| David Daney | c1bf207 | 2010-08-03 11:22:20 -0700 | [diff] [blame] | 1 | /* | 
 | 2 |  *  Kernel Probes (KProbes) | 
 | 3 |  *  arch/mips/kernel/kprobes.c | 
 | 4 |  * | 
 | 5 |  *  Copyright 2006 Sony Corp. | 
 | 6 |  *  Copyright 2010 Cavium Networks | 
 | 7 |  * | 
 | 8 |  *  Some portions copied from the powerpc version. | 
 | 9 |  * | 
 | 10 |  *   Copyright (C) IBM Corporation, 2002, 2004 | 
 | 11 |  * | 
 | 12 |  *  This program is free software; you can redistribute it and/or modify | 
 | 13 |  *  it under the terms of the GNU General Public License as published by | 
 | 14 |  *  the Free Software Foundation; version 2 of the License. | 
 | 15 |  * | 
 | 16 |  *  This program is distributed in the hope that it will be useful, | 
 | 17 |  *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
 | 18 |  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
 | 19 |  *  GNU General Public License for more details. | 
 | 20 |  * | 
 | 21 |  *  You should have received a copy of the GNU General Public License | 
 | 22 |  *  along with this program; if not, write to the Free Software | 
 | 23 |  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA | 
 | 24 |  */ | 
 | 25 |  | 
 | 26 | #include <linux/kprobes.h> | 
 | 27 | #include <linux/preempt.h> | 
 | 28 | #include <linux/kdebug.h> | 
 | 29 | #include <linux/slab.h> | 
 | 30 |  | 
 | 31 | #include <asm/ptrace.h> | 
 | 32 | #include <asm/break.h> | 
 | 33 | #include <asm/inst.h> | 
 | 34 |  | 
 | 35 | static const union mips_instruction breakpoint_insn = { | 
 | 36 | 	.b_format = { | 
 | 37 | 		.opcode = spec_op, | 
 | 38 | 		.code = BRK_KPROBE_BP, | 
 | 39 | 		.func = break_op | 
 | 40 | 	} | 
 | 41 | }; | 
 | 42 |  | 
 | 43 | static const union mips_instruction breakpoint2_insn = { | 
 | 44 | 	.b_format = { | 
 | 45 | 		.opcode = spec_op, | 
 | 46 | 		.code = BRK_KPROBE_SSTEPBP, | 
 | 47 | 		.func = break_op | 
 | 48 | 	} | 
 | 49 | }; | 
 | 50 |  | 
 | 51 | DEFINE_PER_CPU(struct kprobe *, current_kprobe); | 
 | 52 | DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); | 
 | 53 |  | 
 | 54 | static int __kprobes insn_has_delayslot(union mips_instruction insn) | 
 | 55 | { | 
 | 56 | 	switch (insn.i_format.opcode) { | 
 | 57 |  | 
 | 58 | 		/* | 
 | 59 | 		 * This group contains: | 
 | 60 | 		 * jr and jalr are in r_format format. | 
 | 61 | 		 */ | 
 | 62 | 	case spec_op: | 
 | 63 | 		switch (insn.r_format.func) { | 
 | 64 | 		case jr_op: | 
 | 65 | 		case jalr_op: | 
 | 66 | 			break; | 
 | 67 | 		default: | 
 | 68 | 			goto insn_ok; | 
 | 69 | 		} | 
 | 70 |  | 
 | 71 | 		/* | 
 | 72 | 		 * This group contains: | 
 | 73 | 		 * bltz_op, bgez_op, bltzl_op, bgezl_op, | 
 | 74 | 		 * bltzal_op, bgezal_op, bltzall_op, bgezall_op. | 
 | 75 | 		 */ | 
 | 76 | 	case bcond_op: | 
 | 77 |  | 
 | 78 | 		/* | 
 | 79 | 		 * These are unconditional and in j_format. | 
 | 80 | 		 */ | 
 | 81 | 	case jal_op: | 
 | 82 | 	case j_op: | 
 | 83 |  | 
 | 84 | 		/* | 
 | 85 | 		 * These are conditional and in i_format. | 
 | 86 | 		 */ | 
 | 87 | 	case beq_op: | 
 | 88 | 	case beql_op: | 
 | 89 | 	case bne_op: | 
 | 90 | 	case bnel_op: | 
 | 91 | 	case blez_op: | 
 | 92 | 	case blezl_op: | 
 | 93 | 	case bgtz_op: | 
 | 94 | 	case bgtzl_op: | 
 | 95 |  | 
 | 96 | 		/* | 
 | 97 | 		 * These are the FPA/cp1 branch instructions. | 
 | 98 | 		 */ | 
 | 99 | 	case cop1_op: | 
 | 100 |  | 
 | 101 | #ifdef CONFIG_CPU_CAVIUM_OCTEON | 
 | 102 | 	case lwc2_op: /* This is bbit0 on Octeon */ | 
 | 103 | 	case ldc2_op: /* This is bbit032 on Octeon */ | 
 | 104 | 	case swc2_op: /* This is bbit1 on Octeon */ | 
 | 105 | 	case sdc2_op: /* This is bbit132 on Octeon */ | 
 | 106 | #endif | 
 | 107 | 		return 1; | 
 | 108 | 	default: | 
 | 109 | 		break; | 
 | 110 | 	} | 
 | 111 | insn_ok: | 
 | 112 | 	return 0; | 
 | 113 | } | 
 | 114 |  | 
 | 115 | int __kprobes arch_prepare_kprobe(struct kprobe *p) | 
 | 116 | { | 
 | 117 | 	union mips_instruction insn; | 
 | 118 | 	union mips_instruction prev_insn; | 
 | 119 | 	int ret = 0; | 
 | 120 |  | 
 | 121 | 	prev_insn = p->addr[-1]; | 
 | 122 | 	insn = p->addr[0]; | 
 | 123 |  | 
 | 124 | 	if (insn_has_delayslot(insn) || insn_has_delayslot(prev_insn)) { | 
 | 125 | 		pr_notice("Kprobes for branch and jump instructions are not supported\n"); | 
 | 126 | 		ret = -EINVAL; | 
 | 127 | 		goto out; | 
 | 128 | 	} | 
 | 129 |  | 
 | 130 | 	/* insn: must be on special executable page on mips. */ | 
 | 131 | 	p->ainsn.insn = get_insn_slot(); | 
 | 132 | 	if (!p->ainsn.insn) { | 
 | 133 | 		ret = -ENOMEM; | 
 | 134 | 		goto out; | 
 | 135 | 	} | 
 | 136 |  | 
 | 137 | 	/* | 
 | 138 | 	 * In the kprobe->ainsn.insn[] array we store the original | 
 | 139 | 	 * instruction at index zero and a break trap instruction at | 
 | 140 | 	 * index one. | 
 | 141 | 	 */ | 
 | 142 |  | 
 | 143 | 	memcpy(&p->ainsn.insn[0], p->addr, sizeof(kprobe_opcode_t)); | 
 | 144 | 	p->ainsn.insn[1] = breakpoint2_insn; | 
 | 145 | 	p->opcode = *p->addr; | 
 | 146 |  | 
 | 147 | out: | 
 | 148 | 	return ret; | 
 | 149 | } | 
 | 150 |  | 
 | 151 | void __kprobes arch_arm_kprobe(struct kprobe *p) | 
 | 152 | { | 
 | 153 | 	*p->addr = breakpoint_insn; | 
 | 154 | 	flush_insn_slot(p); | 
 | 155 | } | 
 | 156 |  | 
 | 157 | void __kprobes arch_disarm_kprobe(struct kprobe *p) | 
 | 158 | { | 
 | 159 | 	*p->addr = p->opcode; | 
 | 160 | 	flush_insn_slot(p); | 
 | 161 | } | 
 | 162 |  | 
 | 163 | void __kprobes arch_remove_kprobe(struct kprobe *p) | 
 | 164 | { | 
 | 165 | 	free_insn_slot(p->ainsn.insn, 0); | 
 | 166 | } | 
 | 167 |  | 
 | 168 | static void save_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | 169 | { | 
 | 170 | 	kcb->prev_kprobe.kp = kprobe_running(); | 
 | 171 | 	kcb->prev_kprobe.status = kcb->kprobe_status; | 
 | 172 | 	kcb->prev_kprobe.old_SR = kcb->kprobe_old_SR; | 
 | 173 | 	kcb->prev_kprobe.saved_SR = kcb->kprobe_saved_SR; | 
 | 174 | 	kcb->prev_kprobe.saved_epc = kcb->kprobe_saved_epc; | 
 | 175 | } | 
 | 176 |  | 
 | 177 | static void restore_previous_kprobe(struct kprobe_ctlblk *kcb) | 
 | 178 | { | 
 | 179 | 	__get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp; | 
 | 180 | 	kcb->kprobe_status = kcb->prev_kprobe.status; | 
 | 181 | 	kcb->kprobe_old_SR = kcb->prev_kprobe.old_SR; | 
 | 182 | 	kcb->kprobe_saved_SR = kcb->prev_kprobe.saved_SR; | 
 | 183 | 	kcb->kprobe_saved_epc = kcb->prev_kprobe.saved_epc; | 
 | 184 | } | 
 | 185 |  | 
 | 186 | static void set_current_kprobe(struct kprobe *p, struct pt_regs *regs, | 
 | 187 | 			       struct kprobe_ctlblk *kcb) | 
 | 188 | { | 
 | 189 | 	__get_cpu_var(current_kprobe) = p; | 
 | 190 | 	kcb->kprobe_saved_SR = kcb->kprobe_old_SR = (regs->cp0_status & ST0_IE); | 
 | 191 | 	kcb->kprobe_saved_epc = regs->cp0_epc; | 
 | 192 | } | 
 | 193 |  | 
 | 194 | static void prepare_singlestep(struct kprobe *p, struct pt_regs *regs) | 
 | 195 | { | 
 | 196 | 	regs->cp0_status &= ~ST0_IE; | 
 | 197 |  | 
 | 198 | 	/* single step inline if the instruction is a break */ | 
 | 199 | 	if (p->opcode.word == breakpoint_insn.word || | 
 | 200 | 	    p->opcode.word == breakpoint2_insn.word) | 
 | 201 | 		regs->cp0_epc = (unsigned long)p->addr; | 
 | 202 | 	else | 
 | 203 | 		regs->cp0_epc = (unsigned long)&p->ainsn.insn[0]; | 
 | 204 | } | 
 | 205 |  | 
 | 206 | static int __kprobes kprobe_handler(struct pt_regs *regs) | 
 | 207 | { | 
 | 208 | 	struct kprobe *p; | 
 | 209 | 	int ret = 0; | 
 | 210 | 	kprobe_opcode_t *addr; | 
 | 211 | 	struct kprobe_ctlblk *kcb; | 
 | 212 |  | 
 | 213 | 	addr = (kprobe_opcode_t *) regs->cp0_epc; | 
 | 214 |  | 
 | 215 | 	/* | 
 | 216 | 	 * We don't want to be preempted for the entire | 
 | 217 | 	 * duration of kprobe processing | 
 | 218 | 	 */ | 
 | 219 | 	preempt_disable(); | 
 | 220 | 	kcb = get_kprobe_ctlblk(); | 
 | 221 |  | 
 | 222 | 	/* Check we're not actually recursing */ | 
 | 223 | 	if (kprobe_running()) { | 
 | 224 | 		p = get_kprobe(addr); | 
 | 225 | 		if (p) { | 
 | 226 | 			if (kcb->kprobe_status == KPROBE_HIT_SS && | 
 | 227 | 			    p->ainsn.insn->word == breakpoint_insn.word) { | 
 | 228 | 				regs->cp0_status &= ~ST0_IE; | 
 | 229 | 				regs->cp0_status |= kcb->kprobe_saved_SR; | 
 | 230 | 				goto no_kprobe; | 
 | 231 | 			} | 
 | 232 | 			/* | 
 | 233 | 			 * We have reentered the kprobe_handler(), since | 
 | 234 | 			 * another probe was hit while within the handler. | 
 | 235 | 			 * We here save the original kprobes variables and | 
 | 236 | 			 * just single step on the instruction of the new probe | 
 | 237 | 			 * without calling any user handlers. | 
 | 238 | 			 */ | 
 | 239 | 			save_previous_kprobe(kcb); | 
 | 240 | 			set_current_kprobe(p, regs, kcb); | 
 | 241 | 			kprobes_inc_nmissed_count(p); | 
 | 242 | 			prepare_singlestep(p, regs); | 
 | 243 | 			kcb->kprobe_status = KPROBE_REENTER; | 
 | 244 | 			return 1; | 
 | 245 | 		} else { | 
 | 246 | 			if (addr->word != breakpoint_insn.word) { | 
 | 247 | 				/* | 
 | 248 | 				 * The breakpoint instruction was removed by | 
 | 249 | 				 * another cpu right after we hit, no further | 
 | 250 | 				 * handling of this interrupt is appropriate | 
 | 251 | 				 */ | 
 | 252 | 				ret = 1; | 
 | 253 | 				goto no_kprobe; | 
 | 254 | 			} | 
 | 255 | 			p = __get_cpu_var(current_kprobe); | 
 | 256 | 			if (p->break_handler && p->break_handler(p, regs)) | 
 | 257 | 				goto ss_probe; | 
 | 258 | 		} | 
 | 259 | 		goto no_kprobe; | 
 | 260 | 	} | 
 | 261 |  | 
 | 262 | 	p = get_kprobe(addr); | 
 | 263 | 	if (!p) { | 
 | 264 | 		if (addr->word != breakpoint_insn.word) { | 
 | 265 | 			/* | 
 | 266 | 			 * The breakpoint instruction was removed right | 
 | 267 | 			 * after we hit it.  Another cpu has removed | 
 | 268 | 			 * either a probepoint or a debugger breakpoint | 
 | 269 | 			 * at this address.  In either case, no further | 
 | 270 | 			 * handling of this interrupt is appropriate. | 
 | 271 | 			 */ | 
 | 272 | 			ret = 1; | 
 | 273 | 		} | 
 | 274 | 		/* Not one of ours: let kernel handle it */ | 
 | 275 | 		goto no_kprobe; | 
 | 276 | 	} | 
 | 277 |  | 
 | 278 | 	set_current_kprobe(p, regs, kcb); | 
 | 279 | 	kcb->kprobe_status = KPROBE_HIT_ACTIVE; | 
 | 280 |  | 
 | 281 | 	if (p->pre_handler && p->pre_handler(p, regs)) { | 
 | 282 | 		/* handler has already set things up, so skip ss setup */ | 
 | 283 | 		return 1; | 
 | 284 | 	} | 
 | 285 |  | 
 | 286 | ss_probe: | 
 | 287 | 	prepare_singlestep(p, regs); | 
 | 288 | 	kcb->kprobe_status = KPROBE_HIT_SS; | 
 | 289 | 	return 1; | 
 | 290 |  | 
 | 291 | no_kprobe: | 
 | 292 | 	preempt_enable_no_resched(); | 
 | 293 | 	return ret; | 
 | 294 |  | 
 | 295 | } | 
 | 296 |  | 
 | 297 | /* | 
 | 298 |  * Called after single-stepping.  p->addr is the address of the | 
 | 299 |  * instruction whose first byte has been replaced by the "break 0" | 
 | 300 |  * instruction.  To avoid the SMP problems that can occur when we | 
 | 301 |  * temporarily put back the original opcode to single-step, we | 
 | 302 |  * single-stepped a copy of the instruction.  The address of this | 
 | 303 |  * copy is p->ainsn.insn. | 
 | 304 |  * | 
 | 305 |  * This function prepares to return from the post-single-step | 
 | 306 |  * breakpoint trap. | 
 | 307 |  */ | 
 | 308 | static void __kprobes resume_execution(struct kprobe *p, | 
 | 309 | 				       struct pt_regs *regs, | 
 | 310 | 				       struct kprobe_ctlblk *kcb) | 
 | 311 | { | 
 | 312 | 	unsigned long orig_epc = kcb->kprobe_saved_epc; | 
 | 313 | 	regs->cp0_epc = orig_epc + 4; | 
 | 314 | } | 
 | 315 |  | 
 | 316 | static inline int post_kprobe_handler(struct pt_regs *regs) | 
 | 317 | { | 
 | 318 | 	struct kprobe *cur = kprobe_running(); | 
 | 319 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 320 |  | 
 | 321 | 	if (!cur) | 
 | 322 | 		return 0; | 
 | 323 |  | 
 | 324 | 	if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) { | 
 | 325 | 		kcb->kprobe_status = KPROBE_HIT_SSDONE; | 
 | 326 | 		cur->post_handler(cur, regs, 0); | 
 | 327 | 	} | 
 | 328 |  | 
 | 329 | 	resume_execution(cur, regs, kcb); | 
 | 330 |  | 
 | 331 | 	regs->cp0_status |= kcb->kprobe_saved_SR; | 
 | 332 |  | 
 | 333 | 	/* Restore back the original saved kprobes variables and continue. */ | 
 | 334 | 	if (kcb->kprobe_status == KPROBE_REENTER) { | 
 | 335 | 		restore_previous_kprobe(kcb); | 
 | 336 | 		goto out; | 
 | 337 | 	} | 
 | 338 | 	reset_current_kprobe(); | 
 | 339 | out: | 
 | 340 | 	preempt_enable_no_resched(); | 
 | 341 |  | 
 | 342 | 	return 1; | 
 | 343 | } | 
 | 344 |  | 
 | 345 | static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr) | 
 | 346 | { | 
 | 347 | 	struct kprobe *cur = kprobe_running(); | 
 | 348 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 349 |  | 
 | 350 | 	if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr)) | 
 | 351 | 		return 1; | 
 | 352 |  | 
 | 353 | 	if (kcb->kprobe_status & KPROBE_HIT_SS) { | 
 | 354 | 		resume_execution(cur, regs, kcb); | 
 | 355 | 		regs->cp0_status |= kcb->kprobe_old_SR; | 
 | 356 |  | 
 | 357 | 		reset_current_kprobe(); | 
 | 358 | 		preempt_enable_no_resched(); | 
 | 359 | 	} | 
 | 360 | 	return 0; | 
 | 361 | } | 
 | 362 |  | 
 | 363 | /* | 
 | 364 |  * Wrapper routine for handling exceptions. | 
 | 365 |  */ | 
 | 366 | int __kprobes kprobe_exceptions_notify(struct notifier_block *self, | 
 | 367 | 				       unsigned long val, void *data) | 
 | 368 | { | 
 | 369 |  | 
 | 370 | 	struct die_args *args = (struct die_args *)data; | 
 | 371 | 	int ret = NOTIFY_DONE; | 
 | 372 |  | 
 | 373 | 	switch (val) { | 
 | 374 | 	case DIE_BREAK: | 
 | 375 | 		if (kprobe_handler(args->regs)) | 
 | 376 | 			ret = NOTIFY_STOP; | 
 | 377 | 		break; | 
 | 378 | 	case DIE_SSTEPBP: | 
 | 379 | 		if (post_kprobe_handler(args->regs)) | 
 | 380 | 			ret = NOTIFY_STOP; | 
 | 381 | 		break; | 
 | 382 |  | 
 | 383 | 	case DIE_PAGE_FAULT: | 
 | 384 | 		/* kprobe_running() needs smp_processor_id() */ | 
 | 385 | 		preempt_disable(); | 
 | 386 |  | 
 | 387 | 		if (kprobe_running() | 
 | 388 | 		    && kprobe_fault_handler(args->regs, args->trapnr)) | 
 | 389 | 			ret = NOTIFY_STOP; | 
 | 390 | 		preempt_enable(); | 
 | 391 | 		break; | 
 | 392 | 	default: | 
 | 393 | 		break; | 
 | 394 | 	} | 
 | 395 | 	return ret; | 
 | 396 | } | 
 | 397 |  | 
 | 398 | int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) | 
 | 399 | { | 
 | 400 | 	struct jprobe *jp = container_of(p, struct jprobe, kp); | 
 | 401 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 402 |  | 
 | 403 | 	kcb->jprobe_saved_regs = *regs; | 
 | 404 | 	kcb->jprobe_saved_sp = regs->regs[29]; | 
 | 405 |  | 
 | 406 | 	memcpy(kcb->jprobes_stack, (void *)kcb->jprobe_saved_sp, | 
 | 407 | 	       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | 
 | 408 |  | 
 | 409 | 	regs->cp0_epc = (unsigned long)(jp->entry); | 
 | 410 |  | 
 | 411 | 	return 1; | 
 | 412 | } | 
 | 413 |  | 
 | 414 | /* Defined in the inline asm below. */ | 
 | 415 | void jprobe_return_end(void); | 
 | 416 |  | 
 | 417 | void __kprobes jprobe_return(void) | 
 | 418 | { | 
 | 419 | 	/* Assembler quirk necessitates this '0,code' business.  */ | 
 | 420 | 	asm volatile( | 
 | 421 | 		"break 0,%0\n\t" | 
 | 422 | 		".globl jprobe_return_end\n" | 
 | 423 | 		"jprobe_return_end:\n" | 
 | 424 | 		: : "n" (BRK_KPROBE_BP) : "memory"); | 
 | 425 | } | 
 | 426 |  | 
 | 427 | int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) | 
 | 428 | { | 
 | 429 | 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); | 
 | 430 |  | 
 | 431 | 	if (regs->cp0_epc >= (unsigned long)jprobe_return && | 
 | 432 | 	    regs->cp0_epc <= (unsigned long)jprobe_return_end) { | 
 | 433 | 		*regs = kcb->jprobe_saved_regs; | 
 | 434 | 		memcpy((void *)kcb->jprobe_saved_sp, kcb->jprobes_stack, | 
 | 435 | 		       MIN_JPROBES_STACK_SIZE(kcb->jprobe_saved_sp)); | 
 | 436 | 		preempt_enable_no_resched(); | 
 | 437 |  | 
 | 438 | 		return 1; | 
 | 439 | 	} | 
 | 440 | 	return 0; | 
 | 441 | } | 
 | 442 |  | 
 | 443 | /* | 
 | 444 |  * Function return probe trampoline: | 
 | 445 |  *	- init_kprobes() establishes a probepoint here | 
 | 446 |  *	- When the probed function returns, this probe causes the | 
 | 447 |  *	  handlers to fire | 
 | 448 |  */ | 
 | 449 | static void __used kretprobe_trampoline_holder(void) | 
 | 450 | { | 
 | 451 | 	asm volatile( | 
 | 452 | 		".set push\n\t" | 
 | 453 | 		/* Keep the assembler from reordering and placing JR here. */ | 
 | 454 | 		".set noreorder\n\t" | 
 | 455 | 		"nop\n\t" | 
 | 456 | 		".global kretprobe_trampoline\n" | 
 | 457 | 		"kretprobe_trampoline:\n\t" | 
 | 458 | 		"nop\n\t" | 
 | 459 | 		".set pop" | 
 | 460 | 		: : : "memory"); | 
 | 461 | } | 
 | 462 |  | 
 | 463 | void kretprobe_trampoline(void); | 
 | 464 |  | 
 | 465 | void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, | 
 | 466 | 				      struct pt_regs *regs) | 
 | 467 | { | 
 | 468 | 	ri->ret_addr = (kprobe_opcode_t *) regs->regs[31]; | 
 | 469 |  | 
 | 470 | 	/* Replace the return addr with trampoline addr */ | 
 | 471 | 	regs->regs[31] = (unsigned long)kretprobe_trampoline; | 
 | 472 | } | 
 | 473 |  | 
 | 474 | /* | 
 | 475 |  * Called when the probe at kretprobe trampoline is hit | 
 | 476 |  */ | 
 | 477 | static int __kprobes trampoline_probe_handler(struct kprobe *p, | 
 | 478 | 						struct pt_regs *regs) | 
 | 479 | { | 
 | 480 | 	struct kretprobe_instance *ri = NULL; | 
 | 481 | 	struct hlist_head *head, empty_rp; | 
 | 482 | 	struct hlist_node *node, *tmp; | 
 | 483 | 	unsigned long flags, orig_ret_address = 0; | 
 | 484 | 	unsigned long trampoline_address = (unsigned long)kretprobe_trampoline; | 
 | 485 |  | 
 | 486 | 	INIT_HLIST_HEAD(&empty_rp); | 
 | 487 | 	kretprobe_hash_lock(current, &head, &flags); | 
 | 488 |  | 
 | 489 | 	/* | 
 | 490 | 	 * It is possible to have multiple instances associated with a given | 
 | 491 | 	 * task either because an multiple functions in the call path | 
 | 492 | 	 * have a return probe installed on them, and/or more than one return | 
 | 493 | 	 * return probe was registered for a target function. | 
 | 494 | 	 * | 
 | 495 | 	 * We can handle this because: | 
 | 496 | 	 *     - instances are always inserted at the head of the list | 
 | 497 | 	 *     - when multiple return probes are registered for the same | 
 | 498 | 	 *       function, the first instance's ret_addr will point to the | 
 | 499 | 	 *       real return address, and all the rest will point to | 
 | 500 | 	 *       kretprobe_trampoline | 
 | 501 | 	 */ | 
 | 502 | 	hlist_for_each_entry_safe(ri, node, tmp, head, hlist) { | 
 | 503 | 		if (ri->task != current) | 
 | 504 | 			/* another task is sharing our hash bucket */ | 
 | 505 | 			continue; | 
 | 506 |  | 
 | 507 | 		if (ri->rp && ri->rp->handler) | 
 | 508 | 			ri->rp->handler(ri, regs); | 
 | 509 |  | 
 | 510 | 		orig_ret_address = (unsigned long)ri->ret_addr; | 
 | 511 | 		recycle_rp_inst(ri, &empty_rp); | 
 | 512 |  | 
 | 513 | 		if (orig_ret_address != trampoline_address) | 
 | 514 | 			/* | 
 | 515 | 			 * This is the real return address. Any other | 
 | 516 | 			 * instances associated with this task are for | 
 | 517 | 			 * other calls deeper on the call stack | 
 | 518 | 			 */ | 
 | 519 | 			break; | 
 | 520 | 	} | 
 | 521 |  | 
 | 522 | 	kretprobe_assert(ri, orig_ret_address, trampoline_address); | 
 | 523 | 	instruction_pointer(regs) = orig_ret_address; | 
 | 524 |  | 
 | 525 | 	reset_current_kprobe(); | 
 | 526 | 	kretprobe_hash_unlock(current, &flags); | 
 | 527 | 	preempt_enable_no_resched(); | 
 | 528 |  | 
 | 529 | 	hlist_for_each_entry_safe(ri, node, tmp, &empty_rp, hlist) { | 
 | 530 | 		hlist_del(&ri->hlist); | 
 | 531 | 		kfree(ri); | 
 | 532 | 	} | 
 | 533 | 	/* | 
 | 534 | 	 * By returning a non-zero value, we are telling | 
 | 535 | 	 * kprobe_handler() that we don't want the post_handler | 
 | 536 | 	 * to run (and have re-enabled preemption) | 
 | 537 | 	 */ | 
 | 538 | 	return 1; | 
 | 539 | } | 
 | 540 |  | 
 | 541 | int __kprobes arch_trampoline_kprobe(struct kprobe *p) | 
 | 542 | { | 
 | 543 | 	if (p->addr == (kprobe_opcode_t *)kretprobe_trampoline) | 
 | 544 | 		return 1; | 
 | 545 |  | 
 | 546 | 	return 0; | 
 | 547 | } | 
 | 548 |  | 
 | 549 | static struct kprobe trampoline_p = { | 
 | 550 | 	.addr = (kprobe_opcode_t *)kretprobe_trampoline, | 
 | 551 | 	.pre_handler = trampoline_probe_handler | 
 | 552 | }; | 
 | 553 |  | 
 | 554 | int __init arch_init_kprobes(void) | 
 | 555 | { | 
 | 556 | 	return register_kprobe(&trampoline_p); | 
 | 557 | } |