fastcall out_of_line_wait_on_bit(void *word, int bit, | 
 | 170 | 					int (*action)(void *), unsigned mode) | 
 | 171 | { | 
 | 172 | 	wait_queue_head_t *wq = bit_waitqueue(word, bit); | 
 | 173 | 	DEFINE_WAIT_BIT(wait, word, bit); | 
 | 174 |  | 
 | 175 | 	return __wait_on_bit(wq, &wait, action, mode); | 
 | 176 | } | 
 | 177 | EXPORT_SYMBOL(out_of_line_wait_on_bit); | 
 | 178 |  | 
 | 179 | int __sched fastcall | 
 | 180 | __wait_on_bit_lock(wait_queue_head_t *wq, struct wait_bit_queue *q, | 
 | 181 | 			int (*action)(void *), unsigned mode) | 
 | 182 | { | 
 | 183 | 	int ret = 0; | 
 | 184 |  | 
 | 185 | 	do { | 
 | 186 | 		prepare_to_wait_exclusive(wq, &q->wait, mode); | 
 | 187 | 		if (test_bit(q->key.bit_nr, q->key.flags)) { | 
 | 188 | 			if ((ret = (*action)(q->key.flags))) | 
 | 189 | 				break; | 
 | 190 | 		} | 
 | 191 | 	} while (test_and_set_bit(q->key.bit_nr, q->key.flags)); | 
 | 192 | 	finish_wait(wq, &q->wait); | 
 | 193 | 	return ret; | 
 | 194 | } | 
 | 195 | EXPORT_SYMBOL(__wait_on_bit_lock); | 
 | 196 |  | 
 | 197 | int __sched fastcall out_of_line_wait_on_bit_lock(void *word, int bit, | 
 | 198 | 					int (*action)(void *), unsigned mode) | 
 | 199 | { | 
 | 200 | 	wait_queue_head_t *wq = bit_waitqueue(word, bit); | 
 | 201 | 	DEFINE_WAIT_BIT(wait, word, bit); | 
 | 202 |  | 
 | 203 | 	return __wait_on_bit_lock(wq, &wait, action, mode); | 
 | 204 | } | 
 | 205 | EXPORT_SYMBOL(out_of_line_wait_on_bit_lock); | 
 | 206 |  | 
 | 207 | void fastcall __wake_up_bit(wait_queue_head_t *wq, void *word, int bit) | 
 | 208 | { | 
 | 209 | 	struct wait_bit_key key = __WAIT_BIT_KEY_INITIALIZER(word, bit); | 
 | 210 | 	if (waitqueue_active(wq)) | 
 | 211 | 		__wake_up(wq, TASK_INTERRUPTIBLE|TASK_UNINTERRUPTIBLE, 1, &key); | 
 | 212 | } | 
 | 213 | EXPORT_SYMBOL(__wake_up_bit); | 
 | 214 |  | 
 | 215 | /** | 
 | 216 |  * wake_up_bit - wake up a waiter on a bit | 
 | 217 |  * @word: the word being waited on, a kernel virtual address | 
 | 218 |  * @bit: the bit of the word being waited on | 
 | 219 |  * | 
 | 220 |  * There is a standard hashed waitqueue table for generic use. This | 
 | 221 |  * is the part of the hashtable's accessor API that wakes up waiters | 
 | 222 |  * on a bit. For instance, if one were to have waiters on a bitflag, | 
 | 223 |  * one would call wake_up_bit() after clearing the bit. | 
 | 224 |  * | 
 | 225 |  * In order for this to function properly, as it uses waitqueue_active() | 
 | 226 |  * internally, some kind of memory barrier must be done prior to calling | 
 | 227 |  * this. Typically, this will be smp_mb__after_clear_bit(), but in some | 
 | 228 |  * cases where bitflags are manipulated non-atomically under a lock, one | 
 | 229 |  * may need to use a less regular barrier, such fs/inode.c's smp_mb(), | 
 | 230 |  * because spin_unlock() does not guarantee a memory barrier. | 
 | 231 |  */ | 
 | 232 | void fastcall wake_up_bit(void *word, int bit) | 
 | 233 | { | 
 | 234 | 	__wake_up_bit(bit_waitqueue(word, bit), word, bit); | 
 | 235 | } | 
 | 236 | EXPORT_SYMBOL(wake_up_bit); | 
 | 237 |  | 
 | 238 | fastcall wait_queue_head_t *bit_waitqueue(void *word, int bit) | 
 | 239 | { | 
 | 240 | 	const int shift = BITS_PER_LONG == 32 ? 5 : 6; | 
 | 241 | 	const struct zone *zone = page_zone(virt_to_page(word)); | 
 | 242 | 	unsigned long val = (unsigned long)word << shift | bit; | 
 | 243 |  | 
 | 244 | 	return &zone->wait_table[hash_long(val, zone->wait_table_bits)]; | 
 | 245 | } | 
 | 246 | EXPORT_SYMBOL(bit_waitqueue); |