| Linus Torvalds | 1da177e | 2005-04-16 15:20:36 -0700 | [diff] [blame] | 1 | /* | 
|  | 2 | * linux/drivers/ide/ide-iops.c	Version 0.37	Mar 05, 2003 | 
|  | 3 | * | 
|  | 4 | *  Copyright (C) 2000-2002	Andre Hedrick <andre@linux-ide.org> | 
|  | 5 | *  Copyright (C) 2003		Red Hat <alan@redhat.com> | 
|  | 6 | * | 
|  | 7 | */ | 
|  | 8 |  | 
|  | 9 | #include <linux/config.h> | 
|  | 10 | #include <linux/module.h> | 
|  | 11 | #include <linux/types.h> | 
|  | 12 | #include <linux/string.h> | 
|  | 13 | #include <linux/kernel.h> | 
|  | 14 | #include <linux/timer.h> | 
|  | 15 | #include <linux/mm.h> | 
|  | 16 | #include <linux/interrupt.h> | 
|  | 17 | #include <linux/major.h> | 
|  | 18 | #include <linux/errno.h> | 
|  | 19 | #include <linux/genhd.h> | 
|  | 20 | #include <linux/blkpg.h> | 
|  | 21 | #include <linux/slab.h> | 
|  | 22 | #include <linux/pci.h> | 
|  | 23 | #include <linux/delay.h> | 
|  | 24 | #include <linux/hdreg.h> | 
|  | 25 | #include <linux/ide.h> | 
|  | 26 | #include <linux/bitops.h> | 
|  | 27 |  | 
|  | 28 | #include <asm/byteorder.h> | 
|  | 29 | #include <asm/irq.h> | 
|  | 30 | #include <asm/uaccess.h> | 
|  | 31 | #include <asm/io.h> | 
|  | 32 |  | 
|  | 33 | /* | 
|  | 34 | *	Conventional PIO operations for ATA devices | 
|  | 35 | */ | 
|  | 36 |  | 
|  | 37 | static u8 ide_inb (unsigned long port) | 
|  | 38 | { | 
|  | 39 | return (u8) inb(port); | 
|  | 40 | } | 
|  | 41 |  | 
|  | 42 | static u16 ide_inw (unsigned long port) | 
|  | 43 | { | 
|  | 44 | return (u16) inw(port); | 
|  | 45 | } | 
|  | 46 |  | 
|  | 47 | static void ide_insw (unsigned long port, void *addr, u32 count) | 
|  | 48 | { | 
|  | 49 | insw(port, addr, count); | 
|  | 50 | } | 
|  | 51 |  | 
|  | 52 | static u32 ide_inl (unsigned long port) | 
|  | 53 | { | 
|  | 54 | return (u32) inl(port); | 
|  | 55 | } | 
|  | 56 |  | 
|  | 57 | static void ide_insl (unsigned long port, void *addr, u32 count) | 
|  | 58 | { | 
|  | 59 | insl(port, addr, count); | 
|  | 60 | } | 
|  | 61 |  | 
|  | 62 | static void ide_outb (u8 val, unsigned long port) | 
|  | 63 | { | 
|  | 64 | outb(val, port); | 
|  | 65 | } | 
|  | 66 |  | 
|  | 67 | static void ide_outbsync (ide_drive_t *drive, u8 addr, unsigned long port) | 
|  | 68 | { | 
|  | 69 | outb(addr, port); | 
|  | 70 | } | 
|  | 71 |  | 
|  | 72 | static void ide_outw (u16 val, unsigned long port) | 
|  | 73 | { | 
|  | 74 | outw(val, port); | 
|  | 75 | } | 
|  | 76 |  | 
|  | 77 | static void ide_outsw (unsigned long port, void *addr, u32 count) | 
|  | 78 | { | 
|  | 79 | outsw(port, addr, count); | 
|  | 80 | } | 
|  | 81 |  | 
|  | 82 | static void ide_outl (u32 val, unsigned long port) | 
|  | 83 | { | 
|  | 84 | outl(val, port); | 
|  | 85 | } | 
|  | 86 |  | 
|  | 87 | static void ide_outsl (unsigned long port, void *addr, u32 count) | 
|  | 88 | { | 
|  | 89 | outsl(port, addr, count); | 
|  | 90 | } | 
|  | 91 |  | 
|  | 92 | void default_hwif_iops (ide_hwif_t *hwif) | 
|  | 93 | { | 
|  | 94 | hwif->OUTB	= ide_outb; | 
|  | 95 | hwif->OUTBSYNC	= ide_outbsync; | 
|  | 96 | hwif->OUTW	= ide_outw; | 
|  | 97 | hwif->OUTL	= ide_outl; | 
|  | 98 | hwif->OUTSW	= ide_outsw; | 
|  | 99 | hwif->OUTSL	= ide_outsl; | 
|  | 100 | hwif->INB	= ide_inb; | 
|  | 101 | hwif->INW	= ide_inw; | 
|  | 102 | hwif->INL	= ide_inl; | 
|  | 103 | hwif->INSW	= ide_insw; | 
|  | 104 | hwif->INSL	= ide_insl; | 
|  | 105 | } | 
|  | 106 |  | 
|  | 107 | EXPORT_SYMBOL(default_hwif_iops); | 
|  | 108 |  | 
|  | 109 | /* | 
|  | 110 | *	MMIO operations, typically used for SATA controllers | 
|  | 111 | */ | 
|  | 112 |  | 
|  | 113 | static u8 ide_mm_inb (unsigned long port) | 
|  | 114 | { | 
|  | 115 | return (u8) readb((void __iomem *) port); | 
|  | 116 | } | 
|  | 117 |  | 
|  | 118 | static u16 ide_mm_inw (unsigned long port) | 
|  | 119 | { | 
|  | 120 | return (u16) readw((void __iomem *) port); | 
|  | 121 | } | 
|  | 122 |  | 
|  | 123 | static void ide_mm_insw (unsigned long port, void *addr, u32 count) | 
|  | 124 | { | 
|  | 125 | __ide_mm_insw((void __iomem *) port, addr, count); | 
|  | 126 | } | 
|  | 127 |  | 
|  | 128 | static u32 ide_mm_inl (unsigned long port) | 
|  | 129 | { | 
|  | 130 | return (u32) readl((void __iomem *) port); | 
|  | 131 | } | 
|  | 132 |  | 
|  | 133 | static void ide_mm_insl (unsigned long port, void *addr, u32 count) | 
|  | 134 | { | 
|  | 135 | __ide_mm_insl((void __iomem *) port, addr, count); | 
|  | 136 | } | 
|  | 137 |  | 
|  | 138 | static void ide_mm_outb (u8 value, unsigned long port) | 
|  | 139 | { | 
|  | 140 | writeb(value, (void __iomem *) port); | 
|  | 141 | } | 
|  | 142 |  | 
|  | 143 | static void ide_mm_outbsync (ide_drive_t *drive, u8 value, unsigned long port) | 
|  | 144 | { | 
|  | 145 | writeb(value, (void __iomem *) port); | 
|  | 146 | } | 
|  | 147 |  | 
|  | 148 | static void ide_mm_outw (u16 value, unsigned long port) | 
|  | 149 | { | 
|  | 150 | writew(value, (void __iomem *) port); | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | static void ide_mm_outsw (unsigned long port, void *addr, u32 count) | 
|  | 154 | { | 
|  | 155 | __ide_mm_outsw((void __iomem *) port, addr, count); | 
|  | 156 | } | 
|  | 157 |  | 
|  | 158 | static void ide_mm_outl (u32 value, unsigned long port) | 
|  | 159 | { | 
|  | 160 | writel(value, (void __iomem *) port); | 
|  | 161 | } | 
|  | 162 |  | 
|  | 163 | static void ide_mm_outsl (unsigned long port, void *addr, u32 count) | 
|  | 164 | { | 
|  | 165 | __ide_mm_outsl((void __iomem *) port, addr, count); | 
|  | 166 | } | 
|  | 167 |  | 
|  | 168 | void default_hwif_mmiops (ide_hwif_t *hwif) | 
|  | 169 | { | 
|  | 170 | hwif->OUTB	= ide_mm_outb; | 
|  | 171 | /* Most systems will need to override OUTBSYNC, alas however | 
|  | 172 | this one is controller specific! */ | 
|  | 173 | hwif->OUTBSYNC	= ide_mm_outbsync; | 
|  | 174 | hwif->OUTW	= ide_mm_outw; | 
|  | 175 | hwif->OUTL	= ide_mm_outl; | 
|  | 176 | hwif->OUTSW	= ide_mm_outsw; | 
|  | 177 | hwif->OUTSL	= ide_mm_outsl; | 
|  | 178 | hwif->INB	= ide_mm_inb; | 
|  | 179 | hwif->INW	= ide_mm_inw; | 
|  | 180 | hwif->INL	= ide_mm_inl; | 
|  | 181 | hwif->INSW	= ide_mm_insw; | 
|  | 182 | hwif->INSL	= ide_mm_insl; | 
|  | 183 | } | 
|  | 184 |  | 
|  | 185 | EXPORT_SYMBOL(default_hwif_mmiops); | 
|  | 186 |  | 
|  | 187 | u32 ide_read_24 (ide_drive_t *drive) | 
|  | 188 | { | 
|  | 189 | u8 hcyl = HWIF(drive)->INB(IDE_HCYL_REG); | 
|  | 190 | u8 lcyl = HWIF(drive)->INB(IDE_LCYL_REG); | 
|  | 191 | u8 sect = HWIF(drive)->INB(IDE_SECTOR_REG); | 
|  | 192 | return (hcyl<<16)|(lcyl<<8)|sect; | 
|  | 193 | } | 
|  | 194 |  | 
|  | 195 | void SELECT_DRIVE (ide_drive_t *drive) | 
|  | 196 | { | 
|  | 197 | if (HWIF(drive)->selectproc) | 
|  | 198 | HWIF(drive)->selectproc(drive); | 
|  | 199 | HWIF(drive)->OUTB(drive->select.all, IDE_SELECT_REG); | 
|  | 200 | } | 
|  | 201 |  | 
|  | 202 | EXPORT_SYMBOL(SELECT_DRIVE); | 
|  | 203 |  | 
|  | 204 | void SELECT_INTERRUPT (ide_drive_t *drive) | 
|  | 205 | { | 
|  | 206 | if (HWIF(drive)->intrproc) | 
|  | 207 | HWIF(drive)->intrproc(drive); | 
|  | 208 | else | 
|  | 209 | HWIF(drive)->OUTB(drive->ctl|2, IDE_CONTROL_REG); | 
|  | 210 | } | 
|  | 211 |  | 
|  | 212 | void SELECT_MASK (ide_drive_t *drive, int mask) | 
|  | 213 | { | 
|  | 214 | if (HWIF(drive)->maskproc) | 
|  | 215 | HWIF(drive)->maskproc(drive, mask); | 
|  | 216 | } | 
|  | 217 |  | 
|  | 218 | void QUIRK_LIST (ide_drive_t *drive) | 
|  | 219 | { | 
|  | 220 | if (HWIF(drive)->quirkproc) | 
|  | 221 | drive->quirk_list = HWIF(drive)->quirkproc(drive); | 
|  | 222 | } | 
|  | 223 |  | 
|  | 224 | /* | 
|  | 225 | * Some localbus EIDE interfaces require a special access sequence | 
|  | 226 | * when using 32-bit I/O instructions to transfer data.  We call this | 
|  | 227 | * the "vlb_sync" sequence, which consists of three successive reads | 
|  | 228 | * of the sector count register location, with interrupts disabled | 
|  | 229 | * to ensure that the reads all happen together. | 
|  | 230 | */ | 
|  | 231 | static void ata_vlb_sync(ide_drive_t *drive, unsigned long port) | 
|  | 232 | { | 
|  | 233 | (void) HWIF(drive)->INB(port); | 
|  | 234 | (void) HWIF(drive)->INB(port); | 
|  | 235 | (void) HWIF(drive)->INB(port); | 
|  | 236 | } | 
|  | 237 |  | 
|  | 238 | /* | 
|  | 239 | * This is used for most PIO data transfers *from* the IDE interface | 
|  | 240 | */ | 
|  | 241 | static void ata_input_data(ide_drive_t *drive, void *buffer, u32 wcount) | 
|  | 242 | { | 
|  | 243 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 244 | u8 io_32bit		= drive->io_32bit; | 
|  | 245 |  | 
|  | 246 | if (io_32bit) { | 
|  | 247 | if (io_32bit & 2) { | 
|  | 248 | unsigned long flags; | 
|  | 249 | local_irq_save(flags); | 
|  | 250 | ata_vlb_sync(drive, IDE_NSECTOR_REG); | 
|  | 251 | hwif->INSL(IDE_DATA_REG, buffer, wcount); | 
|  | 252 | local_irq_restore(flags); | 
|  | 253 | } else | 
|  | 254 | hwif->INSL(IDE_DATA_REG, buffer, wcount); | 
|  | 255 | } else { | 
|  | 256 | hwif->INSW(IDE_DATA_REG, buffer, wcount<<1); | 
|  | 257 | } | 
|  | 258 | } | 
|  | 259 |  | 
|  | 260 | /* | 
|  | 261 | * This is used for most PIO data transfers *to* the IDE interface | 
|  | 262 | */ | 
|  | 263 | static void ata_output_data(ide_drive_t *drive, void *buffer, u32 wcount) | 
|  | 264 | { | 
|  | 265 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 266 | u8 io_32bit		= drive->io_32bit; | 
|  | 267 |  | 
|  | 268 | if (io_32bit) { | 
|  | 269 | if (io_32bit & 2) { | 
|  | 270 | unsigned long flags; | 
|  | 271 | local_irq_save(flags); | 
|  | 272 | ata_vlb_sync(drive, IDE_NSECTOR_REG); | 
|  | 273 | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | 
|  | 274 | local_irq_restore(flags); | 
|  | 275 | } else | 
|  | 276 | hwif->OUTSL(IDE_DATA_REG, buffer, wcount); | 
|  | 277 | } else { | 
|  | 278 | hwif->OUTSW(IDE_DATA_REG, buffer, wcount<<1); | 
|  | 279 | } | 
|  | 280 | } | 
|  | 281 |  | 
|  | 282 | /* | 
|  | 283 | * The following routines are mainly used by the ATAPI drivers. | 
|  | 284 | * | 
|  | 285 | * These routines will round up any request for an odd number of bytes, | 
|  | 286 | * so if an odd bytecount is specified, be sure that there's at least one | 
|  | 287 | * extra byte allocated for the buffer. | 
|  | 288 | */ | 
|  | 289 |  | 
|  | 290 | static void atapi_input_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | 
|  | 291 | { | 
|  | 292 | ide_hwif_t *hwif = HWIF(drive); | 
|  | 293 |  | 
|  | 294 | ++bytecount; | 
|  | 295 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | 
|  | 296 | if (MACH_IS_ATARI || MACH_IS_Q40) { | 
|  | 297 | /* Atari has a byte-swapped IDE interface */ | 
|  | 298 | insw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | 
|  | 299 | return; | 
|  | 300 | } | 
|  | 301 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | 
|  | 302 | hwif->ata_input_data(drive, buffer, bytecount / 4); | 
|  | 303 | if ((bytecount & 0x03) >= 2) | 
|  | 304 | hwif->INSW(IDE_DATA_REG, ((u8 *)buffer)+(bytecount & ~0x03), 1); | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | static void atapi_output_bytes(ide_drive_t *drive, void *buffer, u32 bytecount) | 
|  | 308 | { | 
|  | 309 | ide_hwif_t *hwif = HWIF(drive); | 
|  | 310 |  | 
|  | 311 | ++bytecount; | 
|  | 312 | #if defined(CONFIG_ATARI) || defined(CONFIG_Q40) | 
|  | 313 | if (MACH_IS_ATARI || MACH_IS_Q40) { | 
|  | 314 | /* Atari has a byte-swapped IDE interface */ | 
|  | 315 | outsw_swapw(IDE_DATA_REG, buffer, bytecount / 2); | 
|  | 316 | return; | 
|  | 317 | } | 
|  | 318 | #endif /* CONFIG_ATARI || CONFIG_Q40 */ | 
|  | 319 | hwif->ata_output_data(drive, buffer, bytecount / 4); | 
|  | 320 | if ((bytecount & 0x03) >= 2) | 
|  | 321 | hwif->OUTSW(IDE_DATA_REG, ((u8*)buffer)+(bytecount & ~0x03), 1); | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | void default_hwif_transport(ide_hwif_t *hwif) | 
|  | 325 | { | 
|  | 326 | hwif->ata_input_data		= ata_input_data; | 
|  | 327 | hwif->ata_output_data		= ata_output_data; | 
|  | 328 | hwif->atapi_input_bytes		= atapi_input_bytes; | 
|  | 329 | hwif->atapi_output_bytes	= atapi_output_bytes; | 
|  | 330 | } | 
|  | 331 |  | 
|  | 332 | EXPORT_SYMBOL(default_hwif_transport); | 
|  | 333 |  | 
|  | 334 | /* | 
|  | 335 | * Beginning of Taskfile OPCODE Library and feature sets. | 
|  | 336 | */ | 
|  | 337 | void ide_fix_driveid (struct hd_driveid *id) | 
|  | 338 | { | 
|  | 339 | #ifndef __LITTLE_ENDIAN | 
|  | 340 | # ifdef __BIG_ENDIAN | 
|  | 341 | int i; | 
|  | 342 | u16 *stringcast; | 
|  | 343 |  | 
|  | 344 | id->config         = __le16_to_cpu(id->config); | 
|  | 345 | id->cyls           = __le16_to_cpu(id->cyls); | 
|  | 346 | id->reserved2      = __le16_to_cpu(id->reserved2); | 
|  | 347 | id->heads          = __le16_to_cpu(id->heads); | 
|  | 348 | id->track_bytes    = __le16_to_cpu(id->track_bytes); | 
|  | 349 | id->sector_bytes   = __le16_to_cpu(id->sector_bytes); | 
|  | 350 | id->sectors        = __le16_to_cpu(id->sectors); | 
|  | 351 | id->vendor0        = __le16_to_cpu(id->vendor0); | 
|  | 352 | id->vendor1        = __le16_to_cpu(id->vendor1); | 
|  | 353 | id->vendor2        = __le16_to_cpu(id->vendor2); | 
|  | 354 | stringcast = (u16 *)&id->serial_no[0]; | 
|  | 355 | for (i = 0; i < (20/2); i++) | 
|  | 356 | stringcast[i] = __le16_to_cpu(stringcast[i]); | 
|  | 357 | id->buf_type       = __le16_to_cpu(id->buf_type); | 
|  | 358 | id->buf_size       = __le16_to_cpu(id->buf_size); | 
|  | 359 | id->ecc_bytes      = __le16_to_cpu(id->ecc_bytes); | 
|  | 360 | stringcast = (u16 *)&id->fw_rev[0]; | 
|  | 361 | for (i = 0; i < (8/2); i++) | 
|  | 362 | stringcast[i] = __le16_to_cpu(stringcast[i]); | 
|  | 363 | stringcast = (u16 *)&id->model[0]; | 
|  | 364 | for (i = 0; i < (40/2); i++) | 
|  | 365 | stringcast[i] = __le16_to_cpu(stringcast[i]); | 
|  | 366 | id->dword_io       = __le16_to_cpu(id->dword_io); | 
|  | 367 | id->reserved50     = __le16_to_cpu(id->reserved50); | 
|  | 368 | id->field_valid    = __le16_to_cpu(id->field_valid); | 
|  | 369 | id->cur_cyls       = __le16_to_cpu(id->cur_cyls); | 
|  | 370 | id->cur_heads      = __le16_to_cpu(id->cur_heads); | 
|  | 371 | id->cur_sectors    = __le16_to_cpu(id->cur_sectors); | 
|  | 372 | id->cur_capacity0  = __le16_to_cpu(id->cur_capacity0); | 
|  | 373 | id->cur_capacity1  = __le16_to_cpu(id->cur_capacity1); | 
|  | 374 | id->lba_capacity   = __le32_to_cpu(id->lba_capacity); | 
|  | 375 | id->dma_1word      = __le16_to_cpu(id->dma_1word); | 
|  | 376 | id->dma_mword      = __le16_to_cpu(id->dma_mword); | 
|  | 377 | id->eide_pio_modes = __le16_to_cpu(id->eide_pio_modes); | 
|  | 378 | id->eide_dma_min   = __le16_to_cpu(id->eide_dma_min); | 
|  | 379 | id->eide_dma_time  = __le16_to_cpu(id->eide_dma_time); | 
|  | 380 | id->eide_pio       = __le16_to_cpu(id->eide_pio); | 
|  | 381 | id->eide_pio_iordy = __le16_to_cpu(id->eide_pio_iordy); | 
|  | 382 | for (i = 0; i < 2; ++i) | 
|  | 383 | id->words69_70[i] = __le16_to_cpu(id->words69_70[i]); | 
|  | 384 | for (i = 0; i < 4; ++i) | 
|  | 385 | id->words71_74[i] = __le16_to_cpu(id->words71_74[i]); | 
|  | 386 | id->queue_depth    = __le16_to_cpu(id->queue_depth); | 
|  | 387 | for (i = 0; i < 4; ++i) | 
|  | 388 | id->words76_79[i] = __le16_to_cpu(id->words76_79[i]); | 
|  | 389 | id->major_rev_num  = __le16_to_cpu(id->major_rev_num); | 
|  | 390 | id->minor_rev_num  = __le16_to_cpu(id->minor_rev_num); | 
|  | 391 | id->command_set_1  = __le16_to_cpu(id->command_set_1); | 
|  | 392 | id->command_set_2  = __le16_to_cpu(id->command_set_2); | 
|  | 393 | id->cfsse          = __le16_to_cpu(id->cfsse); | 
|  | 394 | id->cfs_enable_1   = __le16_to_cpu(id->cfs_enable_1); | 
|  | 395 | id->cfs_enable_2   = __le16_to_cpu(id->cfs_enable_2); | 
|  | 396 | id->csf_default    = __le16_to_cpu(id->csf_default); | 
|  | 397 | id->dma_ultra      = __le16_to_cpu(id->dma_ultra); | 
|  | 398 | id->trseuc         = __le16_to_cpu(id->trseuc); | 
|  | 399 | id->trsEuc         = __le16_to_cpu(id->trsEuc); | 
|  | 400 | id->CurAPMvalues   = __le16_to_cpu(id->CurAPMvalues); | 
|  | 401 | id->mprc           = __le16_to_cpu(id->mprc); | 
|  | 402 | id->hw_config      = __le16_to_cpu(id->hw_config); | 
|  | 403 | id->acoustic       = __le16_to_cpu(id->acoustic); | 
|  | 404 | id->msrqs          = __le16_to_cpu(id->msrqs); | 
|  | 405 | id->sxfert         = __le16_to_cpu(id->sxfert); | 
|  | 406 | id->sal            = __le16_to_cpu(id->sal); | 
|  | 407 | id->spg            = __le32_to_cpu(id->spg); | 
|  | 408 | id->lba_capacity_2 = __le64_to_cpu(id->lba_capacity_2); | 
|  | 409 | for (i = 0; i < 22; i++) | 
|  | 410 | id->words104_125[i]   = __le16_to_cpu(id->words104_125[i]); | 
|  | 411 | id->last_lun       = __le16_to_cpu(id->last_lun); | 
|  | 412 | id->word127        = __le16_to_cpu(id->word127); | 
|  | 413 | id->dlf            = __le16_to_cpu(id->dlf); | 
|  | 414 | id->csfo           = __le16_to_cpu(id->csfo); | 
|  | 415 | for (i = 0; i < 26; i++) | 
|  | 416 | id->words130_155[i] = __le16_to_cpu(id->words130_155[i]); | 
|  | 417 | id->word156        = __le16_to_cpu(id->word156); | 
|  | 418 | for (i = 0; i < 3; i++) | 
|  | 419 | id->words157_159[i] = __le16_to_cpu(id->words157_159[i]); | 
|  | 420 | id->cfa_power      = __le16_to_cpu(id->cfa_power); | 
|  | 421 | for (i = 0; i < 14; i++) | 
|  | 422 | id->words161_175[i] = __le16_to_cpu(id->words161_175[i]); | 
|  | 423 | for (i = 0; i < 31; i++) | 
|  | 424 | id->words176_205[i] = __le16_to_cpu(id->words176_205[i]); | 
|  | 425 | for (i = 0; i < 48; i++) | 
|  | 426 | id->words206_254[i] = __le16_to_cpu(id->words206_254[i]); | 
|  | 427 | id->integrity_word  = __le16_to_cpu(id->integrity_word); | 
|  | 428 | # else | 
|  | 429 | #  error "Please fix <asm/byteorder.h>" | 
|  | 430 | # endif | 
|  | 431 | #endif | 
|  | 432 | } | 
|  | 433 |  | 
|  | 434 | /* FIXME: exported for use by the USB storage (isd200.c) code only */ | 
|  | 435 | EXPORT_SYMBOL(ide_fix_driveid); | 
|  | 436 |  | 
|  | 437 | void ide_fixstring (u8 *s, const int bytecount, const int byteswap) | 
|  | 438 | { | 
|  | 439 | u8 *p = s, *end = &s[bytecount & ~1]; /* bytecount must be even */ | 
|  | 440 |  | 
|  | 441 | if (byteswap) { | 
|  | 442 | /* convert from big-endian to host byte order */ | 
|  | 443 | for (p = end ; p != s;) { | 
|  | 444 | unsigned short *pp = (unsigned short *) (p -= 2); | 
|  | 445 | *pp = ntohs(*pp); | 
|  | 446 | } | 
|  | 447 | } | 
|  | 448 | /* strip leading blanks */ | 
|  | 449 | while (s != end && *s == ' ') | 
|  | 450 | ++s; | 
|  | 451 | /* compress internal blanks and strip trailing blanks */ | 
|  | 452 | while (s != end && *s) { | 
|  | 453 | if (*s++ != ' ' || (s != end && *s && *s != ' ')) | 
|  | 454 | *p++ = *(s-1); | 
|  | 455 | } | 
|  | 456 | /* wipe out trailing garbage */ | 
|  | 457 | while (p != end) | 
|  | 458 | *p++ = '\0'; | 
|  | 459 | } | 
|  | 460 |  | 
|  | 461 | EXPORT_SYMBOL(ide_fixstring); | 
|  | 462 |  | 
|  | 463 | /* | 
|  | 464 | * Needed for PCI irq sharing | 
|  | 465 | */ | 
|  | 466 | int drive_is_ready (ide_drive_t *drive) | 
|  | 467 | { | 
|  | 468 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 469 | u8 stat			= 0; | 
|  | 470 |  | 
|  | 471 | if (drive->waiting_for_dma) | 
|  | 472 | return hwif->ide_dma_test_irq(drive); | 
|  | 473 |  | 
|  | 474 | #if 0 | 
|  | 475 | /* need to guarantee 400ns since last command was issued */ | 
|  | 476 | udelay(1); | 
|  | 477 | #endif | 
|  | 478 |  | 
|  | 479 | #ifdef CONFIG_IDEPCI_SHARE_IRQ | 
|  | 480 | /* | 
|  | 481 | * We do a passive status test under shared PCI interrupts on | 
|  | 482 | * cards that truly share the ATA side interrupt, but may also share | 
|  | 483 | * an interrupt with another pci card/device.  We make no assumptions | 
|  | 484 | * about possible isa-pnp and pci-pnp issues yet. | 
|  | 485 | */ | 
|  | 486 | if (IDE_CONTROL_REG) | 
|  | 487 | stat = hwif->INB(IDE_ALTSTATUS_REG); | 
|  | 488 | else | 
|  | 489 | #endif /* CONFIG_IDEPCI_SHARE_IRQ */ | 
|  | 490 | /* Note: this may clear a pending IRQ!! */ | 
|  | 491 | stat = hwif->INB(IDE_STATUS_REG); | 
|  | 492 |  | 
|  | 493 | if (stat & BUSY_STAT) | 
|  | 494 | /* drive busy:  definitely not interrupting */ | 
|  | 495 | return 0; | 
|  | 496 |  | 
|  | 497 | /* drive ready: *might* be interrupting */ | 
|  | 498 | return 1; | 
|  | 499 | } | 
|  | 500 |  | 
|  | 501 | EXPORT_SYMBOL(drive_is_ready); | 
|  | 502 |  | 
|  | 503 | /* | 
|  | 504 | * Global for All, and taken from ide-pmac.c. Can be called | 
|  | 505 | * with spinlock held & IRQs disabled, so don't schedule ! | 
|  | 506 | */ | 
|  | 507 | int wait_for_ready (ide_drive_t *drive, int timeout) | 
|  | 508 | { | 
|  | 509 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 510 | u8 stat			= 0; | 
|  | 511 |  | 
|  | 512 | while(--timeout) { | 
|  | 513 | stat = hwif->INB(IDE_STATUS_REG); | 
|  | 514 | if (!(stat & BUSY_STAT)) { | 
|  | 515 | if (drive->ready_stat == 0) | 
|  | 516 | break; | 
|  | 517 | else if ((stat & drive->ready_stat)||(stat & ERR_STAT)) | 
|  | 518 | break; | 
|  | 519 | } | 
|  | 520 | mdelay(1); | 
|  | 521 | } | 
|  | 522 | if ((stat & ERR_STAT) || timeout <= 0) { | 
|  | 523 | if (stat & ERR_STAT) { | 
|  | 524 | printk(KERN_ERR "%s: wait_for_ready, " | 
|  | 525 | "error status: %x\n", drive->name, stat); | 
|  | 526 | } | 
|  | 527 | return 1; | 
|  | 528 | } | 
|  | 529 | return 0; | 
|  | 530 | } | 
|  | 531 |  | 
|  | 532 | EXPORT_SYMBOL(wait_for_ready); | 
|  | 533 |  | 
|  | 534 | /* | 
|  | 535 | * This routine busy-waits for the drive status to be not "busy". | 
|  | 536 | * It then checks the status for all of the "good" bits and none | 
|  | 537 | * of the "bad" bits, and if all is okay it returns 0.  All other | 
|  | 538 | * cases return 1 after invoking ide_error() -- caller should just return. | 
|  | 539 | * | 
|  | 540 | * This routine should get fixed to not hog the cpu during extra long waits.. | 
|  | 541 | * That could be done by busy-waiting for the first jiffy or two, and then | 
|  | 542 | * setting a timer to wake up at half second intervals thereafter, | 
|  | 543 | * until timeout is achieved, before timing out. | 
|  | 544 | */ | 
|  | 545 | int ide_wait_stat (ide_startstop_t *startstop, ide_drive_t *drive, u8 good, u8 bad, unsigned long timeout) | 
|  | 546 | { | 
|  | 547 | ide_hwif_t *hwif = HWIF(drive); | 
|  | 548 | u8 stat; | 
|  | 549 | int i; | 
|  | 550 | unsigned long flags; | 
|  | 551 |  | 
|  | 552 | /* bail early if we've exceeded max_failures */ | 
|  | 553 | if (drive->max_failures && (drive->failures > drive->max_failures)) { | 
|  | 554 | *startstop = ide_stopped; | 
|  | 555 | return 1; | 
|  | 556 | } | 
|  | 557 |  | 
|  | 558 | udelay(1);	/* spec allows drive 400ns to assert "BUSY" */ | 
|  | 559 | if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
|  | 560 | local_irq_set(flags); | 
|  | 561 | timeout += jiffies; | 
|  | 562 | while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
|  | 563 | if (time_after(jiffies, timeout)) { | 
|  | 564 | /* | 
|  | 565 | * One last read after the timeout in case | 
|  | 566 | * heavy interrupt load made us not make any | 
|  | 567 | * progress during the timeout.. | 
|  | 568 | */ | 
|  | 569 | stat = hwif->INB(IDE_STATUS_REG); | 
|  | 570 | if (!(stat & BUSY_STAT)) | 
|  | 571 | break; | 
|  | 572 |  | 
|  | 573 | local_irq_restore(flags); | 
|  | 574 | *startstop = ide_error(drive, "status timeout", stat); | 
|  | 575 | return 1; | 
|  | 576 | } | 
|  | 577 | } | 
|  | 578 | local_irq_restore(flags); | 
|  | 579 | } | 
|  | 580 | /* | 
|  | 581 | * Allow status to settle, then read it again. | 
|  | 582 | * A few rare drives vastly violate the 400ns spec here, | 
|  | 583 | * so we'll wait up to 10usec for a "good" status | 
|  | 584 | * rather than expensively fail things immediately. | 
|  | 585 | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | 
|  | 586 | */ | 
|  | 587 | for (i = 0; i < 10; i++) { | 
|  | 588 | udelay(1); | 
|  | 589 | if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), good, bad)) | 
|  | 590 | return 0; | 
|  | 591 | } | 
|  | 592 | *startstop = ide_error(drive, "status error", stat); | 
|  | 593 | return 1; | 
|  | 594 | } | 
|  | 595 |  | 
|  | 596 | EXPORT_SYMBOL(ide_wait_stat); | 
|  | 597 |  | 
|  | 598 | /* | 
|  | 599 | *  All hosts that use the 80c ribbon must use! | 
|  | 600 | *  The name is derived from upper byte of word 93 and the 80c ribbon. | 
|  | 601 | */ | 
|  | 602 | u8 eighty_ninty_three (ide_drive_t *drive) | 
|  | 603 | { | 
|  | 604 | #if 0 | 
|  | 605 | if (!HWIF(drive)->udma_four) | 
|  | 606 | return 0; | 
|  | 607 |  | 
|  | 608 | if (drive->id->major_rev_num) { | 
|  | 609 | int hssbd = 0; | 
|  | 610 | int i; | 
|  | 611 | /* | 
|  | 612 | * Determine highest Supported SPEC | 
|  | 613 | */ | 
|  | 614 | for (i=1; i<=15; i++) | 
|  | 615 | if (drive->id->major_rev_num & (1<<i)) | 
|  | 616 | hssbd++; | 
|  | 617 |  | 
|  | 618 | switch (hssbd) { | 
|  | 619 | case 7: | 
|  | 620 | case 6: | 
|  | 621 | case 5: | 
|  | 622 | /* ATA-4 and older do not support above Ultra 33 */ | 
|  | 623 | default: | 
|  | 624 | return 0; | 
|  | 625 | } | 
|  | 626 | } | 
|  | 627 |  | 
|  | 628 | return ((u8) ( | 
|  | 629 | #ifndef CONFIG_IDEDMA_IVB | 
|  | 630 | (drive->id->hw_config & 0x4000) && | 
|  | 631 | #endif /* CONFIG_IDEDMA_IVB */ | 
|  | 632 | (drive->id->hw_config & 0x6000)) ? 1 : 0); | 
|  | 633 |  | 
|  | 634 | #else | 
|  | 635 |  | 
|  | 636 | return ((u8) ((HWIF(drive)->udma_four) && | 
|  | 637 | #ifndef CONFIG_IDEDMA_IVB | 
|  | 638 | (drive->id->hw_config & 0x4000) && | 
|  | 639 | #endif /* CONFIG_IDEDMA_IVB */ | 
|  | 640 | (drive->id->hw_config & 0x6000)) ? 1 : 0); | 
|  | 641 | #endif | 
|  | 642 | } | 
|  | 643 |  | 
|  | 644 | EXPORT_SYMBOL(eighty_ninty_three); | 
|  | 645 |  | 
|  | 646 | int ide_ata66_check (ide_drive_t *drive, ide_task_t *args) | 
|  | 647 | { | 
|  | 648 | if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && | 
|  | 649 | (args->tfRegister[IDE_SECTOR_OFFSET] > XFER_UDMA_2) && | 
|  | 650 | (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER)) { | 
|  | 651 | #ifndef CONFIG_IDEDMA_IVB | 
|  | 652 | if ((drive->id->hw_config & 0x6000) == 0) { | 
|  | 653 | #else /* !CONFIG_IDEDMA_IVB */ | 
|  | 654 | if (((drive->id->hw_config & 0x2000) == 0) || | 
|  | 655 | ((drive->id->hw_config & 0x4000) == 0)) { | 
|  | 656 | #endif /* CONFIG_IDEDMA_IVB */ | 
|  | 657 | printk("%s: Speed warnings UDMA 3/4/5 is not " | 
|  | 658 | "functional.\n", drive->name); | 
|  | 659 | return 1; | 
|  | 660 | } | 
|  | 661 | if (!HWIF(drive)->udma_four) { | 
|  | 662 | printk("%s: Speed warnings UDMA 3/4/5 is not " | 
|  | 663 | "functional.\n", | 
|  | 664 | HWIF(drive)->name); | 
|  | 665 | return 1; | 
|  | 666 | } | 
|  | 667 | } | 
|  | 668 | return 0; | 
|  | 669 | } | 
|  | 670 |  | 
|  | 671 | /* | 
|  | 672 | * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER. | 
|  | 673 | * 1 : Safe to update drive->id DMA registers. | 
|  | 674 | * 0 : OOPs not allowed. | 
|  | 675 | */ | 
|  | 676 | int set_transfer (ide_drive_t *drive, ide_task_t *args) | 
|  | 677 | { | 
|  | 678 | if ((args->tfRegister[IDE_COMMAND_OFFSET] == WIN_SETFEATURES) && | 
|  | 679 | (args->tfRegister[IDE_SECTOR_OFFSET] >= XFER_SW_DMA_0) && | 
|  | 680 | (args->tfRegister[IDE_FEATURE_OFFSET] == SETFEATURES_XFER) && | 
|  | 681 | (drive->id->dma_ultra || | 
|  | 682 | drive->id->dma_mword || | 
|  | 683 | drive->id->dma_1word)) | 
|  | 684 | return 1; | 
|  | 685 |  | 
|  | 686 | return 0; | 
|  | 687 | } | 
|  | 688 |  | 
|  | 689 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
|  | 690 | static u8 ide_auto_reduce_xfer (ide_drive_t *drive) | 
|  | 691 | { | 
|  | 692 | if (!drive->crc_count) | 
|  | 693 | return drive->current_speed; | 
|  | 694 | drive->crc_count = 0; | 
|  | 695 |  | 
|  | 696 | switch(drive->current_speed) { | 
|  | 697 | case XFER_UDMA_7:	return XFER_UDMA_6; | 
|  | 698 | case XFER_UDMA_6:	return XFER_UDMA_5; | 
|  | 699 | case XFER_UDMA_5:	return XFER_UDMA_4; | 
|  | 700 | case XFER_UDMA_4:	return XFER_UDMA_3; | 
|  | 701 | case XFER_UDMA_3:	return XFER_UDMA_2; | 
|  | 702 | case XFER_UDMA_2:	return XFER_UDMA_1; | 
|  | 703 | case XFER_UDMA_1:	return XFER_UDMA_0; | 
|  | 704 | /* | 
|  | 705 | * OOPS we do not goto non Ultra DMA modes | 
|  | 706 | * without iCRC's available we force | 
|  | 707 | * the system to PIO and make the user | 
|  | 708 | * invoke the ATA-1 ATA-2 DMA modes. | 
|  | 709 | */ | 
|  | 710 | case XFER_UDMA_0: | 
|  | 711 | default:		return XFER_PIO_4; | 
|  | 712 | } | 
|  | 713 | } | 
|  | 714 | #endif /* CONFIG_BLK_DEV_IDEDMA */ | 
|  | 715 |  | 
|  | 716 | /* | 
|  | 717 | * Update the | 
|  | 718 | */ | 
|  | 719 | int ide_driveid_update (ide_drive_t *drive) | 
|  | 720 | { | 
|  | 721 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 722 | struct hd_driveid *id; | 
|  | 723 | #if 0 | 
|  | 724 | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | 
|  | 725 | if (!id) | 
|  | 726 | return 0; | 
|  | 727 |  | 
|  | 728 | taskfile_lib_get_identify(drive, (char *)&id); | 
|  | 729 |  | 
|  | 730 | ide_fix_driveid(id); | 
|  | 731 | if (id) { | 
|  | 732 | drive->id->dma_ultra = id->dma_ultra; | 
|  | 733 | drive->id->dma_mword = id->dma_mword; | 
|  | 734 | drive->id->dma_1word = id->dma_1word; | 
|  | 735 | /* anything more ? */ | 
|  | 736 | kfree(id); | 
|  | 737 | } | 
|  | 738 | return 1; | 
|  | 739 | #else | 
|  | 740 | /* | 
|  | 741 | * Re-read drive->id for possible DMA mode | 
|  | 742 | * change (copied from ide-probe.c) | 
|  | 743 | */ | 
|  | 744 | unsigned long timeout, flags; | 
|  | 745 |  | 
|  | 746 | SELECT_MASK(drive, 1); | 
|  | 747 | if (IDE_CONTROL_REG) | 
|  | 748 | hwif->OUTB(drive->ctl,IDE_CONTROL_REG); | 
|  | 749 | msleep(50); | 
|  | 750 | hwif->OUTB(WIN_IDENTIFY, IDE_COMMAND_REG); | 
|  | 751 | timeout = jiffies + WAIT_WORSTCASE; | 
|  | 752 | do { | 
|  | 753 | if (time_after(jiffies, timeout)) { | 
|  | 754 | SELECT_MASK(drive, 0); | 
|  | 755 | return 0;	/* drive timed-out */ | 
|  | 756 | } | 
|  | 757 | msleep(50);	/* give drive a breather */ | 
|  | 758 | } while (hwif->INB(IDE_ALTSTATUS_REG) & BUSY_STAT); | 
|  | 759 | msleep(50);	/* wait for IRQ and DRQ_STAT */ | 
|  | 760 | if (!OK_STAT(hwif->INB(IDE_STATUS_REG),DRQ_STAT,BAD_R_STAT)) { | 
|  | 761 | SELECT_MASK(drive, 0); | 
|  | 762 | printk("%s: CHECK for good STATUS\n", drive->name); | 
|  | 763 | return 0; | 
|  | 764 | } | 
|  | 765 | local_irq_save(flags); | 
|  | 766 | SELECT_MASK(drive, 0); | 
|  | 767 | id = kmalloc(SECTOR_WORDS*4, GFP_ATOMIC); | 
|  | 768 | if (!id) { | 
|  | 769 | local_irq_restore(flags); | 
|  | 770 | return 0; | 
|  | 771 | } | 
|  | 772 | ata_input_data(drive, id, SECTOR_WORDS); | 
|  | 773 | (void) hwif->INB(IDE_STATUS_REG);	/* clear drive IRQ */ | 
|  | 774 | local_irq_enable(); | 
|  | 775 | local_irq_restore(flags); | 
|  | 776 | ide_fix_driveid(id); | 
|  | 777 | if (id) { | 
|  | 778 | drive->id->dma_ultra = id->dma_ultra; | 
|  | 779 | drive->id->dma_mword = id->dma_mword; | 
|  | 780 | drive->id->dma_1word = id->dma_1word; | 
|  | 781 | /* anything more ? */ | 
|  | 782 | kfree(id); | 
|  | 783 | } | 
|  | 784 |  | 
|  | 785 | return 1; | 
|  | 786 | #endif | 
|  | 787 | } | 
|  | 788 |  | 
|  | 789 | /* | 
|  | 790 | * Similar to ide_wait_stat(), except it never calls ide_error internally. | 
|  | 791 | * This is a kludge to handle the new ide_config_drive_speed() function, | 
|  | 792 | * and should not otherwise be used anywhere.  Eventually, the tuneproc's | 
|  | 793 | * should be updated to return ide_startstop_t, in which case we can get | 
|  | 794 | * rid of this abomination again.  :)   -ml | 
|  | 795 | * | 
|  | 796 | * It is gone.......... | 
|  | 797 | * | 
|  | 798 | * const char *msg == consider adding for verbose errors. | 
|  | 799 | */ | 
|  | 800 | int ide_config_drive_speed (ide_drive_t *drive, u8 speed) | 
|  | 801 | { | 
|  | 802 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 803 | int	i, error	= 1; | 
|  | 804 | u8 stat; | 
|  | 805 |  | 
|  | 806 | //	while (HWGROUP(drive)->busy) | 
|  | 807 | //		msleep(50); | 
|  | 808 |  | 
|  | 809 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
|  | 810 | if (hwif->ide_dma_check)	 /* check if host supports DMA */ | 
|  | 811 | hwif->ide_dma_host_off(drive); | 
|  | 812 | #endif | 
|  | 813 |  | 
|  | 814 | /* | 
|  | 815 | * Don't use ide_wait_cmd here - it will | 
|  | 816 | * attempt to set_geometry and recalibrate, | 
|  | 817 | * but for some reason these don't work at | 
|  | 818 | * this point (lost interrupt). | 
|  | 819 | */ | 
|  | 820 | /* | 
|  | 821 | * Select the drive, and issue the SETFEATURES command | 
|  | 822 | */ | 
|  | 823 | disable_irq_nosync(hwif->irq); | 
|  | 824 |  | 
|  | 825 | /* | 
|  | 826 | *	FIXME: we race against the running IRQ here if | 
|  | 827 | *	this is called from non IRQ context. If we use | 
|  | 828 | *	disable_irq() we hang on the error path. Work | 
|  | 829 | *	is needed. | 
|  | 830 | */ | 
|  | 831 |  | 
|  | 832 | udelay(1); | 
|  | 833 | SELECT_DRIVE(drive); | 
|  | 834 | SELECT_MASK(drive, 0); | 
|  | 835 | udelay(1); | 
|  | 836 | if (IDE_CONTROL_REG) | 
|  | 837 | hwif->OUTB(drive->ctl | 2, IDE_CONTROL_REG); | 
|  | 838 | hwif->OUTB(speed, IDE_NSECTOR_REG); | 
|  | 839 | hwif->OUTB(SETFEATURES_XFER, IDE_FEATURE_REG); | 
|  | 840 | hwif->OUTB(WIN_SETFEATURES, IDE_COMMAND_REG); | 
|  | 841 | if ((IDE_CONTROL_REG) && (drive->quirk_list == 2)) | 
|  | 842 | hwif->OUTB(drive->ctl, IDE_CONTROL_REG); | 
|  | 843 | udelay(1); | 
|  | 844 | /* | 
|  | 845 | * Wait for drive to become non-BUSY | 
|  | 846 | */ | 
|  | 847 | if ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
|  | 848 | unsigned long flags, timeout; | 
|  | 849 | local_irq_set(flags); | 
|  | 850 | timeout = jiffies + WAIT_CMD; | 
|  | 851 | while ((stat = hwif->INB(IDE_STATUS_REG)) & BUSY_STAT) { | 
|  | 852 | if (time_after(jiffies, timeout)) | 
|  | 853 | break; | 
|  | 854 | } | 
|  | 855 | local_irq_restore(flags); | 
|  | 856 | } | 
|  | 857 |  | 
|  | 858 | /* | 
|  | 859 | * Allow status to settle, then read it again. | 
|  | 860 | * A few rare drives vastly violate the 400ns spec here, | 
|  | 861 | * so we'll wait up to 10usec for a "good" status | 
|  | 862 | * rather than expensively fail things immediately. | 
|  | 863 | * This fix courtesy of Matthew Faupel & Niccolo Rigacci. | 
|  | 864 | */ | 
|  | 865 | for (i = 0; i < 10; i++) { | 
|  | 866 | udelay(1); | 
|  | 867 | if (OK_STAT((stat = hwif->INB(IDE_STATUS_REG)), DRIVE_READY, BUSY_STAT|DRQ_STAT|ERR_STAT)) { | 
|  | 868 | error = 0; | 
|  | 869 | break; | 
|  | 870 | } | 
|  | 871 | } | 
|  | 872 |  | 
|  | 873 | SELECT_MASK(drive, 0); | 
|  | 874 |  | 
|  | 875 | enable_irq(hwif->irq); | 
|  | 876 |  | 
|  | 877 | if (error) { | 
|  | 878 | (void) ide_dump_status(drive, "set_drive_speed_status", stat); | 
|  | 879 | return error; | 
|  | 880 | } | 
|  | 881 |  | 
|  | 882 | drive->id->dma_ultra &= ~0xFF00; | 
|  | 883 | drive->id->dma_mword &= ~0x0F00; | 
|  | 884 | drive->id->dma_1word &= ~0x0F00; | 
|  | 885 |  | 
|  | 886 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
|  | 887 | if (speed >= XFER_SW_DMA_0) | 
|  | 888 | hwif->ide_dma_host_on(drive); | 
|  | 889 | else if (hwif->ide_dma_check)	/* check if host supports DMA */ | 
|  | 890 | hwif->ide_dma_off_quietly(drive); | 
|  | 891 | #endif | 
|  | 892 |  | 
|  | 893 | switch(speed) { | 
|  | 894 | case XFER_UDMA_7:   drive->id->dma_ultra |= 0x8080; break; | 
|  | 895 | case XFER_UDMA_6:   drive->id->dma_ultra |= 0x4040; break; | 
|  | 896 | case XFER_UDMA_5:   drive->id->dma_ultra |= 0x2020; break; | 
|  | 897 | case XFER_UDMA_4:   drive->id->dma_ultra |= 0x1010; break; | 
|  | 898 | case XFER_UDMA_3:   drive->id->dma_ultra |= 0x0808; break; | 
|  | 899 | case XFER_UDMA_2:   drive->id->dma_ultra |= 0x0404; break; | 
|  | 900 | case XFER_UDMA_1:   drive->id->dma_ultra |= 0x0202; break; | 
|  | 901 | case XFER_UDMA_0:   drive->id->dma_ultra |= 0x0101; break; | 
|  | 902 | case XFER_MW_DMA_2: drive->id->dma_mword |= 0x0404; break; | 
|  | 903 | case XFER_MW_DMA_1: drive->id->dma_mword |= 0x0202; break; | 
|  | 904 | case XFER_MW_DMA_0: drive->id->dma_mword |= 0x0101; break; | 
|  | 905 | case XFER_SW_DMA_2: drive->id->dma_1word |= 0x0404; break; | 
|  | 906 | case XFER_SW_DMA_1: drive->id->dma_1word |= 0x0202; break; | 
|  | 907 | case XFER_SW_DMA_0: drive->id->dma_1word |= 0x0101; break; | 
|  | 908 | default: break; | 
|  | 909 | } | 
|  | 910 | if (!drive->init_speed) | 
|  | 911 | drive->init_speed = speed; | 
|  | 912 | drive->current_speed = speed; | 
|  | 913 | return error; | 
|  | 914 | } | 
|  | 915 |  | 
|  | 916 | EXPORT_SYMBOL(ide_config_drive_speed); | 
|  | 917 |  | 
|  | 918 |  | 
|  | 919 | /* | 
|  | 920 | * This should get invoked any time we exit the driver to | 
|  | 921 | * wait for an interrupt response from a drive.  handler() points | 
|  | 922 | * at the appropriate code to handle the next interrupt, and a | 
|  | 923 | * timer is started to prevent us from waiting forever in case | 
|  | 924 | * something goes wrong (see the ide_timer_expiry() handler later on). | 
|  | 925 | * | 
|  | 926 | * See also ide_execute_command | 
|  | 927 | */ | 
|  | 928 | static void __ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
|  | 929 | unsigned int timeout, ide_expiry_t *expiry) | 
|  | 930 | { | 
|  | 931 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
|  | 932 |  | 
|  | 933 | if (hwgroup->handler != NULL) { | 
|  | 934 | printk(KERN_CRIT "%s: ide_set_handler: handler not null; " | 
|  | 935 | "old=%p, new=%p\n", | 
|  | 936 | drive->name, hwgroup->handler, handler); | 
|  | 937 | } | 
|  | 938 | hwgroup->handler	= handler; | 
|  | 939 | hwgroup->expiry		= expiry; | 
|  | 940 | hwgroup->timer.expires	= jiffies + timeout; | 
|  | 941 | add_timer(&hwgroup->timer); | 
|  | 942 | } | 
|  | 943 |  | 
|  | 944 | void ide_set_handler (ide_drive_t *drive, ide_handler_t *handler, | 
|  | 945 | unsigned int timeout, ide_expiry_t *expiry) | 
|  | 946 | { | 
|  | 947 | unsigned long flags; | 
|  | 948 | spin_lock_irqsave(&ide_lock, flags); | 
|  | 949 | __ide_set_handler(drive, handler, timeout, expiry); | 
|  | 950 | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | 951 | } | 
|  | 952 |  | 
|  | 953 | EXPORT_SYMBOL(ide_set_handler); | 
|  | 954 |  | 
|  | 955 | /** | 
|  | 956 | *	ide_execute_command	-	execute an IDE command | 
|  | 957 | *	@drive: IDE drive to issue the command against | 
|  | 958 | *	@command: command byte to write | 
|  | 959 | *	@handler: handler for next phase | 
|  | 960 | *	@timeout: timeout for command | 
|  | 961 | *	@expiry:  handler to run on timeout | 
|  | 962 | * | 
|  | 963 | *	Helper function to issue an IDE command. This handles the | 
|  | 964 | *	atomicity requirements, command timing and ensures that the | 
|  | 965 | *	handler and IRQ setup do not race. All IDE command kick off | 
|  | 966 | *	should go via this function or do equivalent locking. | 
|  | 967 | */ | 
|  | 968 |  | 
|  | 969 | void ide_execute_command(ide_drive_t *drive, task_ioreg_t cmd, ide_handler_t *handler, unsigned timeout, ide_expiry_t *expiry) | 
|  | 970 | { | 
|  | 971 | unsigned long flags; | 
|  | 972 | ide_hwgroup_t *hwgroup = HWGROUP(drive); | 
|  | 973 | ide_hwif_t *hwif = HWIF(drive); | 
|  | 974 |  | 
|  | 975 | spin_lock_irqsave(&ide_lock, flags); | 
|  | 976 |  | 
|  | 977 | if(hwgroup->handler) | 
|  | 978 | BUG(); | 
|  | 979 | hwgroup->handler	= handler; | 
|  | 980 | hwgroup->expiry		= expiry; | 
|  | 981 | hwgroup->timer.expires	= jiffies + timeout; | 
|  | 982 | add_timer(&hwgroup->timer); | 
|  | 983 | hwif->OUTBSYNC(drive, cmd, IDE_COMMAND_REG); | 
|  | 984 | /* Drive takes 400nS to respond, we must avoid the IRQ being | 
|  | 985 | serviced before that. | 
|  | 986 |  | 
|  | 987 | FIXME: we could skip this delay with care on non shared | 
|  | 988 | devices | 
|  | 989 | */ | 
|  | 990 | ndelay(400); | 
|  | 991 | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | 992 | } | 
|  | 993 |  | 
|  | 994 | EXPORT_SYMBOL(ide_execute_command); | 
|  | 995 |  | 
|  | 996 |  | 
|  | 997 | /* needed below */ | 
|  | 998 | static ide_startstop_t do_reset1 (ide_drive_t *, int); | 
|  | 999 |  | 
|  | 1000 | /* | 
|  | 1001 | * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
|  | 1002 | * during an atapi drive reset operation. If the drive has not yet responded, | 
|  | 1003 | * and we have not yet hit our maximum waiting time, then the timer is restarted | 
|  | 1004 | * for another 50ms. | 
|  | 1005 | */ | 
|  | 1006 | static ide_startstop_t atapi_reset_pollfunc (ide_drive_t *drive) | 
|  | 1007 | { | 
|  | 1008 | ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
|  | 1009 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 1010 | u8 stat; | 
|  | 1011 |  | 
|  | 1012 | SELECT_DRIVE(drive); | 
|  | 1013 | udelay (10); | 
|  | 1014 |  | 
|  | 1015 | if (OK_STAT(stat = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { | 
|  | 1016 | printk("%s: ATAPI reset complete\n", drive->name); | 
|  | 1017 | } else { | 
|  | 1018 | if (time_before(jiffies, hwgroup->poll_timeout)) { | 
|  | 1019 | if (HWGROUP(drive)->handler != NULL) | 
|  | 1020 | BUG(); | 
|  | 1021 | ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
|  | 1022 | /* continue polling */ | 
|  | 1023 | return ide_started; | 
|  | 1024 | } | 
|  | 1025 | /* end of polling */ | 
|  | 1026 | hwgroup->polling = 0; | 
|  | 1027 | printk("%s: ATAPI reset timed-out, status=0x%02x\n", | 
|  | 1028 | drive->name, stat); | 
|  | 1029 | /* do it the old fashioned way */ | 
|  | 1030 | return do_reset1(drive, 1); | 
|  | 1031 | } | 
|  | 1032 | /* done polling */ | 
|  | 1033 | hwgroup->polling = 0; | 
|  | 1034 | return ide_stopped; | 
|  | 1035 | } | 
|  | 1036 |  | 
|  | 1037 | /* | 
|  | 1038 | * reset_pollfunc() gets invoked to poll the interface for completion every 50ms | 
|  | 1039 | * during an ide reset operation. If the drives have not yet responded, | 
|  | 1040 | * and we have not yet hit our maximum waiting time, then the timer is restarted | 
|  | 1041 | * for another 50ms. | 
|  | 1042 | */ | 
|  | 1043 | static ide_startstop_t reset_pollfunc (ide_drive_t *drive) | 
|  | 1044 | { | 
|  | 1045 | ide_hwgroup_t *hwgroup	= HWGROUP(drive); | 
|  | 1046 | ide_hwif_t *hwif	= HWIF(drive); | 
|  | 1047 | u8 tmp; | 
|  | 1048 |  | 
|  | 1049 | if (hwif->reset_poll != NULL) { | 
|  | 1050 | if (hwif->reset_poll(drive)) { | 
|  | 1051 | printk(KERN_ERR "%s: host reset_poll failure for %s.\n", | 
|  | 1052 | hwif->name, drive->name); | 
|  | 1053 | return ide_stopped; | 
|  | 1054 | } | 
|  | 1055 | } | 
|  | 1056 |  | 
|  | 1057 | if (!OK_STAT(tmp = hwif->INB(IDE_STATUS_REG), 0, BUSY_STAT)) { | 
|  | 1058 | if (time_before(jiffies, hwgroup->poll_timeout)) { | 
|  | 1059 | if (HWGROUP(drive)->handler != NULL) | 
|  | 1060 | BUG(); | 
|  | 1061 | ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
|  | 1062 | /* continue polling */ | 
|  | 1063 | return ide_started; | 
|  | 1064 | } | 
|  | 1065 | printk("%s: reset timed-out, status=0x%02x\n", hwif->name, tmp); | 
|  | 1066 | drive->failures++; | 
|  | 1067 | } else  { | 
|  | 1068 | printk("%s: reset: ", hwif->name); | 
|  | 1069 | if ((tmp = hwif->INB(IDE_ERROR_REG)) == 1) { | 
|  | 1070 | printk("success\n"); | 
|  | 1071 | drive->failures = 0; | 
|  | 1072 | } else { | 
|  | 1073 | drive->failures++; | 
|  | 1074 | printk("master: "); | 
|  | 1075 | switch (tmp & 0x7f) { | 
|  | 1076 | case 1: printk("passed"); | 
|  | 1077 | break; | 
|  | 1078 | case 2: printk("formatter device error"); | 
|  | 1079 | break; | 
|  | 1080 | case 3: printk("sector buffer error"); | 
|  | 1081 | break; | 
|  | 1082 | case 4: printk("ECC circuitry error"); | 
|  | 1083 | break; | 
|  | 1084 | case 5: printk("controlling MPU error"); | 
|  | 1085 | break; | 
|  | 1086 | default:printk("error (0x%02x?)", tmp); | 
|  | 1087 | } | 
|  | 1088 | if (tmp & 0x80) | 
|  | 1089 | printk("; slave: failed"); | 
|  | 1090 | printk("\n"); | 
|  | 1091 | } | 
|  | 1092 | } | 
|  | 1093 | hwgroup->polling = 0;	/* done polling */ | 
|  | 1094 | return ide_stopped; | 
|  | 1095 | } | 
|  | 1096 |  | 
|  | 1097 | static void check_dma_crc(ide_drive_t *drive) | 
|  | 1098 | { | 
|  | 1099 | #ifdef CONFIG_BLK_DEV_IDEDMA | 
|  | 1100 | if (drive->crc_count) { | 
|  | 1101 | (void) HWIF(drive)->ide_dma_off_quietly(drive); | 
|  | 1102 | ide_set_xfer_rate(drive, ide_auto_reduce_xfer(drive)); | 
|  | 1103 | if (drive->current_speed >= XFER_SW_DMA_0) | 
|  | 1104 | (void) HWIF(drive)->ide_dma_on(drive); | 
|  | 1105 | } else | 
|  | 1106 | (void)__ide_dma_off(drive); | 
|  | 1107 | #endif | 
|  | 1108 | } | 
|  | 1109 |  | 
|  | 1110 | static void ide_disk_pre_reset(ide_drive_t *drive) | 
|  | 1111 | { | 
|  | 1112 | int legacy = (drive->id->cfs_enable_2 & 0x0400) ? 0 : 1; | 
|  | 1113 |  | 
|  | 1114 | drive->special.all = 0; | 
|  | 1115 | drive->special.b.set_geometry = legacy; | 
|  | 1116 | drive->special.b.recalibrate  = legacy; | 
|  | 1117 | if (OK_TO_RESET_CONTROLLER) | 
|  | 1118 | drive->mult_count = 0; | 
|  | 1119 | if (!drive->keep_settings && !drive->using_dma) | 
|  | 1120 | drive->mult_req = 0; | 
|  | 1121 | if (drive->mult_req != drive->mult_count) | 
|  | 1122 | drive->special.b.set_multmode = 1; | 
|  | 1123 | } | 
|  | 1124 |  | 
|  | 1125 | static void pre_reset(ide_drive_t *drive) | 
|  | 1126 | { | 
|  | 1127 | if (drive->media == ide_disk) | 
|  | 1128 | ide_disk_pre_reset(drive); | 
|  | 1129 | else | 
|  | 1130 | drive->post_reset = 1; | 
|  | 1131 |  | 
|  | 1132 | if (!drive->keep_settings) { | 
|  | 1133 | if (drive->using_dma) { | 
|  | 1134 | check_dma_crc(drive); | 
|  | 1135 | } else { | 
|  | 1136 | drive->unmask = 0; | 
|  | 1137 | drive->io_32bit = 0; | 
|  | 1138 | } | 
|  | 1139 | return; | 
|  | 1140 | } | 
|  | 1141 | if (drive->using_dma) | 
|  | 1142 | check_dma_crc(drive); | 
|  | 1143 |  | 
|  | 1144 | if (HWIF(drive)->pre_reset != NULL) | 
|  | 1145 | HWIF(drive)->pre_reset(drive); | 
|  | 1146 |  | 
|  | 1147 | } | 
|  | 1148 |  | 
|  | 1149 | /* | 
|  | 1150 | * do_reset1() attempts to recover a confused drive by resetting it. | 
|  | 1151 | * Unfortunately, resetting a disk drive actually resets all devices on | 
|  | 1152 | * the same interface, so it can really be thought of as resetting the | 
|  | 1153 | * interface rather than resetting the drive. | 
|  | 1154 | * | 
|  | 1155 | * ATAPI devices have their own reset mechanism which allows them to be | 
|  | 1156 | * individually reset without clobbering other devices on the same interface. | 
|  | 1157 | * | 
|  | 1158 | * Unfortunately, the IDE interface does not generate an interrupt to let | 
|  | 1159 | * us know when the reset operation has finished, so we must poll for this. | 
|  | 1160 | * Equally poor, though, is the fact that this may a very long time to complete, | 
|  | 1161 | * (up to 30 seconds worstcase).  So, instead of busy-waiting here for it, | 
|  | 1162 | * we set a timer to poll at 50ms intervals. | 
|  | 1163 | */ | 
|  | 1164 | static ide_startstop_t do_reset1 (ide_drive_t *drive, int do_not_try_atapi) | 
|  | 1165 | { | 
|  | 1166 | unsigned int unit; | 
|  | 1167 | unsigned long flags; | 
|  | 1168 | ide_hwif_t *hwif; | 
|  | 1169 | ide_hwgroup_t *hwgroup; | 
|  | 1170 |  | 
|  | 1171 | spin_lock_irqsave(&ide_lock, flags); | 
|  | 1172 | hwif = HWIF(drive); | 
|  | 1173 | hwgroup = HWGROUP(drive); | 
|  | 1174 |  | 
|  | 1175 | /* We must not reset with running handlers */ | 
|  | 1176 | if(hwgroup->handler != NULL) | 
|  | 1177 | BUG(); | 
|  | 1178 |  | 
|  | 1179 | /* For an ATAPI device, first try an ATAPI SRST. */ | 
|  | 1180 | if (drive->media != ide_disk && !do_not_try_atapi) { | 
|  | 1181 | pre_reset(drive); | 
|  | 1182 | SELECT_DRIVE(drive); | 
|  | 1183 | udelay (20); | 
|  | 1184 | hwif->OUTB(WIN_SRST, IDE_COMMAND_REG); | 
|  | 1185 | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
|  | 1186 | hwgroup->polling = 1; | 
|  | 1187 | __ide_set_handler(drive, &atapi_reset_pollfunc, HZ/20, NULL); | 
|  | 1188 | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | 1189 | return ide_started; | 
|  | 1190 | } | 
|  | 1191 |  | 
|  | 1192 | /* | 
|  | 1193 | * First, reset any device state data we were maintaining | 
|  | 1194 | * for any of the drives on this interface. | 
|  | 1195 | */ | 
|  | 1196 | for (unit = 0; unit < MAX_DRIVES; ++unit) | 
|  | 1197 | pre_reset(&hwif->drives[unit]); | 
|  | 1198 |  | 
|  | 1199 | #if OK_TO_RESET_CONTROLLER | 
|  | 1200 | if (!IDE_CONTROL_REG) { | 
|  | 1201 | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | 1202 | return ide_stopped; | 
|  | 1203 | } | 
|  | 1204 |  | 
|  | 1205 | /* | 
|  | 1206 | * Note that we also set nIEN while resetting the device, | 
|  | 1207 | * to mask unwanted interrupts from the interface during the reset. | 
|  | 1208 | * However, due to the design of PC hardware, this will cause an | 
|  | 1209 | * immediate interrupt due to the edge transition it produces. | 
|  | 1210 | * This single interrupt gives us a "fast poll" for drives that | 
|  | 1211 | * recover from reset very quickly, saving us the first 50ms wait time. | 
|  | 1212 | */ | 
|  | 1213 | /* set SRST and nIEN */ | 
|  | 1214 | hwif->OUTBSYNC(drive, drive->ctl|6,IDE_CONTROL_REG); | 
|  | 1215 | /* more than enough time */ | 
|  | 1216 | udelay(10); | 
|  | 1217 | if (drive->quirk_list == 2) { | 
|  | 1218 | /* clear SRST and nIEN */ | 
|  | 1219 | hwif->OUTBSYNC(drive, drive->ctl, IDE_CONTROL_REG); | 
|  | 1220 | } else { | 
|  | 1221 | /* clear SRST, leave nIEN */ | 
|  | 1222 | hwif->OUTBSYNC(drive, drive->ctl|2, IDE_CONTROL_REG); | 
|  | 1223 | } | 
|  | 1224 | /* more than enough time */ | 
|  | 1225 | udelay(10); | 
|  | 1226 | hwgroup->poll_timeout = jiffies + WAIT_WORSTCASE; | 
|  | 1227 | hwgroup->polling = 1; | 
|  | 1228 | __ide_set_handler(drive, &reset_pollfunc, HZ/20, NULL); | 
|  | 1229 |  | 
|  | 1230 | /* | 
|  | 1231 | * Some weird controller like resetting themselves to a strange | 
|  | 1232 | * state when the disks are reset this way. At least, the Winbond | 
|  | 1233 | * 553 documentation says that | 
|  | 1234 | */ | 
|  | 1235 | if (hwif->resetproc != NULL) { | 
|  | 1236 | hwif->resetproc(drive); | 
|  | 1237 | } | 
|  | 1238 |  | 
|  | 1239 | #endif	/* OK_TO_RESET_CONTROLLER */ | 
|  | 1240 |  | 
|  | 1241 | spin_unlock_irqrestore(&ide_lock, flags); | 
|  | 1242 | return ide_started; | 
|  | 1243 | } | 
|  | 1244 |  | 
|  | 1245 | /* | 
|  | 1246 | * ide_do_reset() is the entry point to the drive/interface reset code. | 
|  | 1247 | */ | 
|  | 1248 |  | 
|  | 1249 | ide_startstop_t ide_do_reset (ide_drive_t *drive) | 
|  | 1250 | { | 
|  | 1251 | return do_reset1(drive, 0); | 
|  | 1252 | } | 
|  | 1253 |  | 
|  | 1254 | EXPORT_SYMBOL(ide_do_reset); | 
|  | 1255 |  | 
|  | 1256 | /* | 
|  | 1257 | * ide_wait_not_busy() waits for the currently selected device on the hwif | 
|  | 1258 | * to report a non-busy status, see comments in probe_hwif(). | 
|  | 1259 | */ | 
|  | 1260 | int ide_wait_not_busy(ide_hwif_t *hwif, unsigned long timeout) | 
|  | 1261 | { | 
|  | 1262 | u8 stat = 0; | 
|  | 1263 |  | 
|  | 1264 | while(timeout--) { | 
|  | 1265 | /* | 
|  | 1266 | * Turn this into a schedule() sleep once I'm sure | 
|  | 1267 | * about locking issues (2.5 work ?). | 
|  | 1268 | */ | 
|  | 1269 | mdelay(1); | 
|  | 1270 | stat = hwif->INB(hwif->io_ports[IDE_STATUS_OFFSET]); | 
|  | 1271 | if ((stat & BUSY_STAT) == 0) | 
|  | 1272 | return 0; | 
|  | 1273 | /* | 
|  | 1274 | * Assume a value of 0xff means nothing is connected to | 
|  | 1275 | * the interface and it doesn't implement the pull-down | 
|  | 1276 | * resistor on D7. | 
|  | 1277 | */ | 
|  | 1278 | if (stat == 0xff) | 
|  | 1279 | return -ENODEV; | 
|  | 1280 | } | 
|  | 1281 | return -EBUSY; | 
|  | 1282 | } | 
|  | 1283 |  | 
|  | 1284 | EXPORT_SYMBOL_GPL(ide_wait_not_busy); | 
|  | 1285 |  |