blob: 003d3736062329a337ca0efd77a97ec363d5481c [file] [log] [blame]
Michal Simek12e84142009-03-27 14:25:12 +01001/*
2 * Procedures for creating, accessing and interpreting the device tree.
3 *
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
6 *
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
14 */
15
16#include <stdarg.h>
17#include <linux/kernel.h>
18#include <linux/string.h>
19#include <linux/init.h>
20#include <linux/threads.h>
21#include <linux/spinlock.h>
22#include <linux/types.h>
23#include <linux/pci.h>
24#include <linux/stringify.h>
25#include <linux/delay.h>
26#include <linux/initrd.h>
27#include <linux/bitops.h>
28#include <linux/module.h>
29#include <linux/kexec.h>
30#include <linux/debugfs.h>
31#include <linux/irq.h>
32#include <linux/lmb.h>
33
34#include <asm/prom.h>
35#include <asm/page.h>
36#include <asm/processor.h>
37#include <asm/irq.h>
38#include <linux/io.h>
39#include <asm/system.h>
40#include <asm/mmu.h>
41#include <asm/pgtable.h>
Michal Simek12e84142009-03-27 14:25:12 +010042#include <asm/sections.h>
43#include <asm/pci-bridge.h>
44
45static int __initdata dt_root_addr_cells;
46static int __initdata dt_root_size_cells;
47
48typedef u32 cell_t;
49
50static struct boot_param_header *initial_boot_params;
51
52/* export that to outside world */
53struct device_node *of_chosen;
54
55static inline char *find_flat_dt_string(u32 offset)
56{
57 return ((char *)initial_boot_params) +
58 initial_boot_params->off_dt_strings + offset;
59}
60
61/**
62 * This function is used to scan the flattened device-tree, it is
63 * used to extract the memory informations at boot before we can
64 * unflatten the tree
65 */
66int __init of_scan_flat_dt(int (*it)(unsigned long node,
67 const char *uname, int depth,
68 void *data),
69 void *data)
70{
71 unsigned long p = ((unsigned long)initial_boot_params) +
72 initial_boot_params->off_dt_struct;
73 int rc = 0;
74 int depth = -1;
75
76 do {
77 u32 tag = *((u32 *)p);
78 char *pathp;
79
80 p += 4;
81 if (tag == OF_DT_END_NODE) {
82 depth--;
83 continue;
84 }
85 if (tag == OF_DT_NOP)
86 continue;
87 if (tag == OF_DT_END)
88 break;
89 if (tag == OF_DT_PROP) {
90 u32 sz = *((u32 *)p);
91 p += 8;
92 if (initial_boot_params->version < 0x10)
93 p = _ALIGN(p, sz >= 8 ? 8 : 4);
94 p += sz;
95 p = _ALIGN(p, 4);
96 continue;
97 }
98 if (tag != OF_DT_BEGIN_NODE) {
99 printk(KERN_WARNING "Invalid tag %x scanning flattened"
100 " device tree !\n", tag);
101 return -EINVAL;
102 }
103 depth++;
104 pathp = (char *)p;
105 p = _ALIGN(p + strlen(pathp) + 1, 4);
106 if ((*pathp) == '/') {
107 char *lp, *np;
108 for (lp = NULL, np = pathp; *np; np++)
109 if ((*np) == '/')
110 lp = np+1;
111 if (lp != NULL)
112 pathp = lp;
113 }
114 rc = it(p, pathp, depth, data);
115 if (rc != 0)
116 break;
117 } while (1);
118
119 return rc;
120}
121
122unsigned long __init of_get_flat_dt_root(void)
123{
124 unsigned long p = ((unsigned long)initial_boot_params) +
125 initial_boot_params->off_dt_struct;
126
127 while (*((u32 *)p) == OF_DT_NOP)
128 p += 4;
129 BUG_ON(*((u32 *)p) != OF_DT_BEGIN_NODE);
130 p += 4;
131 return _ALIGN(p + strlen((char *)p) + 1, 4);
132}
133
134/**
135 * This function can be used within scan_flattened_dt callback to get
136 * access to properties
137 */
138void *__init of_get_flat_dt_prop(unsigned long node, const char *name,
139 unsigned long *size)
140{
141 unsigned long p = node;
142
143 do {
144 u32 tag = *((u32 *)p);
145 u32 sz, noff;
146 const char *nstr;
147
148 p += 4;
149 if (tag == OF_DT_NOP)
150 continue;
151 if (tag != OF_DT_PROP)
152 return NULL;
153
154 sz = *((u32 *)p);
155 noff = *((u32 *)(p + 4));
156 p += 8;
157 if (initial_boot_params->version < 0x10)
158 p = _ALIGN(p, sz >= 8 ? 8 : 4);
159
160 nstr = find_flat_dt_string(noff);
161 if (nstr == NULL) {
162 printk(KERN_WARNING "Can't find property index"
163 " name !\n");
164 return NULL;
165 }
166 if (strcmp(name, nstr) == 0) {
167 if (size)
168 *size = sz;
169 return (void *)p;
170 }
171 p += sz;
172 p = _ALIGN(p, 4);
173 } while (1);
174}
175
176int __init of_flat_dt_is_compatible(unsigned long node, const char *compat)
177{
178 const char *cp;
179 unsigned long cplen, l;
180
181 cp = of_get_flat_dt_prop(node, "compatible", &cplen);
182 if (cp == NULL)
183 return 0;
184 while (cplen > 0) {
185 if (strncasecmp(cp, compat, strlen(compat)) == 0)
186 return 1;
187 l = strlen(cp) + 1;
188 cp += l;
189 cplen -= l;
190 }
191
192 return 0;
193}
194
195static void *__init unflatten_dt_alloc(unsigned long *mem, unsigned long size,
196 unsigned long align)
197{
198 void *res;
199
200 *mem = _ALIGN(*mem, align);
201 res = (void *)*mem;
202 *mem += size;
203
204 return res;
205}
206
207static unsigned long __init unflatten_dt_node(unsigned long mem,
208 unsigned long *p,
209 struct device_node *dad,
210 struct device_node ***allnextpp,
211 unsigned long fpsize)
212{
213 struct device_node *np;
214 struct property *pp, **prev_pp = NULL;
215 char *pathp;
216 u32 tag;
217 unsigned int l, allocl;
218 int has_name = 0;
219 int new_format = 0;
220
221 tag = *((u32 *)(*p));
222 if (tag != OF_DT_BEGIN_NODE) {
223 printk("Weird tag at start of node: %x\n", tag);
224 return mem;
225 }
226 *p += 4;
227 pathp = (char *)*p;
228 l = allocl = strlen(pathp) + 1;
229 *p = _ALIGN(*p + l, 4);
230
231 /* version 0x10 has a more compact unit name here instead of the full
232 * path. we accumulate the full path size using "fpsize", we'll rebuild
233 * it later. We detect this because the first character of the name is
234 * not '/'.
235 */
236 if ((*pathp) != '/') {
237 new_format = 1;
238 if (fpsize == 0) {
239 /* root node: special case. fpsize accounts for path
240 * plus terminating zero. root node only has '/', so
241 * fpsize should be 2, but we want to avoid the first
242 * level nodes to have two '/' so we use fpsize 1 here
243 */
244 fpsize = 1;
245 allocl = 2;
246 } else {
247 /* account for '/' and path size minus terminal 0
248 * already in 'l'
249 */
250 fpsize += l;
251 allocl = fpsize;
252 }
253 }
254
255 np = unflatten_dt_alloc(&mem, sizeof(struct device_node) + allocl,
256 __alignof__(struct device_node));
257 if (allnextpp) {
258 memset(np, 0, sizeof(*np));
259 np->full_name = ((char *)np) + sizeof(struct device_node);
260 if (new_format) {
261 char *p2 = np->full_name;
262 /* rebuild full path for new format */
263 if (dad && dad->parent) {
264 strcpy(p2, dad->full_name);
265#ifdef DEBUG
266 if ((strlen(p2) + l + 1) != allocl) {
267 pr_debug("%s: p: %d, l: %d, a: %d\n",
268 pathp, (int)strlen(p2),
269 l, allocl);
270 }
271#endif
272 p2 += strlen(p2);
273 }
274 *(p2++) = '/';
275 memcpy(p2, pathp, l);
276 } else
277 memcpy(np->full_name, pathp, l);
278 prev_pp = &np->properties;
279 **allnextpp = np;
280 *allnextpp = &np->allnext;
281 if (dad != NULL) {
282 np->parent = dad;
283 /* we temporarily use the next field as `last_child'*/
284 if (dad->next == NULL)
285 dad->child = np;
286 else
287 dad->next->sibling = np;
288 dad->next = np;
289 }
290 kref_init(&np->kref);
291 }
292 while (1) {
293 u32 sz, noff;
294 char *pname;
295
296 tag = *((u32 *)(*p));
297 if (tag == OF_DT_NOP) {
298 *p += 4;
299 continue;
300 }
301 if (tag != OF_DT_PROP)
302 break;
303 *p += 4;
304 sz = *((u32 *)(*p));
305 noff = *((u32 *)((*p) + 4));
306 *p += 8;
307 if (initial_boot_params->version < 0x10)
308 *p = _ALIGN(*p, sz >= 8 ? 8 : 4);
309
310 pname = find_flat_dt_string(noff);
311 if (pname == NULL) {
312 printk(KERN_INFO
313 "Can't find property name in list !\n");
314 break;
315 }
316 if (strcmp(pname, "name") == 0)
317 has_name = 1;
318 l = strlen(pname) + 1;
319 pp = unflatten_dt_alloc(&mem, sizeof(struct property),
320 __alignof__(struct property));
321 if (allnextpp) {
322 if (strcmp(pname, "linux,phandle") == 0) {
323 np->node = *((u32 *)*p);
324 if (np->linux_phandle == 0)
325 np->linux_phandle = np->node;
326 }
327 if (strcmp(pname, "ibm,phandle") == 0)
328 np->linux_phandle = *((u32 *)*p);
329 pp->name = pname;
330 pp->length = sz;
331 pp->value = (void *)*p;
332 *prev_pp = pp;
333 prev_pp = &pp->next;
334 }
335 *p = _ALIGN((*p) + sz, 4);
336 }
337 /* with version 0x10 we may not have the name property, recreate
338 * it here from the unit name if absent
339 */
340 if (!has_name) {
341 char *p1 = pathp, *ps = pathp, *pa = NULL;
342 int sz;
343
344 while (*p1) {
345 if ((*p1) == '@')
346 pa = p1;
347 if ((*p1) == '/')
348 ps = p1 + 1;
349 p1++;
350 }
351 if (pa < ps)
352 pa = p1;
353 sz = (pa - ps) + 1;
354 pp = unflatten_dt_alloc(&mem, sizeof(struct property) + sz,
355 __alignof__(struct property));
356 if (allnextpp) {
357 pp->name = "name";
358 pp->length = sz;
359 pp->value = pp + 1;
360 *prev_pp = pp;
361 prev_pp = &pp->next;
362 memcpy(pp->value, ps, sz - 1);
363 ((char *)pp->value)[sz - 1] = 0;
364 pr_debug("fixed up name for %s -> %s\n", pathp,
365 (char *)pp->value);
366 }
367 }
368 if (allnextpp) {
369 *prev_pp = NULL;
370 np->name = of_get_property(np, "name", NULL);
371 np->type = of_get_property(np, "device_type", NULL);
372
373 if (!np->name)
374 np->name = "<NULL>";
375 if (!np->type)
376 np->type = "<NULL>";
377 }
378 while (tag == OF_DT_BEGIN_NODE) {
379 mem = unflatten_dt_node(mem, p, np, allnextpp, fpsize);
380 tag = *((u32 *)(*p));
381 }
382 if (tag != OF_DT_END_NODE) {
383 printk(KERN_INFO "Weird tag at end of node: %x\n", tag);
384 return mem;
385 }
386 *p += 4;
387 return mem;
388}
389
390/**
391 * unflattens the device-tree passed by the firmware, creating the
392 * tree of struct device_node. It also fills the "name" and "type"
393 * pointers of the nodes so the normal device-tree walking functions
394 * can be used (this used to be done by finish_device_tree)
395 */
396void __init unflatten_device_tree(void)
397{
398 unsigned long start, mem, size;
399 struct device_node **allnextp = &allnodes;
400
401 pr_debug(" -> unflatten_device_tree()\n");
402
403 /* First pass, scan for size */
404 start = ((unsigned long)initial_boot_params) +
405 initial_boot_params->off_dt_struct;
406 size = unflatten_dt_node(0, &start, NULL, NULL, 0);
407 size = (size | 3) + 1;
408
409 pr_debug(" size is %lx, allocating...\n", size);
410
411 /* Allocate memory for the expanded device tree */
412 mem = lmb_alloc(size + 4, __alignof__(struct device_node));
413 mem = (unsigned long) __va(mem);
414
415 ((u32 *)mem)[size / 4] = 0xdeadbeef;
416
417 pr_debug(" unflattening %lx...\n", mem);
418
419 /* Second pass, do actual unflattening */
420 start = ((unsigned long)initial_boot_params) +
421 initial_boot_params->off_dt_struct;
422 unflatten_dt_node(mem, &start, NULL, &allnextp, 0);
423 if (*((u32 *)start) != OF_DT_END)
424 printk(KERN_WARNING "Weird tag at end of tree: %08x\n",
425 *((u32 *)start));
426 if (((u32 *)mem)[size / 4] != 0xdeadbeef)
427 printk(KERN_WARNING "End of tree marker overwritten: %08x\n",
428 ((u32 *)mem)[size / 4]);
429 *allnextp = NULL;
430
431 /* Get pointer to OF "/chosen" node for use everywhere */
432 of_chosen = of_find_node_by_path("/chosen");
433 if (of_chosen == NULL)
434 of_chosen = of_find_node_by_path("/chosen@0");
435
436 pr_debug(" <- unflatten_device_tree()\n");
437}
438
439#define early_init_dt_scan_drconf_memory(node) 0
440
441static int __init early_init_dt_scan_cpus(unsigned long node,
442 const char *uname, int depth,
443 void *data)
444{
445 static int logical_cpuid;
446 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
447 const u32 *intserv;
448 int i, nthreads;
449 int found = 0;
450
451 /* We are scanning "cpu" nodes only */
452 if (type == NULL || strcmp(type, "cpu") != 0)
453 return 0;
454
455 /* Get physical cpuid */
456 intserv = of_get_flat_dt_prop(node, "reg", NULL);
457 nthreads = 1;
458
459 /*
460 * Now see if any of these threads match our boot cpu.
461 * NOTE: This must match the parsing done in smp_setup_cpu_maps.
462 */
463 for (i = 0; i < nthreads; i++) {
464 /*
465 * version 2 of the kexec param format adds the phys cpuid of
466 * booted proc.
467 */
468 if (initial_boot_params && initial_boot_params->version >= 2) {
469 if (intserv[i] ==
470 initial_boot_params->boot_cpuid_phys) {
471 found = 1;
472 break;
473 }
474 } else {
475 /*
476 * Check if it's the boot-cpu, set it's hw index now,
477 * unfortunately this format did not support booting
478 * off secondary threads.
479 */
480 if (of_get_flat_dt_prop(node,
481 "linux,boot-cpu", NULL) != NULL) {
482 found = 1;
483 break;
484 }
485 }
486
487#ifdef CONFIG_SMP
488 /* logical cpu id is always 0 on UP kernels */
489 logical_cpuid++;
490#endif
491 }
492
493 if (found) {
494 pr_debug("boot cpu: logical %d physical %d\n", logical_cpuid,
495 intserv[i]);
496 boot_cpuid = logical_cpuid;
497 }
498
499 return 0;
500}
501
502#ifdef CONFIG_BLK_DEV_INITRD
503static void __init early_init_dt_check_for_initrd(unsigned long node)
504{
505 unsigned long l;
506 u32 *prop;
507
508 pr_debug("Looking for initrd properties... ");
509
510 prop = of_get_flat_dt_prop(node, "linux,initrd-start", &l);
511 if (prop) {
512 initrd_start = (unsigned long)__va(of_read_ulong(prop, l/4));
513
514 prop = of_get_flat_dt_prop(node, "linux,initrd-end", &l);
515 if (prop) {
516 initrd_end = (unsigned long)
517 __va(of_read_ulong(prop, l/4));
518 initrd_below_start_ok = 1;
519 } else {
520 initrd_start = 0;
521 }
522 }
523
524 pr_debug("initrd_start=0x%lx initrd_end=0x%lx\n",
525 initrd_start, initrd_end);
526}
527#else
528static inline void early_init_dt_check_for_initrd(unsigned long node)
529{
530}
531#endif /* CONFIG_BLK_DEV_INITRD */
532
533static int __init early_init_dt_scan_chosen(unsigned long node,
534 const char *uname, int depth, void *data)
535{
536 unsigned long l;
537 char *p;
538
539 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
540
541 if (depth != 1 ||
542 (strcmp(uname, "chosen") != 0 &&
543 strcmp(uname, "chosen@0") != 0))
544 return 0;
545
546#ifdef CONFIG_KEXEC
547 lprop = (u64 *)of_get_flat_dt_prop(node,
548 "linux,crashkernel-base", NULL);
549 if (lprop)
550 crashk_res.start = *lprop;
551
552 lprop = (u64 *)of_get_flat_dt_prop(node,
553 "linux,crashkernel-size", NULL);
554 if (lprop)
555 crashk_res.end = crashk_res.start + *lprop - 1;
556#endif
557
558 early_init_dt_check_for_initrd(node);
559
560 /* Retreive command line */
561 p = of_get_flat_dt_prop(node, "bootargs", &l);
562 if (p != NULL && l > 0)
563 strlcpy(cmd_line, p, min((int)l, COMMAND_LINE_SIZE));
564
565#ifdef CONFIG_CMDLINE
Michal Simek1dff89a2009-05-21 08:20:30 +0200566#ifndef CONFIG_CMDLINE_FORCE
Michal Simek12e84142009-03-27 14:25:12 +0100567 if (p == NULL || l == 0 || (l == 1 && (*p) == 0))
Michal Simek1dff89a2009-05-21 08:20:30 +0200568#endif
Michal Simek12e84142009-03-27 14:25:12 +0100569 strlcpy(cmd_line, CONFIG_CMDLINE, COMMAND_LINE_SIZE);
570#endif /* CONFIG_CMDLINE */
571
572 pr_debug("Command line is: %s\n", cmd_line);
573
574 /* break now */
575 return 1;
576}
577
578static int __init early_init_dt_scan_root(unsigned long node,
579 const char *uname, int depth, void *data)
580{
581 u32 *prop;
582
583 if (depth != 0)
584 return 0;
585
586 prop = of_get_flat_dt_prop(node, "#size-cells", NULL);
587 dt_root_size_cells = (prop == NULL) ? 1 : *prop;
588 pr_debug("dt_root_size_cells = %x\n", dt_root_size_cells);
589
590 prop = of_get_flat_dt_prop(node, "#address-cells", NULL);
591 dt_root_addr_cells = (prop == NULL) ? 2 : *prop;
592 pr_debug("dt_root_addr_cells = %x\n", dt_root_addr_cells);
593
594 /* break now */
595 return 1;
596}
597
598static u64 __init dt_mem_next_cell(int s, cell_t **cellp)
599{
600 cell_t *p = *cellp;
601
602 *cellp = p + s;
603 return of_read_number(p, s);
604}
605
606static int __init early_init_dt_scan_memory(unsigned long node,
607 const char *uname, int depth, void *data)
608{
609 char *type = of_get_flat_dt_prop(node, "device_type", NULL);
610 cell_t *reg, *endp;
611 unsigned long l;
612
613 /* Look for the ibm,dynamic-reconfiguration-memory node */
614/* if (depth == 1 &&
615 strcmp(uname, "ibm,dynamic-reconfiguration-memory") == 0)
616 return early_init_dt_scan_drconf_memory(node);
617*/
618 /* We are scanning "memory" nodes only */
619 if (type == NULL) {
620 /*
621 * The longtrail doesn't have a device_type on the
622 * /memory node, so look for the node called /memory@0.
623 */
624 if (depth != 1 || strcmp(uname, "memory@0") != 0)
625 return 0;
626 } else if (strcmp(type, "memory") != 0)
627 return 0;
628
629 reg = (cell_t *)of_get_flat_dt_prop(node, "linux,usable-memory", &l);
630 if (reg == NULL)
631 reg = (cell_t *)of_get_flat_dt_prop(node, "reg", &l);
632 if (reg == NULL)
633 return 0;
634
635 endp = reg + (l / sizeof(cell_t));
636
637 pr_debug("memory scan node %s, reg size %ld, data: %x %x %x %x,\n",
638 uname, l, reg[0], reg[1], reg[2], reg[3]);
639
640 while ((endp - reg) >= (dt_root_addr_cells + dt_root_size_cells)) {
641 u64 base, size;
642
643 base = dt_mem_next_cell(dt_root_addr_cells, &reg);
644 size = dt_mem_next_cell(dt_root_size_cells, &reg);
645
646 if (size == 0)
647 continue;
648 pr_debug(" - %llx , %llx\n", (unsigned long long)base,
649 (unsigned long long)size);
650
651 lmb_add(base, size);
652 }
653 return 0;
654}
655
656#ifdef CONFIG_PHYP_DUMP
657/**
658 * phyp_dump_calculate_reserve_size() - reserve variable boot area 5% or arg
659 *
660 * Function to find the largest size we need to reserve
661 * during early boot process.
662 *
663 * It either looks for boot param and returns that OR
664 * returns larger of 256 or 5% rounded down to multiples of 256MB.
665 *
666 */
667static inline unsigned long phyp_dump_calculate_reserve_size(void)
668{
669 unsigned long tmp;
670
671 if (phyp_dump_info->reserve_bootvar)
672 return phyp_dump_info->reserve_bootvar;
673
674 /* divide by 20 to get 5% of value */
675 tmp = lmb_end_of_DRAM();
676 do_div(tmp, 20);
677
678 /* round it down in multiples of 256 */
679 tmp = tmp & ~0x0FFFFFFFUL;
680
681 return (tmp > PHYP_DUMP_RMR_END ? tmp : PHYP_DUMP_RMR_END);
682}
683
684/**
685 * phyp_dump_reserve_mem() - reserve all not-yet-dumped mmemory
686 *
687 * This routine may reserve memory regions in the kernel only
688 * if the system is supported and a dump was taken in last
689 * boot instance or if the hardware is supported and the
690 * scratch area needs to be setup. In other instances it returns
691 * without reserving anything. The memory in case of dump being
692 * active is freed when the dump is collected (by userland tools).
693 */
694static void __init phyp_dump_reserve_mem(void)
695{
696 unsigned long base, size;
697 unsigned long variable_reserve_size;
698
699 if (!phyp_dump_info->phyp_dump_configured) {
700 printk(KERN_ERR "Phyp-dump not supported on this hardware\n");
701 return;
702 }
703
704 if (!phyp_dump_info->phyp_dump_at_boot) {
705 printk(KERN_INFO "Phyp-dump disabled at boot time\n");
706 return;
707 }
708
709 variable_reserve_size = phyp_dump_calculate_reserve_size();
710
711 if (phyp_dump_info->phyp_dump_is_active) {
712 /* Reserve *everything* above RMR.Area freed by userland tools*/
713 base = variable_reserve_size;
714 size = lmb_end_of_DRAM() - base;
715
716 /* XXX crashed_ram_end is wrong, since it may be beyond
717 * the memory_limit, it will need to be adjusted. */
718 lmb_reserve(base, size);
719
720 phyp_dump_info->init_reserve_start = base;
721 phyp_dump_info->init_reserve_size = size;
722 } else {
723 size = phyp_dump_info->cpu_state_size +
724 phyp_dump_info->hpte_region_size +
725 variable_reserve_size;
726 base = lmb_end_of_DRAM() - size;
727 lmb_reserve(base, size);
728 phyp_dump_info->init_reserve_start = base;
729 phyp_dump_info->init_reserve_size = size;
730 }
731}
732#else
733static inline void __init phyp_dump_reserve_mem(void) {}
734#endif /* CONFIG_PHYP_DUMP && CONFIG_PPC_RTAS */
735
736#ifdef CONFIG_EARLY_PRINTK
737/* MS this is Microblaze specifig function */
738static int __init early_init_dt_scan_serial(unsigned long node,
739 const char *uname, int depth, void *data)
740{
741 unsigned long l;
742 char *p;
743 int *addr;
744
745 pr_debug("search \"chosen\", depth: %d, uname: %s\n", depth, uname);
746
747/* find all serial nodes */
748 if (strncmp(uname, "serial", 6) != 0)
749 return 0;
750
751 early_init_dt_check_for_initrd(node);
752
753/* find compatible node with uartlite */
754 p = of_get_flat_dt_prop(node, "compatible", &l);
755 if ((strncmp(p, "xlnx,xps-uartlite", 17) != 0) &&
756 (strncmp(p, "xlnx,opb-uartlite", 17) != 0))
757 return 0;
758
759 addr = of_get_flat_dt_prop(node, "reg", &l);
760 return *addr; /* return address */
761}
762
763/* this function is looking for early uartlite console - Microblaze specific */
764int __init early_uartlite_console(void)
765{
766 return of_scan_flat_dt(early_init_dt_scan_serial, NULL);
767}
768#endif
769
770void __init early_init_devtree(void *params)
771{
772 pr_debug(" -> early_init_devtree(%p)\n", params);
773
774 /* Setup flat device-tree pointer */
775 initial_boot_params = params;
776
777#ifdef CONFIG_PHYP_DUMP
778 /* scan tree to see if dump occured during last boot */
779 of_scan_flat_dt(early_init_dt_scan_phyp_dump, NULL);
780#endif
781
782 /* Retrieve various informations from the /chosen node of the
783 * device-tree, including the platform type, initrd location and
784 * size, TCE reserve, and more ...
785 */
786 of_scan_flat_dt(early_init_dt_scan_chosen, NULL);
787
788 /* Scan memory nodes and rebuild LMBs */
789 lmb_init();
790 of_scan_flat_dt(early_init_dt_scan_root, NULL);
791 of_scan_flat_dt(early_init_dt_scan_memory, NULL);
792
793 /* Save command line for /proc/cmdline and then parse parameters */
794 strlcpy(boot_command_line, cmd_line, COMMAND_LINE_SIZE);
795 parse_early_param();
796
797 lmb_analyze();
798
799 pr_debug("Phys. mem: %lx\n", (unsigned long) lmb_phys_mem_size());
800
801 pr_debug("Scanning CPUs ...\n");
802
803 /* Retreive CPU related informations from the flat tree
804 * (altivec support, boot CPU ID, ...)
805 */
806 of_scan_flat_dt(early_init_dt_scan_cpus, NULL);
807
808 pr_debug(" <- early_init_devtree()\n");
809}
810
811/**
812 * Indicates whether the root node has a given value in its
813 * compatible property.
814 */
815int machine_is_compatible(const char *compat)
816{
817 struct device_node *root;
818 int rc = 0;
819
820 root = of_find_node_by_path("/");
821 if (root) {
822 rc = of_device_is_compatible(root, compat);
823 of_node_put(root);
824 }
825 return rc;
826}
827EXPORT_SYMBOL(machine_is_compatible);
828
829/*******
830 *
831 * New implementation of the OF "find" APIs, return a refcounted
832 * object, call of_node_put() when done. The device tree and list
833 * are protected by a rw_lock.
834 *
835 * Note that property management will need some locking as well,
836 * this isn't dealt with yet.
837 *
838 *******/
839
840/**
841 * of_find_node_by_phandle - Find a node given a phandle
842 * @handle: phandle of the node to find
843 *
844 * Returns a node pointer with refcount incremented, use
845 * of_node_put() on it when done.
846 */
847struct device_node *of_find_node_by_phandle(phandle handle)
848{
849 struct device_node *np;
850
851 read_lock(&devtree_lock);
852 for (np = allnodes; np != NULL; np = np->allnext)
853 if (np->linux_phandle == handle)
854 break;
855 of_node_get(np);
856 read_unlock(&devtree_lock);
857 return np;
858}
859EXPORT_SYMBOL(of_find_node_by_phandle);
860
861/**
862 * of_find_all_nodes - Get next node in global list
863 * @prev: Previous node or NULL to start iteration
864 * of_node_put() will be called on it
865 *
866 * Returns a node pointer with refcount incremented, use
867 * of_node_put() on it when done.
868 */
869struct device_node *of_find_all_nodes(struct device_node *prev)
870{
871 struct device_node *np;
872
873 read_lock(&devtree_lock);
874 np = prev ? prev->allnext : allnodes;
875 for (; np != NULL; np = np->allnext)
876 if (of_node_get(np))
877 break;
878 of_node_put(prev);
879 read_unlock(&devtree_lock);
880 return np;
881}
882EXPORT_SYMBOL(of_find_all_nodes);
883
884/**
885 * of_node_get - Increment refcount of a node
886 * @node: Node to inc refcount, NULL is supported to
887 * simplify writing of callers
888 *
889 * Returns node.
890 */
891struct device_node *of_node_get(struct device_node *node)
892{
893 if (node)
894 kref_get(&node->kref);
895 return node;
896}
897EXPORT_SYMBOL(of_node_get);
898
899static inline struct device_node *kref_to_device_node(struct kref *kref)
900{
901 return container_of(kref, struct device_node, kref);
902}
903
904/**
905 * of_node_release - release a dynamically allocated node
906 * @kref: kref element of the node to be released
907 *
908 * In of_node_put() this function is passed to kref_put()
909 * as the destructor.
910 */
911static void of_node_release(struct kref *kref)
912{
913 struct device_node *node = kref_to_device_node(kref);
914 struct property *prop = node->properties;
915
916 /* We should never be releasing nodes that haven't been detached. */
917 if (!of_node_check_flag(node, OF_DETACHED)) {
918 printk(KERN_INFO "WARNING: Bad of_node_put() on %s\n",
919 node->full_name);
920 dump_stack();
921 kref_init(&node->kref);
922 return;
923 }
924
925 if (!of_node_check_flag(node, OF_DYNAMIC))
926 return;
927
928 while (prop) {
929 struct property *next = prop->next;
930 kfree(prop->name);
931 kfree(prop->value);
932 kfree(prop);
933 prop = next;
934
935 if (!prop) {
936 prop = node->deadprops;
937 node->deadprops = NULL;
938 }
939 }
940 kfree(node->full_name);
941 kfree(node->data);
942 kfree(node);
943}
944
945/**
946 * of_node_put - Decrement refcount of a node
947 * @node: Node to dec refcount, NULL is supported to
948 * simplify writing of callers
949 *
950 */
951void of_node_put(struct device_node *node)
952{
953 if (node)
954 kref_put(&node->kref, of_node_release);
955}
956EXPORT_SYMBOL(of_node_put);
957
958/*
959 * Plug a device node into the tree and global list.
960 */
961void of_attach_node(struct device_node *np)
962{
963 unsigned long flags;
964
965 write_lock_irqsave(&devtree_lock, flags);
966 np->sibling = np->parent->child;
967 np->allnext = allnodes;
968 np->parent->child = np;
969 allnodes = np;
970 write_unlock_irqrestore(&devtree_lock, flags);
971}
972
973/*
974 * "Unplug" a node from the device tree. The caller must hold
975 * a reference to the node. The memory associated with the node
976 * is not freed until its refcount goes to zero.
977 */
978void of_detach_node(struct device_node *np)
979{
980 struct device_node *parent;
981 unsigned long flags;
982
983 write_lock_irqsave(&devtree_lock, flags);
984
985 parent = np->parent;
986 if (!parent)
987 goto out_unlock;
988
989 if (allnodes == np)
990 allnodes = np->allnext;
991 else {
992 struct device_node *prev;
993 for (prev = allnodes;
994 prev->allnext != np;
995 prev = prev->allnext)
996 ;
997 prev->allnext = np->allnext;
998 }
999
1000 if (parent->child == np)
1001 parent->child = np->sibling;
1002 else {
1003 struct device_node *prevsib;
1004 for (prevsib = np->parent->child;
1005 prevsib->sibling != np;
1006 prevsib = prevsib->sibling)
1007 ;
1008 prevsib->sibling = np->sibling;
1009 }
1010
1011 of_node_set_flag(np, OF_DETACHED);
1012
1013out_unlock:
1014 write_unlock_irqrestore(&devtree_lock, flags);
1015}
1016
1017/*
1018 * Add a property to a node
1019 */
1020int prom_add_property(struct device_node *np, struct property *prop)
1021{
1022 struct property **next;
1023 unsigned long flags;
1024
1025 prop->next = NULL;
1026 write_lock_irqsave(&devtree_lock, flags);
1027 next = &np->properties;
1028 while (*next) {
1029 if (strcmp(prop->name, (*next)->name) == 0) {
1030 /* duplicate ! don't insert it */
1031 write_unlock_irqrestore(&devtree_lock, flags);
1032 return -1;
1033 }
1034 next = &(*next)->next;
1035 }
1036 *next = prop;
1037 write_unlock_irqrestore(&devtree_lock, flags);
1038
1039#ifdef CONFIG_PROC_DEVICETREE
1040 /* try to add to proc as well if it was initialized */
1041 if (np->pde)
1042 proc_device_tree_add_prop(np->pde, prop);
1043#endif /* CONFIG_PROC_DEVICETREE */
1044
1045 return 0;
1046}
1047
1048/*
1049 * Remove a property from a node. Note that we don't actually
1050 * remove it, since we have given out who-knows-how-many pointers
1051 * to the data using get-property. Instead we just move the property
1052 * to the "dead properties" list, so it won't be found any more.
1053 */
1054int prom_remove_property(struct device_node *np, struct property *prop)
1055{
1056 struct property **next;
1057 unsigned long flags;
1058 int found = 0;
1059
1060 write_lock_irqsave(&devtree_lock, flags);
1061 next = &np->properties;
1062 while (*next) {
1063 if (*next == prop) {
1064 /* found the node */
1065 *next = prop->next;
1066 prop->next = np->deadprops;
1067 np->deadprops = prop;
1068 found = 1;
1069 break;
1070 }
1071 next = &(*next)->next;
1072 }
1073 write_unlock_irqrestore(&devtree_lock, flags);
1074
1075 if (!found)
1076 return -ENODEV;
1077
1078#ifdef CONFIG_PROC_DEVICETREE
1079 /* try to remove the proc node as well */
1080 if (np->pde)
1081 proc_device_tree_remove_prop(np->pde, prop);
1082#endif /* CONFIG_PROC_DEVICETREE */
1083
1084 return 0;
1085}
1086
1087/*
1088 * Update a property in a node. Note that we don't actually
1089 * remove it, since we have given out who-knows-how-many pointers
1090 * to the data using get-property. Instead we just move the property
1091 * to the "dead properties" list, and add the new property to the
1092 * property list
1093 */
1094int prom_update_property(struct device_node *np,
1095 struct property *newprop,
1096 struct property *oldprop)
1097{
1098 struct property **next;
1099 unsigned long flags;
1100 int found = 0;
1101
1102 write_lock_irqsave(&devtree_lock, flags);
1103 next = &np->properties;
1104 while (*next) {
1105 if (*next == oldprop) {
1106 /* found the node */
1107 newprop->next = oldprop->next;
1108 *next = newprop;
1109 oldprop->next = np->deadprops;
1110 np->deadprops = oldprop;
1111 found = 1;
1112 break;
1113 }
1114 next = &(*next)->next;
1115 }
1116 write_unlock_irqrestore(&devtree_lock, flags);
1117
1118 if (!found)
1119 return -ENODEV;
1120
1121#ifdef CONFIG_PROC_DEVICETREE
1122 /* try to add to proc as well if it was initialized */
1123 if (np->pde)
1124 proc_device_tree_update_prop(np->pde, newprop, oldprop);
1125#endif /* CONFIG_PROC_DEVICETREE */
1126
1127 return 0;
1128}
1129
1130#if defined(CONFIG_DEBUG_FS) && defined(DEBUG)
1131static struct debugfs_blob_wrapper flat_dt_blob;
1132
1133static int __init export_flat_device_tree(void)
1134{
1135 struct dentry *d;
1136
1137 flat_dt_blob.data = initial_boot_params;
1138 flat_dt_blob.size = initial_boot_params->totalsize;
1139
1140 d = debugfs_create_blob("flat-device-tree", S_IFREG | S_IRUSR,
1141 of_debugfs_root, &flat_dt_blob);
1142 if (!d)
1143 return 1;
1144
1145 return 0;
1146}
1147device_initcall(export_flat_device_tree);
1148#endif